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Abstract

Nowadays, most of numerical methods are based on the well-known finite element

method. However, innovative and alternative formulations have been recently devel-

oped, based on meshless methods, using just a nodal grid, and keeping the quality of

the numerical solution.

In the last decades, structures formed by plates and shells and using composite ma-

terials such as laminated and functionally graded materials, have experienced very

high rates of development. This work intends to apply a meshless method to analyze

the mechanical behavior of those structures. For this purpose, differential governing

equations from several theories of plates and shells are presented.

The global radial basis function collocation method is chosen to interpolate the differ-

ential equations and boundary conditions. The method has an easy implementation

and it has been applied successfully in several areas. It proved to be excellent for solv-

ing differential equations. However, its application in mechanical engineering problems

has been kept limited. In order to demonstrate the performance of the method, the

present work shows some applications related with that area.

The method proved to be excellent to perform the analysis of plates and shells. It is

known that one of the problems of the present method is due to a bad choice of the

shape parameter. For that reason the shape parameter is obtained by an optimization

technique.

New shear deformation plate and shell theories were developed within present the-

sis. The differential governing equations and boundary conditions of the new shear

deformation theories are obtained by a unified formulation by Carrera and further

interpolated via global collocation with radial basis functions. The combination of

Carrera’s Unified formulation and meshless methods proved to be good for modeling

the mechanical behavior of such structures.
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Resumo

Actualmente, a maior parte dos métodos numéricos para a resolução de problemas

de estruturas baseia-se em formulações de elementos finitos. Contudo, têm surgido

recentemente formulações inovadoras e alternativas, baseadas em métodos sem malha,

considerando apenas uma rede de nós e mantendo a qualidade da solução.

Nas últimas décadas, estruturas formadas por placas e cascas feitas em materiais com-

pósitos tipo laminados e gradativos funcionais atingiram elevados níveis de desenvol-

vimento. Nesta tese, pretende-se aplicar um método sem malha para analisar o com-

portamento mecânico de tais estruturas. Para tal, apresenta-se equações diferenciais

de diversas teorias de placa e casca.

O método de colocação global com funções de base radial é usado para interpolar as

equações diferenciais e as condições de fronteira. Este método é de implementação sim-

ples e tem sido aplicado com sucesso em diversas áreas. O método revelou-se excelente

para a resolução de equações diferenciais. Todavia, a sua aplicação em problemas de

engenharia mecânica continua a ser escassa. A presente tese mostra algumas aplicações

nesta área, de forma a demonstrar a eficácia do método.

O método revelou-se excelente para a análise de placas e cascas. Um dos problemas

conhecidos deste método tem origem na má escolha do valor do parâmetro de forma e,

por este motivo, este é escolhido com base numa técnica de optimização.

Novas teorias de deformação de placas e cascas foram desenvolvidas na tese. As equa-

ções diferenciais dos problemas e respectivas condições de fronteira são obtidas através

da formulação unificada de Carrera e posteriormente interpoladas através do método

de colocação global com funções de base radial. A combinação da formulação unificada

de Carrera com métodos sem malha revelou-se boa na modelagem do comportamento

mecânico das estruturas em estudo.





Résumé

Actuellement, la plupart des méthodes numériques sont basées sur la procédée bien

connu des éléments finis. Toutefois, des formulations alternatives et innovantes ont été

récemment développées, basés sur des méthodes sans maillage, qui utilisent simplement

une grille nodale et conservent la qualité de la solution numérique.

Dans les dernières décennies, les structures composées par des plaques ou des coques,

usant des matériaux composites ou des matériaux à gradient fonctionnel, ont connu

des développements très significatifs. LŠobjectif principal de ce travail est lŠapplication

dŠune méthode meshless à lŠanalyse du comportement mécanique de ces structures. A

cet effet, les équations différentielles régissant plusieurs théories de plaques et coques

sont présentés.

La méthode globale de colocalisation avec des fonctions de base radiales a été choisie

pour interpoler les équations différentielles et les conditions aux frontières. La méthode

á une mise en Ĳuvre facile et elle a été appliquée avec succès sur plusieurs domaines.

Elle s’est avérée excellente pour résoudre des équations différentielles. Cependant, son

application aux problèmes de génie mécanique a été maintenue limitée. De façon de

démontrer la performance de la méthode, ce travail montre certaines applications dans

ce domaine.

La méthode est excellente pour effectuer l’analyse des plaques et coques. Il est connu

que l’un des problèmes de la méthode actuelle est dû à un mauvais choix du para-

mètre de forme. Pour cette raison, le paramètre de forme est obtenu par une technique

d’optimisation.

Des nouvelles théories de déformation des plaques et des coques ont été développées

dans cette thèse. Les équations différentielles à dérivées partielles et les conditions aux

frontières qui gouverne ces nouvelles théories de déformation par cisaillement ont été
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obtenues, usant une formulation unifiée par Carrera, et encore interpolées par l’intermé-

diaire de colocalisation globale avec des fonctions de base radiales. La combinaison de la

formulation unifiée Carrera avec les méthodes sans maillage, á montrée être excellente

pour la modélisation du comportement mécanique de ces structures.



i

Acknowledgements

I thank the supervisors of this thesis, Professores António Joaquim Mendes Ferreira,

Cristóvão Manuel Mota Soares, and Renato Manuel Natal Jorge for their orientation

and support.

I thank Professor Erasmo Carrera and Dr. Maria Cinefra for their contribution and

support with the Unified Formulation.

I also thank the collaboration of Professor Tobin A. Driscoll, Professor Alfa R. H.

Heryudono, Professor J. N. Reddy, Professor Greg Fasshauer, Professor K. M. Liew,

and Dr. C. M. C. Roque.

I acknowledge the financial support received from Fundação para a Ciência e a Tec-

nologia, under the grant SFRH / BD / 45554 / 2008.





Contents

1 Introduction and objectives 1

1.1 Short overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Modelling with Radial basis functions . . . . . . . . . . . . . . . . . . . 4

1.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.2 Meshless methods . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.3 Radial Basis Functions and collocation . . . . . . . . . . . . . . 8

Radial basis functions . . . . . . . . . . . . . . . . . . . . . . . 9

Solution of the interpolation problem . . . . . . . . . . . . . . . 19

The static problem . . . . . . . . . . . . . . . . . . . . . . . . . 20

Solution of the static problem . . . . . . . . . . . . . . . . . . . 20

The eigenproblem . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Solution of the eigenproblem . . . . . . . . . . . . . . . . . . . . 23

Discretization of the governing equations and boundary conditions 24

Free vibrations problems . . . . . . . . . . . . . . . . . . . . . . 25

Buckling problems . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.3.4 Combining collocation with Radial Basis Functions and Pseu-

dospectral methods . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.4 The Carrera’s Unified Formulation for the analysis of functionally graded

plates and shells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.4.1 Carrera’s Unified Formulation . . . . . . . . . . . . . . . . . . . 28

1.4.2 Shear deformation theories . . . . . . . . . . . . . . . . . . . . . 29

Higher-order (polynomial) shear deformation theories: . . . . . . 31

iii



iv Contents

Sinusoidal shear deformation theories: . . . . . . . . . . . . . . . 32

Hyperbolic sine shear deformation theories: . . . . . . . . . . . . 33

1.4.3 Functionally graded materials . . . . . . . . . . . . . . . . . . . 35

1.4.4 Displacements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.4.5 Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Strains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Elastic stress-strain relations . . . . . . . . . . . . . . . . . . . . 42

Principle of virtual displacements . . . . . . . . . . . . . . . . . 44

Governing equations and boundary conditions . . . . . . . . . . 46

Fundamental nuclei . . . . . . . . . . . . . . . . . . . . . . . . . 47

Dynamic governing equations . . . . . . . . . . . . . . . . . . . 48

Governing equations and boundary conditions in terms of dis-

placements . . . . . . . . . . . . . . . . . . . . . . . . 49

1.4.6 Shells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Strains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Elastic stress-strain relations . . . . . . . . . . . . . . . . . . . . 52

Principle of virtual displacements . . . . . . . . . . . . . . . . . 53

Governing equations and boundary conditions . . . . . . . . . . 55

Fundamental nuclei . . . . . . . . . . . . . . . . . . . . . . . . . 56

Dynamic governing equations . . . . . . . . . . . . . . . . . . . 58

1.5 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 59

References 63

2 Papers on Carrera’s Unified Formulation 75

2.1 Bending of FGM plates by a sinusoidal plate formulation and collocation

with radial basis functions . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.2 A quasi-3D sinusoidal shear deformation theory for the static and free

vibration analysis of functionally graded plates . . . . . . . . . . . . . . 81

2.3 A quasi-3D hyperbolic shear deformation theory for the static and free

vibration analysis of functionally graded plates . . . . . . . . . . . . . . 97



Contents v

2.4 Static, free vibration and buckling analysis of functionally graded plates

using a quasi-3D higher-order shear deformation theory and a meshless

technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

2.5 Buckling analysis of sandwich plates with functionally graded skins using

a new quasi-3D hyperbolic sine shear deformation theory and collocation

with radial basis functions . . . . . . . . . . . . . . . . . . . . . . . . . 129

2.6 Static analysis of functionally graded sandwich plates according to a

hyperbolic theory considering Zig-Zag and warping effects . . . . . . . . 148

2.7 Influence of Zig-Zag and warping effects on buckling of functionally

graded sandwich plates according to sinusoidal shear deformation theories163

2.8 Free vibration analysis of functionally graded shells by a higher-order

shear deformation theory and radial basis functions collocation, account-

ing for through-the-thickness deformations . . . . . . . . . . . . . . . . 217

2.9 Buckling behaviour of cross-ply laminated plates by a higher-order shear

deformation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

3 Papers on the radial basis function collocation technique 249

3.1 On the RBF-Direct method . . . . . . . . . . . . . . . . . . . . . . . . 250

3.1.1 Adaptive methods for analysis of composite plates with radial

basis functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

3.1.2 Vibration and buckling of composite structures using oscillatory

radial basis functions . . . . . . . . . . . . . . . . . . . . . . . . 262

3.1.3 Analysis of plates on Pasternak foundations by radial basis func-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

3.1.4 Buckling and vibration analysis of isotropic and laminated plates

by radial basis functions . . . . . . . . . . . . . . . . . . . . . . 288

3.1.5 Buckling analysis of isotropic and laminated plates by radial basis

functions according to a higher-order shear deformation theory . 304

3.2 On the RBF-PS method . . . . . . . . . . . . . . . . . . . . . . . . . . 313

3.2.1 Solving time-dependent problems by an RBF-PS method with

an optimal shape parameter . . . . . . . . . . . . . . . . . . . . 313

3.2.2 Transient analysis of composite plates by radial basis functions

in a pseudospectral framework . . . . . . . . . . . . . . . . . . . 321



vi Contents

3.2.3 Transient analysis of composite and sandwich plates by radial

basis functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

3.2.4 Dynamic analysis of functionally graded plates and shells by ra-

dial basis functions . . . . . . . . . . . . . . . . . . . . . . . . . 356

4 Conclusions and suggestions for future work 375

4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

4.2 Suggestions for future work . . . . . . . . . . . . . . . . . . . . . . . . 377



List of Figures

1.1 Poisson functions in R . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Poisson functions in R2 with d = 1 on the left and d = 3 on the right . 12

1.3 Poisson function in R2 with d = 5 . . . . . . . . . . . . . . . . . . . . . 13

1.4 Laguerre-Gaussians functions in R with n = 1 on the left and n = 2 on

the right . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Laguerre-Gaussians functions in R2 with n = 1 on the left and n = 2 on

the right . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6 R2 grids with 112 points: equally spaced (left) and Chebyshev (right). . 21

1.7 Adaptive R2 grids: initial (left) and final (right). . . . . . . . . . . . . . 21

1.8 Scheme of the expansions involved in the displacement fields. . . . . . . 34

1.9 Zig-zag effect for two different sandwich configurations. . . . . . . . . . 34

1.10 Isotropic FGM plate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.11 Sandwich plate with FGM core and isotropic skins. . . . . . . . . . . . 37

1.12 Sandwich plate with isotropic core and FGM skins. . . . . . . . . . . . 37

1.13 Geometry and notations for a multilayered shell (doubly curved). . . . 50

vii





List of Tables

1.1 Meshless methods classification, by Liu [1] . . . . . . . . . . . . . . . . 5

1.2 Laguerre-Gaussians radial functions . . . . . . . . . . . . . . . . . . . . 14

1.3 Matérn functions for several choices of β . . . . . . . . . . . . . . . . . 14

1.4 Overview on the present theories. . . . . . . . . . . . . . . . . . . . . . 35

ix





1

Introduction and objectives

1.1 Short overview of the thesis

This thesis presents a numerical study for the analysis of laminated and functionally

graded plates and shells. The numerical technique is based on global collocation with

radial basis functions, as a strong-form type of meshless methods.

The analysis of plates and shells considers several higher-order shear deformation theo-

ries, in particular polynomial, sinusoidal, and hyperbolic sine theories as well as zig-zag

theories, allowing for thickness-stretching. Given the strong-form meshless technique,

the governing equation and boundary conditions are derived by a Unified Formulation

by Carrera [2, 3] (CUF). The governing equations are then interpolated and a global

system of equations is obtained.

The radial basis functions global collocation technique is presented in 1.3. In 1.4

Carrera’s Unified Formulation and its application to the analysis of functionally graded

plates and shells is presented. This chapter also presents the new theories implemented

using CUF. This part of the thesis emphasizes functionally graded structures because
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2 Introduction and objectives

studies on the combination of carrera’s Unified Formulation and meshless methods were

performed for the first time for such structures in this thesis.

Several numerical examples for laminated and functionally graded plates and shells are

presented and discussed, in the various journal papers shown in the following chapters.

The first set has the purpose of showing the potential of the chosen meshless method

and the second set to study its combination with CUF.
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1.2 Objectives

The thesis has several objectives, in order to fill the gap of knowledge:

• to use the Carrera’s Unified Formulation for the (meshless) analysis of laminated

and functionally graded plates and shells

• to implement several higher-order shear deformation theories, namely polynomial,

sinusoidal, hyperbolic sine and zig-zag theories

• to investigate the effects of εzz 6= 0 in the behaviour of such theories

• to investigate the accuracy of such theories and its meshless implementation in

the static, free vibration and buckling analysis of laminated and functionally

graded plates and shells

• to implement some new oscillatory radial basis functions and strategies for im-

proving the shape parameter issue



4 Introduction and objectives

1.3 Modelling with Radial basis functions

1.3.1 Introduction

Finding the analytical solution of an engineering problem is not always possible. In

most of the cases, solutions can only be obtained numerically and, in practice, a good

approximation is all that we need.

Numerical methods can give approximations to the correct or exact mathematical

solution and have been extensively used in the past several decades due to advances in

computing power.

Computational simulation techniques are often used to analyse the static and dynamic

analysis of structures such as plates and shells. It implies solving a set of partial

differential equations in a domain and boundary conditions on the boundary. Solving

it by finite element method (FEM) is now fully established.

Although this method is robust and widely used in engineering, the complexity of

computacional mechanical problems have shown the limitation of the FEM and other

convencional computational methods as the finite volume (FVM) or finite difference

methods (FDM). While traditional methods are often based on (piecewise) polynomials

and frequently require a fairly simple geometry and a certain amount of regularity of

the associated discretization of the problem, meshless methods share the advantage of

being able to deal with complex geometries and irregular discretizations. Furthermore,

traditional methods such as finite elements and splines are defined on an underlying

computational mesh. Studying problems involving large deformations or simulate crack

growth with arbitrary and complex paths, and adaptive methods that require mesh

actualization [4, 5, 1] are examples of the limitations of finite element method. Many

of these problems are due to the fact that FEM needs a mesh, that is a set of nodes

connected in a predefined manner. Other terminologies as grids (FDM), elements

(FEM), volumes or cells (FVM) can be termed mesh-related according to the above
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definition of mesh.

The use of alternative methods such as the strong-form meshless (or mesh free) methods

is attractive due to the absence of a mesh and the ease of collocation methods.

1.3.2 Meshless methods

As the name implies, the objective of meshless methods is to eliminate the process

of mesh generation in the sense of conventional computational methods such as the

FEM. According to Liu [6], the ideal meshless method does not need a mesh at all

throughout the process of solving the problem of given arbitrary geometry governed by

a partial differential system of equations subject to all kinds of boundary conditions.

Nonetheless, meshless methods developed so far are not really ideal.

First references to meshless numerical methods appear in the 1930’s decade, related

to collocation methods [7, 8]. The first meshless method presented consistently was

the smooth particle hydronamics (SPH) for modeling an astrophysical problems, just

in the 1970’s [9, 10, 11]. Not before 1990’s meshless methods get regular attention,

specially methods based on weak formulations.

Table 1.1 classifies meshless methods based on three criteria: the formulation proce-

dures, the function approximation schemes, and the domain representation [12].

According to the formulation procedures:
strong formulation
weak formulation
weak-strong formulation

According to the function approximation schemes:
moving least squares
integral representation
point interpolation method
other

According to the domain representation:
domain-type
boundary-type

Table 1.1: Meshless methods classification, by Liu [1]
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Meshless methods based on weak formulation of governing equations:

In meshfree weak-forms methods, the governing partial differential equations with

derivative boundary conditions are first transformed to a set of weak-form integral

equations and are then used to derive a set of algebraic system of equations. Exam-

ples of these methods are the diffuse element method (DEM) [13], the element free-

Galerkin (EFG) [14], radial point interpolation method (RPIM) [15, 16], the meshless

local Petrov-Galerkin method (MLPG) [17], and the local radial point interpolation

method (LRPIM) [18], etc.

Meshless methods based on strong formulation of governing equations:

Meshless methods based on collocation techniques is another group of meshless tech-

niques. In these methods, the governing equations and equations for boundary condi-

tions are directly discretized at the field nodes using simple collocation techniques to

obtain a set of discretized system of equations. Strong form equations are for example

those given in the form of PDEs for solid mechanics problems. The general finite dif-

ference method (GFDM) [19], the finite point method (FPM) [20], and the meshless

collocation method [21, 22] are examples of these methods.

Meshless methods based on weak-strong formulation of governing equations:

The key idea of the meshless methods based on the combination of weak-form and col-

location techniques is that in establishing the discretized system of equations, both

the strong-form and the weak-form are used for the same problem, but for different

group of nodes that carries different types of equations/conditions. Examples are the

meshless weak-strong form method (MWS) [23], and the smooth particle hydronamics

(SPH) [11].

Meshless methods based on the moving least squares (MLS) approximation:

The interpolation techniques used in these methods are series representation gener-

ated by a moving least squares method. The meshless local Petrov-Galerkin method

(MLPG) [17], the element free-Galerkin (EFG) [14], and the boundary node method

(BNM) [24] are included in this group.
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Meshless methods based on the integral representation method for the func-

tion approximation:

These methods represent the function using its information in a local domain [6] via

an integral form [6, 12]. Examples of methods in this group are the smooth particle

hydronamics (SPH) [11], and the reproducing kernel particle method (RKPM) [25, 26].

Meshless methods using point interpolation method:

These interpolation techniques use nodes distributed locally to formulate weak-form

methods [12]. The aproximation is obtained by letting the interpolation function pass

throught the function values at each scattered node within the support domain [6]. The

basis functions can be polynomials or radial basis functions (RBFs). The radial point

interpolation method (RPIM) [15], and the local radial point interpolation method

(LRPIM) [18], among others examples.

Meshless methods based on other interpolation schemes:

All meshless methods not using point interpolation, neither based on the moving least

squares approximation, nor on the integral representation method for the function ap-

proximation, are in this category. Examples of these methods are the hp-cloud method

[27], the partition of unity method (PU) [28], and the moving kriging interpolation

(MK)[29].

Meshless methods based on the domain:

In these methods, both the problem domain and boundaries are represented by nodes

to discretize the system of equations. Some examples are the element free-Galerkin

(EFG) [14], the meshless local Petrov-Galerkin method (MLPG) [17], the smooth par-

ticle hydronamics (SPH) [11], the radial point interpolation method (RPIM) [15], and

the local radial point interpolation method (LRPIM) [18].

Meshless methods based on the boundary:

In these methods, only the boundary of the problem domain is represented by a set of

nodes to obtain the discretized system of equations. Examples are the boundary node

method (BNM) [24], the boundary point interpolation method (BPIM) [30], etc.
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Combination of meshless methods and those that need a mesh is also possible, for ex-

ample EFG/FEM [31], EFG/BEM [32], MLPG/FEM/BEM [33], moving least squares

approximation augmented with the enriched basis functions/FEM [34].

1.3.3 Radial Basis Functions and collocation

Although most of work to date on radial basis functions relates to scattered data ap-

proximation and in general to interpolation theory, there has recently been as increased

interest in their use for solving partial differential equations.

The solution of a set of ordinary (ODE) or partial differential equations (PDE) can be

approximated in an average form or totally satisfied in a set of chosen points distributed

in the domain. In collocation techniques we seek the last option [12].

When using collocation with radial basis functions (RBFs) this is obtained by a point in-

terpolation method (PIM) using radial basis functions. The approximation is obtained

by a series representation with interpolation function passing through the function

values at each scattered node within the support domain [6].

Collocation methods seem to be first used in the decade of 1930’s [8], with early devel-

opment and applications, for example in [7].

Advantages of collocation methods are a simple algorithm, computational efficiency

and the fact of being truly meshless [12]. Unfortunately, these methods are often

unstable, not robust, and inaccurate, especially for problems with derivative boundary

counditions.

Interest on radial basis functions increased after Franke’s paper [35]. He compares

methods available in the early 1980’s for scattered data interpolation in terms of timing,

storage, accuracy, visual pleasantness of the surface, and ease of implementation, and

concludes that multiquadrics and thin plate splines were the best methods available at
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that time.

A radial function is a real-valued function whose value depends only on the distance

from a point xi so that φ(x,xi) = φ(‖x−xi‖). Point xi is tradicionally called a center

because our basis functions will be radially symmetric about these points [36, 37, 38].

The distance is usually the Euclidean distance, although others can be used.

Radial basis functions can also depend on a shape parameter c, replacing φ(‖x−xi‖) by
φ(‖x−xi‖, c). This is a user-defined parameter and has a big influence on the accuracy

of the solution. Finding the optimal shape parameter is still an open discussion.

Radial basis functions (RBF) approximations are grid-free numerical schemes that can

exploit accurate representations of the boundary, are easy to implement and can be

spectrally accurate [39, 40]. It also has the advantage of being insensitive to spatial

dimension [36, 37, 38].

Recently in literature the unsymmetric global collocation method with radial basis

functions is also called RBF-Direct method [41, 42] to be distinguished from other

methods that derive from or are combined with RBF, such as the RBF-QR (based

on QR decomposition) and the RBF-PS (RBF in a pseudospectral framework). We

will now present the formulation of the global unsymmetrical collocation RBF-based

method used in this thesis.

Radial basis functions

The radial basis function (φ) approximation of a function (u) is given by

ũ(x) =
N∑

i=1

αiφ (‖x− yi‖2) ,x ∈ Rn (1.1)

where yi, i = 1, .., N is a finite set of distinct points (centers) in Rn. The coefficients
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αi are chosen so that ũ satisfies some boundary conditions. Some common RBFs are

φ(r) = r3, cubic (1.2)

φ(r) = r2 log(r), thin plate splines (1.3)

φ(r) = (1− r)m+p(r), Wendland functions (1.4)

φ(r) = e−(cr)2 , Gaussian (1.5)

φ(r) =
√
c2 + r2, Multiquadric (1.6)

φ(r) = (c2 + r2)−1/2, Inverse Multiquadric (1.7)

where r is the euclidean norm between grid points of coordinates (x, y), a, b are the

length of the plate along x and y axis, respectively and c is a user defined shape

parameter. In the present thesis, three different formulations for the shape parameter

were used:

• Fixed shape parameter: The value of the shape parameter was chosen by trial

and error for the shape parameter. For example in paper presented in 3.1.4 the

value
√

2/N (where N is the number of nodes per side of the plate) is used and

in paper 3.2.3 a different fixed value is used. The radial basis function considers

the same shape parameter for all the points.

• Optimized shape parameter: The shape parameter is obtained by an optimiza-

tion procedure as detailed in Ferreira and Fasshauer [43]. All points have the

same shape parameter. This formulation was used in paper presented in 2.4, for

example.

• Adaptive shape parameter: At each iteration, the shape parameter is automati-

cally adapted. The radial basis function may use different shape parameter values
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for different points. This adaptive technique was used in paper presented in 3.1.1.

Other RBFs not so typical in literature are

φ(r) = rq, Radial Powers (1.8)

φ(r) = (c2 + r2)q, Generalized Multiquadrics (1.9)

φ(r) = r2q log(r), Thin Plate Splines (1.10)

φ(r) =

√
2

π
cos(cr), Poisson with d = 1 (1.11)

φ(r) =

√
2

π

sin(cr)

cr
, Poisson with d = 3 (1.12)

φ(r) =

√
2

π

sin(cr)− cr cos(cr)

(cr)3
, Poisson with d = 5 (1.13)

φ(r) = 1/

√
1 + c2

(
(xi − xj)2 +

(yi − yj)2

(b/a)2

)
, Anisotropic Inverse Multiquadrics

(1.14)

In (1.9), q = 1/2 and q = −1/2 leads to (1.6) and (1.7).

Local functions, such as the Wendland functions (1.4) are denoted as ϕs,k and a detailed

exposition can be found in [44]. Some of the most commomly used Wendland functions

in R3 are:

ϕ3,0(r) = (1− εr)2
+ (1.15)

ϕ3,1(r) = (1− εr)4
+(4εr + 1) (1.16)

ϕ3,2(r) = (1− εr)6
+

(
35(εr)2 + 18εr + 3

)
(1.17)

ϕ3,3(r) = (1− εr)8
+

(
32(εr)3 + 25(εr)2 + 8εr + 1

)
(1.18)
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Figure 1.1: Poisson functions in R

Figure 1.2: Poisson functions in R2 with d = 1 on the left and d = 3 on the right

The definition of the Poisson functions family is based on the Bessel function of order

d. Poisson functions (1.11) to (1.13) centered at the origin are displayed in figures 1.1

to 1.3 both in R and R2. A shape parameter c = 10 was used in R2.

In (1.14) the radial basis function depends on the direction it is being computed and

is sometimes called anisotropic radial basis function [45].

Other RBFs also not so typically found in literature are the Laguerre-Gaussians listed

in table 1.2 and displayed in figures 1.4 and 1.5 in R and R2 respectively and centered

at the origin. In R2 a shape parameter c = 3 was used. The definition of Laguerre-

Gaussians functions family comes from the generalized Laguerre polynomials of degree

n and order s/2.

Another family of radial basis functions are the Matérn functions also known as Sobolev
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Figure 1.3: Poisson function in R2 with d = 5
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Figure 1.4: Laguerre-Gaussians functions in R with n = 1 on the left and n = 2 on the right

Figure 1.5: Laguerre-Gaussians functions in R2 with n = 1 on the left and n = 2 on the
right
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H
HHHHHs

n 1 2

1 φ(r) =
(

3
2
− (cr)2

)
e−(cr)2 φ(r) =

(
15
8
− 5

2
(cr)2 + 1

2
(cr)4

)
e−(cr)2

2 φ(r) = (2− (cr)2) e−(cr)2 φ(r) =
(
3− 3(cr)2 + 1

2
(cr)4

)
e−(cr)2

3 φ(r) =
(

5
2
− (cr)2

)
e−(cr)2 φ(r) =

(
35
8
− 7

2
(cr)2 + 1

2
(cr)4

)
e−(cr)2

Table 1.2: Laguerre-Gaussians radial functions

splines. Examples are listed in table 1.3.

name matern function
basic φ(r) = e−cr

linear φ(r) = (1 + cr)e−cr

quadratic φ(r) = (1 + cr + (cr)2

3
)e−cr

cubic φ(r) = (15 + 15cr + 6(cr)2 + (cr)3)e−cr

Table 1.3: Matérn functions for several choices of β

More recently Gneiting [46] introduced a new family of radial functions τs,l(r). Some

of them with s = 2 are listed bellow:

τ2, 7
2
(r) = (1− εr)

7
2
+

(
1 +

7

2
εr − 135

8
(εr)2

)
(1.19)

τ2,5(r) = (1− εr)5
+

(
1 + 5εr − 27(εr)2

)
(1.20)

τ2, 15
2

(r) = (1− εr)
15
2

+

(
1 +

15

2
εr − 391

8
(εr)2

)
(1.21)

τ2,12(r) = (1− εr)12
+

(
1 + 12εr − 104(εr)2

)
(1.22)

The radial basis functions used in the present thesis are the Gaussian (1.5) in paper

here presented in 3.1.2, the Multiquadric (1.6) in 3.2.3, the Inverse Multiquadric (1.7)

in 3.2.2, the Gaussian-Laguerre (see table 1.2) in 3.1.2, the Matérn cubic (see table

1.3) in 3.2.1, and the Wendland (1.18) in 2.1.

An overview of some properties of radial basis functions and some important results

are now presented.

positive semi-definite matrix:



1.3. Modelling with Radial basis functions 15

A real symmetric matrix A is called positive semi-definite if its associated quadratic

form is non-negative [38], i.e.,

N∑

j=1

N∑

k=1

cjckAjk ≥ 0 (1.23)

for c= [c1, ..., cN ]T ∈ RN .

positive definite matrix:

A real symmetric matrix A is called positive definite if its associated quadratic (1.23)

form is zero only for c≡ 0 [38], i.e.,

N∑

j=1

N∑

k=1

cjckAjk = 0⇔ c ≡ 0 (1.24)

for c= [c1, ..., cN ]T ∈ RN .

These terminologies for matrices are connected with the following for functions, as

we define a matrix A with entries Ajk = φ(xj − xk) from a function Φ(r).

positive definite functions:

A complex-valued continuos function φ: Rs → C is called positive definite on Rs if [38]

N∑

j=1

N∑

k=1

cj c̄kφ(xj − xk) ≥ 0 (1.25)

for any N pairwise different points x1, ...,xN ∈ Rs, and c= [c1, ..., cN ]T ∈ CN .

strictly positive definite functions:

A complex-valued continuos function φ: Rs → C is called strictly positive definite on

Rs if the associated quadratic form (1.25) is zero only for c≡ 0 [38], i.e.,

N∑

j=1

N∑

k=1

cj c̄kφ(xj − xk) = 0⇔ c ≡ 0 (1.26)
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Examples of strictly positive definite radial functions are the Gaussian (1.5), the In-

verse Multiquadric (1.7), the Generalized Multiquadrics (1.9) with q = 1 or q = 2, and

the Matérn in table 1.3. The Wendlands ϕs,k (1.4) and (1.15)-(1.18), the Laguerre-

Gaussians listed in table 1.2, and the Poissons (1.11)-(1.12) are strictly positive definite

radial functions in Rs. The Gneiting functions τs,l(r) (1.19)-(1.22) are strictly positive

definite radial functions in Rs provided l ≥ s+5
2
.

completely monotonic or completely monotone:

A function φ with domain (0,∞) is said to be completely monotonic [37, 47] or com-

pletely monotone [38] if it possesses derivatives φ(n)(r) for all n = 0, 1, 2, 3, ... and if

(−1)nφ(n)(r) ≥ 0 for all r > 0.

The Gaussian is an example of a completely monotonic radial basis function.

A first remark is that if φ = Φ(‖·‖) is (strictly) positive definite and radial on Rn then

φ is also (strictly) positive and definite and radial on Rm for any m ≤ n.

Next results connect the concepts described so far and are due to Schoenberg [48]:

Theorem 1.3.1: A function Φ is completely monotone on [0,∞) if and only if

φ = Φ(‖·‖2) is positive definite and radial on Rn for all n.

Theorem 1.3.2: A function Φ : [0,∞) → R is completely monotone but not con-

stant if and only if Φ(‖·‖2) is strictly positive definite and radial on Rn for any n.

These results are important in the context of interpolation problems, related to the

nonsingularity and invertibility of interpolation matrices. A discussion on the subject

can be found in [38], and proofs in [37, 49].

The next two definitios are the generalized version to complex-valued functions [38]

from Michelli’s [50] definitions for real-valued. Buhmann [37] uses the real-valued def-

inition.
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Conditionally positive definite functions:

A complex-valued continuos function φ is called conditionally positive definite of or-

der m on Rn if (1.25) holds for any N pairwise different points x1, ...,xN ∈ Rn, and

c= [c1, ..., cN ]T ∈ CN satisfying

∑
cjp(xj) = 0, (1.27)

for any complex-valued polynomial p of degree at most m− 1.

Strictly conditionally positive definite functions:

Analogous to previous definitions, a complex-valued continuos function φ is called con-

ditionally positive definite of order m on Rn if (1.25) holds for any N pairwise different

points x1, ...,xN ∈ Rn, and c= [c1, ..., cN ]T ∈ CN satisfying

∑
cjp(xj) = 0, (1.28)

for any complex-valued polynomial p of degree at most m−1 and if the quadratic form

(1.25) is zero only for c≡ 0.

Examples of strictly conditionally positive definite radial functions of order 1 are the

Multiquadric (1.6) and the Radial Power (1.8) with q = 1. Examples of strictly con-

ditionally positive definite radial functions of order 2 are the Cubic (1.2) which corre-

sponds to the Radial Power (1.8) with q = 3 and the Thin Plate Splines (1.3). The

Radial Power (1.8) with q = 5 and the Thin Plate Spline (1.10) with q = 2 are examples

of strictly conditionally positive definite radial functions of order 3.

As observation to be made is that a function which is (strictly) conditionally posi-

tive definite of order m on Rn is also (strictly) conditionally positive definite of any

higher order. In particular, a (strictly) positive definite function is always (strictly)

conditionally positive definite of any order [38].

As before, we now present results connecting strictly conditionally positive definite
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radial functions to completely monotone functions.

Theorem 1.3.3: Let Φ ∈ C[0,∞) ∩ C∞(0,∞). Then the function φ = Φ(‖·‖2) is

conditionally positive definite of order m and radial on Rn for all n if and only if

(−1)mΦ(m) is completely monotone on (0,∞).

For m = 0 this is Schoenberg’s theorem 1.3.1. Micchelli in 1986 [50] proves that com-

plete monotonicity implies conditional positive definiteness and Guo et al. [51] prove

the remaining.

Theorem 1.3.4: If Φ ∈ C[0,∞)∩C∞(0,∞) is not a polynomial of degree at most m

then the function φ = Φ(‖·‖2) is strictly conditionally positive definite of order m and

radial on Rn for all n.

A proof of this theorem can be found in [49].

For the interpolation problem, we have the following result:

Theorem 1.3.5: Let φ be a strictly conditionally positive definite of order one with

φ(0) = 0. Then for any distinct points x1, ...,xN ∈ Rn the matrix A with entries

Ajk = φ(xj − xk) has N − 1 positive eigenvalues and one negative, and is therefore

non-singular.

This was first proved in 1986 [50] motivated by Hardy’s earlier work [52] and Franke’s

conjecture [35].

Compactly supported functions:

The support of the function φ with domain Ω is the closure of the set of points x ∈ Ω

for which φ(x) 6= 0. A function of compact support in Ω is a function defined on Ω

such that its support is a closed bounded set located at a distance from the boundary

of the domain by a number greater than δ > 0.

This means that the function has compact support if it takes the value zero outside a
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compact set.

Compactly supported radial functions were introduced by Schaback [53]. Examples

are the Wendland’s functions (1.4), consisting of a univariate polynomial within their

support. They can be scaled so that the size of local support changes from δ = 1

presented in (1.4) and (1.15)-(1.18) to another δ [37, 12]. Another example of functions

with compact support are those of Gneiting (1.19)-(1.22).

Buhmann [36] and Wu [54] constructed other radial functions with compact support.

Such functions have the advantage of leading to a sparse interpolation matrix.

Unlike these functions, most of radial functions have global support, such as the Gaus-

sian (1.5), the Multiquadric (1.6), the Cubic (1.2), the Thin Plate Splines (1.3), and

the family of Laguerre-Gaussians, some listed in table 1.2.

Infinitely smooth radial functions are, for example, the Gaussian (1.5), the Multiquadric

(1.6), and the Inverse Multiquadric (1.7).

Examples of piecewise smooth radial functions are the family of Wendland functions

(1.4) and the Thin Plate Splines (1.3).

Examples of oscillating radial functions, also called in the literature oscillatory radial

functions, are the Laguerre-Gaussians, some of them listed in table 1.2, the family of

Poisson functions, including 1.11 to 1.13, and the Gneiting functions family (1.19)-

(1.22).

Solution of the interpolation problem

Hardy [52] introduced multiquadrics in the analysis of scattered geographical data.

In the 1990’s Kansa [21] used multiquadrics for the solution of partial differential

equations.

Considering N distinct interpolations, and knowing u(xj), j = 1, 2, ..., N , we find αi by
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the solution of a N ×N linear system

Aα = u (1.29)

where A = [φ (‖x− yi‖2)]N×N , α = [α1, α2, ..., αN ]T and u = [u(x1), u(x2), ..., u(xN)]T .

The RBF interpolation matrix A is positive definite for some RBFs [36], but in general

provides ill-conditioned systems.

The static problem

Consider a linear elliptic partial differential operator L acting in a bounded region Ω

in Rn and another operator LB acting on a boundary ∂Ω. We seek the computation of

displacements (u) from the global system of equations

Lu = f in Ω; LBu = g on ∂Ω (1.30)

The external forces applied on the plate and the boundary conditions applied along

the perimeter of the plate, respectively, are at the right-hand side of (1.30). The PDE

problem defined in (1.30) will be replaced by a finite problem, defined by an algebraic

system of equations, after the radial basis expansions.

Solution of the static problem

The solution of a static problem by radial basis functions considers NI nodes in the

domain and NB nodes on the boundary, with a total number of nodes N = NI + NB.

In the present thesis three different grids of points are used:
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Figure 1.6: R2 grids with 112 points: equally spaced (left) and Chebyshev (right).
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Figure 1.7: Adaptive R2 grids: initial (left) and final (right).

• Equally spaced points The points are equally spaced. Such grid was used in paper

in 3.2.4 for example. An illustration of a 2D grid with 112 points is in figure 1.6.

• Chebyshev points For a given number of nodes per side (N+1) they are generated

by MATLAB code as:

x = cos(pi*(0:N)/N)’; y=x;

One advantage of such mesh is the concentration of points near the boundary.

This grid was used for example in paper presented in 2.3.

• Adaptive points Nodes can be added to or removed from the set of centers based

on a residual. Figure 1.7 shows an example of an initial and a final grid. It

refers to a square simply-suppported isotropic plate, with side to thickness ratio

a/h = 100. This example was taken from 3.1.1.
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We denote the sampling points by xi ∈ Ω, i = 1, ..., NI and xi ∈ ∂Ω, i = NI + 1, ..., N .

At the points in the domain (xi ∈ Ω, i = 1, ..., NI) we solve the following system of

equations

N∑

i=1

αiLφ (‖x− yi‖2) = f(xj), j = 1, 2, ..., NI (1.31)

or

LIα = F (1.32)

where

LI = [Lφ (‖x− yi‖2)]NI×N (1.33)

At the points on the boundary (xi ∈ ∂Ω, i = NI + 1, ..., N), we impose boundary

conditions as

N∑

i=1

αiLBφ (‖x− yi‖2) = g(xj), j = NI + 1, ..., N (1.34)

or

Bα = G (1.35)

where

B = LBφ [(‖xNI+1 − yj‖2)]NB×N

Therefore, we can write a finite-dimensional static problem as


 L

I

B


α =


 F

G


 (1.36)
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By inverting the system (1.36), we obtain the vector α. We then obtain the solution

u using the interpolation equation (1.1).

The eigenproblem

The eigenproblem looks for eigenvalues (λ) and eigenvectors (u) that satisfy

Lu + λu = 0 in Ω; LBu = 0 on ∂Ω (1.37)

As in the static problem, the eigenproblem defined in (1.37) is replaced by a finite-

dimensional eigenvalue problem, based on RBF approximations.

Solution of the eigenproblem

We consider NI nodes in the interior of the domain and NB nodes on the boundary,

with N = NI + NB. We denote interpolation points by xi ∈ Ω, i = 1, ..., NI and

xi ∈ ∂Ω, i = NI + 1, ..., N . At the points in the domain, we define the eigenproblem as

N∑

i=1

αiLφ (‖x− yi‖2) = λũ(xj), j = 1, 2, ..., NI (1.38)

or

LIα = λũI (1.39)

where

LI = [Lφ (‖x− yi‖2)]NI×N (1.40)
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At the points on the boundary, we enforce the boundary conditions as

N∑

i=1

αiLBφ (‖x− yi‖2) = 0, j = NI + 1, ..., N (1.41)

or

Bα = 0 (1.42)

Equations (1.39) and (1.42) can now be solved as a generalized eigenvalue problem


 L

I

B


α = λ


 AI

0


α (1.43)

where

AI = φ [(‖xNI − yj‖2)]NI×N

Discretization of the governing equations and boundary conditions

The radial basis collocation method follows a simple implementation procedure. Taking

equation (1.36), we compute

α =


 LI

B



−1 
 F

G


 (1.44)

This α vector is then used to obtain solution ũ, by using (1.1). If derivatives of ũ are

needed, such derivatives are computed as

∂ũ
∂x

=
N∑

j=1

αj
∂φj
∂x

;
∂2ũ
∂x2

=
N∑

j=1

αj
∂2φj
∂x2

, etc (1.45)
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In the present collocation approach, we need to impose essential and natural boundary

conditions. Consider, for example, the condition w0 = 0, on a simply supported or

clamped edge. We enforce the conditions by interpolating as

w0 = 0→
N∑

j=1

αW0
j φj = 0 (1.46)

Other boundary conditions are interpolated in a similar way.

Free vibrations problems

For free vibration problems we set the external force to zero, and assume harmonic

solution in terms of displacements uj as

uj = Uj(w, y)eiωt; (1.47)

and analogous for vj and wj, where j may be j = 0, 1, 2, 3, Z depending on the defor-

mation theory, and ω is the frequency of natural vibration. Substituting the harmonic

expansion into equations (1.43) in terms of the amplitudes Uj, Vj, Wj, we may ob-

tain the natural frequencies and vibration modes for the plate problem, by solving the

eigenproblem

[
L − ω2G

]
X = 0 (1.48)

where L collects all stiffness terms and G collects all terms related to the inertial terms.

In (1.48) X are the modes of vibration associated with the natural frequencies defined

as ω.
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Buckling problems

The eigenproblem associated to the governing equations is defined as

[L − λG] X = 0 (1.49)

where L collects all stiffness terms and G collects all terms related to the in-plane

forces. In (1.49) X are the buckling modes associated with the buckling loads defined

as λ.

1.3.4 Combining collocation with Radial Basis Functions and

Pseudospectral methods

Polynomial pseudospectral (PS) methods (also called spectral methods) are known

as highly accurate solvers for PDEs [55, 56]. Generally speaking, one represents the

spatial part of the approximate solution of a given PDE by a linear combination of

certain smooth basis functions, (i, j represents the N grid points).

uh(xi) =
N∑

j=1

αjφj(xi), i = 1, ..., N (1.50)

or in matrix-vector notation

u = Aα (1.51)

with α = [α1, ..., αx] and Ai,i = φi(xi)

Traditionally, polynomial basis functions are used. When we are using the radial basis
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functions collocation technique in a pseudospectral framework, however, we use any of

the radial basis functions (RBFs) in 1.2 to 1.14.

The derivatives of are easily computed. For example,

u′ = Axα = Du (1.52)

with Ax = d
dx
φj(xi) where matrix is the differentiation matrix.

The use of PS and RBF combined for the analysis of structures was first presented by

Ferreira and Fasshauer [57]. Its application for laminated structures was then presented

by Ferreira et al. [58].

One advantage in using RBF-PS is that it provides an faster framework for dynamic

analysis due to the fact that we obtain directly solutions at points and not just some

parameters for interpolation of solution. Although this advantage is not noticeable in

free vibration analysis when compared to regular RBFs, it is quite relevant in transient

dynamics where interpolation with RBFs would have to be established in each time

step.
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1.4 The Carrera’s Unified Formulation for the analy-

sis of functionally graded plates and shells

1.4.1 Carrera’s Unified Formulation

The Unified Formulation proposed by Carrera (further denoted as CUF) method [2, 3]

is employed to obtain the algebraic equations of motion and boundary conditions. Such

equations of motion and corresponding boundary conditions are then interpolated by

radial basis functions to obtain an algebraic system of equations.

The CUF method has been applied in several finite element analysis, either using

the Principle of Virtual Displacements, or by using the Reissner’s Mixed Variational

theorem. The stiffness matrix components, the external force terms or the inertia

terms can be obtained directly with this unified formulation, irrespective of the shear

deformation theory being considered.

Carrera’s Unified Formulation (CUF) was proposed in [59, 3, 60] for laminated plates

and shells and extended to FGM plates in [61, 62, 63]. It is possible to implement any

C0
z theory under CUF, using layer-wise as well as equivalent single-layer descriptions,

and the Principle of Virtual Displacements, as is the case in present thesis, or the

Reissner mixed variational theorem. CUF allows a systematic assessment of a large

number of plate models.

The combination of CUF and meshless methods has been performed in [64, 65, 66, 67]

for laminated plates and in [68, 69] for laminated shells. In the present thesis the

combination of CUF and meshless methods is generalized for FG plates and shells.

Furthermore, the deformation theories used in the present thesis demand for a gener-

alization of the original CUF, by introducing different displacement fields for in-plane

and out-of-plane displacements.
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Moreover, a novel application of CUF is proposed in this thesis. The explicit govern-

ing equations and boundary conditions in terms of displacements of the static, free

vibration or buckling problems are obtained using symbolic computation. The combi-

nation of CUF and the symbolic calculations performed in MATLAB can be seen as a

time-saving and error reducer.

1.4.2 Shear deformation theories

The classical plate theory (CLPT) yields acceptable results only for the analysis of thin

plates. The accuracy of the first-order shear deformation theory (FSDT) depends on

the shear correction factor which may be difficult to compute. Higher-order shear defor-

mation theories (HSDT) provide better accuracy for transverse shear stresses without

the need of a shear correction factor.

Examples of HSDT were proposed by Reddy [70], Kant [71, 72, 73, 74, 75, 76] and

Batra [77, 78].

The use of a sinusoidal shear deformation theory for composite laminated plates and

shells was first presented by Touratier [79, 80] [81] in the early 1990’s. Later Vidal and

Polit [82] used a sinusoidal shear deformation theory for composite laminated beams.

The use of sinusoidal plate theories for functionally graded plates was first presented

by Zenkour [83], where a εzz = 0 approach was used.

To the best of authors’ knowledge, plate theories involving hyperbolic functions are

quite rare in literature. Soldatos [84] used a displacement field involving the hyperbolic

function

f(z) = h sinh
(z
h

)
− z cosh

(
1

2

)
. (1.53)
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In [85, 86] two displacement fields are presented both considering a hyperbolic function:

f(z) =
3π

2
h tanh

(z
h

)
− 3π

2
z sech2

(
1

2

)
(1.54)

and

f(z) = z sech
(
πz2

h2

)
− z sech

(π
4

) [
1− π

2
tanh

(π
4

)]
. (1.55)

These hyperbolic functions were used in the study of laminated composite plates.

Noureddine et al. [87] consider the hyperbolic function

f(z) =
h
π

sinh
(
πz
h

)
− z

cosh
(
π
2

)
− 1

. (1.56)

in the study of functionally graded plates. In all cases the hyperbolic functions are used

for the in-plane expansions only, while the transverse displacement is kept constant

(w = w0).

The zig-zag effect is produced by the strong difference of mechanical properties between

faces and core in sandwich structures. A discontinuity of the deformed core-faces planes

at the interfaces is introduced and makes difficult the use of classical theories such as

Kirchhoff [88] or Reissner-Mindlin [89, 90] type theories. This thesis focus on equivalent

single layer models and in this framework Murakami [91] proposed a zig-zag function

that is able to reproduce the slope discontinuity.

Two major topics arise from the literature revision: the warping and the zig-zag effects

on the analyis of the structures behaviour. Most of studies on functionally graded plates

are performed with theories not accounting for transverse extensibility by neglecting the

σzz effects, considering the transverse displacement to be independent of the thickness

coordinates.

In this thesis several novel higher-order shear deformation theories are implemented

using the Principle of Virtual Displacements under Carrera’s Unified Formulation, all

based on an assumed displacement field. They are here categorized based on the

expansion of the displacement in the x− direction:
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• Higher-order (polynomial) shear deformation theories

• Sinusoidal shear deformation theories

• Hyperbolic sine shear deformation theories

Higher-order (polynomial) shear deformation theories:

In-plane displacements are considered to be cubic across the thickness coordinate. The

transverse displacement may be defined as constant if warping is not allowed, or as

parabolic in the thickness direction if warping is allowed.





u = u0 + zu1 + z3u3

v = v0 + zv1 + z3v3

w = w0 + zw1 + z2w2

(1.57)

Here and in the following u = u(x, y, z, t), v = v(x, y, z, t), and w = w(x, y, z, t) are

the displacements in the x−, y−, and z− directions, respectively. ui = u(x, y, t) and

vi = vi(x, y, t), with i = 0, 1, 3, and wi = wi(x, y, t), with i = 0, 1, 2, are functions to be

determined.





u = u0 + zu1 + z3u3

v = v0 + zv1 + z3v3

w = w0

(1.58)
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Sinusoidal shear deformation theories:

The use of trigonometric shear deformation theories accounting for thickness-stretching

or the zig-zag effects for the analysis of plates has not been performed before. In

this thesis quasi-3D sinusoidal shear deformation theories are introduced. In-plane

displacements are considered to be of sinusoidal type across the thickness coordinate

and may include or not the terms to account for the zig-zag effect. The transverse

displacement may be defined as constant if warping is not allowed, or as parabolic in

the thickness direction if warping is allowed.





u = u0 + zu1 + sin
(
πz
h

)
us

v = v0 + zv1 + sin
(
πz
h

)
vs

w = w0 + zw1 + z2w2

(1.59)





u = u0 + zu1 + sin
(
πz
h

)
us

v = v0 + zv1 + sin
(
πz
h

)
vs

w = w0

(1.60)





u = u0 + zu1 + sin
(
πz
h

)
us + (−1)k 2

hk

(
z − 1

2
(zk + zk+1)

)
uZ

v = v0 + zv1 + sin
(
πz
h

)
vs + (−1)k 2

hk

(
z − 1

2
(zk + zk+1)

)
vZ

w = w0 + zw1 + z2w2

(1.61)
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



u = u0 + zu1 + sin
(
πz
h

)
us + (−1)k 2

hk

(
z − 1

2
(zk + zk+1)

)
uZ

v = v0 + zv1 + sin
(
πz
h

)
vs + (−1)k 2

hk

(
z − 1

2
(zk + zk+1)

)
vZ

w = w0

(1.62)

Hyperbolic sine shear deformation theories:

In all previous investigations with hyperbolic functions, the transverse displacement is

considered as constant resulting in shear deformation theories that neglect the thickness

stretching (εzz = 0) and the zig-zag effect is not taken in account. In the present thesis

new hyperbolic sine theories accounting for thickness stretching and zig-zag effects are

introduced for the analysis of functionally graded plates.





u = u0 + zu1 + sinh
(
πz
h

)
uZ

v = v0 + zv1 + sinh
(
πz
h

)
vZ

w = w0 + zw1 + z2w2

(1.63)





u = u0 + zu1 + sinh
(
πz
h

)
uZ

v = v0 + zv1 + sinh
(
πz
h

)
vZ

w = w0

(1.64)





u = u0 + zu1 + sinh
(
πz
h

)
u3 + (−1)k 2

hk

(
z − 1

2
(zk + zk+1)

)
uZ

v = v0 + zv1 + sinh
(
πz
h

)
v3 + (−1)k 2

hk

(
z − 1

2
(zk + zk+1)

)
vZ

w = w0 + zw1 + z2w2

(1.65)
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Figure 1.8: Scheme of the expansions involved in the displacement fields.
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Figure 1.9: Zig-zag effect for two different sandwich configurations.





u = u0 + zu1 + sinh
(
πz
h

)
u3 + (−1)k 2

hk

(
z − 1

2
(zk + zk+1)

)
uZ

v = v0 + zv1 + sinh
(
πz
h

)
v3 + (−1)k 2

hk

(
z − 1

2
(zk + zk+1)

)
vZ

w = w0

(1.66)

In (1.57) to (1.66) the unknowns are ui, vi, and wi (where i can take the values i =

0, 1, 2, 3, Z depending on the shear deformation theory). The expansion of the degrees

of freedom u0, u1, u3, v0, v1, v3, w0, w1, and w2 are functions of the thickness coordinate

only as well as the uZ and vZ that comes with the sinusoidal or the hyperbolic sine

expansion. These are layer-independent, unlike those of uZ and vZ associated to the

(−1)k expansion, as illustrated in figures 1.8 and 1.9. These last terms introduce the

zig-zag effect and can be seen in this context as a generalization of the Murakami’s

original work [91]. Figure 1.8 shows the meaning of the unknows in the in-plane

displacements expansion in present theories: u0, v0 are translations; u1, v1, u3, and v3

are rotations. In figure 1.9 one can visualize that this zig-zag function corresponds to

a rotation per layer.
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theory considers allows requires
zig-zag effect thichness-stretching shear correction factor

z3 (1.57) no yes no
z30 (1.58) no no no
sinus (1.59) no yes no
sinus0 (1.60) no no no
sinusZZ (1.61) yes yes no
sinusZZ0 (1.62) yes no no
sinh (1.63) no yes no
sinh0 (1.64) no no no
sinhZZ (1.65) yes yes no
sinhZZ0 (1.66) yes no no

Table 1.4: Overview on the present theories.

Table 1.4 presents an overview on the characteristics of the new theories implemented

in present thesis. They all require no shear correction factors and the higher-order

terms are odd functions. Some theories allow thickness-stretching by considering a

parabolic expansion for the out-of-plane displacement, and some consider the zig-zag

effect. Studies on the influence of the warping effect in the thickness direction and the

zig-zag effects were carried out with this theories.

1.4.3 Functionally graded materials

Functionally graded (FG) materials (FGM) are a class of composite materials that

were first proposed in 1972 by Bever and colleagues [92, 93] but investigation on such

materials started only in the 1980s. In a typical FGM plate the material properties

continuously vary over the thickness direction by mixing two different materials [94].

The computational modelling of FGM is an important tool to the understanding of the

structures behavior, and has been the target of intense research [94, 95, 96, 97, 98, 99,

100].

The concept of functionally graded materials (FGM) was introduced to satisfy the de-

mand of ultra-high-temperature environment and to eliminate the stress singularities

[101]. Due to the continuous change in material properties of an FGM, the interfaces

between two materials disappear but the characteristics of two or more different ma-

terials of the composite are preserved. Interested readers on FGM application fields
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Figure 1.10: Isotropic FGM plate.

can refer to [100] or [94]. A review of the main developments in FGM can be found in

Birman and Byrd [99].

In a conventional FGM plate a continuous variation of material properties over the

thickness direction is obtained by mixing two different materials [94]. The material

properties of the FGM plate are assumed to change continuously throughout the thick-

ness of the plate, according to the volume fraction of the constituent materials.

Functionally graded materials (FGM) are a class of composites in which the properties

of the material gradually change over one or more cartesian direction. A typical FGM

plate considers a continuous variation of material properties over the thickness direction

by mixing two different materials [94]. The gradual variation of properties avoids the

delamination failure that are common in laminated composites. The FGM concept has

applications in several fields such as aerospace and civil [94].

Three different types of functionally graded plates are studied in this thesis:

• isotropic FGM plates and shells;

• sandwich plates with FGM core;

• sandwich plates with FGM skins.

The isotropic FGM plate or shell is graded from metal (bottom) to ceramic (top) (see

figure 1.10).
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Figure 1.11: Sandwich plate with FGM core and isotropic skins.

h0 = -h/2 

h3 = h/2 

h1 

h2 

z 

METAL

METAL

CERAMIC

CERAMIC

CERAMIC

Figure 1.12: Sandwich plate with isotropic core and FGM skins.

In a sandwich plate with FGM core, the bottom skin is isotropic (fully metal) and the

top skin is isotropic (fully ceramic). The core layer is graded from metal to ceramic so

that there are no interfaces between core and skins, as illustrated in figure 1.11.

In sandwich plates with FGM skins, the core is isotropic (fully ceramic) and skins are

composed of a functionally graded material across the thickness direction. The bottom

skin varies from a metal-rich surface (z = −h/2) to a ceramic-rich surface while the

top skin face varies from a ceramic-rich surface to a metal-rich surface (z = h/2), as

illustrated in figure 1.12. There are no interfaces between core and skins.

A conventional FG plate considers a continuous variation of material properties over

the thickness direction by mixing two different materials [94]. The material properties

of the FG plate are assumed to change continuously throughout the thickness of the

plate, according to the volume fraction of the constituent materials. Although one

can use CUF for one-layer, isotropic plate, we consider a multi-layered plate. In fact,

the sandwiches in study present 3 physical layers, kp = 1, 2, 3, and depending on the
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considered theory may have different displacement fields. Nevertheless, we are dealing

with functionally graded materials and becomes mandatory to model the continuos

variation of properties across the thickness direction. A considerable number of layers

is needed for both isotropic FG and FG sandwich plates or shells to ensure correct

computation of material properties at each thickness position, and for that reason we

consider Nl = 91 virtual (mathematical) layers of constant thickness. In the following,

kp refers to physical layers and k = 1, ..., 91 refers to virtual layers.

The CUF procedure applied to FG materials starts by evaluating the volume fraction

of the two constituents for each layer. To describe the volume fractions an exponential

function can be used as in [102], or the sigmoid function as proposed in [103]. In the

present work a power-law function is used as most researchers do [104] [105, 106, 83].

In the typical FG plate the power-law function defines the volume fraction of the

constituints as:




Vc =

(
0.5 + z

h

)p
; for the ceramic phase

Vm = 1− Vc for the metal phase
(1.67)

where z ∈ [−h/2, h/2], h is the thickness of the plate, and p is a scalar parameter that

allows the user to define gradation of material properties across the thickness direction.

The volume fraction of the constituints are computed for each layer




V k
c =

(
0.5 + z̃

h

)p
; for the ceramic phase

V k
m = 1− V k

c for the metal phase
(1.68)

where z̃ is the thickness coordinate of a point of each (virtual) layer. In the sandwich

plate with functionally graded core or skins, the volume fraction of the ceramic phase

of the FG layers are obtained by adapting the typical power-law. Furthermore, for

both FG sandwich plates, one needs to compute the volume fraction for each layer. In
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the case of the sandwich plate with FG skins one has:





V k
c =

(
z̃−h0
h1−h0

)p
, z ∈ [h0, h1]

V k
c = 1, z ∈ [h1, h2]

V k
c =

(
z̃−h3
h2−h3

)p
, z ∈ [h2, h3]

(1.69)

where z̃ is the thickness coordinate of a point of each (virtual) skin layer, h0, h1, h2,

and h3 are the z-coordinates of the interfaces of the layers as visualized in figure 1.12,

and p ≥ 0 is a scalar parameter that allows the user to define gradation of material

properties across the thickness direction of the skins.

Once having the volume fraction of each constituent, a homogenization procedure is

employed to find the values of the modulus of elasticity, Ek, and Poisson’s ratio, νk,

of each layer. A possible homogenization technique is the Mori-Tanaka one [107, 108],

and other possibility is the law-of-mixtures.

The law-of-mixtures states that:

Ek(z) = EmV
k
m + EcV

k
c ; νk(z) = νmV

k
m + νcV

k
c (1.70)

The Mori-Tanaka homogenization procedure [107, 108] starts by finding the bulk mod-

ulus, K, and the effective shear modulus, G, of the composite equivalent layer as

K −Km

Kc −Km

=
Vc

1 + Vm
Kc−Km

Km+4/3Gm

;
G−Gm

Gc −Gm

=
Vc

1 + Vm
Gc−Gm
Gm+fm

(1.71)

where

fm =
Gm(9Km + 8Gm)

6(Km + 2Gm)
(1.72)

The effective values of Young’s modulus, Ek, and Poisson’s ratio, νk, are then found
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from

Ek =
9KG

3K +G
; νk =

3K − 2G

2(3K +G)
(1.73)

1.4.4 Displacements

According to the Unified Formulation by Carrera, the three displacement components

ux, uy(=v) and uz(=w) and their relative variations are modeled as:

(ux, uy, uz) = Fτ (uxτ , uyτ , uzτ ) (δux, δuy, δuz) = Fs (δuxs, δuys, δuzs) (1.74)

The vectors are chosen by resorting to the displacement field. For example, when

considering the displacement field in (1.59), the thickness functions are as follows




Fsux = Fsuy = Fτux = Fτuy =

[
1 z sin

(
πz
h

)]

Fsuz = Fτuz = [1 z z2]

(1.75)

and for displacement field in (1.66) are




Fsux = Fsuy = Fτux = Fτuy =

[
1 z sinh

(
πz
h

)
(−1)kp 2

hkp

(
z − 1

2
(zkp + zkp+1)

)]

Fsuz = Fτuz = [1]

(1.76)

Combining CUF and global collocation with RBFs allowed to implement a new theory

just by changing this vectors. We then automatically obtained the governing equations
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and boundary conditions in terms of displacements of the chosen theory and the analysis

of the plate or shell behaviour based on that theory.

1.4.5 Plates

Strains

Strains are separated into in-plane and normal components, denoted respectively by

the subscripts p and n.

The geometrical relations (G) between the mechanical strains in the kth layer and the

displacement field uk = {ukx, uky, ukz} depend on the option of considering or not the

warping in thickness direction.

If warping is allowed (i.e., εzz 6= 0), G can be stated as follows:

εkpG = [εxx, εyy, γxy]
kT = Dk(nl)

p uk , (1.77)

εknG = [γxz, γyz, εzz]
kT = (Dk

np + Dk
nz) uk ,

wherein the differential operator arrays are defined as follows:

Dk(nl)
p =




∂x 0 ∂2
x/2

0 ∂y ∂2
y/2

∂y ∂x ∂x∂y


 , Dk

np =




0 0 ∂x

0 0 ∂y

0 0 0


 , Dk

nz =




∂z 0 0

0 ∂z 0

0 0 ∂z


 ,

(1.78)

Although one needs to account for the nonliner contributions for the buckling analysis,

we can use the linear version of CUF as the non-linear terms will only influence the

equation refering to δw0. In fact, the compressive in-plane forces and distributed shear
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forces only actuate on the mid-plane (z = 0) and the nonlinear terms are reduced to
1
2

(
∂w0

∂x

)2, 1
2

(
∂w0

∂y

)2

, and ∂w0

∂x
∂w0

∂y
.

Irrespective of the nature of the problem (static, free vibration or buckling) when

warping is allowed we use

Dk
p =




∂x 0 0

0 ∂y 0

∂y ∂x 0


 (1.79)

instead of D
k(nl)
p and just add the terms in referred equation.

When warping is not allowed (i.e. εzz = 0), εkpG and the differential operator array Dk
p

remain as before, but the other strains are reduced to

εknG = [γxz, γyz]
kT = (Dk

np + Dk
nz) uk , (1.80)

wherein the differential operator arrays are defined as:

Dk
np =


 0 0 ∂x

0 0 ∂y


 , Dk

nz =


 ∂z 0 0

0 ∂z 0


 , (1.81)

Elastic stress-strain relations

To define the constitutive equations (C), stresses are separated into in-plane and normal

components as well. The elastic stress-strain relations depend on which assumption of

εzz we consider.
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For the εzz 6= 0 case, the 3D constitutive equations are used:

σkpC = [σxx, σyy, σxy]
kT = Ck

pp ε
k
pG + Ck

pn ε
k
nG

σknC = [σxz, σyz, σzz]
kT = Ck

np ε
k
pG + Ck

nn ε
k
nG

(1.82)

with

Ck
pp =




Ck
11 Ck

12 0

Ck
12 Ck

11 0

0 0 Ck
44


 Ck

pn =




0 0 Ck
12

0 0 Ck
12

0 0 0




Ck
np =




0 0 0

0 0 0

Ck
12 Ck

12 0


 Ck

nn =




Ck
44 0 0

0 Ck
44 0

0 0 Ck
11




(1.83)

and the Ck
ij are the three-dimensional elastic constants

Ck
11 =

Ek(1− (νk)2)

1− 3(νk)2 − 2(νk)3
; Ck

12 =
Ek(νk + (νk)2)

1− 3(νk)2 − 2(νk)3
; Ck

44 =
Ek

2(1 + νk)
(1.84)

where the modulus of elasticity and Poisson’s ratio were defined in (1.70) or (1.73).

For the εzz = 0 case, the plane-stress case is used:

σkpC = [σxx, σyy, σxy]
kT = Ck

pp ε
k
pG

σknC = [σxz, σyz]
kT = Ck

nn ε
k
nG

(1.85)

with Ck
pp and εkpG as before, εknG = [γxz, γyz]

kT and

Ck
nn =


 Ck

44 0

0 Ck
44


 (1.86)
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and Ck
ij are the plane-stress reduced elastic constants:

Ck
11 =

Ek

1− (νk)2
; Ck

12 = νk
Ek

1− (νk)2
; Ck

44 =
Ek

2(1 + νk)
(1.87)

Principle of virtual displacements

In the framework of the Unified Formulation, the Principle of Virtual Displacements

(PVD) for the pure-mechanical case is written as:

Nl∑

k=1

∫

Ωk

∫

Ak

{
δεkpG

T
σkpC + δεknG

T
σknC

}
dΩkdz =

Nl∑

k=1

δLke (1.88)

where Ωk and Ak are the integration domains in plane (x,y) and z direction, respec-

tively. As stated before, G means geometrical relations and C constitutive equations,

and k indicates the virtual layer. T is the transpose operator and δLke is the external

work for the kth layer.

Substituting the geometrical relations (G), the constitutive equations (C), and the

modeled displacement field (Fτ and Fs), all for the kth layer, (1.88) becomes:

∫

Ωk

∫

Ak

[
(Dk

p Fsδu
k
s)
T (Ck

ppD
k
p Fτu

k
τ + Ck

pn(Dk
nΩ + Dk

nz)Fτu
k
τ )

+ ((Dk
nΩ + Dk

nz)Fsδu
k
s)
T (Ck

npD
k
p Fτu

k
τ + Ck

nn(Dk
nΩ + Dk

nz)Fτu
k
τ )
]
dΩkdz = δLke

(1.89)

At this point, the formula of integration by parts is applied:

∫

Ωk

(
(DΩ)δak

)T
akdΩk = −

∫

Ωk

δak
T (

(DT
Ω)ak

)
dΩk +

∫

Γk

δak
T (

(IΩ)ak
)
dΓk (1.90)
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where IΩ matrix is obtained applying the Gradient theorem:

∫

Ω

∂ψ

∂xi
dυ =

∮

Γ

niψds (1.91)

being ni the components of the normal n̂ to the boundary along the direction i. After

integration by parts, the governing equations and boundary conditions for the plate in

the mechanical case are obtained:

∫

Ωk

∫

Ak

( δuks)
T
[((
−Dk

p

)T (
Ck
pp(D

k
p) + Ck

pn(Dk
nΩ + Dk

nz

)

+
(
−Dk

nΩ + Dk
nz

)T (
Ck
np(D

k
p) + Ck

nn(Dk
nΩ + Dk

nz)
))

FτFsu
k
τ

]
dxdydz

+

∫

Ωk

∫

Ak

( δuks)
T
[(

IkTp
(
Ck
pp(D

k
p) + Ck

pn(Dk
nΩ + Dk

nz)
)

+ IkTnp
(
Ck
np(D

k
p) + Ck

nn(Dk
nΩ + Dk

nz)
))

FτFsu
k
τ

]
dxdydz =

∫

Ωk

δukTs Fsp
k
udΩk .

(1.92)

where Ikp and Iknp depend on the boundary geometry:

Ikp =




nx 0 0

0 ny 0

ny nx 0


 , Iknp =




0 0 nx

0 0 ny

0 0 0


 . (1.93)

The normal to the boundary of domain Ω is:

n̂ =


 nx

ny


 =


 cos(ϕx)

cos(ϕy)


 (1.94)

where ϕx and ϕy are the angles between the normal n̂ and the direction x and y

respectively.
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Governing equations and boundary conditions

The governing equations for a multi-layered plate subjected to mechanical loadings are:

δuks
T

: Kkτs
uu ukτ = Pk

uτ (1.95)

where the fundamental nucleus Kkτs
uu is obtained as:

Kkτs
uu =

[(
−Dk

p

)T (
Ck
pp(D

k
p) + Ck

pn(Dk
nΩ + Dk

nz

)

+
(
−Dk

nΩ + Dk
nz

)T (
Ck
np(D

k
p) + Ck

nn(Dk
nΩ + Dk

nz)
)]

FτFs

(1.96)

and the corresponding Neumann-type boundary conditions on Γk are:

Πkτs
d ukτ = Πkτs

d ūkτ , (1.97)

where:

Πkτs
d =

[
IkTp
(
Ck
pp(D

k
p) + Ck

pn(Dk
nΩ + Dk

nz)
)
+

IkTnp
(
Ck
np(D

k
p) + Ck

nn(Dk
nΩ + Dk

nz)
)]

FτFs

(1.98)

and Pk
uτ are variationally consistent loads with applied pressure.
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Fundamental nuclei

For FG materials, the fundamental nuclei in explicit form becomes:

Kkτs
uu11

=(−∂τx∂sxC11 + ∂τz ∂
s
zC55 − ∂τy∂syC66)FτFs

Kkτs
uu12

=(−∂τx∂syC12 − ∂τy∂sxC66)FτFs

Kkτs
uu13

=(−∂τx∂szC13 + ∂τz ∂
s
xC55)FτFs

Kkτs
uu21

=(−∂τy∂sxC12 − ∂τx∂syC66)FτFs

Kkτs
uu22

=(−∂τy∂syC22 + ∂τz ∂
s
zC44 − ∂τx∂sxC66)FτFs

Kkτs
uu23

=(−∂τy∂szC23 + ∂τz ∂
s
yC44)FτFs

Kkτs
uu31

=(∂τz ∂
s
xC13 − ∂τx∂szC55)FτFs

Kkτs
uu32

=(∂τz ∂
s
yC23 − ∂τy∂szC44)FτFs

Kkτs
uu33

=(∂τz ∂
s
zC33 − ∂τy∂syC44 − ∂τx∂sxC55)FτFs

(1.99)
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Πkτs
11 =(nx∂

s
xC11 + ny∂

s
yC66)FτFs

Πkτs
12 =(nx∂

s
yC12 + ny∂

s
xC66)FτFs

Πkτs
13 =(nx∂

s
zC13)FτFs

Πkτs
21 =(ny∂

s
xC12 + nx∂

s
yC66)FτFs

Πkτs
22 =(ny∂

s
yC22 + nx∂

s
xC66)FτFs

Πkτs
23 =(ny∂

s
zC23)FτFs

Πkτs
31 =(nx∂

s
zC55)FτFs

Πkτs
32 =(ny∂

s
zC44)FτFs

Πkτs
33 =(ny∂

s
yC44 + nx∂

s
xC55)FτFs

(1.100)

Dynamic governing equations

In the framework of the Unified Formulation, the PVD for the dynamic case reads:

Nl∑

k=1

∫

Ωk

∫

Ak

{
δεkpG

T
σkpC + δεknG

T
σknC

}
dΩkdz =

Nl∑

k=1

∫

Ωk

∫

Ak

ρkδukT ükdΩkdz +

Nl∑

k=1

δLke

(1.101)

where ρk is the mass density of the k-th layer and double dots denote acceleration. The

remainings are as in (1.88).
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As for the static case, we obtain the following governing equations:

δuks
T

: Kkτs
uu u

k
τ = M kτsükτ + P k

uτ (1.102)

where M kτs is the fundamental nucleus for the inertial term with explicit form as:




Mkτs

ij = ρkFτFs for i = j

Mkτs
ij = 0 for i 6= j

(1.103)

The geometrical and mechanical boundary conditions are the same of the static case.

Governing equations and boundary conditions in terms of displacements

In order to discretize the governing equations by radial basis functions, we need the

explicit terms of that equations and the corresponding boundary conditions as well

in terms of the generalized displacements. The explicit governing equations and cor-

responding boundary conditions in terms of generalized displacements for the static,

free vibration and buckling analysis of functionally graded plates of some theories can

be found in papers presented in this thesis in 2.2, 2.3, 2.4, and 2.5. For the sake of

completeness we present here the equation of the buckling problem of sinus theory

(1.59) that corresponds to the w0 variable for the buckling problems.
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Figure 1.13: Geometry and notations for a multilayered shell (doubly curved).

δw0 :A13
∂u1

∂x
+ 2B13

∂uZ
∂x

+ A23
∂v1

∂y
+ 2B23

∂vZ
∂y
− A55

∂2w0

∂x2
− A44

∂2w0

∂y2

−B55
∂2w1

∂x2
−B44

∂2w1

∂y2
−D55

∂2wZ
∂x2

−D44
∂2wZ
∂y2

+ N̄xx
∂2w0

∂x2
+ 2N̄xy

∂2w0

∂x∂y
+ N̄yy

∂2w0

∂y2
= 0

(1.104)

The stiffness components of this equation can be computed as follows:

Aij =

Nl∑

k=1

ckij (zk+1 − zk) ; Bij =
1

2

Nl∑

k=1

ckij
(
z2
k+1 − z2

k

)
; Dij =

1

3

Nl∑

k=1

ckij
(
z3
k+1 − z3

k

)

(1.105)

where Nl is the number of mathematical layers across the thickness direction, hk is the

thickness of each layer, and zk, zk+1 are the lower and upper z coordinate for each layer

k. N̄xx, N̄xy, and N̄yy denote the in-plane applied loads.

1.4.6 Shells

The geometry and the reference system are indicated in Fig. (1.13).
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The functionally graded shell is divided into a number (Nl) of uniform thickness (vir-

tual) layers. The square of an infinitesimal linear segment in the k-th layer, the asso-

ciated infinitesimal area and volume are given by:

ds2
k = Hk

α
2
dα2 + Hk

β
2
dβ2 +Hk

z
2
dz2 ,

dΩk = Hk
αH

k
β dα dβ ,

dVk = Hk
α H

k
β H

k
z dα dβ dz ,

(1.106)

where the metric coefficients are:

Hk
α = Ak(1 + z/Rk

α), Hk
β = Bk(1 + z/Rk

β), Hk
z = 1 . (1.107)

k denotes the k-layer of the multilayered shell; Rk
α and Rk

β are the principal radii of

curvature along the coordinates α and β respectively. Ak and Bk are the coefficients of

the first fundamental form of Ωk (Γk is the Ωk boundary). In this work, the attention

has been restricted to shells with constant radii of curvature (cylindrical, spherical,

toroidal geometries) for which Ak = Bk = 1.

Strains

As for the plates, strains are separated into in-plane and normal components, denoted

respectively by the subscripts p and n.

When considering stretching in the thickness direction the mechanical strains in the

kth layer can be related to the displacement field uk = {ukα, ukβ, ukz} via the geometrical

relations:

εkpG = [εkαα, ε
k
ββ, ε

k
αβ]T = (Dk

p +Ak
p) u

k , εknG = [εkαz, ε
k
βz, ε

k
zz]

T = (Dk
nΩ +Dk

nz −Ak
n) uk

(1.108)
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The explicit form of the introduced arrays follows:

Dk
p =




∂α
Hk
α

0 0

0
∂β
Hk
β

0

∂β
Hk
β

∂α
Hk
α

0


 , Dk

nΩ =




0 0 ∂α
Hk
α

0 0
∂β
Hk
β

0 0 0


 , Dk

nz =




∂z 0 0

0 ∂z 0

0 0 ∂z


 , (1.109)

Ak
p =




0 0 1
Hk
αR

k
α

0 0 1
Hk
βR

k
β

0 0 0


 , A

k
n =




1
Hk
αR

k
α

0 0

0 1
Hk
βR

k
β

0

0 0 0


 . (1.110)

Elastic stress-strain relations

As before, strains are separated into in-plane (p) and normal (n) components. The

constitutive equations still

σkpC = Ck
pp ε

k
pG + Ck

pn ε
k
nG

σknC = Ck
np ε

k
pG + Ck

nn ε
k
nG

(1.111)

and depending on the assumption on considering or not thickness-stretch effects, 3D or

reduced plane-tress constitutive equations are chosen as for the plates. The matrices

Ck
pp, Ck

pn, Ck
np, and Ck

nn are as before and the computation of elastic constants Ck
ij for

each layer, considers the same steps:

1. 1st Computation of volume fraction of the ceramic V k
c and metal V k

m phases, in

the present thesis by the power-law formulation (1.67);

2. 2nd Computation of elastic properties Ek and νk, either by the Mori-Tanaka

homogeneization technique (1.73) or the law-of-mistures (1.70).

3. 3rd Computation of elastic constants Ck
ij as in (1.83) or (1.86) depending on the

assumption of εzz.
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Principle of virtual displacements

The Principle of Virtual Displacements (PVD) remains as in (1.88) and the steps to

obtain the governing equations are as for the plates:

• Substitution of the geometrical relations (subscript G);

• Substitution of the appropriate constitutive equations (subscript C);

• Modeling of the displacement field by defining Fsux, Fsuy, Fτux, Fτuy, Fsuz, and

Fτuz.

Substituting the geometrical relations, the constitutive equations and the displacement

field modeled by the unified formulation into the variational statement PVD (1.88), for

the kth layer, one obtains for the shell:

Nl∑

k=1

{
∫

Ωk

∫

Ak

{((Dp +Ap)δu
k)T (Ck

pp(Dp +Ap)u
k +Ck

pn(DnΩ +Dnz −An)uk)+

((DnΩ +Dnz −An)δuk)T (Ck
np(Dp +Ap)u

k +Ck
nn(DnΩ +Dnz −An)uk)}dΩkdzk}

=

Nl∑

k=1

δLke

(1.112)

As for the plates, after integration by parts (see (1.90) and (1.91)) and the substi-

tution of CUF, the governing equations and boundary conditions for the shell in the
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mechanical case are obtained:

Nl∑

k=1

{
∫

Ωk

∫

Ak

{δukTs [(−Dp +Ap)
TFs(C

k
pp(Dp +Ap)Fτu

k
τ +Ck

pn(DnΩ +Dnz −An)Fτu
k
τ )]+

δukTs [(−DnΩ +Dnz −An)TFs(C
k
np(Dp +Ap)Fτu

k
τ +Ck

nn(DnΩ +Dnz −An)Fτu
k
τ )]}dΩkdzk}

+

Nl∑

k=1

{
∫

Γk

∫

Ak

{δukTs [ITp Fs(C
k
pp(Dp +Ap)Fτu

k
τ +Ck

pn(DnΩ +Dnz −An)Fτu
k
τ )]+

δukTs [ITnpFs(C
k
np(Dp −Ap)Fτu

k
τ +Ck

nn(DnΩ +Dnz −An)Fτu
k
τ )]}dΓkdzk}

=

Nl∑

k=1

{
∫

Ωk

δukTs Fsp
k
u} .

(1.113)

where Ikp and Iknp depend on the boundary geometry:

Ip =




nα
Hα

0 0

0
nβ
Hβ

0

nβ
Hβ

nα
Hα

0




; Inp =




0 0 nα
Hα

0 0
nβ
Hβ

0 0 0



. (1.114)

The normal to the boundary of domain Ω is:

n̂ =


 nα
nβ


 =


 cos(ϕα)

cos(ϕβ)


 (1.115)

where ϕα and ϕβ are the angles between the normal n̂ and the direction α and β

respectively.
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Governing equations and boundary conditions

The governing equations for a multilayered shell subjected to mechanical loadings are:

δuks
T

: Kkτs
uu ukτ = Pk

uτ (1.116)

where the fundamental nucleus Kkτs
uu is obtained as:

Kkτs
uu =

∫

Ak

[
[−Dp +Ap]

T Ck
pp[Dp +Ap] + [−Dp +Ap]

T Ck
pn[DnΩ +Dnz −An]+

[−DnΩ +Dnz −An]T Ck
np[Dp +Ap] + [−DnΩ +Dnz −An]T Ck

nn[DnΩ +Dnz −An]
]

FτFsH
k
αH

k
β dz .

(1.117)

and the corresponding Neumann-type boundary conditions on Γk are:

Πkτs
d ukτ = Πkτs

d ūkτ , (1.118)

where:

Πkτs
d =

∫

Ak

[
ITp C

k
pp[Dp +Aτ

p] + ITp C
k
pn[DnΩ +Dnz −Aτ

n]+

ITnpC
k
np[Dp +Aτ

p] + ITnp C
k
nn[DnΩ +Dnz −Aτ

n]
]
FτFsH

k
αH

k
β dz .

(1.119)

and Pk
uτ are variationally consistent loads with applied pressure.
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Fundamental nuclei

The fundamental nuclei Kkτs
uu is reported for functionally graded doubly curved shells

(radii of curvature in both α and β directions (see Fig.1.13)):

(
Kτsk
uu

)
11

= −Ck
11J

kτs
β/α∂

s
α∂

τ
α − Ck

44J
kτs
α/β∂

s
β∂

τ
β

+ Ck
44

(
Jkτzszαβ − 1

Rαk

Jkτzsβ − 1

Rαk

Jkτszβ +
1

R2
αk

Jkτsβ/α

)

(
Kτsk
uu

)
12

= −Ck
12J

kτs∂τα∂
s
β − Ck

44J
kτs∂sα∂

τ
β

(
Kτsk
uu

)
13

= −Ck
11

1

Rαk

Jkτsβ/α∂
τ
α − Ck

12

1

Rβk

Jkτs∂τα − Ck
12J

kτsz
β ∂τα

+ Ck
44

(
Jkτzsβ ∂sα −

1

Rαk

Jkτsβ/α∂
s
α

)

(
Kτsk
uu

)
21

= −Ck
12J

kτs∂sα∂
τ
β − Ck

44J
kτs∂τα∂

s
β

(
Kτsk
uu

)
22

= −Ck
22J

kτs
α/β∂

s
β∂

τ
β − Ck

26J
kτs∂sα∂

τ
β − Ck

26J
kτs∂τα∂

s
β − Ck

44J
kτs
β/α∂

s
α∂

τ
α

+ Ck
44

(
Jkτzszαβ − 1

Rβk

Jkτzsα − 1

Rβk

Jkτszα +
1

R2
βk

Jkτsα/β

)

(
Kτsk
uu

)
23

= −Ck
12

1

Rαk

Jkτs∂τβ − Ck
22

1

Rβk

Jkτsα/β∂
τ
β − Ck

12J
kτsz
α ∂τβ

+ Ck
44

(
Jkτzsα ∂sβ −

1

Rβk

Jkτsα/β∂
s
β

)

(
Kτsk
uu

)
31

= Ck
11

1

Rαk

Jkτsβ/α∂
s
α + Ck

12

1

Rβk

Jkτs∂sα + Ck
12J

kτzs
β ∂sα

− Ck
44

(
Jkτszβ ∂τα −

1

Rαk

Jkτsβ/α∂
τ
α

)
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(
Kτsk
uu

)
32

= Ck
12

1

Rαk

Jkτs∂sβ + Ck
22

1

Rβk

Jkτsα/β∂
s
β + Ck

12J
kτzs
α ∂sβ

− Ck
44

(
Jkτszα ∂τβ −

1

Rβk

Jkτsα/β∂
τ
β

)

(
Kτsk
uu

)
33

= Ck
11

1

R2
αk

Jkτsβ/α + Ck
22

1

R2
βk

Jkτsα/β + Ck
33J

kτzsz
αβ

+ 2Ck
12

1

Rαk

1

Rβk

Jkτs + Ck
12

1

Rαk

(
Jkτzsβ + Jkτszβ

)
+ Ck

12

1

Rβk

(
Jkτzsα + Jkτszα

)

− Ck
44J

kτs
α/β∂

s
β∂

τ
β − Ck

44J
kτs
β/α∂

s
α∂

τ
α (1.120)

where

(Jkτs, Jkτsα , Jkτsβ , Jkτsα
β
, Jkτsβ

α

, Jkτsαβ ) =

∫

Ak

FτFs(1, Hα, Hβ,
Hα

Hβ

,
Hβ

Hα

, HαHβ) dz

(Jkτzs, Jkτzsα , Jkτzsβ , Jkτzsα
β

, Jkτzsβ
α

, Jkτzsαβ ) =

∫

Ak

∂Fτ
∂z

Fs(1, Hα, Hβ,
Hα

Hβ

,
Hβ

Hα

, HαHβ) dz
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The application of boundary conditions makes use of the fundamental nuclei Πd in the

form:
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Note that all the equations written for the shell degenerate in those for the plate when
1

Rαk

=
1

Rβk

= 0. In practice, the radii of curvature are set to 109 for analysis of plates

with the present formulation.

Dynamic governing equations

The PVD for the shell dynamic case is expressed as for the plate dynamic case as

in (1.101). Substituting the geometrical relations and the constitutive equations, one

obtains the following governing equations:

δuks
T

: Kkτs
uu ukτ = Mkτsükτ + Pk

uτ (1.123)

In the case of free vibrations one has:

δuks
T

: Kkτs
uu ukτ = Mkτsükτ (1.124)
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where Mkτs is the fundamental nucleus for the inertial term, given by

Mkτs
ij = ρkJkτsαβ , i = j

Mkτs
ij = 0, i 6= j

(1.125)

The meaning of the integral Jkτsαβ has been illustrated in eq. (1.121). The geometrical

and mechanical boundary conditions are the same of the static case.

1.5 Organization of the thesis

After a short introduction, we present the papers published in international journals.

In the end of the thesis we formulate some conclusions.

The list of papers presented are as follows:

Title: Dynamic Analysis of Functionally Graded Plates and Shells by Radial Basis

Functions

On Carrera’s Unified Formulation

Title: Bending of FGM plates by a sinusoidal plate formulation and collocation with

radial basis functions

Title: A quasi-3D sinusoidal shear deformation theory for the static and free vibration

analysis of functionally graded plates

Title: A quasi-3D hyperbolic shear deformation theory for the static and free vibration

analysis of functionally graded plates
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Title: Static, free vibration and buckling analysis of isotropic and sandwich func-

tionally graded plates using a quasi-3D higher-order shear deformation theory and a

meshless technique

Title: Buckling analysis of sandwich plates with functionally graded skins using a

new quasi-3D hyperbolic sine shear deformation theory and collocation with radial

basis functions

Title: Static analysis of functionally graded sandwich plates according to a hyperbolic

theory considering Zig-Zag and warping effects

Title: Influence of Zig-Zag and warping effects on buckling of functionally graded

sandwich plates according to sinusoidal shear deformation theories

Title: Free vibration analysis of functionally graded shells by a higher-order shear

deformation theory and radial basis functions collocation, accounting for through-the-

thickness deformations

Title: Buckling behavior of cross-ply laminated plates by a higher-order shear defor-

mation theory

On the radial basis function collocation technique

On the RBF-Direct method

Title: Adaptive Methods for analysis of Composite Plates with Radial Basis Functions

Title: Vibration and buckling of composite structures using oscillatory radial basis

functions

Title: Analysis of plates on Pasternak foundations by radial basis functions
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Title: Buckling and vibration analysis of isotropic and laminated plates by radial basis

functions

Title: Buckling analysis of isotropic and laminated plates by radial basis functions

according to a higher-order shear deformation theory

On the RBF-PS method

Title: Solving time-dependent problems by an RBF-PS method with an optimal shape

parameter

Title: Transient analysis of composite plates by radial basis functions in a pseudospec-

tral framework

Title: Transient analysis of composite and sandwich plates by radial basis functions
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a  b  s  t  r  a  c  t

This  paper  addresses  the  static  deformations  analysis  of  functionally  graded  plates  by  collocation  with
radial basis  functions,  according  to a  sinusoidal  shear  deformation  formulation  for  plates.  The present
plate  theory  approach  accounts  for through-the-thickness  deformations.  The  equations  of motion  and
the boundary  conditions  are  obtained  by  the  Carrera’s  Unified  Formulation,  and  further  interpolated  by
collocation  with  radial  basis  functions.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Functionally graded plates (FGP) are obtained from gradual and
continuous variation of material properties across the thickness
direction. One advantage of FGP compared to laminated plates is
that the material properties continuously vary in the thickness
direction, as opposed to being discontinuous across adjoining lay-
ers as they are in laminated plates. This gradual variation avoids
the delamination issues in laminated plates.

Typically FGP have been analysed neglecting the thickness
stretching �zz, being the transverse displacement considered inde-
pendent by thickness coordinates. Some recent work on the
analysis of functionally graded plates was presented (Zenkour,
2006; Cheng and Batra, 2000; Loy et al., 1999; Reddy, 2000; Ferreira
et al., 2005, 2006, 2007; Viola and Tornabene, 2009).

The effect of thickness stretching in FG plates has been investi-
gated by Carrera et al. (2011),  using finite elements.

The present paper addresses for the first time, the thickness
stretching issue on FG plates, by a meshless technique based on
collocation with radial basis functions. The technique is combined
with the Carrera’s Unified Formulation (CUF) (Carrera, 1996, 2001),
in order to obtain the relevant equations of motion and natural
boundary condition in strong form.

In recent years, radial basis functions (RBFs) proved to be
an accurate technique for interpolating data and functions. A
radial basis function, �(||x − xj||) depends on the Euclidian distance
between distinct data centers xj, j = 1, 2, . . . , N ∈ R

n, also called

∗ Corresponding author. Tel.: +35 1225081705.
E-mail address: ferreira@fe.up.pt (A.J.M. Ferreira).

collocation points. Kansa (1990) introduced the concept of solving
PDEs by an unsymmetric RBF collocation method based upon the
MQ interpolation functions. The use of alternative methods to the
Finite Element Methods for the analysis of plates, such as the mesh-
less methods based on radial basis functions is attractive due to the
absence of a mesh and the ease of collocation methods. The authors
have recently applied the RBF collocation to the static deformations
of composite beams and plates (Ferreira, 2003a,b; Ferreira et al.,
2003).

The use of sinusoidal shear deformation plate theory was first
presented by Touratier (1992, 1991, 1992),  and later by Vidal and
Polit (2008).  The use of sinusoidal plate theories for functionally
graded plates was  presented by Zenkour (2006),  where a �zz = 0
approach was  used. The use of trigonometric shear deformation
theory accounting for �zz /= 0 for the analysis of plates has not
been used before. In this paper we consider an hybrid quasi-3D
sinusoidal shear deformation theory. The expansion of both inplane
displacements is defined as:

u = u0 + zu1 + sin
(

�z

h

)
uZ ; v = v0 + zv1 + sin

(
�z

h

)
vZ (1)

while the transverse displacement is defined as:

w = w0 + zw1 + z2w2 (2)

It is relevant to notice that the application of applied loads is
now possible at the top (or bottom) surfaces.

2. Numerical examples

In this example, an isotropic FGM square plate with a polynomial
material law, as given by Zenkour (2006) is considered. The plate is

0093-6413/$ – see front matter ©  2011 Elsevier Ltd. All rights reserved.
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Table 1
FGM isotropic plate with polynomial material law (Zenkour, 2006). Effect of transverse normal strain �zz for a bending problem.

k a/h �zz �̄xx(h/3) ūz(0, 0)

4 10 100 4 10 100

1 Carrera et al. (2008) /= 0 0.6221 1.5064 14.969 0.7171 0.5875 0.5625
CLT  0 0.8060 2.0150 20.150 0.5623 0.5623 0.5623
FSDT  (k = 5/6) 0 0.8060 2.0150 20.150 0.7291 0.5889 0.5625
GSDT  (Zenkour, 2006) 0 1.4894 0.5889
Carrera (N = 4) (Carrera et al., 2011) 0 0.7856 2.0068 20.149 0.7289 0.5890 0.5625
Carrera (N = 4) (Carrera et al., 2011) /= 0 0.6221 1.5064 14.969 0.7171 0.5875 0.5625
Present 13 × 13 grid /= 0 0.5925 1.4939 14.901 0.6997 0.5844 0.5596
Present 17 × 17 grid /= 0 0.5925 1.4945 14.957 0.6998 0.5845 0.5622
Present 21 × 21 grid /= 0 0.5925 1.4945 14.969 0.6997 0.5845 0.5624

4 Carrera et al. (2008) /= 0 0.4877 1.1971 11.923 1.1585 0.8821 0.8286
CLT 0 0.6420 1.6049 16.049 0.8281 0.8281 0.8281
FSDT  (k = 5/6) 0 0.6420 1.6049 16.049 1.1125 0.8736 0.828
GSDT  (Zenkour, 2006) 0 1.1783 0.8651
Carrera (N = 4) (Carrera et al., 2011) 0 0.5986 1.5874 16.047 1.1673 0.8828 0.8286
Carrera (N = 4) (Carrera et al., 2011) /= 0 0.4877 1.1971 11.923 1.1585 0.8821 0.8286
Present 13 × 13 grid /= 0 0.4404 1.1780 11.894 1.1178 0.8749 0.8251
Present 17 × 17 grid /= 0 0.4404 1.1783 11.923 1.1178 0.8750 0.8284
Present 21 × 21 grid /= 0 0.4404 1.1783 11.932 1.1178 0.8750 0.8286

10 Carrera et al. (2008) /= 0 0.3695 0.8965 8.9077 1.3745 1.0072 0.9361
CLT  0 0.4796 1.1990 11.990 0.9354 0.9354 0.9354
FSDT  (k = 5/6) 0 0.4796 1.1990 11.990 1.3178 0.9966 0.9360
GSDT  (Zenkour, 2006) 0 0.8775 1.0089
Carrera (N = 4) (Carrera et al., 2011) 0 0.4345 1.1807 11.989 1.3925 1.0090 0.9361
Carrera (N = 4) (Carrera et al., 2011) /= 0 0.1478 0.8965 8.9077 1.3745 1.0072 0.9361
Present 13 × 13 grid /= 0 0.3227 1.1780 11.894 1.3490 0.8749 0.8251
Present 17 × 17 grid /= 0 0.3227 1.1783 11.923 1.3490 0.8750 0.8284
Present 21 × 21 grid /= 0 0.3227 1.1783 11.932 1.3490 0.8750 0.8286

simply supported with a bi-sinusoidal transverse mechanical load,
of amplitude load pz = p̄z sin(�x/a) sin(�y/a) applied at the top of
the plate, z = h/2, p̄z = 1.

The considered thickness ratios a/h are 4, 10 and 100, which
means thickness h equals 0.25, 0.1 and 0.01, respectively. The plate
is graded from aluminum (bottom) to alumina (top). The following
functional relationship is considered for Young’s modulus E(z) in
the thickness direction z (Zenkour, 2006):

E(z) = Em + (Ec − Em)
(

2z + h

2h

)k

(3)

where Em = 70 GPa and Ec = 380 GPa are the corresponding prop-
erties of the metal and ceramic, respectively; k is the (positive
number) volume fraction exponent. The Poisson ratio is considered
constant (� = 0.3).

The in-plane displacements, the transverse displacements, the
normal stresses and the in-plane and transverse shear stresses are
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Fig. 1. FGM square plate subjected to sinusoidal load at the top, with a/h = 4. Dis-
placement through the thickness direction for different values of k.
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Fig. 2. FGM square plate subjected to sinusoidal load at the top, with a/h = 4. �xx

through the thickness direction for different values of k.
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Fig. 3. FGM square plate subjected to sinusoidal load at the top, with a/h = 4. �xy

through the thickness direction for different values of k.
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Fig. 4. FGM square plate subjected to sinusoidal load at the top, with a/h = 4. �xz

through the thickness direction for different values of k.
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Fig. 5. FGM square plate subjected to sinusoidal load at the top, with a/h = 4. �yz

through the thickness direction for different values of k.

presented in normalized form as:

ūz = 10h3Ec

a4p̄z
uz, �̄xx = h

ap̄z
�xx, �̄xz = h

ap̄z
�xz, �̄zz = �zz (4)

In Table 1 we analyse a FGM plate. We  consider 90 mathemati-
cal layers, in order to model the continuous variation of properties
across the thickness direction. We  consider a Wendland C6 radial
function, and a Chebyshev grid (see Ferreira and Fasshauer, 2006,
for details). It is important to note that the load is applied at
the top surface (z = h/2), which is not only physically correct as it
makes all the difference in terms of the displacement and stresses
evolution.
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Fig. 6. FGM square plate subjected to sinusoidal load at the top, with a/h = 4. �zz

through the thickness direction for different values of k.

In Figs. 1–6 we present the evolution of the displacement and
stresses across the thickness direction for various values of the
exponent k, using a 21 × 21 grid.

It should be noted that the present numerical method presents
very close results to those of Carrera et al. (2011) for a N = 4
expansion. The consideration of a non-zero �zz strain produces a
significant change in the transverse displacement as well as in the
normal stress. This becomes evident when we  compare the present
approach with that of Zenkour (2006) who  neglected the �zz strain
in the formulation.

3. Conclusions

In this paper we presented a study using the radial basis function
collocation method to analyse static deformations of functionally
graded plates using a sinusoidal shear deformation plate formu-
lation, allowing for through-the-thickness deformations. This has
not been done before and serves to fill the gap of knowledge in this
area.

The Unified Formulation by Carrera was used to generate the
algebraic equations of equilibrium, later collocated with radial
basis.

We analysed a square functionally graded plate in bending. The
present results were compared with existing analytical solutions
or competitive finite element solutions and excellent agreement
was  observed in all cases. It is relevant to notice the strong effect
of considering the non-zero transverse normal deformations �zz.
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a b s t r a c t

In this paper we present a new application for Carrera’s unified Formulation (CUF) to analyse functionally
graded plates.

In this paper the authors present explicit governing equations of a sinusoidal shear deformation theory
for functionally graded plates. It addresses the bending and free vibration analysis and accounts for
through-the-thickness deformations.

The equations of motion are interpolated by collocation with radial basis functions. Numerical exam-
ples demonstrate the efficiency of the present approach.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Functionally graded materials (FGM) are a class of composites
in which the properties of the material gradually change over
one or more cartesian direction. A typical FGM plate considers a
continuous variation of material properties over the thickness
direction by mixing two different materials [1]. The gradual varia-
tion of properties avoids the delamination failure that are common
in laminated composites. The FGM concept has applications in sev-
eral fields such as aerospace and civil [1]. The increase of FGM
applications requires accurate plate theories. Typically, the analy-
sis of FGM plates is performed using the first-order shear deforma-
tion theory (FSDT) [2–5] or higher-order shear deformation
theories (HSDT) [3,5–8]. The FSDT gives acceptable results but de-
pends on the shear correction factor which is hard to find as it de-
pends on many parameters. There is no need of a shear correction
factor when using a HSDT but equations of motion are more com-
plicated than those of the FSDT. Carrera’s Unified Formulation
(CUF) made the implementation of such theories easier.

Typically functionally graded plates have been analysed with
shear deformation theories that neglect the thickness stretching
�zz, being the transverse displacement considered to be indepen-
dent of thickness coordinates. The effect of thickness stretching
in FGM plates has been recently investigated by Carrera et al. [9],
using finite element approximations.

The use of alternative methods to the finite element methods
for the analysis of plates, such as the meshless methods based on
collocation with radial basis functions is atractive due to the ab-
sence of a mesh and the ease of collocation methods. In recent
years, radial basis functions (RBFs) showed excellent accuracy in
the interpolation of data and functions. Kansa [10] introduced
the concept of solving partial differential equations by an unsym-
metric RBF collocation method based upon the multiquadric inter-
polation functions. The authors have recently applied the RBF
collocation to the static deformations and free vibrations of com-
posite beams and plates [11–18].

The present paper addresses the thickness stretching issue on
the static and free vibration analysis of FGM plates, by a meshless
technique based on collocation with radial basis functions. The CUF
method [19,20] is employed to obtain the algebraic equations of
motion and boundary conditions. Such equations of motion and
corresponding boundary conditions are then interpolated by radial
basis functions to obtain an algebraic system of equations.

2. Governing equations and boundary conditions in the
framework of unified formulation

The unified formulation proposed by Carrera [19,20] (further
denoted as CUF) has been applied in several finite element analysis,
either using the Principle of Virtual Displacements, or by using the
Reissner’s Mixed Variational theorem. The stiffness matrix compo-
nents, the external force terms or the inertia terms can be obtained
directly with this unified formulation, irrespective of the shear
deformation theory being considered.
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For the sake of completeness, the meshless version of Carrera’s
unified formulation [19,20] is briefly reviewed. It is shown how to
obtain the fundamental nuclei, which allows the derivation of the
equations of motion and boundary conditions, for the present col-
location with RBFs.

The use of sinusoidal shear deformation plate theory was first
presented by Touratier [21–23], later by Vidal and Polit [24], and
recently by Neves et al. [25]. The use of sinusoidal plate theories
for functionally graded plates was presented by Zenkour [2], where
a �zz = 0 approach was used. The use of trigonometric shear defor-
mation theory accounting for �zz – 0 for the analysis of plates has
not been used before. In this paper we consider an hybrid quasi-
3D sinusoidal shear deformation theory, with different expansion
for the in-plane displacements (u,v) and the out-of-plane displace-
ment (w).

Consider a rectangular plate of plan-form dimensions a and b
and uniform thickness h. The co-ordinate system is taken such that
the x–y plane coincides with the midplane of the plate. The plate is
composed of a functionally graded material across the thickness
direction.

2.1. Displacement field

A generalization of the CUF concepts is introduced here by con-
sidering different expansions for every displacement component as
function of the thickness variable. In-plane displacements are con-
sidered to be of sinusoidal type across the thickness coordinate,

u ¼ u0 þ zu1 þ sin
pz
h

� �
uZ ð1Þ

v ¼ v0 þ zv1 þ sin
pz
h

� �
vZ ð2Þ

while the transverse displacement is defined as quadratic in the
thickness direction

w ¼ w0 þ zw1 þ z2wZ ð3Þ

It turns out that the present formulation can be seen as a general-
ization of the original CUF, by introducing different displacement
fields for in-plane and out-of-plane displacements.

2.2. Strains

Stresses and strains are separated into in-plane and normal
components, denoted respectively by the subscripts p and n. The
mechanical strains in the kth layer can be related to the displace-

ment field uk ¼ uk
x ;u

k
y;u

k
z

n o
via the geometrical relations:

�k
pG ¼ ½�xx; �yy; cxy�

kT ¼ Dk
puk

�k
nG ¼ ½cxz; cyz; �zz�kT ¼ Dk

np þ Dk
nz

� �
uk

ð4Þ

wherein the differential operator arrays are defined as follows:

Dk
p ¼

@x 0 0
0 @y 0
@y @x 0

2
64

3
75 Dk

np ¼
0 0 @x

0 0 @y

0 0 0

2
64

3
75 Dk

nz ¼
@z 0 0
0 @z 0
0 0 @z

2
64

3
75
ð5Þ

2.3. Elastic stress–strain relations

The 3D constitutive equations in each layer k are given as:

rk
pC ¼ Ck

pp�
k
pG þ Ck

pn�
k
nG

rk
nC ¼ Ck

np�
k
pG þ Ck

nn�
k
nG

ð6Þ

with

Ck
pp ¼

C11 C12 0
C12 C22 0
0 0 C66

2
64

3
75 Ck

pn ¼
0 0 C13

0 0 C23

0 0 0

2
64

3
75

Ck
np ¼

0 0 0
0 0 0

C13 C23 0

2
64

3
75 Ck

nn ¼
C55 0 0
0 C44 0
0 0 C33

2
64

3
75

ð7Þ

The functionally graded plate is divided into a number of uniform
thickness layers. For every layer, we define the volume fraction of
the ceramic phase as:

Vc ¼ 0:5þ z
h

� �p

ð8Þ

where z 2 [�h/2,h/2], and p is a scalar parameter that allows the
user to define gradation of material properties across the thickness
direction. The volume fraction for the metal phase is given as
Vm = 1 � Vc.

The computation of the elastic constants Ck
ij depends on which

assumption of �zz we consider. If �zz = 0, then Ck
ij are the plane-

stress reduced elastic constants:

Ck
11 ¼

Ek

1� ðmkÞ2
; Ck

12 ¼ mk Ek

1� ðmkÞ2
; Ck

22 ¼
Ek

1� ðmkÞ2
ð9Þ

Ck
44 ¼ Gk; Ck

55 ¼ Gk; Ck
66 ¼ Gk; Ck

33 ¼ 0 ð10Þ

where Ek is the modulus of elasticity, mk is the Poisson’s ratio, and Gk

is the shear modulus Gk ¼ Ek

2ð1þmkÞ for each layer.
It is interesting to note that the present theory does not con-

sider the use of shear-correction factors, as would be the case of
the first-order shear deformation theory (FSDT).

If �zz – 0 (thickness stretching), then Ck
ij are the three-dimen-

sional elastic constants, given by

Ck
11 ¼

Ekð1� ðmkÞ2Þ
1� 3ðmkÞ2 � 2ðmkÞ3

; Ck
12 ¼

Ekðmk þ ðmkÞ2Þ
1� 3ðmkÞ2 � 2ðmkÞ3

; Ck
22

¼ Ekð1� ðmkÞ2Þ
1� 3ðmkÞ2 � 2ðmkÞ3

ð11Þ

Ck
44 ¼ Gk; Ck

55 ¼ Gk; Ck
66 ¼ Gk; Ck

33 ¼
Ekð1� ðmkÞ2Þ

1� 3ðmkÞ2 � 2ðmkÞ3
ð12Þ

In the CUF formulation we consider virtual (mathematical) layers of
constant thickness, each containing a homogeneized modulus of
elasticity, Ek, and a homogeneized Poisson’s ratio, mk.

For each virtual layer, the elastic properties Ek and mk can be
computed in two ways. First, we may consider the the law-of-
mistures:

EkðzÞ ¼ EmVm þ EcVc mkðzÞ ¼ mmVm þ mcVc ð13Þ

Second, and perhaps more interesting, we may consider the
Mori–Tanaka homogenization procedure. In this homogenization
method, we find the bulk modulus, K, and the effective shear mod-
ulus, G, of the composite equivalent layer as

K � K1

K2 � K1
¼ V2

1þ ð1� V2Þ K2�K1
K1þ4=3G1

G� G1

G2 � G1
¼ V2

1þ ð1� V2Þ G2�G1
G1þf1

ð14Þ
where

f1 ¼
G1ð9K1 þ 8G1Þ

6ðK1 þ 2G1Þ
ð15Þ

The effective values of Young’s modulus, Ek, and Poisson’s ratio, mk,
are found from

Ek ¼ 9KG
3K þ G

; mk ¼ 3K � 2G
2ð3K þ GÞ ð16Þ
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2.4. Governing equations

The three displacement components ux, uy and uz (given in (1)–
(3)) and their relative variations can be modelled as:

ðux;uy;uzÞ ¼ Fsðuxs;uys;uzsÞ ðdux; duy; duzÞ
¼ Fsðduxs; duys; duzsÞ ð17Þ

In the present formulation the thickness functions are

Fsux ¼ Fsuy ¼ Fsux ¼ Fsuy ¼ 1 z sin
pz
h

� �h i
ð18Þ

for inplane displacements u, v and

Fsuz ¼ Fsuz ¼ ½1 z z2� ð19Þ
for transverse displacement w. We then obtain all terms of the
equations of motion by integrating through the thickness direction.

It is interesting to note that under this combination of the uni-
fied formulation and RBF collocation, the collocation code depends
only on the choice of Fs, Fs, in order to solve this type of problems.
We designed a MATLAB code that just by changing Fs, Fs can ana-
lyse static deformations and free vibrations for any type of C0

z shear
deformation theory.

A multi-layered functionally graded plate with Nl layers is con-
sidered. The Principle of Virtual Displacements (PVD) for the
mechanical case is defined as:

XNl

k¼1

Z
Xk

Z
Ak

d�k
pG

Trk
pC þ d�k

nG
Trk

nC

n o
dXk dz ¼

XNl

k¼1

dLk
e ð20Þ

where Xk and Ak are the integration domains in plane (x,y) and z
direction, respectively. Here, k indicates the layer and T the trans-
pose of a vector, and dLk

e is the external work for the kth layer. G
means geometrical relations and C constitutive equations.

Substituting the geometrical relations, the constitutive equa-
tions and the unified formulation into the variational statement
PVD, for the kth layer, one has:Z

Xk

Z
Ak

Dk
pFsduk

s

� �T
Ck

ppDk
pFsuk

s þ Ck
pn Dk

nX þ Dk
nz

� �
Fsuk

s

� ��

þ Dk
nX þ Dk

nz

� �
Fsduk

s

� �T
Ck

npDk
pFsuk

s þ Ck
nn Dk

nX þ Dk
nz

� �
Fsuk

s

� ��
dXk dz ¼ dLk

e

ð21Þ

At this point, the formula of integration by parts is applied:Z
Xk

ððDXÞdakÞT ak dXk ¼ �
Z

Xk

dakTððDT
XÞakÞdXk þ

Z
Ck

dakTððIXÞakÞdCk

ð22Þ

where IX matrix is obtained applying the Gradient theorem:Z
X

@w
@xi

dt ¼
I

C
niwds ð23Þ

being ni the components of the normal n̂ to the boundary along the
direction i. After integration by parts, the governing equations and
boundary conditions for the plate in the mechanical case are
obtained:Z

Xk

Z
Ak

duk
s

� �T �Dk
p

� �T
Ck

ppðD
k
pÞ þ Ck

pn Dk
nX þ Dk

nz

� �� ���

þ �Dk
nX þ Dk

nz

� �T
Ck

npðD
k
pÞ þ Ck

nnðD
k
nX þ Dk

nzÞ
� �	

FsFsuk
s

�
dxdydz

þ
Z

Xk

Z
Ak

ðduk
s Þ

T IkT
p Ck

ppðD
k
pÞ þ Ck

pnðD
k
nX þ Dk

nzÞ
� ��h

þIkT
np Ck

npðD
k
pÞ þ Ck

nnðD
k
nX þ Dk

nzÞ
� ��

FsFsuk
s

i
dxdydz

¼
Z

Xk

dukT
s Fspk dXk ð24Þ

where Ik
p and Ik

np depend on the boundary geometry:

Ik
p ¼

nx 0 0
0 ny 0
ny nx 0

2
64

3
75 Ik

np ¼
0 0 nx

0 0 ny

0 0 0

2
64

3
75 ð25Þ

The normal to the boundary of domain X is:

n̂ ¼
nx

ny

� �
¼

cosðuxÞ
cosðuyÞ

" #
ð26Þ

where ux and uy are the angles between the normal n̂ and the
direction x and y respectively.

The governing equations for a multi-layered plate subjected to
mechanical loadings are:

duk
s

T
: Kkss

uu uk
s ¼ Pk

us ð27Þ

where the fundamental nucleus Kkss
uu is obtained as:

Kkss
uu ¼ �Dk

p

� �T
Ck

ppðD
k
pÞ þ Ck

pnðD
k
nX þ Dk

nzÞ
� ��

þ �Dk
nX þ Dk

nz

� �T
Ck

npðD
k
pÞ þ Ck

nnðD
k
nX þ Dk

nzÞ
� ��

FsFs ð28Þ

and the corresponding Neumann-type boundary conditions on Ck

are:

Pkss
d uk

s ¼ Pkss
d

�uk
s ð29Þ

where

Pkss
d ¼ IkT

p Ck
pp Dk

p

� �
þ Ck

pnðD
k
nX þ Dk

nzÞ
� �

þ IkT
np Ck

np Dk
p

� ��h
þCk

nn Dk
nX þ Dk

nz

� ��i
FsFs ð30Þ

and Pk
us are variationally consistent loads with applied pressure.

2.5. Dynamic governing equations

The PVD for the dynamic case is expressed as:

XNl

k¼1

Z
Xk

Z
Ak

d�k
pG

Trk
pC þ d�k

nG
Trk

nC

n o
dXk dz

¼
XNl

k¼1

Z
Xk

Z
Ak

qkdukT €ukdXk dzþ
XNl

k¼1

dLk
e ð31Þ

where qk is the mass density of the k-th layer and double dots de-
note acceleration.

By substituting the geometrical relations, the constitutive equa-
tions and the unified formulation, we obtain the following govern-
ing equations:

duk
s

T
: Kkss

uu uk
s ¼ Mkss €uk

s þ Pk
us ð32Þ

In the case of free vibrations one has:

duk
s

T
: Kkss

uu uk
s ¼ Mkss €uk

s ð33Þ

where Mkss is the fundamental nucleus for the inertial term. The ex-
plicit form of the inertial terms is

Mkss
ij ¼

XNl

k¼1

Z zkþ1

zk

qkFsFs dz; i ¼ j ¼ 1;2;3

Mkss
ij ¼ 0; i–j

ð34Þ

The geometrical and mechanical boundary conditions are the same
of the static case.
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2.6. Equations of motion and boundary conditions in terms of
resultants

The following stress layer-resultants are defined:

Rks
p ;R

ks
n

� �
¼
Z

Ak

Fsr
k
p; Fsr

k
n

� �
dz ð35Þ

where Rks
p ¼ Rks

xx;R
ks
yy;R

ks
xy

n o
and Rks

n ¼ Rks
xz;R

ks
yz;R

ks
zz

n o
.

Substituting in (31), that includes the inertial term, and per-
forming the integration by parts, one obtains:

XNl

k¼1

Z
Xk

dukT
s �DsT

p Rks
p þ �Ds

nX þ Ds
nz

� �T Rks
n

� �
dXk

�

þ
Z

Ck
dukT

s IT
pRks

p þ IT
npRks

n

� �
dCk

	

¼
XNl

k¼1

Z
Xk

dukT
s qkEssI€uk

s þ pk
s

� �
dXk ð36Þ

where Ess ¼
R

Ak FsFs dz and I is the identity matrix.
By imposing the definition of virtual variations for the unknown

displacements, the differential system of governing equations and
related boundary conditions are derived in terms of the introduced
stress resultants. For the k-layer, the equilibrium equations on Xk

are:

dukT
s : �DsT

p Rks
p þ �Ds

nX þ Ds
nz

� �T Rks
n ¼ EssI€uk

s þ pk
s ð37Þ

while the boundary conditions on Ck are:

uk
s ¼ �uk

s geometrical ð38Þ
IT

pRks
p þ IT

npRks
n ¼ IT

pRks
p þ IT

npRks
n mechanical ð39Þ

We rename the resultants as follows:

R0
xx ¼

Z
A

1 � rxx ¼ Nxx; R0
yy ¼ Nyy; R0

xy ¼ Nxy

R0
xz ¼ Q xz; R0

yz ¼ Qyz; R0
zz ¼ Q zz ðfor s ¼ 0Þ

ð40Þ

R1
xx ¼ Mxx; R1

yy ¼ Myy; R1
xy ¼ Mxy

R1
xz ¼ Mxz; R1

yz ¼ Myz; R1
zz ¼ Mzz ðfor s ¼ 1Þ

ð41Þ

The name of resultants does not change for s = Z.
Substituting in the equilibrium Eqs. (37) and performing the

products, one obtains the following equations of motion:

du0 : �@xNxx � @yNxy þ @zQ xz

¼
XNl

k¼1

Z
Ak

qkð€u0 þ z€u1 þ sinðzÞ€uZÞdzþ ðpx þ zpx þ sinðzÞpxÞ

dv0 : �@xNxy � @yNyy þ @zQ yz

¼
XNl

k¼1

Z
Ak

qkð€v0 þ z€v1 þ sinðzÞ€vZÞdzþ ðpy þ zpy þ sinðzÞpyÞ

dw0 : �@xQ xz � @yQyz þ @zQ zz

¼
XNl

k¼1

Z
Ak

qkð €w0 þ z €w1 þ z2 €wZÞdzþ ðpz þ zpz þ z2pzÞ

du1 : �@xMxx � @yMxy þ @zMxz

¼
XNl

k¼1

Z
Ak

qkzð€u0 þ z€u1 þ sinðzÞ€uZÞdzþ ðpx þ zpx þ sinðzÞpxÞ

dv1 : �@xMxy � @yMyy þ @zMyz

¼
XNl

k¼1

Z
Ak

qkzð€v0 þ z€v1 þ sinðzÞ€vZÞdzþ ðpy þ zpy þ sinðzÞpyÞ

dw1 : �@xMxz � @yMyz þ @zMzz

¼
XNl

k¼1

Z
Ak

qkzð €w0 þ z €w1 þ z2 €wZÞdzþ ðpz þ zpz þ z2pzÞ

uZ : �@xRZ
xx � @yRZ

xy þ @zRZ
xz

¼
XNl

k¼1

Z
Ak

qk sinðzÞð€u0 þ z€u1 þ sinðzÞ€uZÞdzþ ðpx þ zpx þ sinðzÞpxÞ

dvZ : �@xRZ
xy � @yRZ

yy þ @zR
Z
yz

¼
XNl

k¼1

Z
Ak

qk sinðzÞð€v0 þ z€v1 þ sinðzÞ€vZÞdzþ ðpy þ zpy þ sinðzÞpyÞ

dwZ : �@xRZ
xz � @yRZ

yz þ @zR
Z
zz

¼
XNl

k¼1

Z
Ak

qkz2ð €w0 þ z €w1 þ z2 €wZÞdzþ ðpz þ zpz þ z2pzÞ

ð42Þ

and the mechanical boundary conditions:

du0 : nxNxx þ nyNxy ¼ nxNxx þ nyNxy

dv0 : nxNxy þ nyNyy ¼ nxNxy þ nyNyy

dw0 : nxQxz þ nyQ yz ¼ nxQ xz þ nyQyz

du1 : nxMxx þ nyMxy ¼ nxMxx þ nyMxy

dv1 : nxMxy þ nyMyy ¼ nxMxy þ nyMyy

dw1 : nxMxz þ nyMyz ¼ nxMxz þ nyMyz

duZ : nxRZ
xx þ nyRZ

xy ¼ nxRZ
xx þ nyRZ

xy

dvZ : nxRZ
xy þ nyRZ

yy ¼ nxRZ
xy þ nyRZ

yy

dwZ : nxRZ
xz þ nyRZ

yz ¼ nxRZ
xz þ nyRZ

yz

ð43Þ

2.7. Equations of motion and boundary conditions in terms of
displacements

In order to discretize the equations of motion by radial basis
functions, we present in the following the explicit terms of the
equations of motion and the boundary conditions in terms of the
generalized displacements.

du0 : �A11
@2u0

@x2 � A66
@2u0

@y2 � B11
@2u1

@x2 � B66
@2u1

@y2 þ G11
@2uZ

@x2

þ G66
@2uZ

@y2 � ðA12 þ A66Þ
@2v0

@x@y
� ðB12 þ B66Þ

@2v1

@x@y

þ ðG12 þ G66Þ
@2vZ

@x@y
þ A55

@w1

@x
þ H55

@wZ

@x
¼ I0€u0 þ I1€u1 þ I5€uZ

ð44Þ

dv0 : �ðA12 þ A66Þ
@2u0

@x@y
� B12 þ B66ð Þ @

2u1

@x@y
þ G12 þ G66ð Þ @

2uZ

@x@y

� A22
@2v0

@y2 � A66
@2v0

@x2 � B22
@2v1

@y2 � B66
@2v1

@x2 þ G22
@2vZ

@y2

þ G66
@2vZ

@x2 þ A44
@w1

@y
þ H44

@wZ

@y
¼ I0 €v0 þ I1 €v1 þ I5 €vZ ð45Þ

dw0 : A13
@u1

@x
þ 2B13

@uZ

@x
þ A23

@v1

@y
þ 2B23

@vZ

@y
� A55

@2w0

@x2

� A44
@2w0

@y2 � B55
@2w1

@x2 � B44
@2w1

@y2 � D55
@2wZ

@x2

� D44
@2wZ

@y2 þ q0 ¼ I0 €w0 þ I1 €w1 þ I2 €wZ ð46Þ
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du1 : �B11
@2u0

@x2 � B66
@2u0

@y2 � D11
@2u1

@x2 þ A55u1 � D66
@2u1

@y2

� N11
@2uZ

@x2 þ H55uZ þ N66
@2uZ

@y2 � ðB12 þ B66Þ
@2v0

@x@y

� ðD12 þ D66Þ
@2v1

@x@y
� N12 þ N66ð Þ @

2vZ

@x@y
� A13

@w0

@x

þ �B13 þ B55ð Þ @w1

@x
þ G55 þ O55 þ G13ð Þ @wZ

@x
¼ I1€u0 þ I2€u1 þ I7€uZ ð47Þ

dv1 : �ðB12 þ B66Þ
@2u0

@x@y
� D12 þ D66ð Þ @

2u1

@x@y

� N12 þ N66ð Þ @
2uZ

@x@y
� B22

@2v0

@y2 � B66
@2v0

@x2 � D22
@2v1

@y2

þ A44v1 � D66
@2v1

@x2 � N22
@2vZ

@y2 þ H44vZ � N66
@2vZ

@x2

� A23
@w0

@y
þ �B23 þ B44ð Þ @w1

@y
þ G44 þ O44 þ G23ð Þ @wZ

@y

¼ I1 €v0 þ I2 €v1 þ I7 €vZ ð48Þ

dw1 : �A55
@u0

@x
þ ð�B55 þ B13Þ

@u1

@x
þ �D55 þ 2D13ð Þ @uZ

@x

� A44
@v0

@y
þ ð�B44 þ B23Þ

@v1

@y
þ ð�D44 þ 2D23Þ

@vZ

@y

� B55
@2w0

@x2 � B44
@2w0

@y2 � D55
@2w1

@x2 þ A33w1 � D44
@2w1

@y2

� E55
@2wZ

@x2 þ B33wZ � E44
@2wZ

@y2 ¼ I1 €w0 þ I2 €w1 þ I3 €wZ ð49Þ

duZ : G11
@2u0

@x2 þ G66
@2u0

@y2 � N11
@2u1

@x2 þ H55u1 � N66
@2u1

@y2 þ R55uZ

þ ðJ11 þ J66Þ
@2uZ

@x2 þ ðG12 þ G66Þ
@2v0

@x@y
� ðN12 þ N66Þ

@2v1

@x@y

þ ðJ12 þ J66Þ
@2vZ

@x@y
� 2B13

@w0

@x
þ ð�2D13 þ D55Þ

@w1

@x

þ ðP55 � 2N55 � 2N13Þ
@wZ

@x
¼ I5€u0 þ I7€u1 þ I6€uZ ð50Þ

dvZ : ðG12 þ G66Þ
@2u0

@x@y
� ðN12 þ N66Þ

@2u1

@x@y
þ ðJ12 þ J66Þ

@2uZ

@x@y

þ G22
@2v0

@y2 þ G66
@2v0

@x2 � N22
@2v1

@y2 þ H44v1 � N66
@2v1

@x2 þ R44vZ

þ J22
@2vZ

@y2 þ J66
@2vZ

@x2 � 2B23
@w0

@y
þ ð�2D23 þ D44Þ

@w1

@y

þ ðP44 � 2N44 � 2N23Þ
@wZ

@y
¼ I5 €v0 þ I7 €v1 þ I6 €vZ ð51Þ

dwZ :�H55
@u0

@x
� G55þO55þG13ð Þ@u1

@x
�ðP55�2N55�2N13Þ

@uZ

@x

�H44
@v0

@y
�ðG44þO44þG23Þ

@v1

@y
�ðP44�2N44�2N23Þ

@vZ

@y

�D55
@2w0

@x2 �D44
@2w0

@y2 �E55
@2w1

@x2 þ2B33w1�E44
@2w1

@y2

�F55
@2wZ

@x2 þ4D33wZ�F44
@2wZ

@y2 þq2¼ I2 €w0þ I3 €w1þ I4 €wZ ð52Þ

Nothing Nl as the number of mathematical layers across the thick-
ness direction, the stiffness components can be computed as
follows.

Aij ¼
XNL

k¼1

ck
ijðzkþ1 � zkÞ

Bij ¼
1
2

XNL

k¼1

ck
ij z2

kþ1 � z2
k

� �

Dij ¼
1
3

XNL

k¼1

ck
ij z3

kþ1 � z3
k

� �

Eij ¼
1
4

XNL

k¼1

ck
ij z4

kþ1 � z4
k

� �

Fij ¼
1
5

XNL

k¼1

ck
ij z5

kþ1 � z5
k

� �

Gij ¼
XNL

k¼1

ck
ij

hk

p
cos

pzkþ1

hk

� 	
� cos

pzk

hk

� 	� �

Hij ¼
XNL

k¼1

ck
ij sin

pzkþ1

hk

� 	
� sin

pzk

hk

� 	� �

Jij ¼
XNL

k¼1

ck
ij

hk

4p
sin

2pzkþ1

hk

� 	
� sin

2pzk

hk

� 	� ��

�1
2
ðzkþ1 � zkÞ

�

Nij ¼
XNL

k¼1

ck
ij

hk

p

� 	2

sin
pzkþ1

hk

� 	
� sin

pzk

hk

� 	� 	"

�hk

p
zkþ1 cos

pzkþ1

hk

� 	
� zk cos

pzk

hk

� 	� 	�

Oij ¼
XNL

k¼1

ck
ij zkþ1 sin

pzkþ1

hk

� 	
� zk sin

pzk

hk

� 	� �

Pij ¼
XNL

k¼1

ck
ij z2

kþ1 sin
pzkþ1

hk

� 	
� z2

k sin
pzk

hk

� 	� �

Rij ¼
XNL

k¼1

ck
ij

p
4hk

sin
2pzkþ1

hk

� 	
� sin

2pzk

hk

� 	� ��

þ1
2

p
hk

� 	2

ðzkþ1 � zkÞ
#

ð53Þ

and

I0 ¼
XNL

k¼1

qkðzkþ1 � zkÞ

I1 ¼
1
2

XNL

k¼1

qk z2
kþ1 � z2

k

� �

I2 ¼
1
3

XNL

k¼1

qk z3
kþ1 � z3

k

� �

I3 ¼
1
4

XNL

k¼1

qk z4
kþ1 � z4

k

� �

I4 ¼
1
5

XNL

k¼1

qk z5
kþ1 � z5

k

� �

I5 ¼ �
XNL

k¼1

qk hk

p
cos

pzkþ1

hk

� 	
� cos

pzk

hk

� 	� �

I6 ¼
XNL

k¼1

qk 1
2
ðzkþ1 � zkÞ �

hk

4p
sin

2pzkþ1

hk

� 	
� sin

2pzk

hk

� 	� �� �

I7 ¼
XNL

k¼1

qk hk

p

� 	2

sin
pzkþ1

hk

� 	
� sin

pzk

hk

� 	� 	"

�hk

p zkþ1 cos
pzkþ1

hk

� 	
� zk cos

pzk

hk

� 	� 	�
ð54Þ
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where hk is the thickness of each layer and zk,zk+1 are the lower and
upper z coordinate for each layer k.

2.8. Natural boundary conditions

This meshless method based on collocation with radial basis
functions needs the imposition of essential (e.g. w = 0) and
mechanical (e.g. Mxx = 0) boundary conditions. Assuming a rectan-
gular plate (for the sake of simplicity) Eqs. (30) are expressed as
follows.

Given the number of degrees of freedom, at each boundary
point at edges x = min or x = max we impose:

Mxx1 ¼ A11
@u0

@x
þ B11

@u1

@x
� G11

@uZ

@x
þ A12

@v0

@y
þ B12

@v1

@y
� G12

@vZ

@y
ð55Þ

Mxx2 ¼ B11
@u0

@x
þ D11

@u1

@x
þ N11

@uZ

@x
þ B12

@v0

@y
þ D12

@v1

@y

þ N12
@vZ

@y
þ A13w0 þ B13w1 � G13wZ ð56Þ

Mxx3 ¼ �G11
@u0

@x
þ N11

@u1

@x
� J11

@uZ

@x
� G12

@v0

@y
þ N12

@v1

@y

� J12
@vZ

@y
þ 2B13w0 þ 2D13w1 þ 2N13wZ ð57Þ

Mxx4 ¼ A66
@u0

@y
þ B66

@u1

@y
� G66

@uZ

@y
þ A66

@v0

@x
þ B66

@v1

@x
� G66

@vZ

@x
ð58Þ

Mxx5 ¼ B66
@u0

@y
þ D66

@u1

@y
þ N66

@uZ

@y
þ B66

@v0

@x
þ D66

@v1

@x
þ N66

@vZ

@x
ð59Þ

Mxx6 ¼ �G66
@u0

@y
þ N66

@u1

@y
� J66

@uZ

@y
� G66

@v0

@x
þ N66

@v1

@x
� J66

@vZ

@x
ð60Þ

Mxx7 ¼ A55
@w0

@x
þ B55

@w1

@x
þ D55

@wZ

@x
ð61Þ

Mxx8 ¼ A55u0 þ B55u1 þ D55uZ þ B55
@w0

@x
þ D55

@w1

@x
þ E55

@wZ

@x
ð62Þ

Mxx9 ¼ H55u0 þ ðG55 þ O55Þu1 þ ðP55 � 2N55ÞuZ þ D55
@w0

@x

þ E55
@w1

@x
þ F55

@wZ

@x
ð63Þ

Similarly, given the number of degrees of freedom, at each bound-
ary point at edges y = min or y = max we impose:

Myy1 ¼ A66
@u0

@y
þ B66

@u1

@y
� G66

@uZ

@y
þ A66

@v0

@x
þ B66

@v1

@x
� G66

@vZ

@x
ð64Þ

Myy2 ¼ B66
@u0

@y
þ D66

@u1

@y
þ N66

@uZ

@y
þ B66

@v0

@x
þ D66

@v1

@x
þ N66

@vZ

@x
ð65Þ

Myy3 ¼ �G66
@u0

@y
þ N66

@u1

@y
� J66

@uZ

@y
� G66

@v0

@x
þ N66

@v1

@x
� J66

@vZ

@x
ð66Þ

Myy4 ¼ A12
@u0

@x
þ B12

@u1

@x
� G12

@uZ

@x
þ A22

@v0

@y
þ B22

@v1

@y
� G22

@vZ

@y
ð67Þ

Myy5 ¼ B12
@u0

@x
þ D12

@u1

@x
þ N12

@uZ

@x
þ B22

@v0

@y
þ D22

@v1

@y
þ N22

@vZ

@y
ð68Þ

Myy6 ¼ �G12
@u0

@x
þ N12

@u1

@x
� J12

@uZ

@x
� G22

@v0

@y
þ N22

@v1

@y
� J22

@vZ

@y
ð69Þ

Myy7 ¼ A44
@w0

@y
þ B44

@w1

@y
þ D44

@wZ

@y
ð70Þ

Myy8 ¼ A44v0 þ B44v1 þ D44vZ þ B44
@w0

@y
þ D44

@w1

@y
þ E44

@wZ

@y
ð71Þ

Myy9 ¼ H44v0 þ ðG44 þ O44Þv1 þ ðP44 � 2N44ÞvZ þ D44
@w0

@y

þ E44
@w1

@y
þ F44

@wZ

@y
ð72Þ

with Aij, Bij, Dij, Eij, Fij, Gij, Hij, Jij, Nij, Oij, Pij, Rij already given in (53).

3. The radial basis function method

For the sake of completeness we present here the basics of col-
location with radial basis functions for static and vibrations
problems.

3.1. The static problem

In this section the formulation of a global unsymmetrical collo-
cation RBF-based method to compute elliptic operators is pre-
sented. Consider a linear elliptic partial differential operator L
and a bounded region X in Rn with some boundary oX. In the static
problems we seek the computation of displacements (u) from the
global system of equations

Lu ¼ f in X; LBu ¼ g on @X ð73Þ

where L;LB are linear operators in the domain and on the boundary,
respectively. The right-hand sides in (73) represent the external
forces applied on the plate and the boundary conditions applied
along the perimeter of the plate, respectively. The PDE problem de-
fined in (73) will be replaced by a finite problem, defined by an
algebraic system of equations, after the radial basis expansions.

3.2. The eigenproblem

The eigenproblem looks for eigenvalues (k) and eigenvectors (u)
that satisfy

Luþ ku ¼ 0 in X; LBu ¼ 0 on @X ð74Þ

As in the static problem, the eigenproblem defined in (74) is re-
placed by a finite-dimensional eigenvalue problem, based on RBF
approximations.

3.3. Radial basis functions approximations

The radial basis function (/) approximation of a function (u) is
given by
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~uðxÞ ¼
XN

i¼1

ai/ðkx� yik2Þ; x 2 Rn ð75Þ

where yi, i = 1, . . ., N is a finite set of distinct points (centers) in Rn.
Although we can use many RBFs, in this paper we restrict to the
Wendland function, defined as

/ðrÞ ¼ ð1� c rÞ8þð32ðc rÞ3 þ 25ðc rÞ2 þ 8c r þ 1Þ ð76Þ

where the Euclidian distance r is real and non-negative and c is a
positive shape parameter. The shape parameter (c) was obtained
by an optimization procedure, as detailed in Ferreira and Fasshauer
[26].

Considering N distinct interpolations, and knowing u(xj), j = 1, 2,
. . ., N, we find ai by the solution of a N � N linear system

Aa ¼ u ð77Þ

where A = [/(kx � yik2)]N�N, a = [a1,a2, . . . ,aN]T and
u = [u(x1),u(x2), . . . ,u(xN)]T.

3.4. Solution of the static problem

The solution of a static problem by radial basis functions con-
siders NI nodes in the domain and NB nodes on the boundary, with
a total number of nodes N = NI + NB. We denote the sampling points
by xi 2X, i = 1, . . ., NI and xi 2 oX, i = NI + 1, . . ., N. At the points in
the domain we solve the following system of equations

XN

i¼1

aiL/ðkx� yik2Þ ¼ fðxjÞ; j ¼ 1;2; . . . ;NI ð78Þ

or

LIa ¼ F ð79Þ

where

LI ¼ ½L/ðkx� yik2Þ�NI�N ð80Þ

At the points on the boundary, we impose boundary conditions as

XN

i¼1

aiLB/ðkx� yik2Þ ¼ gðxjÞ; j ¼ NI þ 1; . . . ;N ð81Þ

or

Ba ¼ G ð82Þ

where

B ¼ LB/½ðkxNIþ1 � yjk2Þ�NB�N

Therefore, we can write a finite-dimensional static problem as

LI

B

" #
a ¼

F
G

� �
ð83Þ

By inverting the system (83), we obtain the vector a. We then ob-
tain the solution u using the interpolation Eq. (75).

3.5. Solution of the eigenproblem

We consider NI nodes in the interior of the domain and NB nodes
on the boundary, with N = NI + NB. We denote interpolation points
by xi 2X, i = 1, . . ., NI and xi 2 oX, i = NI + 1, . . ., N. At the points in
the domain, we define the eigenproblem as

XN

i¼1

aiL/ðkx� yik2Þ ¼ k~uðxjÞ; j ¼ 1;2; . . . ;NI ð84Þ

or

LIa ¼ k~uI ð85Þ

where

LI ¼ ½L/ðkx� yik2Þ�NI�N ð86Þ

At the points on the boundary, we enforce the boundary conditions
as

XN

i¼1

aiLB/ðkx� yik2Þ ¼ 0; j ¼ NI þ 1; . . . ;N ð87Þ

or

Ba ¼ 0 ð88Þ

Eqs. (85) and (88) can now be solved as a generalized eigenvalue
problem

LI

B

" #
a ¼ k

AI

0

" #
a ð89Þ

where

AI ¼ /½ðkxNI � yjk2Þ�NI�N

3.6. Discretization of the equations of motion and boundary conditions

The radial basis collocation method follows a simple implemen-
tation procedure. Taking Eq. (83), we compute

a ¼ LI

B

" #�1
F
G

� �
ð90Þ

This a vector is then used to obtain solution ~u, by using (75). If
derivatives of ~u are needed, such derivatives are computed as

@~u
@x
¼
XN

j¼1

aj
@/j

@x
;

@2 ~u
@x2 ¼

XN

j¼1

aj
@2/j

@x2 ; etc: ð91Þ

In the present collocation approach, we need to impose essential
and natural boundary conditions. Consider, for example, the condi-
tion w0 = 0, on a simply supported or clamped edge. We enforce the
conditions by interpolating as

w0 ¼ 0!
XN

j¼1

aW0
j /j ¼ 0 ð92Þ

Other boundary conditions are interpolated in a similar way.

3.7. Free vibrations problems

For free vibration problems we set the external force to zero,
and assume harmonic solution in terms of displacements u0, u1,
uZ, v0, v1, vZ, w0, w1, wZ as

u0 ¼ U0ðw; yÞeixt ; u1 ¼ U1ðw; yÞeixt; uZ ¼ UZðw; yÞeixt;

v0 ¼ V0ðw; yÞeixt ; v1 ¼ V1ðw; yÞeixt ; vZ ¼ VZðw; yÞeixt ;

w0 ¼W0ðw; yÞeixt ; w1 ¼W1ðw; yÞeixt; wZ ¼WZðw; yÞeixt

ð93Þ
where x is the frequency of natural vibration. Substituting the har-
monic expansion into Eqs. (89) in terms of the amplitudes U0, U1, UZ,
V0, V1, VZ, W0, W1, WZ, we may obtain the natural frequencies and
vibration modes for the plate problem, by solving the eigenproblem

½L �x2G�X ¼ 0 ð94Þ

where L collects all stiffness terms and G collects all terms related
to the inertial terms. In (94) X are the modes of vibration associated
with the natural frequencies defined as x.
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4. Numerical examples

4.1. Bending problems

In the next examples we use the sinusoidal plate theory to ana-
lyse simply supported square (side lengths a = b) plates subjected
to a bi-sinusoidal transverse mechanical load, of amplitude load
pz ¼ �pzsin px

a

� �
sin py

b

� �
applied at the top plate surface, z ¼ h=2;

�pz ¼ 1. Three side-to-thickness ratios (a/h) are considered 4, 10
and 100.

We consider 91 mathematical layers, in order to model the con-
tinuous variation of properties across the thickness direction.1 We

consider a Wendland C6 radial function as in (76), and a Chebyshev
grid (see [26] for details).

4.1.1. Isotropic functionally graded plate
In this example, an isotropic FGM square plate with a polyno-

mial material law, as given by Zenkour [2] is considered. The plate
is graded from aluminum (bottom surface) to alumina (top surface)
materials. The following functional relationship is considered for
modulus of elasticity E(z) in the thickness direction (z) [2]:

EðzÞ ¼ Em þ ðEc � EmÞ
2zþ h

2h

� 	p

ð95Þ

where Em = 70 GPa and Ec = 380 GPa are the corresponding modulus
of elasticity of the metal and ceramic phases, respectively; p is the
(positive number) volume fraction exponent. The Poisson’s ratio is
considered constant (m = 0.3).

Table 1
FGM isotropic plate with polynomial material law [2]. Effect of transverse normal strain �zz for a bending problem.

p �zz �rxxðh=3Þ �uzð0;0Þ

a/h = 4 a/h = 10 a/h = 100 a/h = 4 a/h = 10 a/h = 100

1 Ref. [27] –0 0.6221 1.5064 14.969 0.7171 0.5875 0.5625
CLT 0 0.8060 2.0150 20.150 0.5623 0.5623 0.5623
FSDT (k = 5/6) 0 0.8060 2.0150 20.150 0.7291 0.5889 0.5625
GSDT [2] 0 1.4894 0.5889
Ref. [9] N = 4 0 0.7856 2.0068 20.149 0.7289 0.5890 0.5625
Ref. [9] N = 4 –0 0.6221 1.5064 14.969 0.7171 0.5875 0.5625
Present 132 grid –0 0.5925 1.4939 14.901 0.6997 0.5844 0.5596
Present 172 grid –0 0.5925 1.4945 14.957 0.6998 0.5845 0.5622
Present 212 grid –0 0.5925 1.4945 14.969 0.6997 0.5845 0.5624

4 Ref. [27] –0 0.4877 1.1971 11.923 1.1585 0.8821 0.8286
CLT 0 0.6420 1.6049 16.049 0.8281 0.8281 0.8281
FSDT (k = 5/6) 0 0.6420 1.6049 16.049 1.1125 0.8736 0.828
GSDT [2] 0 1.1783 0.8651
Ref. [9] N = 4 0 0.5986 1.5874 16.047 1.1673 0.8828 0.8286
Ref. [9] N = 4 –0 0.4877 1.1971 11.923 1.1585 0.8821 0.8286
Present 132 grid –0 0.4404 1.1780 11.894 1.1178 0.8749 0.8251
Present 172 grid –0 0.4404 1.1783 11.923 1.1178 0.8750 0.8284
Present 212 grid –0 0.4404 1.1783 11.932 1.1178 0.8750 0.8286

10 Ref. [27] –0 0.3695 0.8965 8.9077 1.3745 1.0072 0.9361
CLT 0 0.4796 1.1990 11.990 0.9354 0.9354 0.9354
FSDT (k = 5/6) 0 0.4796 1.1990 11.990 1.3178 0.9966 0.9360
GSDT [2] 0 0.8775 1.0089
Ref. [9] N = 4 0 0.4345 1.1807 11.989 1.3925 1.0090 0.9361
Ref. [9] N = 4 –0 0.1478 0.8965 8.9077 1.3745 1.0072 0.9361
Present 132 grid –0 0.3227 1.1780 11.894 1.3490 0.8749 0.8251
Present 172 grid –0 0.3227 1.1783 11.923 1.3490 0.8750 0.8284
Present 212 grid –0 0.3227 1.1783 11.932 1.3490 0.8750 0.8286
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Fig. 1. FGM square plate subjected to sinusoidal load at the top, with a/h = 4. Displacement through the thickness direction for different values of p at the center of the plate
a
2 ;

b
2

� �
.

1 A significant number of mathematical layers is needed to ensure correct material
properties at each thickness position.
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The in-plane displacements, the transverse displacements, the
normal stresses and the in-plane and transverse shear stresses
are respectively presented in normalized form as

�uz ¼
10h3Ec

a4�pz
uz; �rxx ¼

h
a�pz

rxx; �rxz ¼
h

a�pz
rxz; �rzz ¼ rzz ð96Þ

The present approach with �zz – 0 is compared with analytical
solutions by Carrera et al. [27], the classical plate theory (CLT),

the first-order shear deformation theory (FSDT), a generalized shear
deformation theory by Zenkour [2] (who considered �zz = 0), and fi-
nite element solutions by Carrera et al. [9]. We consider Chebyschev
grids with 132,172 and 212 points. Three FGM configurations are
considered by using different p exponents (p = 1,4,10). Thick (a/
h = 4) down to thin (a/h = 100) plates are analysed. Normalized
transverse displacements ð�uzÞ and normal stresses ð�rxxÞ at selected
points are shown in Table 1. Our approach presents very close re-
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Fig. 2. FGM square plate subjected to sinusoidal load at the top, with a/h = 4. rxx through the thickness direction for different values of p at the center of the plate a
2 ;

b
2
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.
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Fig. 3. FGM square plate subjected to sinusoidal load at the top, with a/h = 4. rxy through the thickness direction at the corner of the plate (0,0) for different values of p.
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Fig. 4. FGM square plate subjected to sinusoidal load at the top, with a/h = 4. rxz through the thickness direction at the center of the plate 0; b
2

� �
for different values of p.
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sults to those theories that consider thickness stretching, and
clearly deviates from those theories that neglect �zz, in particular
for thicker plates. The present approach presents very close results
to Carrera’s analytical solution [27].

In Figs. 1–6 we present the evolution of the displacement and
stresses across the thickness direction for various values of the
exponent p, using a 212 grid. As can be seen in Fig. 6, the transverse
normal component rzz cannot be neglected for the present problem.

4.1.2. Sandwich square plate with FGM core
In this example we consider a sandwich plate with total thick-

ness h, by using a polynomial material law for the core, as given by
Zenkour [2]. The bottom skin is aluminium (Em = 70 GPa) with
thickness hb = 0.1h and the top skin is alumina (Ec = 380 GPa) with
thickness ht = 0.1h. The core is a FGM with the following functional
relationship for modulus of elasticity E(z) in the thickness direction
z [2]:
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Fig. 5. FGM square plate subjected to sinusoidal load at the top, with a/h = 4. ryz through the thickness direction at the point a
2 ;0
� �

for different values of p.
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Fig. 6. FGM square plate subjected to sinusoidal load at the top, with a/h = 4. rzz through the thickness direction for different values of p at the center of the plate a
2 ;

b
2

� �
.

Table 2
Sandwich simply supported square plate with FGM core with polynomial material law [2] using a 192 grid. Effect of transverse normal strain �zz on rxz and transverse
displacement for a bending problem.

p �zz �rxz 0; b
2 ;

h
3

� �
�wð0;0;0Þ

a/h = 4 a/h = 10 a/h = 100 a/h = 4 a/h = 10 a/h = 100

1 Ref. [9] N = 4 0 0.2604 0.2594 0.2593 0.7628 0.6324 0.6072
Ref. [9] N = 4 –0 0.2596 0.2593 0.2593 0.7735 0.6337 0.6072
Present 0 0.2703 0.2718 0.2720 0.7744 0.6356 0.6092
Present –0 0.2742 0.2788 0.2793 0.7416 0.6305 0.6092

4 Ref. [9] N = 4 0 0.2400 0.2398 0.2398 1.0930 0.8307 0.7797
Ref. [9] N = 4 –0 0.2400 0.2398 0.2398 1.0977 0.8308 0.7797
Present 0 0.2699 0.2726 0.2728 1.0847 0.8276 0.7785
Present –0 0.2723 0.2778 0.2785 1.0391 0.8202 0.7784

10 Ref. [9] N = 4 0 0.1932 0.1944 0.1946 1.2172 0.8740 0.8077
Ref. [9] N = 4 –0 0.1935 0.1944 0.1946 1.2240 0.8743 0.8077
Present 0 0.1998 0.2021 0.2022 1.2212 0.8718 0.8050
Present –0 0.2016 0.2059 0.2064 1.1780 0.8650 0.8050
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EðzÞ ¼ Em þ ðEc � EmÞ
2zþ h

2h

� 	p

ð97Þ

where p is the (positive number) volume fraction exponent. The
Poisson’s ratio is considered constant m = 0.3.

The transverse displacement and the normal stresses are com-
puted in normalized form as

�uz ¼
10h3Ec

a4�pz
uz

a
2
;
b
2

� 	
�rxx ¼

h
a�pz

rxx
a
2
;
b
2

� 	

�ryy ¼
h

a�pz
ryy

a
2
;
b
2

� 	
�rzz ¼ rzz

a
2
;
b
2

� 	 ð98Þ

The shear stresses are normalized according to

Table 3
Sandwich simply supported square plate with FGM core with polynomial material law [2] using a 192 grid. Effect of transverse normal strain �zz on rxy and rzz for a bending
problem. �rzz ¼ rzz

h
a�pz

.

p �zz �rxy 0;0; h
3

� �
�rzz

a
2 ;

b
2 ;0

� �
a/h = 4 a/h = 100 a/h = 4 a/h = 100

1 Ref. LD4 [28] 0 0.3007 8.4968 0.0922 0.0038
Ref. LM4 [28] –0 0.3007 8.4968 0.0922 0.0038
Present 0 0.3303 8.4882 0.1276 3.1987
Present –0 0.3167 8.4911 0.0827 0.0034

5 Ref. LD4 [28] 0 0.1999 6.4942 0.0911 0.0037
Ref. LM4 [28] –0 0.1996 6.4942 0.0924 0.0037
Present 0 0.2317 6.4454 0.0777 1.9535
Present –0 0.2248 6.4441 0.0522 0.0022

10 Ref. LD4 [28] 0 0.1412 5.1402 0.1064 0.0043
Ref. LM4 [28] –0 0.1403 5.1401 0.1067 0.0042
Present 0 0.1745 5.0745 0.0685 1.6978
Present –0 0.1687 5.0754 0.0443 0.0018

0.65 0.7 0.75 0.8 0.85
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

w

z−
co

or
di

na
te p=1

p=4
k=10
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In Table 2 we present the normalized transverse displacement ð �wÞ
and the normalized transverse shear stress ð�rxzÞ at selected loca-
tions. In Table 3 we present the normalized in-plane shear stress
ð�rxyÞ and the normalized transverse normal stress ð�rzzÞ at selected
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locations. In both tables we consider three a/h ratios (4, 10 and 100),
and three power-law exponents (p = 1, 4 and 10). We use a 192

Chebyshev grid and consider both �zz = 0 and �zz – 0 approaches.
Our meshless results are compared in Table 2 with finite element
results by Carrera et al. [9], and compare quite well for all cases.
In Table 3 we compare the present approach with FEM results by
Brischetto [28] and again the comparison is quite good.

n Figs. 7–13 we present the evolution of the displacement and
stresses across the thickness direction for various values of the expo-
nent p of a plate with side to thickness ratio a/h = 10, using a 192 grid.

The present numerical method presents very close results to
those of Carrera et al. [9] for a N = 4 expansion.

The consideration of a non-zero �zz strain produces a significant
change in the transverse displacement as well as in the normal
stress. This becomes evident when we compare the present
approch with that of Zenkour [2] who neglected the �zz strain in
the formulation.

4.2. Free vibration problems

In this example, we study the free vibration behavior of simply-
supported isotropic FGM plates. We consider both the �zz = 0 and
the �zz – 0 cases. We compare results with an exact (analytical)
solution by Vel and Batra [29], and another meshless technique

by Qian et al. [8]. In order to compare results, we use the Mori–Ta-
naka scheme for obtaing equivalent material properties.

In Table 4 we consider thin and thick plates, with p = 1, and
using 132 Chebishev points. The �zz effect is significant. In fact,
the exact solution by Vel and Batra [29] is achieved for all cases,
by allowing �zz – 0. In Table 5 we compare with the same sources,
varying the p exponent, for a/h = 5 and using 132 points. Our pres-
ent formulation with �zz – 0 matches the exact solution.

In Fig. 14 the first four frequencies are presented for p = 1 and
using 172 points. In Table 6 we present the first ten frequencies
for the same exponent p and compare results with those from [8]
for different side-to-thickness ratios and different number of
Chebishev points.
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Fig. 12. Sandwich square plate with FGM core subjected to sinusoidal load at the top, with a/h = 10. rxz through the thickness direction at the point 0; b
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Fig. 13. Sandwich square plate with FGM core subjected to sinusoidal load at the top, with a/h = 10. ryz through the thickness direction at the point a
2 ;0
� �

for different values
of p.

Table 4
Fundamental frequency �x ¼ xh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qm=Em

p
of a SSSS isotropic functionally graded plate

(Al/ZrO2), p = 1, using 132 points.

Source a/h

20 10 5

Ref. [8] 0.0149 0.0584 0.2152
Exact [29] 0.0153 0.0596 0.2192
Present, Sinus (�zz = 0) 0.0153 0.0595 0.2184
Present, Sinus (�zz – 0) 0.0153 0.0596 0.2193
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5. Conclusions

A novel application of a unified formulation by a meshless dis-
cretization is proposed. A thickness-stretching sinusoidal shear
deformation theory was implemented for the static and free vibra-
tion analysis of functionally graded plates.

The present formulation was compared with analytical, mesh-
less or finite element methods and proved very accurate in both
static and vibration problems. The effect of �zz – 0 showed signifi-
cance in thicker plates. Even for a thinner functionally graded
plate, the rzz shoud always be considered in the formulation.

For the first time, the complete equations of motion and bound-
ary conditions are present to help readers to implement it success-
fully with this or other strong-form techniques.

Appendix A. Fundamental nuclei

The stress–strain relations for functionally graded materials as-
sume isotropic behavior at each layer k. Therefore, many terms are
cancelled due to absence of membrane-bending coupling, etc. For a
functionally graded plate the fundamental nuclei in explicit form
are then obtained as:
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a b s t r a c t

This paper presents an original hyperbolic sine shear deformation theory for the bending and free vibra-
tion analysis of functionally graded plates. The theory accounts for through-the-thickness deformations.

Equations of motion and boundary conditions are obtained using Carrera’s Unified Formulation and
further interpolated by collocation with radial basis functions.

The efficiency of the present approach combining the new theory with this meshless technique is dem-
onstrated in several numerical examples, for the static and free vibration analysis of functionally graded
plates. Excellent agreement for simply-supported plates with other literature results has been found.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Functionally graded materials (FGM) are a class of composites
in which the properties change gradually over one or more
directions. A typical FGM plate presents a continuous variation
of material properties over the thickness direction by mixing
two different materials [1]. The gradual variation of properties
avoids the delamination failure that is common in laminated
composites.

Typically, the analysis of FGM plates is performed using the
first-order shear deformation theory (FSDT) [2–5] or higher-order
shear deformation theories (HSDT) [3,5–8]. The FSDT gives
acceptable results but depends on a shear correction factor which
is difficult to find as it depends on many parameters. There is no
need of a shear correction factor when using a HSDT but equa-
tions of motion are more complicated to obtain than those of
the FSDT.

Typically functionally graded plates have been analysed with
shear deformation theories that neglect the thickness stretching
�zz, considering the transverse displacement independent of the
thickness coordinate. The effect of thickness stretching in FGM
plates has been recently investigated by Carrera et al. [9], using fi-
nite element approximations.

The use of alternative methods to the Finite Element Methods
for the analysis of plates, such as the meshless methods based on
collocation with radial basis functions (RBFs) is atractive due to

the absence of a mesh and the ease of collocation methods. In re-
cent years, radial basis functions showed excellent accuracy in
the interpolation of data and functions. Kansa [10] introduced
the concept of solving partial differential equations by an unsym-
metric RBF collocation method based upon the multiquadric inter-
polation functions. The authors have recently applied the RBF
collocation to the static deformations and free vibrations of com-
posite beams and plates [11–18].

The present paper addresses the thickness stretching effect on
the static and free vibration analysis of FGM plates, by a meshless
technique based on collocation with radial basis functions. The
Unified Formulation proposed by Carrera (further denoted as
CUF) method [19,20] is employed to obtain the algebraic equations
of motion and boundary conditions. Such equations of motion and
corresponding boundary conditions are then interpolated by radial
basis functions to obtain an algebraic system of equations. The CUF
method has been applied in several finite element analysis, either
using the Principle of Virtual Displacements, or by using the Reiss-
ner’s Mixed Variational theorem. The stiffness matrix components,
the external force terms or the inertia terms can be obtained di-
rectly with this unified formulation, irrespective of the shear defor-
mation theory being considered.

To the best of authors’ knowledge, plate theories involv-
ing hyperbolic functions are quite rare in literature. Soldatos
[21] used a displacement field involving the hyperbolic
function

f ðzÞ ¼ h sinh
z
h

� �
� z cosh

1
2

� �
: ð1Þ

0263-8223/$ - see front matter � 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.compstruct.2011.12.005

⇑ Corresponding author.
E-mail address: ferreira@fe.up.pt (A.J.M. Ferreira).

Composite Structures 94 (2012) 1814–1825

Contents lists available at SciVerse ScienceDirect

Composite Structures

journal homepage: www.elsevier .com/locate /compstruct



In [22,23] two displacement fields are presented both considering a
hyperbolic function:

f ðzÞ ¼ 3p
2

h tanh
z
h

� �
� 3p

2
z sech2 1

2

� �
ð2Þ

and

f ðzÞ ¼ z sech
pz2
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4

� �
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2
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4
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In [24] the considered hyperbolic function is

f ðzÞ ¼
h
p sinh pz

h

� �
� z

cosh p
2

� �
� 1

: ð4Þ

In all cases the hyperbolic functions are used for the in-plane
expansions only, while the transverse displacement is kept constant
(w = w0).

The use of hyperbolic shear deformation theory accounting for
�zz – 0 for the static and free vibration analysis of plates has not
been done yet. In this paper an hybrid quasi-3D hyperbolic shear
deformation theory, with different expansion for the in-plane
and the out-of-plane displacement is proposed. In-plane displace-
ments are considered to be of hyperbolic sine type across the thick-
ness coordinate and the out-of-plane displacement is defined as
quadratic in the thickness direction. The present formulation can
be seen as a enhancement of the original CUF in the sense that dif-
ferent displacement fields for in-plane and out-of-plane displace-
ments are introduced.

2. Governing equations and boundary conditions

A rectangular plate of in-plane dimensions a and b and uniform
thickness h is considered. The co-ordinate system is such that the
x–y plane coincides with the midplane of the plate. The plate is
made of a material graded across the thickness direction.

2.1. Displacement field

The following displacement field is assumed:

uðx; y; z; tÞ ¼ u0ðx; y; tÞ þ zu1ðx; y; tÞ þ sinh
pz
h

� �
uZðx; y; tÞ ð5Þ

vðx; y; z; tÞ ¼ v0ðx; y; tÞ þ zv1ðx; y; tÞ þ sinh
pz
h

� �
vZðx; y; tÞ ð6Þ

wðx; y; z; tÞ ¼ w0ðx; y; tÞ þ zw1ðx; y; tÞ þ z2w2ðx; y; tÞ ð7Þ

where u, v, and w are the displacements in the x-, y-, and z-direc-
tions, respectively. u0, u1, uZ, v0, v1, vZ, w0, w1, and w2 are functions
to be determined.

2.2. Strains

The strain–displacement relationships are:
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By substitution of the displacement field in (8), the strains are ob-
tained in terms of the proposed model unknowns:
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>>;þ sinh

pz
h

� � @uZ
@x
@vZ
@y

@uZ
@y þ

@vZ
@x

8>><
>>:

9>>=
>>;
ð9Þ

cxz

cyz

( )
¼

u1

v1

� 	
þ cosh

pz
h

� �p
h

uZ

vZ

� 	
þ

@w0
@x
@w0
@y

( )

þ z
@w1
@x
@w1
@y

( )
þ z2

@w2
@x
@w2
@y

( )
ð10Þ

�zz ¼ w1 þ 2zw2 ð11Þ

2.3. Elastic stress–strain relations

The elastic stress–strain relations depends on which assump-
tion of �zz we consider. If �zz – 0, i.e., thickness stretching is al-
lowed, then the 3D model is used and the constitutive equations
can be written as:

rxx

ryy

sxy

sxz

syz

rzz

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
¼

C11 C12 0 0 0 C13

C12 C22 0 0 0 C23

0 0 C66 0 0 0
0 0 0 C55 0 0
0 0 0 0 C44 0

C13 C23 0 0 0 C33

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

�xx

�yy

cxy

cxz

cyz

�zz

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð12Þ

The Cij are the three-dimensional elastic constants, given by

C11 ¼
Eð1� m2Þ

1� 3m2 � 2m3 ; C12 ¼
Eðmþ m2Þ

1� 3m2 � 2m3 ; C22 ¼
Eð1� m2Þ

1� 3m2 � 2m3 ;

C13 ¼
Eðmþ m2Þ

1� 3m2 � 2m3 ; C23 ¼
Eðmþ m2Þ

1� 3m2 � 2m3 ; ð14Þ

C44 ¼ G; C55 ¼ G; C66 ¼ G; C33 ¼
Eð1� m2Þ

1� 3m2 � 2m3 ð15Þ

where E is the modulus of elasticity, m is Poisson’s ratio, and G is the
shear modulus G ¼ E

2ð1þmÞ.
If �zz = 0, then the plane-stress case is used

rxx

ryy

sxy

sxz

syz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼

C11 C12 0 0 0
C12 C22 0 0 0
0 0 C66 0 0
0 0 0 C55 0
0 0 0 0 C44

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

�xx

�yy

cxy

cxz

cyz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð16Þ

The Cij are the plane-stress reduced elastic constants:

C11 ¼
E

1� m2 ; C12 ¼ m
E

1� m2 ; C22 ¼
E

1� m2 ; ð17Þ

C44 ¼ G; C55 ¼ G; C66 ¼ G ð18Þ

It is interesting to note that the use of shear-correction factors is not
considered, as would be the case of the first-order shear deforma-
tion theory.

We consider virtual (mathematical) layers of constant thick-
ness, each containing a homogeneized modulus of elasticity, Ek,
and a homogeneized Poisson’s ratio, mk. The functionally graded
plate is divided into a NL layers of equal thickness. For each layer
the volume fraction of the ceramic phase is defined as:

Vk
c ¼ 0:5þ

~z
h

� �p

ð19Þ

where ~z is the thickness coordinate of a point of each layer, and p is
the polynomial gradation law exponent. The volume fraction for the
metal phase is given as Vk

m ¼ 1� Vk
c .

For each virtual layer, the elastic properties Ek and mk can be
computed in two ways. First, we consider the law-of-mistures:

EkðzÞ ¼ EmVm þ EcVc; mkðzÞ ¼ mmVm þ mcVc ð20Þ
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Second, we consider the Mori–Tanaka homogenization procedure
[25,26]. In this homogenization method, we find the bulk modulus,
K, and the effective shear modulus, G, of the composite equivalent
layer as

K � Km

Kc � Km
¼ Vc

1þ ð1� VcÞ Kc�Km
Kmþ4=3Gm

;
G� Gm

Gc � Gm
¼ Vc

1þ ð1� VcÞ Gc�Gm
Gmþfm

ð21Þ

where

fm ¼
Gmð9Km þ 8GmÞ

6ðKm þ 2GmÞ
ð22Þ

The effective values of Young’s modulus, Ek, and Poisson’s ratio, mk,
are found from

Ek ¼ 9KkGk

3Kk þ Gk
; mk ¼ 3Kk � 2Gk

2ð3Kk þ GkÞ
ð23Þ

After using the law-of-mixtures or the Mori–Tanaka homogeniza-
tion procedure, the computation of the elastic constants Ck

ij is per-
formed for each layer based on mk and Ek. For example,

Ck
12 ¼

Ekðmk þ ðmkÞ2Þ
1� 3ðmkÞ2 � 2ðmkÞ3

ð24Þ

Other Ck
ij terms follow a similar procedure.

2.4. Governing equations

The equations of motion of the hyperbolic sine theory are de-
rived from the Principle of Virtual Displacements (PVD). In analyt-
ical form, it can be stated as:Z

X
d�T

prp þ d�T
nrn

n o
dX ¼

Z
X

qduT €uþ duT p

 �

dX ð25Þ

where (p) indicates in-plane components (xx), (yy) and (xy), and (n)
the transverse components (xz), (yz) and (zz). X is the volume of the
plate, d denotes a virtual variation and T indicates the transpose
operator. q is the density of the material and double dots denote
acceleration. p = {px,py,pz} is the external load applied to the struc-
ture. For the considered functionally graded plate, the PVD can be
written as:

XNL

k¼1

Z
Xk

Z
Ak

d�T
pr

k
p þ d�T

nr
k
n

� �
dzdXk

¼
XNL

k¼1

Z
Xk

Z
Ak

qk duT €uþ duT p
� �

dzdXk ð26Þ

where Xk is the in-plane integration domain (x,y) and Ak is the inte-
gration domains in z direction of the k-th layer. Integrating through
the thickness and summing on the index k, integrating by parts with
respect to x and y and collecting the coefficients of du0, dv0, dw0, du1,
dv1, dw1, duZ, dvZ, and dw2, the following equations of motion are
obtained:

du0 :
XNL

k¼1

� @Nk
xx

@x
�
@Nk

xy

@y

 !

¼
XNL

k¼1

Z
Ak

qk €u0 þ z€u1 þ sinh
pz
h

� �
€uZ

� �
þ px

n o
dz

dv0 :
XNL

k¼1

�
@Nk

xy

@x
�
@Nk

yy

@y

 !

¼
XNL

k¼1

Z
Ak

qk €v0 þ z€v1 þ sinh
pz
h

� �
€vZ

� �
þ py

n o
dz

dw0 :
XNL

k¼1

�@Q k
xz

@x
�
@Q k

yz

@y

 !

¼
XNL

k¼1

Z
Ak

qk €w0þ z €w1þ z2 €w2
� �

þpz


 �
dz

du1 :
XNL

k¼1

�@Mk
xx

@x
�
@Mk

xy

@y
þQk

xz

 !

¼
XNL

k¼1

Z
Ak

qkz €u0þ z€u1þ sinh
pz
h

� �
€uZ

� �
þ zpx

n o
dz

dv1 :
XNL

k¼1

�
@Mk

xy

@x
�
@Mk

yy

@y
þQ k

yz

 !

¼
XNL

k¼1

Z
Ak

qkz €v0þ z€v1þ sinh
pz
h

� �
€vZ

� �
þ zpy

n o
dz

dw1 :
XNL

k¼1

�@Mk
xz

@x
�
@Mk

yz

@y
þQ k

zz

 !

¼
XNL

k¼1

Z
Ak

qkz €w0þ z €w1þz2 €w2
� �

þ zpz


 �
dz

duZ :
XNL

k¼1

�@RkZ
xx

@x
�
@RkZ

xy

@y
þRkZ

xz

 !

¼
XNL

k¼1

Z
Ak

qk sinh
pz
h

� �
€u0þ z€u1þ sinh

pz
h

� �
€uZ

� �
þ sinh

pz
h

� �
px

n o
dz

dvZ :
XNL

k¼1

�
@RkZ

xy

@x
�
@RkZ

yy

@y
þRkZ

yz

 !

¼
XNL

k¼1

Z
Ak

qk sinh
pz
h

� �
€v0þ z€v1þ sinh

pz
h

� �
€vZ

� �
þ sinh

pz
h

� �
py

n o
dz

dw2 :
XNL

k¼1

�@Rk2
xz

@x
�
@Rk2

yz

@y
þ2Mk

zz

 !

¼
XNL

k¼1

Z
Ak

qkz2 €w0þ z €w1þ z2 €w2
� �

þ z2pz


 �
dz ð27Þ

The following stress resultants for each fictitious layer are
considered:

Nk
xx

Nk
yy

Nk
xy

8>><
>>:

9>>=
>>; ¼

Z
Ak

rk
xx

rk
yy

sk
xy

8><
>:

9>=
>;dz;

Q k
xz

Qk
yz

Q k
zz

8>><
>>:

9>>=
>>; ¼

Z
Ak

sk
xz

sk
yz

rk
zz

8><
>:

9>=
>;dz ð28Þ

Mk
xx

Mk
yy

Mk
xy

8>><
>>:

9>>=
>>; ¼

Z
Ak

z

rk
xx

rk
yy

sk
xy

8><
>:

9>=
>;dz;

Mk
xz

Mk
yz

Mk
zz

8>><
>>:

9>>=
>>; ¼

Z
Ak

z

sk
xz

sk
yz

rk
zz

8><
>:

9>=
>;dz ð29Þ

RkZ
xx

RkZ
yy

RkZ
xy

8>><
>>:

9>>=
>>; ¼

Z
Ak

sinh
pz
h

� � rk
xx

rk
yy

sk
xy

8><
>:

9>=
>;dz;

RkZ
xz

RkZ
yz

( )
¼ p

h

Z
Ak

cosh
pz
h

� � sk
xz

sk
yz

( )
dz ð30Þ

Rk2
xz

Rk2
yz

( )
¼
Z

Ak

z2 sk
xz

sk
yz

( )
dz ð31Þ

The corresponding mechanical boundary conditions are defined as:

du0 : nxNk
xx þ nyNk

xy ¼ nxNk
xx þ nyNk

xy

dv0 : nxNk
xy þ nyNk

yy ¼ nxNk
xy þ nyNk

yy

dw0 : nxQ k
xz þ nyQ k

yz ¼ nxQ k
xz þ nyQ k

yz
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du1 : nxMk
xx þ nyMk

xy ¼ nxMk
xx þ nyMk

xy

dv1 : nxMk
xy þ nyMk

yy ¼ nxMk
xy þ nyMk

yy

dw1 : nxMk
xz þ nyMk

yz ¼ nxMk
xz þ nyMk

yz

duZ : nxRkZ
xx þ nyRkZ

xy ¼ nxRkZ
xx þ nyRkZ

xy

dvZ : nxRkZ
xy þ nyRkZ

yy ¼ nxRkZ
xy þ nyRkZ

yy

dw2 : nxRk2
xz þ nyRk2

yz ¼ nxRk2
xz þ nyRk2

yz ð32Þ

where (nx,ny) denotes the unit normal-to-boundary vector and
over-lined terms are the imposed resultants.

2.5. Equations of motion and boundary conditions in terms of
displacements

In order to discretize the equations of motion by radial basis
functions, we present in the following the explicit terms of the
equations of motion and the boundary conditions in terms of the
generalized displacements. The following equations are derived
considering that the plate is subjected to a transverse external load
pz applied at the top of the plate z = h/2.

du0 : � G11
@2uZ

@x2 þ G66
@2uZ

@y2

 !
� ðG12 þ G66Þ

@2vZ

@x@y

� A11
@2u0

@x2 þ A66
@2u0

@y2

 !
� A12 þ A66ð Þ @

2v0

@x@y

� B11
@2u1

@x2 þ B66
@2u1

@y2

 !
� ðB12 þ B66Þ

@2v1

@x@y
� A13

@w1

@x
� 2B13

@w2

@x

¼ I1 €u1 þ I0 €u0 þ I5 €uZ ð33Þ

du1 : �D11
@2u1

@x2 þ A55u1 � D66
@2u1

@y2

 !

þ H55uZ þ N11
@2uZ

@x2 þ N66
@2uZ

@y2

 !
þ N12 þ N66ð Þ @

2vZ

@x@y

� B11
@2u0

@x2 þ B66
@2u0

@y2

 !
� B12 þ B66ð Þ @

2v0

@x@y

� D12 þ D66ð Þ @
2v1

@x@y
þ B55 � B13ð Þ @w1

@x

þ D55 � 2D13ð Þ @w2

@x
þ A55

@w0

@x
¼ I7 €uZ þ I1 €u0 þ I2 €u1 ð34Þ

duZ : � G11
@2u0

@x2 þ G66
@2u0

@y2

 !
þ ðO55 � G55 � G13Þ

@w1

@x

þ H55u1 þ N11
@2u1

@x2 þ N66
@2u1

@y2

 !
� ðG12 þ G66Þ

@2v0

@x@y

þ �J11
@2uZ

@x2 þ R55uZ � J66
@2uZ

@y2

 !
þ P55 þ 2N55 þ 2N13ð Þ @w2

@x

þ ðN12 þ N66Þ
@2v1

@x@y
� ðJ12 þ J66Þ

@2vZ

@x@y
þ H55

@w0

@x
¼ I7 €u1 þ I6 €uZ þ I5 €u0 ð35Þ

dv0 : �ðG12 þ G66Þ
@2uZ

@x@y
� G22

@2vZ

@y2 þ G66
@2vZ

@x2

 !
� A12 þ A66ð Þ @

2u0

@x@y

� A22
@2v0

@y2 þ A66
@2v0

@x2

 !
� B12 þ B66ð Þ @

2u1

@x@y

� B22
@2v1

@y2 þ B66
@2v1

@x2

 !
� A23

@w1

@y
� 2B23

@w2

@y

¼ I1 €v1 þ I0 €v0 þ I5 €vZ ð36Þ

dv1 : �D22
@2v1

@y2 þ A44v1 � D66
@2v1

@x2

 !

þ H44vZ þ N22
@2vZ

@y2 þ N66
@2vZ

@x2

 !
þ ðN12 þ N66Þ

@2uZ

@x@y

� ðB12 þ B66Þ
@2u0

@x@y
� ðD12 þ D66Þ

@2u1

@x@y
� B22

@2v0

@y2 þ B66
@2v0

@x2

 !

þ ðB44 � B23Þ
@w1

@y
þ ðD44 � 2D23Þ

@w2

@y
þ A44

@w0

@y
¼ I7 €vZ þ I1 €v0 þ I2 €v1 ð37Þ

dvZ : �ðG12 þ G66Þ
@2u0

@x@y
þ ðO44 � G44 � G23Þ

@w1

@y

þ H44v1 þ N22
@2v1

@y2 þ N66
@2v1

@x2

 !
� G22

@2v0

@y2 þ G66
@2v0

@x2

 !

þ �J22
@2vZ

@y2 þ R44vZ � J66
@2vZ

@x2

 !
þ P44 þ 2N44 þ 2N23ð Þ @w2

@y

þ ðN12 þ N66Þ
@2u1

@x@y
� ðJ12 þ J66Þ

@2uZ

@x@y
þ H44

@w0

@y
¼ I7 €v1 þ I6 €vZ þ I5 €v0 ð38Þ

dw0 : � A55
@2w0

@x2 þ A44
@2w0

@y2

 !
� B55

@2w1

@x2 þ B44
@2w1

@y2

 !

� D55
@2w2

@x2 þ D44
@2w2

@y2

 !
� H55

@uZ

@x
� H44

@vZ

@y
� A55

@u1

@x

� A44
@v1

@y
þ pz

¼ I1 €w1 þ I2 €w2 þ I0 €w0 ð39Þ

dw1 : �E55
@2w2

@x2 þ 2B33w2 � E44
@2w2

@y2

 !
þ ð�O55 þ G55 þ G13Þ

@uZ

@x

þ ð�O44 þ G44 þ G23Þ
@vZ

@y
þ �D55

@2w1

@x2 þ A33w1 � D44
@2w1

@y2

 !

þ ðB13 � B55Þ
@u1

@x
þ ðB23 � B44Þ

@v1

@y
� B55

@2w0

@x2 þ B44
@2w0

@y2

 !

þ A13
@u0

@x
þ A23

@v0

@y
¼ I1 €w0 þ I2 €w1 þ I3 €w2 ð40Þ

dw2 : �E55
@2w1

@x2 þ 2B33w1 � E44
@2w1

@y2

 !

þ �F55
@2w2

@x2 þ 4D33w2 � F44
@2w2

@y2

 !

� P55 þ 2N55 þ 2N13ð Þ @uZ

@x
� P44 þ 2N44 þ 2N23ð Þ @vZ

@y

þ 2D13 � D55ð Þ @u1

@x
þ ð2D23 � D44Þ

@v1

@y

� D55
@2w0

@x2 þ D44
@2w0

@y2

 !
þ 2B13

@u0

@x
þ 2B23

@v0

@y
þ h

2

� �2

pz

¼ I2 €w0 þ I3 €w1 þ I4 €w2 ð41Þ
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The laminate stiffness components can be computed as

Aij ¼
XNL

k¼1

ck
ij zkþ1 � zkð Þ; Bij ¼

1
2

XNL

k¼1

ck
ij z2

kþ1 � z2
k

� �

Dij ¼
1
3

XNL

k¼1

ck
ij z3

kþ1 � z3
k

� �
; Eij ¼

1
4

XNL
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ij z4
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� �
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1
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� �

Gij ¼
XNL

k¼1

ck
ij

hk

p
cosh

pzkþ1

hk

� �
� cosh

pzk
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hk
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p
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p
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ð42Þ

The mass moments of inertia are defined by

I0 ¼
XNL

k¼1

qk zkþ1 � zkð Þ; I1 ¼
1
2

XNL
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qk z2
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k

� �
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1
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;
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ð43Þ

where hk is the thickness of each layer, zk,zk+1 are the bottom and
top z coordinate for each layer k, and qk is the material density of
the k-th layer.

2.5.1. Boundary conditions in terms of displacements
This meshless method based on collocation with radial basis

functions needs the imposition of essential (e.g. w = 0) and
mechanical (e.g. Mxx = 0) boundary conditions. Assuming a rectan-
gular plate (for the sake of simplicity), Eq. (32) are expressed as fol-
lows: given the number of degrees of freedom, at each boundary
point at edges x = min or x = max we impose

Mxxu0 ¼2B13w2 þ A13w1 þ A11
@u0

@x
þ A12

@v0

@y
þ B11

@u1

@x
þ B12

@v1

@y

þ G11
@uZ

@x
þ G12
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ð44Þ

Mxxu1 ¼ �N11
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þ B11
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þ D11
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@y
þ D12
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ð45Þ

Mxxu2 ¼ �2N13w2 � N11
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� N12

@v1

@y
þ J11

@uZ

@x
þ J12

@vZ

@y

þ G13w1 þ G11
@u0

@x
þ G12

@v0

@y
ð46Þ

Mxxv0 ¼ A66
@u0

@y
þ A66

@v0

@x
þ B66

@u1

@y
þ B66

@v1

@x
þ G66

@uZ

@y
þ G66

@vZ

@x
ð47Þ

Mxxv1 ¼ �N66
@uZ

@y
� N66

@vZ

@x
þ B66

@u0

@y
þ D66

@u1

@y
þ B66

@v0

@x
þ D66

@v1

@x
ð48Þ

Mxxv2 ¼ �N66
@u1

@y
� N66

@v1

@x
þ J66

@uZ

@y
þ J66

@vZ

@x
þ G66

@u0

@y
þ G66

@v0

@x
ð49Þ

Mxxw0 ¼ H55uZ þ A55u1 þ A55
@w0

@x
þ B55

@w1

@x
þ D55

@w2

@x
ð50Þ

Mxxw1 ¼ B55u1 þ ðO55 � G55ÞuZ þ B55
@w0

@x
þ D55

@w1

@x
þ E55

@w2

@x
ð51Þ

Mxxw2 ¼ D55u1 þ ðP55 þ 2N55ÞuZ þ D55
@w0

@x
þ E55

@w1

@x
þ F55

@w2

@x
ð52Þ

Similarly, given the number of degrees of freedom, at each bound-
ary point at edges y = min or y = max we impose:

Myyu0 ¼ A66
@u0

@y
þ A66

@v0

@x
þ B66

@u1

@y
þ B66

@v1

@x
þ G66

@uZ

@y
þ G66

@vZ

@x
ð53Þ

Myyu1 ¼ �N66
@uZ

@y
� N66

@vZ

@x
þ B66

@u0

@y
þ D66

@u1

@y
þ B66

@v0

@x
þ D66

@v1

@x
ð54Þ

Myyu2 ¼ �N66
@u1

@y
� N66

@v1

@x
þ J66

@uZ

@y
þ J66

@vZ

@x
þ G66

@u0

@y
þ G66

@v0

@x
ð55Þ

Myyv0 ¼ A12
@u0

@x
þ A22

@v0

@y
þ B12

@u1

@x
þ B22

@v1

@y
þ G12

@uZ

@x
þ G22

@vZ

@y
ð56Þ

Myyv1 ¼ �N12
@uZ

@x
� N22

@vZ

@y
þ B12

@u0

@x
þ D12

@u1

@x
þ B22

@v0

@y
þ D22

@v1

@y
ð57Þ

Myyv2 ¼ �N12
@u1

@x
� N22

@v1

@y
þ J12

@uZ

@x
þ J22

@vZ

@y
þ G12

@u0

@x
þ G22

@v0

@y
ð58Þ
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Myyw0 ¼ H44vZ þ A44v1 þ A44
@w0

@y
þ B44

@w1

@y
þ D44

@w2

@y
ð59Þ

Myyw1 ¼ B44v1 þ ðO44 � G44ÞvZ þ B44
@w0

@y
þ D44

@w1

@y
þ E44

@w2

@y
ð60Þ

Myyw2 ¼ D44v1 þ ðP44 þ 2N44ÞvZ þ D44
@w0

@y
þ E44

@w1

@y
þ F44

@w2

@y
ð61Þ

with Aij, Bij, Dij, Eij, Fij, Gij, Hij, Jij, Nij, Oij, Pij, Rij already described in
(42).

3. The radial basis function method

For the sake of completeness we present here the basics of col-
location with radial basis functions for static and vibrations
problems.

3.1. The static problem

In this section the formulation of a global unsymmetrical collo-
cation RBF-based method to compute elliptic operators is pre-
sented. Consider a linear elliptic partial differential operator L
and a bounded region X in Rn with boundary oX. In the static
problems we seek the computation of displacements (u) from the
global system of equations

Lu ¼ f in X; LBu ¼ g on @X ð62Þ

where L; LB are linear operators in the domain and on the bound-
ary, respectively. The right-hand sides in (62) represent the external
forces applied on the plate and the boundary conditions applied
along the perimeter of the plate, respectively. The PDE problem de-
fined in (62) will be replaced by a finite problem, defined by an
algebraic system of equations, after the radial basis expansions.

3.2. The eigenproblem

The eigenproblem looks for eigenvalues (k) and eigenvectors (u)
that satisfy

Luþ ku ¼ 0 in X; LBu ¼ 0 on @X ð63Þ

As in the static problem, the eigenproblem defined in (63) is re-
placed by a finite-dimensional eigenvalue problem, based on RBF
approximations.

3.3. Radial basis functions approximations

The radial basis function (/) approximation of a function (u) is
given by

~uðxÞ ¼
XN

i¼1

ai/ kx� yik2ð Þ; x 2 Rn ð64Þ

where yi, i = 1, . . ., N is a finite set of distinct points (centers) in Rn.
Although we can use many RBFs, in this paper we restrict to the
Wendland function, defined as

/ðrÞ ¼ ð1� c rÞ8þ 32ðc rÞ3 þ 25ðc rÞ2 þ 8c r þ 1
� �

ð65Þ

where the Euclidian distance r is real and non-negative and c is a
positive shape parameter. The shape parameter (c) was obtained
by an optimization procedure, as detailed in Ferreira and Fasshauer
[27].

Considering N distinct interpolations, and knowing u(xj), j = 1, 2,
. . ., N, we find ai by the solution of a N � N linear system

Aa ¼ u ð66Þ

where A = [/(kx � yik2)]N�N, a = [a1,a2, . . . ,aN]T and u = [u(x1),
u(x2), . . . ,u(xN)]T.

3.4. Solution of the static problem

The solution of a static problem by radial basis functions con-
siders NI nodes in the domain and NB nodes on the boundary,
with a total number of nodes N = NI + NB. We denote the sam-
pling points by xi 2X, i = 1, . . ., NI and xi 2 oX, i = NI + 1, . . ., N.
At the points in the domain we solve the following system of
equations

XN

i¼1

aiL/ kx� yik2ð Þ ¼ fðxjÞ; j ¼ 1;2; . . . ;NI ð67Þ

or

LIa ¼ F ð68Þ

where

LI ¼ L/ kx� yik2ð Þ½ �NI�N ð69Þ

At the points on the boundary, we impose boundary conditions as

XN

i¼1

aiLB/ kx� yik2ð Þ ¼ gðxjÞ; j ¼ NI þ 1; . . . ;N ð70Þ

or

Ba ¼ G ð71Þ

where

B ¼ LB/ kxNIþ1 � yjk2

� �� �
NB�N

Therefore, we can write a finite-dimensional static problem as

LI

B

" #
a ¼

F
G

� 

ð72Þ

By inverting the system (72), we obtain the vector a. We then ob-
tain the solution u using the interpolation Eq. (64).

3.5. Solution of the eigenproblem

As in the solution of the static problem, we consider NI nodes in
the interior of the domain and NB nodes on the boundary. For
xi 2X, i = 1, . . ., NI, we define the eigenproblem as

XN

i¼1

aiL/ kx� yik2ð Þ ¼ k~uðxjÞ; j ¼ 1;2; . . . ;NI ð73Þ

or

LIa ¼ k~uI ð74Þ

where

LI ¼ L/ kx� yik2ð Þ½ �NI�N ð75Þ

For xi 2 oX, i = NI + 1, . . ., N, we enforce the boundary conditions as

XN

i¼1

aiLB/ kx� yik2ð Þ ¼ 0; j ¼ NI þ 1; . . . ;N ð76Þ

or

Ba ¼ 0 ð77Þ
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Eqs. (74) and (77) can now be solved as a generalized eigenvalue
problem

LI

B

" #
a ¼ k

AI

0

" #
a ð78Þ

where

AI ¼ / kxNI � yjk2

� �� �
NI�N

3.6. Discretization of the equations of motion and boundary conditions

The radial basis collocation method follows a simple implemen-
tation procedure. Taking Eq. (72), we compute

a ¼ LI

B

" #�1
F
G

� 

ð79Þ

This a vector is then used to obtain solution ~u, by using (64). If
derivatives of ~u are needed, such derivatives are computed as

@~u
@x
¼
XN

j¼1

aj
@/j

@x
;

@2 ~u
@x2 ¼

XN

j¼1

aj
@2/j

@x2 ; etc: ð80Þ

In the present collocation approach, we need to impose essential
and natural boundary conditions. Consider, for example, the condi-
tion w0 = 0, on a simply supported or clamped edge. We enforce the
conditions by interpolating as

w0 ¼ 0!
XN

j¼1

aW0
j /j ¼ 0 ð81Þ

Other boundary conditions are interpolated in a similar way.

3.7. Free vibrations problems

For free vibration problems we set the external force to zero,
and assume harmonic solution in terms of displacements u0, u1,
uZ, v0, v1, vZ, w0, w1, w2 as

u0 ¼ U0ðw; yÞeixt; u1 ¼ U1ðw; yÞeixt; uZ ¼ UZðw; yÞeixt;

v0 ¼ V0ðw; yÞeixt ; v1 ¼ V1ðw; yÞeixt ; vZ ¼ VZðw; yÞeixt ;

w0 ¼W0ðw; yÞeixt ; w1 ¼W1ðw; yÞeixt ; w2 ¼W2ðw; yÞeixt

ð82Þ

where x is the frequency of natural vibration. Substituting the
harmonic expansion into Eq. (78) in terms of the amplitudes U0,
U1, UZ, V0, V1, VZ, W0, W1, W2, we may obtain the natural frequen-
cies and vibration modes for the plate problem, by solving the
eigenproblem

L�x2G
� �

X ¼ 0 ð83Þ

where L collects all stiffness terms and G collects all terms related
to the inertial terms. In (83) X are the modes of vibration associated
with the natural frequencies defined as x.

4. Numerical examples

4.1. Bending problems

In the next examples we use the hyperbolic sine plate theory to
analyse simply supported (SSSS) square (side lengths a = b) plates
subjected to a bi-sinusoidal transverse mechanical load, of bi-sinu-
soidal load pz ¼ �pzsin px

a

� �
sin py

b

� �
applied at the top plate surface,

z ¼ h=2; �pz ¼ 1. Three side-to-thickness ratios (a/h) are considered
4, 10 and 100.

We consider 91 mathematical layers, in order to model the con-
tinuous variation of properties across the thickness direction.1 We
consider a Wendland C6 radial function as in (65), and a Chebyshev
grid (see [27] for details).

4.1.1. Isotropic functionally graded plate
In this example, an isotropic FGM square plate with a polyno-

mial material law, as given by Zenkour [2] is considered. The plate
is graded from aluminum (bottom surface) to alumina (top surface)
materials. The following functional relationship is considered for
modulus of elasticity E(z) in the thickness direction (z) [2]:

EðzÞ ¼ Em þ ðEc � EmÞ
2zþ h

2h

� �p

ð84Þ

where Em = 70 GPa and Ec = 380 GPa are the corresponding modulus
of elasticity of the metal and ceramic phases, respectively; p is the
(positive number) volume fraction exponent. The Poisson’s ratio is
considered constant (m = 0.3).

The transverse displacement and the normal stresses are com-
puted in normalized form as

�uz ¼
10h3Ec

a4�pz
uz

a
2
;
b
2

� �
�rxx ¼

h
a�pz

rxx
a
2
;
b
2

� �

�ryy ¼
h

a�pz
ryy

a
2
;
b
2

� �
�rzz ¼ rzz

a
2
;
b
2

� �
ð85Þ

The shear stresses are normalized according to

�rxy ¼
h

a�pz
rxyð0;0Þ; �rxz ¼

h
a�pz

rxz 0;
b
2

� �
; �ryz ¼

h
a�pz

ryz
a
2
;0

� �
ð86Þ

a
2 ;

b
2

� �
is the center of the plate, 0; b

2

� �
and a

2 ; 0
� �

are the midpoints of
the sides, and (0,0) is the corner of the plate.

The present approach with �zz – 0 is compared with analytical
solutions by Carrera et al. [28], the classical plate theory (CLT),
the first-order shear deformation theory (FSDT), a generalized
shear deformation theory by Zenkour [2] (who considered
�zz = 0), and finite element solutions by Carrera et al. [9]. We con-
sider Chebyschev grids with 132, 172 and 212 points. Three FGM
configurations are considered by using different p exponents
(p = 1,4,10). Thick (a/h = 4) down to thin (a/h = 100) plates are ana-
lysed. Normalized transverse displacements ð�uzÞ and normal stres-
ses ð�rxxÞ at the central point of the plate and selected thickness
coordinate are shown in Table 1. Our approach presents very close
results to those theories that consider thickness stretching, and
clearly deviates from those theories that neglect �zz, in particular
for thicker plates. The present approach presents very close results
to Carrera’s analytical solution [28].

In Figs. 1–6 we present the evolution of the displacement and
stresses across the thickness direction for various values of the
exponent p, using a 212 grid. As can be seen in Fig. 6, the transverse
normal component rzz cannot be neglected for the present
problem.

4.1.2. Sandwich square plate with FGM core
In this example we consider a sandwich plate with total

thickness h, by using a polynomial material law for the core, as de-
scribed in Zenkour [2]. The bottom skin is aluminium (Em = 70 GPa)
with thickness hb = 0.1h and the top skin is alumina (Ec = 380 GPa)
with thickness ht = 0.1h. The core is a FGM layer with the following
functional relationship for modulus of elasticity E(z) in the thick-
ness direction z as in (84). The Poisson’s ratio is considered con-
stant m = 0.3.

1 A significant number of mathematical layers is needed to ensure correct
computation of material properties at each thickness position.
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Table 1
FGM isotropic plate with polynomial material law [2]. Effect of transverse normal strain �zz for a bending problem.

a/h �rxxðh=3Þ �uzð0Þ

p �zz 4 10 100 4 10 100

1 Ref. [28] –0 0.6221 1.5064 14.969 0.7171 0.5875 0.5625
CLT 0 0.8060 2.0150 20.150 0.5623 0.5623 0.5623
FSDT (k = 5/6) 0 0.8060 2.0150 20.150 0.7291 0.5889 0.5625
GSDT [2] 0 1.4894 0.5889
Ref. [9] N = 4 0 0.7856 2.0068 20.149 0.7289 0.5890 0.5625
Ref. [9] N = 4 –0 0.6221 1.5064 14.969 0.7171 0.5875 0.5625
Ref. [29] –0 0.5925 1.4945 14.969 0.6997 0.5845 0.5624
Present 132 grid –0 0.5910 1.4911 14.873 0.7020 0.5868 0.5620
Present 172 grid –0 0.5910 1.4916 14.930 0.7020 0.5868 0.5646
Present 212 grid –0 0.5910 1.4917 14.944 0.7020 0.5868 0.5648

4 Ref. [28] –0 0.4877 1.1971 11.923 1.1585 0.8821 0.8286
CLT 0 0.6420 1.6049 16.049 0.8281 0.8281 0.8281
FSDT (k = 5/6) 0 0.6420 1.6049 16.049 1.1125 0.8736 0.828
GSDT [2] 0 1.1783 0.8651
Ref. [9] N = 4 0 0.5986 1.5874 16.047 1.1673 0.8828 0.8286
Ref. [9] N = 4 –0 0.4877 1.1971 11.923 1.1585 0.8821 0.8286
Ref. [29] –0 0.4404 1.1783 11.932 1.1178 0.8750 0.8286
Present 132 grid –0 0.4341 1.1590 11.698 1.1094 0.8697 0.8205
Present 172 grid –0 0.4340 1.1593 11.727 1.1095 0.8698 0.8238
Present 212 grid –0 0.4340 1.1593 11.738 1.1095 0.8698 0.8241

10 Ref. [28] –0 0.3695 0.8965 8.9077 1.3745 1.0072 0.9361
CLT 0 0.4796 1.1990 11.990 0.9354 0.9354 0.9354
FSDT (k = 5/6) 0 0.4796 1.1990 11.990 1.3178 0.9966 0.9360
GSDT [2] 0 0.8775 1.0089
Ref. [9] N = 4 0 0.4345 1.1807 11.989 1.3925 1.0090 0.9361
Ref. [9] N = 4 –0 0.1478 0.8965 8.9077 1.3745 1.0072 0.9361
Ref. [29] –0 0.3227 1.1783 11.932 1.3490 0.8750 0.8286
Present 132 grid –0 0.3108 0.8465 8.5844 1.3327 0.9886 0.9194
Present 172 grid –0 0.3108 0.8467 8.5948 1.3327 0.9886 0.9225
Present 212 grid –0 0.3108 0.8467 8.6013 1.3327 0.9886 0.9228
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Fig. 1. FGM square plate subjected to sinusoidal load at the top, with a/h = 4.
Displacement through the thickness direction for different values of p at the center
of the plate a

2 ;
b
2

� �
according to the hyperbolic sine theory.
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Fig. 3. FGM square plate subjected to sinusoidal load at the top, with a/h = 4. �rxy

through the thickness direction at the corner of the plate (0,0) for different values of
p according to the hyperbolic sine theory.
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Fig. 4. FGM square plate subjected to sinusoidal load at the top, with a/h = 4. �rxz

through the thickness direction at the center of the plate 0; b
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for different values of

p according to the hyperbolic sine theory.
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Fig. 2. FGM square plate subjected to sinusoidal load at the top, with a/h = 4. �rxx

through the thickness direction for different values of p at the center of the plate
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according to the hyperbolic sine theory.
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The same dimensionless forms as in (85) and (86) are used.
In Table 2 we present the normalized transverse displacement

ð�wÞ and the normalized transverse shear stress ð�rxzÞ at selected
locations. In Table 3 we present the normalized in-plane shear
stress ð�rxyÞ and the normalized transverse normal stress ð�rzzÞ at
selected locations. In both tables we consider three a/h ratios (4,

10 and 100), and three power-law exponents (p = 1, 4 and 10).
We use a 212 Chebyshev grid and consider both �zz = 0 and �zz – 0
approaches. Our meshless results are compared in Table 2 with fi-
nite element results by Carrera et al. [9], and compare quite well
for all cases. In Table 3 we compare the present approach with
FEM results by Brischetto [30] and again the comparison is quite
good.

In Figs. 7–13 we present the evolution of the displacement and
stresses across the thickness direction for various values of the
exponent p of a plate with side to thickness ratio a/h = 10, using
a 212 grid.

The present numerical method presents very close results to
those of Carrera et al. [9] for a N = 4 expansion.

The consideration of a non-zero �zz strain produces a significant
change in the transverse displacement as well as in the normal
stress. This becomes evident when we compare the present app-
roch with that of Zenkour [2] who neglected the �zz strain in the
formulation.

4.2. Free vibration problems

In this example, we study the free vibration behavior of simply-
supported (SSSS) isotropic FGM Al/ZrO2 plates. The modulus of
elasticity are Em = 70 GPa and Ec = 380 GPa, the mass densities are
qm = 2702 kg/m3 and qc = 5700 kg/m3, and the Poisson’s ratio is
m = 0.3. We consider both the �zz = 0 and the �zz – 0 cases. We com-
pare results with an exact (analytical) solution by Vel and Batra
[31], and another meshless technique by Qian et al. [8]. In order
to compare results, we use the Mori–Tanaka scheme for obtaining
equivalent material properties.

In Table 4 we consider thin and thick plates, with p = 1, and
using 212 Chebishev points. The �zz effect is significant. In fact,
the exact solution by Vel and Batra [31] is achieved for all cases,
by allowing �zz – 0. In Table 5 we compare with the same sources,
varying the p exponent, for a/h = 5 and using 212 points. Our pres-
ent formulation with �zz – 0 matches the exact solution.

In Fig. 14 the first four frequencies are presented for p = 1 and
using 212 points. In Tables 6 and 7 we present the first ten
frequencies for the same exponent p and compare results with
those from Qian et al. [8] for different side-to-thickness ratios
and different number of Chebishev points.
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Fig. 5. FGM square plate subjected to sinusoidal load at the top, with a/h = 4. �ryz

through the thickness direction at the point a
2 ; 0
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for different values of p according
to the hyperbolic sine theory.
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Fig. 6. FGM square plate subjected to sinusoidal load at the top, with a/h = 4. rzz

through the thickness direction for different values of p at the center of the plate
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according to the hyperbolic sine theory.

Table 2
Sandwich simply supported square plate with FGM core with polynomial material law [2] using a 212 grid. Effect of transverse normal strain �zz on rxz and transverse
displacement for a bending problem using the hyperbolic sine theory.

a/h �rxz 0; b
2 ;

h
3

� �
�w 0;0;0ð Þ

p �zz 4 10 100 4 10 100

1 Ref. [9] N = 4 0 0.2604 0.2594 0.2593 0.7628 0.6324 0.6072
Ref. [9] N = 4 –0 0.2596 0.2593 0.2593 0.7735 0.6337 0.6072
Ref. [29] 0 0.2703 0.2718 0.2720 0.7744 0.6356 0.6092
Ref. [29] –0 0.2742 0.2788 0.2793 0.7416 0.6305 0.6092
Present 0 0.2028 0.2017 0.2015 0.7744 0.6356 0.6093
Present –0 0.2233 0.2271 0.2274 0.7417 0.6305 0.6093

4 Ref. [9] N = 4 0 0.2400 0.2398 0.2398 1.0930 0.8307 0.7797
Ref. [9] N = 4 –0 0.2400 0.2398 0.2398 1.0977 0.8308 0.7797
Ref. [29] 0 0.2699 0.2726 0.2728 1.0847 0.8276 0.7785
Ref. [29] –0 0.2723 0.2778 0.2785 1.0391 0.8202 0.7784
Present 0 0.2813 0.2808 0.2806 1.0847 0.8276 0.7786
Present –0 0.3154 0.3219 0.3230 1.0349 0.8195 0.7785

10 Ref. [9] N = 4 0 0.1932 0.1944 0.1946 1.2172 0.8740 0.8077
Ref. [9] N = 4 –0 0.1935 0.1944 0.1946 1.2240 0.8743 0.8077
Ref. [29] 0 0.1998 0.2021 0.2022 1.2212 0.8718 0.8050
Ref. [29] –0 0.2016 0.2059 0.2064 1.1780 0.8650 0.8050
Present 0 0.2623 0.2624 0.2623 1.2212 0.8718 0.8051
Present –0 0.2945 0.3000 0.3004 1.1720 0.8639 0.8050
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5. Conclusions

In this paper a new hyperbolic sine shear deformation theory
accounting for through-the-thickness deformations was presented.

Bending deformations and free vibrations of functionally graded
plates were analysed. The equations of motion in terms of resul-
tants and generalized displacements are obtained by the Carrera’s
Unified Formulation (CUF).

Table 3
Sandwich simply supported square plate with FGM core with polynomial material law [2] using a 192 grid. Effect of transverse normal strain �zz on �rxy and �rzz for a bending
problem �rzz ¼ rzz

h
a�pz

.

a/h �rxy 0;0; h
3

� �
�rzz

a
2 ;

b
2 ;0

� �
p �zz 4 100 4 100

1 Ref. LD4 [30] 0 0.3007 8.4968 0.0922 0.0038
Ref. LM4 [30] –0 0.3007 8.4968 0.0922 0.0038
Ref. [29] 0 0.3303 8.4882 0.1276 3.1987
Ref. [29] –0 0.3167 8.4911 0.0827 0.0034
Present 0 0.3303 8.4903 0.1276 3.1983
Present –0 0.3165 8.5056 0.0828 0.0034

5 Ref. LD4 [30] 0 0.1999 6.4942 0.0911 0.0037
Ref. LM4 [30] –0 0.1996 6.4942 0.0924 0.0037
Ref. [29] 0 0.2317 6.4454 0.0777 1.9535
Ref. [29] –0 0.2248 6.4441 0.0522 0.0022
Present 0 0.2317 6.4463 0.0777 1.9532
Present –0 0.2247 6.4458 0.0522 0.0022

10 Ref. LD4 [30] 0 0.1412 5.1402 0.1064 0.0043
Ref. LM4 [30] –0 0.1403 5.1401 0.1067 0.0042
Ref. [29] 0 0.1745 5.0745 0.0685 1.6978
Ref. [29] –0 0.1687 5.0754 0.0443 0.0018
Present 0 0.1745 5.0752 0.0685 1.6975
Present –0 0.1708 5.0784 0.0444 0.0018
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Fig. 7. Sandwich square plate with FGM core subjected to sinusoidal load at the top,
with a/h = 10. Displacement through the thickness direction at the center of the
plate a
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for different values of p according to the hyperbolic sine theory.
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Fig. 8. Sandwich square plate with FGM core subjected to sinusoidal load at the top,
with a/h = 10. �rxx through the thickness direction at the center of the plate a
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different values of p according to the hyperbolic sine theory.
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Fig. 9. Sandwich square plate with FGM core subjected to sinusoidal load at the top,
with a/h = 10. �ryy through the thickness direction at the center of the plate a
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different values of p according to the hyperbolic sine theory.
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Fig. 10. Sandwich square plate with FGM core subjected to sinusoidal load at the
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for different values of p according to the hyperbolic sine theory.
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Fig. 11. Sandwich square plate with FGM core subjected to sinusoidal load at the
top, with a/h = 10. �rxy through the thickness direction at the point (0,0) for different
values of p according to the hyperbolic sine theory.

−0.2 −0.1 0 0.1 0.2 0.3
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

σxz

z−
co

or
di

na
te p=1

p=4
p=10

Fig. 12. Sandwich square plate with FGM core subjected to sinusoidal load at the
top, with a/h = 10. �rxz through the thickness direction at the point 0; b
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values of p according to the hyperbolic sine theory.
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Fig. 13. Sandwich square plate with FGM core subjected to sinusoidal load at the
top, with a/h = 10. �ryz through the thickness direction at the point a

2 ;0
� �

for
different values of p according to the hyperbolic sine theory.

Table 4
Fundamental frequency �x ¼ xh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qm=Em

p
of a SSSS isotropic functionally graded plate

(Al/ZrO2), p = 1, using 212 points.

Source a/h

20 10 5

Ref. [8] 0.0149 0.0584 0.2152
Exact [31] 0.0153 0.0596 0.2192
Ref. [29] (�zz = 0) 0.0153 0.0595 0.2184
Ref. [29] (�zz – 0) 0.0153 0.0596 0.2193
Present (�zz = 0) 0.0153 0.0595 0.2184
Present (�zz – 0) 0.0153 0.0596 0.2193

Table 5
Fundamental frequency �x ¼ xh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qm=Em

p
of a SSSS isotropic functionally graded plate

(Al/ZrO2), a/h = 5, using 212 points and the hyperbolic sine theory.

Source p = 2 p = 3 p = 5

Ref. [8] 0.2153 0.2172 0.2194
Exact [31] 0.2197 0.2211 0.2225
Ref. [29] (�zz = 0) 0.2189 0.2202 0.2215
Ref. [29] (�zz – 0) 0.2198 0.2212 0.2225
Present (�zz = 0) 0.2191 0.2205 0.2220
Present (�zz – 0) 0.2201 0.2216 0.2230
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Fig. 14. First 4 frequencies �x ¼ xh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qm=Em

p
of a SSSS isotropic functionally graded

plate (Al/ZrO2), with a/h = 20, p = 1, using 212 points and the hyperbolic sine theory.

Table 6
First 10 frequencies �x ¼ xh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qm=Em

p
of a SSSS isotropic functionally graded plate (Al/

ZrO2), p = 1, a/h = 20, with the hyperbolic sine theory.

Present 132 172 212 Ref. [8] Ref. [29]

0.0153 0.0153 0.0153 0.0149 0.0153
0.0377 0.0377 0.0377 0.0377 0.0377
0.0377 0.0377 0.0377 0.0377 0.0377
0.0596 0.0596 0.0596 0.0593 0.0596
0.0741 0.0739 0.0739 0.0747 0.0739
0.0741 0.0739 0.0739 0.0747 0.0739
0.0953 0.0950 0.0950 0.0769 0.0950
0.0953 0.0950 0.0950 0.0912 0.0950
0.1030 0.1030 0.1030 0.0913 0.1029
0.1030 0.1030 0.1030 0.1029 0.1029

Table 7
First 10 frequencies �x ¼ xh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qm=Em

p
of a SSSS isotropic functionally graded plate (Al/

ZrO2), p = 1, a/h = 10, with the hyperbolic sine theory.

Present 132 172 212 Ref. [8] Ref. [29]

0.0596 0.0596 0.0596 0.0584 0.0596
0.1426 0.1426 0.1426 0.1410 0.1426
0.1426 0.1426 0.1426 0.1410 0.1426
0.2059 0.2059 0.2059 0.2058 0.2058
0.2059 0.2059 0.2059 0.2058 0.2058
0.2194 0.2193 0.2193 0.2164 0.2193
0.2678 0.2676 0.2676 0.2646 0.2676
0.2678 0.2676 0.2676 0.2677 0.2676
0.2912 0.2912 0.2912 0.2913 0.2910
0.3367 0.3364 0.3364 0.3264 0.3363
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Examples include an isotropic functionally graded plate and a
sandwich plate with functionally graded core. Equations were
interpolated by collocation with radial basis functions.

The present formulation produces highly accurate solutions for
both bending deformations and free vibrations. The use of this
hyperbolic sine theory and its meshless implementation are novel
and serves to fill the gap of knowledge in this area.
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a b s t r a c t

In this paper the authors derive a higher-order shear deformation theory for modeling functionally
graded plates accounting for extensibility in the thickness direction.

The explicit governing equations and boundary conditions are obtained using the principle of virtual
displacements under Carrera’s Unified Formulation. The static and eigenproblems are solved by colloca-
tion with radial basis functions.

The efficiency of the present approach is assessed with numerical results including deflection, stresses,
free vibration, and buckling of functionally graded isotropic plates and functionally graded sandwich
plates.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Functionally graded materials (FGM) are a class of composite
materials that were first proposed by Bever and Duwez [1] in
1972. In a typical FGM plate the material properties continuously
vary over the thickness direction by mixing two different materials
[2]. The computational modeling of FGM is an important tool to the
understanding of the structures behavior, and has been the target
of intense research [2–8].

When compared to isotropic and laminated plates, the litera-
ture on FGM plates is relatively scarce. Because of FGM applica-
tions in high temperature environments most of the studies on
the behavior of FGM plates focus on the thermo-mechanical re-
sponse of FGM plates: Reddy and Chin [9], Reddy [10], Vel and Ba-
tra [11,12], Cheng and Batra [13], and Javaheri and Eslami [14].
Studies on the mechanical behavior of FGM plates include the sta-
tic analysis of FGM plates performed by Kashtalyan [15], Kashtaly-
an and Menshykova [16], Qian et al. [17], Zenkour [18,19], Ramirez
et al. [20], Ferreira et al. [21,22], Chi and Chung [23,24], and Cheng
and Batra [25]. Vibrations problems of FGM plates can be found in
Batra and Jin [26], Ferreira et al. [27], Vel and Batra [28], Zenkour

[29], Roque et al. [30], and Cheng and Batra [31]. Mechanical buck-
ling of FGM plates can be found in Najafizadeh and Eslami [32],
Zenkour [29], Cheng and Batra [31], Birman [33], and Javaheri
and Eslami [34].

The Classical Plate Theory (CLPT) yields acceptable results only
for the analysis of thin plates. The accuracy of the first-order shear
deformation theory (FSDT) depends on the shear correction factor
which may be difficult to compute. Higher-order shear deforma-
tion theories (HSDT) provide better accuracy for transverse shear
stresses without the need of a shear correction factor. Examples
of HSDT were proposed by Reddy [10], Kant and co-workers [35–
40] and Batra and co-workers [17,41–52]. Most of these theories
do not account for transverse extensibility by neglecting the rzz ef-
fects. This paper proposes a higher-order theory that accounts for
such transverse effects, by using the Unified Formulation proposed
by Carrera. The effect of thickness stretching in FGM plates was re-
cently investigated by Carrera et al. [53] using Carrera’s Unified
Formulation and finite element approximations.

Carrera’s Unified Formulation (CUF) was proposed in [54–56]
for laminated plates and shells and extended to FGM plates in
[57–59]. It is possible to implement any C0

z theory under CUF, using
layer-wise as well as equivalent single-layer descriptions, and the
Principle of Virtual Displacements, as is the case in present formu-
lation, or the Reissner mixed variational theorem. CUF allows a
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systematic assessment of a large number of plate models. The pres-
ent formulation can be seen as a generalization of the original CUF,
by introducing different displacement fields for in-plane and out-
of-plane displacements. Another form of Generalized Unified For-
mulation (GUF) was proposed by Demasi [60] and Luciano and
Demasi [61] based on CUF. GUF has been applied in the study of
laminated plates using the finite element method and has been ex-
tended to Layerwise, zig-zag and mixed theories [62–66]. It allows
to independently choose the expansions of each displacement (as
in present formulation) but it also allows to independently choose
the expansion of each stress rxz, ryz, and rzz.

Another higher-order concept for quasi-3D FGM plates prob-
lems was proposed by Batra and Vidoli [41] and Batra et al. [42]
who also consider thickness-stretching effects in FGM plates. The
plate theory is derived using three-dimensional mixed variational
principle. CUF has been applied either using the Principle of Virtual
Displacements or by using the Reissner’s Mixed Variational theo-
rem. The stiffness matrix components, the external force terms
or the inertia terms can be obtained directly with CUF irrespective
of the shear deformation theory being considered. In Batra and
Vidoli’s approach the transverse shear and normal stresses are ex-
panded as polynomials in z of degree 2 higher than the displace-
ments. CUF has the advantage of being not restricted to
polynomials (see [67–69], for example, where a sinusoidal and a
hyperbolic expansion has been considered). On the other hand,
the constitutive relations in Batra and Vidoli’s approach explicitly
present the tractions and the charge density applied on the top
and the bottom surfaces of the plate which is not the case in
CUF. Such loads may be considered at any point of the plate, not
restricted to the top or bottom surfaces, but CUF does not present
them explicitly.

Williams and co-workers [70–75] also proposed another unified
formulation. Williams’ unified plate theory is a displacement based
theory and uses a generalized two length scale displacement field
by superposition of global and local arbitrary displacement fields.
The global field spans the thickness of the plate; the set of local
fields must be consistent with the layering thickness and may be
activated only in chosen regions. Williams’ unified plate theory
may address the non-linear analysis of laminated plates in the
presence of delaminations.

The use of alternative methods to the Finite Element Methods
for the analysis of plates, such as the meshless methods based on
collocation with radial basis functions is atractive due to the ab-
sence of a mesh and the ease of collocation methods. In recent
years, radial basis functions (RBFs) showed excellent accuracy in
the interpolation of data and functions. The authors have applied
the RBF collocation to the static deformations and free vibrations
of composite beams and plates [76–83]. The combination of CUF
and meshless methods has been performed in [84–87] for lami-
nated plates and in [67,68] for FGM plates. Furthermore, a general-
ized form of the CUF method is here applied for the first time to the
static, free vibration and buckling analysis of FGM plates, owing to
collocation with radial basis functions.

This paper presents explicit governing equations and boundary
conditions of the HSDT and focus on the thickness stretching issue
on the static, free vibration, and buckling analysis of FGM plates by
a meshless technique. The CUF method is employed to obtain the
algebraic governing equations and boundary conditions which
are then interpolated by radial basis functions to obtain an alge-
braic system of equations.

2. Problem formulation

Consider a rectangular plate of plan-form dimensions a and b
and uniform thickness h. The co-ordinate system is taken such that

the x–y plane (z = 0) coincides with the midplane of the plate
(z 2 [�h/2,h/2]).

For static bending analysis, the plate may be subjected to a
transverse mechanical load applied at the top of the plate.

For buckling analysis, the plate may be subjected to compres-
sive in-plane forces acting on the mid-plane of the plate and dis-
tributed shear force (see Fig. 1). Nxx and Nyy denote the in-plane
loads perpendicular to the edges x = 0 and y = 0 respectively, and
Nxy denote the distributed shear force parallel to the edges x = 0
and y = 0 respectively.

Three different types of functionally graded plates are studied:
(A) isotropic FGM plates; (B) sandwich plates with FGM core; (C)
sandwich plates with FGM skins.

2.1. Plate A: isotropic FGM plate

The plate of type A is graded from metal (bottom) to ceramic
(top) (see Fig. 2). The volume fraction of the ceramic phase is de-
fined as in [19]:

Vc ¼ 0:5þ z
h

� �p

ð1Þ

where z 2 [�h/2,h/2], h is the thickness of the plate, and p is a scalar
parameter that allows the user to define gradation of material prop-
erties across the thickness direction.

2.2. Plate B: sandwich plate with FGM core

In this type of sandwich plates the bottom skin is isotropic (fully
metal) and the top skin is isotropic (fully ceramic). The core layer is
graded from metal to ceramic so that there are no interfaces be-
tween core and skins, as illustrated in Fig. 3.

The volume fraction of the ceramic phase in the core is obtained
by adapting the polynomial material law in [19]:

Vc ¼
zc � h1

hc

� �p

ð2Þ

where zc 2 [h1,h2], hc = h2 � h1 is the thickness of the core, and p is
the power-law exponent that defines the gradation of material
properties across the thickness direction.

2.3. Plate C: sandwich plate with FGM skins

In C-type plates the sandwich core is isotropic (fully ceramic)
and skins are composed of a functionally graded material across
the thickness direction. The bottom skin varies from a metal-rich
surface (z = �h/2) to a ceramic-rich surface while the top skin face
varies from a ceramic-rich surface to a metal-rich surface (z = h/2),

y 

x 

Nyy

Nxx

Nxy

Nyx

Fig. 1. Rectangular plate subjected to compressive in-plane forces and distributed
shear forces.
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as illustrated in Fig. 4. There are no interfaces between core and
skins. The volume fraction of the ceramic phase is obtained as:

Vc ¼ z�h0
h1�h0

� �p
; z 2 ½�h=2; h1�; bottom skin

Vc ¼ 1; z 2 ½h1; h2�; core

Vc ¼ z�h3
h2�h3

� �p
; z 2 ½h2; h=2�; top skin

ð3Þ

where z 2 [�h/2,h/2], and p is a scalar parameter that allows the
user to define gradation of material properties across the thickness
direction of the skins.

The sandwich plate C-type may be symmetric or non-symmet-
ric about the mid-plane as we may vary the thickness of each face.

Fig. 5 shows a non-symmetric sandwich with volume fraction de-
fined by the power-law (3) for various exponents p, in which top
skin thickness is the same as the core thickness and the bottom
skin thickness is twice the core thickness. Such thickness relation
is denoted as 2-1-1. A bottom-core-top notation is being used. 1-
1-1 means that skins and core have the same thickness.

For the three types of plates, A, B, and C, the volume fraction for
the metal phase is given as Vm = 1 � Vc. The isotropic fully ceramic
plate can be seen as a particular case of plates A, B, and C, by setting
to zero the exponent p of the power law in (1)–(3).

3. A quasi-3D higher-order plate theory

3.1. Displacement field

The present theory is based on the following displacement field:

uðx; y; z; tÞ ¼ u0ðx; y; tÞ þ zu1ðx; y; tÞ þ z3u3ðx; y; tÞ ð4Þ
vðx; y; z; tÞ ¼ v0ðx; y; tÞ þ zv1ðx; y; tÞ þ z3v3ðx; y; tÞ ð5Þ
wðx; y; z; tÞ ¼ w0ðx; y; tÞ þ zw1ðx; y; tÞ þ z2w2ðx; y; tÞ ð6Þ

where u, v, and w are the displacements in the x-, y-, and z-direc-
tions, respectively. u0, u1, u3, v0, v1, v3, w0, w1, and w2 are functions
to be determined.

3.2. Strains

The strain–displacement relationships are given as:
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By substitution of the displacement field in (7), the strains are
obtained:
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being the strain components obtained as
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where �ðnlÞ
ab contains the non-linear terms that will originate the lin-

earized buckling equation.

Fig. 2. Plate A: isotropic FGM plate.

Fig. 3. Plate B: sandwich plate with FGM core and isotropic skins.

Fig. 4. Plate C: sandwich with isotropic core and FGM skins.
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Fig. 5. A 2-1-1 C-type plate for several exponents of the power law in (3).
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3.3. Elastic stress–strain relations

The elastic stress–strain relations depends on which assump-
tion of �zz we consider.

If �zz – 0, i.e., thickness stretching is allowed, then the 3D model
is used. In the case of functionally graded materials, the constitu-
tive equations can be written as:
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¼
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�zz
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ð13Þ

where the Cij are the three-dimensional elastic constants, given by

C11 ¼
Eð1� m2Þ

1� 3m2 � 2m3 ; C12 ¼
Eðmþ m2Þ

1� 3m2 � 2m3 ð14Þ

C44 ¼ G; C33 ¼
Eð1� m2Þ

1� 3m2 � 2m3 ð15Þ

where E is the modulus of elasticity, m is Poisson’s ratio, and G is the
shear modulus G ¼ E

2ð1þmÞ.
If �zz = 0, then the plane-stress case is used
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ð16Þ

where Cij are the plane-stress reduced elastic constants:

C11 ¼
E

1� m2 ; C12 ¼ m
E

1� m2 ; C44 ¼ G ð17Þ

It is interesting to note that the use of shear-correction factors is not
considered, as would be the case of the first-order shear deforma-
tion theory.

3.4. Governing equations and boundary conditions

The governing equations of present theory are derived from the
dynamic version of the Principle of Virtual Displacements. The
internal virtual work is initially defined as

dU ¼
Z

X0

Z h=2

�h=2
rxx d�ð0Þxx þ zd�ð1Þxx þ z3d�ð3Þxx

� ��(

þ ryy d�ð0Þyy þ zd�ð1Þyy þ z3d�ð3Þyy þ rxy dcð0Þxy þ zdcð1Þxy þ z3dcð3Þxy

� ��

þ rxz dcð0Þxz þ zdcð1Þxz þ z2dcð2Þxz

� �
þ ryz dcð0Þyz þ zdcð1Þyz þ z2dcð2Þyz

� �
þ rzz d�ð0Þzz þ zd�ð1Þzz

� �	
dz



dx dy ð18Þ

By performing the integrals in the thickness direction, the internal
virtual work becomes

dU ¼
Z

X0

Nxxd�ð0Þxx þMxxd�ð1Þxx þ Rxxd�ð3Þxx þ Nyyd�ð0Þyy þMyyd�ð1Þyy

�
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þMxzdcð1Þxz þ Rxzdcð2Þxz þ Q yzdcð0Þyz þMyzdcð1Þyz þ Ryzdcð2Þyz

þ Q zzd�ð0Þzz þMzzd�ð1Þzz

�
dx dy ð19Þ

where X0 is the integration domain in plane (x,y) and the resultants
are computed as
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The external virtual work due to an external load (pz) applied to the
plate is given as:

dV ¼ �
Z

X0

pzdwdx dy ¼ �
Z

X0

pz dw0 þ z2dw2
� �

dx dy ð23Þ

The external virtual work due to in-plane forces and shear forces
applied to the plate is given as:

dV ¼ �
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�
dx dy ð24Þ

being Nxx and Nyy the in-plane loads perpendicular to the edges x = 0
and y = 0 respectively, and Nxy and Nyx the distributed shear forces
parallel to the edges x = 0 and y = 0 respectively.

The virtual kinetic energy is given as:

dK ¼
Z
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�h=2
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( )
dx dy

¼
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dz
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By performing the integrals in the thickness direction, the virtual ki-
netic energy is now obtained as

dK ¼
Z

X0

I0 _u0d _u0 þ _v0d _v0 þ _w0d _w0ð Þ þ I1 _u0d _u1 þ _u1d _u0 þ _v0d _v1ð½

þ _v1d _v0 þ _w0d _w1 þ _w1d _w0Þ þ I2 _u1d _u1 þ _v1d _v1 þ _w0d _w2ð
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where the dots denote the derivative with respect to time t and the
inertia terms are computed as

Ii ¼
Z h=2

�h=2
qzidz i ¼ 1;2;3;4;6 ð27Þ

Substituting dU, dV, and dK in the virtual work statement, integrat-
ing through the thickness, integrating by parts with respect to x and
y, and collecting the coefficients of du0, du1, du3, dv0, dv1, dv3, dw0,
dw1, dw2, the following governing equations are obtained:
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The mechanical boundary conditions are defined as:

du0 : nxNxx þ nyNxy ¼ nxNxx þ nyNxy

dv0 : nxNxy þ nyNyy ¼ nxNxy þ nyNyy

dw0 : nxQ xz þ nyQ yz ¼ nxQxz þ nyQ yz

du1 : nxMxx þ nyMxy ¼ nxMxx þ nyMxy

dv1 : nxMxy þ nyMyy ¼ nxMxy þ nyMyy

dw1 : nxMxz þ nyMyz ¼ nxMxz þ nyMyz

du3 : nxRxx þ nyRxy ¼ nxRxx þ nyRxy

dv3 : nxRxy þ nyRyy ¼ nxRxy þ nyRyy

dw2 : nxRxz þ nyRyz ¼ nxRxz þ nyRyz

ð29Þ

where (nx,ny) denotes the unit normal-to-boundary vector and the
bar (�:) denotes the prescribed values of the resultants.

4. Governing equations and boundary conditions in the
framework of Unified Formulation

The Unified Formulation proposed by Carrera [88,55] (further
denoted as CUF) has been applied, using the Principle of Virtual
Displacements, to obtain the equations of the present theory (see
Eq. (28)). The stiffness matrix components, the external force terms
or the inertia terms can be obtained directly with this unified for-
mulation, irrespective of the shear deformation theory being
considered.

The three displacement components ux, uy and uz (given in (4)–
(6)) and their variations can be modeled as:

ðux;uy;uzÞ ¼ Fs ðuxs;uys;uzsÞ ðdux; duy; duzÞ
¼ Fs ðduxs; duys; duzsÞ ð30Þ

In the present formulation the thickness functions are

Fsux ¼ Fsuy ¼ Fsux ¼ Fsuy ¼ ½1 z z3� ð31Þ

for in-plane displacements u, v and

Fsuz ¼ Fsuz ¼ ½1 z z2� ð32Þ

for transverse displacement w.
The CUF formulation applied to FGM plates considers virtual

(mathematical) layers of constant thickness, each containing a
homogeneized modulus of elasticity, Ek, and a homogeneized Pois-
son’s ratio, mk. The functionally graded plate is divided into a num-
ber (NL) of uniform thickness layers and for each layer the volume
fraction of the ceramic phase is defined according to (1), (2) or (3).
The volume fraction for the metal phase is given as Vm = 1 � Vc.

For each virtual layer, the elastic properties Ek and mk can be
computed by the law-of-mixtures or by the Mori–Tanaka homoge-
neization method. According to the law-of-mixtures, the Young’s
modulus and Poisson’s ratio are defined as

EkðzÞ ¼ EmVm þ EcVc; mkðzÞ ¼ mmVm þ mcVc ð33Þ

When considering the Mori–Tanaka homogenization procedure
[89,90], we start by finding the bulk modulus, K, and the effective
shear modulus, G, of the composite equivalent layer as

K � Km

Kc � Km
¼ Vc

1þ Vm
Kc�Km

Kmþ4=3Gm

;
G� Gm

Gc � Gm
¼ Vc

1þ Vm
Gc�Gm
Gmþfm

ð34Þ

where

fm ¼
Gmð9Km þ 8GmÞ

6ðKm þ 2GmÞ
ð35Þ

The effective values of Young’s modulus, Ek, and Poisson’s ratio, mk,
are then found from

Ek ¼ 9KG
3K þ G

; mk ¼ 3K � 2G
2ð3K þ GÞ ð36Þ

After using the law-of-mixtures or the Mori–Tanaka homogeniza-
tion procedure, the computation of the elastic constants Ck

ij is per-
formed for each layer based on the values of mk and Ek. For example,

Ck
12 ¼

Ekðmk þ ðmkÞ2Þ
1� 3ðmkÞ2 � 2ðmkÞ3

: ð37Þ

The procedure for the other Ck
ij is analogous.

Under CUF formulation the PVD is expressed considering a sum-
atoria over the layers:

XNL

k¼1

Z
Xk

Z
Ak

d�T
pr

k
p þ d�T

nr
k
n

� �
dz dXk

¼
XNL

k¼1

Z
Xk

Z
Ak

qk duT €u
� �

dz þ dw0pz þ dw2pzdXk ð38Þ

Here, k indicates the layer and Xk and Ak are the integration do-
mains in plane (x,y) and z direction, respectively, and qk is the mass
density of the kth layer. Subscript p indicates in-plane components
(xx,yy,xy) and subscript n the transverse components (xz, yz, and
zz). p = {px,py,pz} is the external load applied to the structure. T de-
notes the transpose of a vector, d denotes the variational symbol,
and double dots acceleration.

Eq. (38) considers the 9 variationals du0, dv0, dw0, du1, dv1, dw1,
duZ, dvZ, and dw2 disregarding the the in-plane loads and the shear
forces. These external forces just imply addicional terms on the
variational dw0:Z

X0

Nabw0;adw0;bdX0 ð39Þ

where X0 is the integration domain in plane (x,y) and a and b take
the symbols x, y.

Considering that the mechanical external load is a transverse
p = {0,0,pz} load applied at the top (coordinate z = h/2), equations
in (28) become:
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@Qk

yz

@y

 !
þNxx

@2w0

@x2 þ 2Nxy
@2w0

@x@y
þNyy

@2w0

@y2

¼
XNL

k¼1

Z
Ak

qk €w0 þ z €w1 þ z2 €w2
� �

dzþ pz

du1 :
XNL

k¼1

�@Mk
xx

@x
�
@Mk

xy

@y
þQ k

xz

 !
¼
XNL

k¼1

Z
Ak

qkz €u0 þ z€u1 þ z3€u3
� �

dz

dv1 :
XNL

k¼1

�
@Mk

xy

@x
�
@Mk

yy

@y
þQk

yz

 !
¼
XNL

k¼1

Z
Ak

qkz €v0 þ z€v1 þ z3 €v3
� �

dz

dw1 :
XNL

k¼1

�@Mk
xz

@x
�
@Mk

yz

@y
þQ k

zz

 !
¼
XNL

k¼1

Z
Ak

qkz €w0 þ z €w1 þ z2 €w2
� �

dz

du3 :
XNL

k¼1

�@Rk
xx

@x
�
@Rk

xy

@y
þ3Rk

xz

 !
¼
XNL

k¼1

Z
Ak

qkz3 €u0 þ z€u1 þ z3€u3
� �

dz

dv3 :
XNL

k¼1

�
@Rk

xy

@x
�
@Rk

yy

@y
þ 3Rk

yz

 !
¼
XNL

k¼1

Z
Ak

qkz3 €v0 þ z€v1 þ z3 €v3
� �

dz

dw2 :
XNL

k¼1

�@Rk
xz

@x
�
@Rk

yz

@y
þ2Mk

zz

 !
¼
XNL

k¼1

Z
Ak

qkz2 €w0 þ z €w1 þ z2 €w2
� �

dz

þ h
2

� �2

pz ð40Þ

0

where Nk
xx ¼

R
Ak

rk
xxdz; Rk

xz ¼
R

Ak
z2rk

xzdz and analogous procedure for
other resultants.

In (40), for static problems, the qk and the Nab terms are set to
zero; for the free vibration problems, the Nab and the pz terms are
set to zero; and for buckling problems the pz and the qk terms are
set to zero.

4.1. Governing equations and boundary conditions in terms of
displacements

In order to discretize the governing equations by radial basis
functions, we present in the following the explicit terms of the gov-
erning equations and the boundary conditions in terms of the gen-
eralized displacements.

du0 : � A11
@2u0

@x2 þA66
@2u0

@y2

 !
� A12þA66ð Þ@

2v0

@x@y

� B11
@2u1

@x2 þB66
@2u1

@y2

 !
� E11

@2u3

@x2 þE66
@2u3

@y2

 !

�ðB12þB66Þ
@2v1

@x@y
�ðE12þE66Þ

@2v3

@x@y

�A13
@w1

@x
�2B13

@w2

@x
¼ I0

@2u0

@t2 þ I1
@2u1

@t2 þ I3
@2u3

@t2 ð41Þ

du1 : �F11
@2u3

@x2 þ 3D55u3 � F66
@2u3

@y2

 !

þ �D11
@2u1

@x2 þ A55u1 � D66
@2u1

@y2

 !
� B11

@2u0

@x2 þ B66
@2u0

@y2

 !

� ðB12 þ B66Þ
@2v0

@x@y
� ðD12 þ D66Þ

@2v1

@x@y
� ðF12 þ F66Þ

@2v3

@x@y

þ ð�B13 þ B55Þ
@w1

@x
þ ð�2D13 þ D55Þ

@w2

@x
þ A55

@w0

@x
¼ I1

@2u0

@t2

þ I2
@2u1

@t2 þ I4
@2u3

@t2 ð42Þ

du3 : �F11
@2u1

@x2 þ 3D55u1 � F66
@2u1

@y2

 !

þ �G11
@2u3

@x2 þ 9F55u3 � G66
@2u3

@y2

 !

� E11
@2u0

@x2 þ E66
@2u0

@y2

 !
� ðE12 þ E66Þ

@2v0

@x@y
� ðF12

þ F66Þ
@2v1

@x@y
� ðG12 þ G66Þ

@2v3

@x@y
þ ð�E13 þ 3E55Þ

@w1

@x

þ ð�2F13 þ 3F55Þ
@w2

@x
þ 3D55

@w0

@x

¼ I3
@2u0

@t2 þ I4
@2u1

@t2 þ I6
@2u3

@t2 ð43Þ

dv0 : �ðA12 þ A66Þ
@2u0

@x@y
� A22

@2v0

@y2 þ A66
@2v0

@x2

 !
� ðB12

þ B66Þ
@2u1

@x@y
� ðE12 þ E66Þ

@2u3

@x@y
� B22

@2v1

@y2 þ B66
@2v1

@x2

 !

� E22
@2v3

@y2 þ E66
@2v3

@x2

 !
� A23

@w1

@y
� 2B23

@w2

@y

¼ I0
@2v0

@t2 þ I1
@2v1

@t2 þ I3
@2v3

@t2 ð44Þ

dv1 : �F22
@2v3

@y2 þ 3D44v3 � F66
@2v3

@x2

 !

þ �D22
@2v1

@y2 þ A44v1 � D66
@2v1

@x2

 !
� B12 þ B66ð Þ @

2u0

@x@y

� ðD12 þ D66Þ
@2u1

@x@y
� ðF12 þ F66Þ

@2u3

@x@y

� B22
@2v0

@y2 þ B66
@2v0

@x2

 !
þ ð�B23 þ B44Þ

@w1

@y
þ ð�2D23

þ D44Þ
@w2

@y
þ A44

@w0

@y

¼ I1
@2v0

@t2 þ I2
@2v1

@t2 þ I4
@2v3

@t2 ð45Þ

dv3 : �F22
@2v1

@y2 þ 3D44v1 � F66
@2v1

@x2

 !

þ �G22
@2v3

@y2 þ 9F44v3 � G66
@2v3

@x2

 !
� ðE12 þ E66Þ

@2u0

@x@y

� ðF12 þ F66Þ
@2u1

@x@y
� ðG12 þ G66Þ

@2u3

@x@y

� E22
@2v0

@y2 þ E66
@2v0

@x2

 !
þ ð�E23 þ 3E44Þ

@w1

@y
þ ð�2F23

þ 3F44Þ
@w2

@y
þ 3D44

@w0

@y

¼ I3
@2v0

@t2 þ I4
@2v1

@t2 þ I6
@2v3

@t2 ð46Þ
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dw0 : � A55
@2w0

@x2 þ A44
@2w0

@y2

 !
� B55

@2w1

@x2 þ B44
@2w1

@y2

 !

� D55
@2w2

@x2 þ D44
@2w2

@y2

 !
� A55

@u1

@x
� A44

@v1

@y
� 3D55

� @u3

@x
� 3D44

@v3

@y
þ Nxx

@2w0

@x2 þ 2Nxy
@2w0

@x@y
þ Nyy

@2w0

@y2

¼ I0
@2w0

@t2 þ I1
@2w1

@t2 þ I2
@2w2

@t2 þ pz ð47Þ

dw1 : �E55
@2w2

@x2 þ 2B33w2 � E44
@2w2

@y2w2

 !

þ �D55
@2w1

@x2 þ A33w1 � D44
@2w1

@y2

 !
þ B13 � B55ð Þ @u1

@x

þ ðE13 � 3E55Þ
@u3

@x
þ ðB23 � B44Þ

@v1

@y
þ ðE23 � 3E44Þ

@v3

@y

� B55
@2w0

@x2 þ B44
@2w0

@y2

 !
þ A13

@u0

@x
þ A23

@v0

@y

¼ I1
@2w0

@t2 þ I2
@2w1

@t2 þ I3
@2w2

@t2 ð48Þ

dw2 : �E55
@2w1

@x2 þ 2B33w1 � E44
@2w1

@y2

 !

þ �F55
@2w2

@x2 þ 4D33w2 � F44
@2w2

@y2

 !
þ ð2D13 � D55Þ

� @u1

@x
þ ð2F13 � 3F55Þ

@u3

@x
þ ð2D23 � D44Þ

@v1

@y
þ ð2F23

� 3F44Þ
@v3

@y
� D55

@2w0

@x2 þ D44
@2w0

@y2

 !
þ 2B13

@u0

@x

þ 2B23
@v0

@y

¼ I2
@2w0

@t2 þ I3
@2w1

@t2 þ I4
@2w2

@t2 þ
h
2

� �2

pz ð49Þ

Being NL the number of mathematical layers across the thickness
direction, the stiffness components can be computed as follows.

Aij ¼
XNL

k¼1

Ck
ijðzkþ1 � zkÞ; Bij ¼

1
2

XNL

k¼1

Ck
ijðz2

kþ1 � z2
kÞ ð50Þ

Dij ¼
1
3

XNL

k¼1

Ck
ij z3

kþ1 � z3
k

� �
; Eij ¼

1
4

XNL

k¼1

Ck
ij z4

kþ1 � z4
k

� �
ð51Þ

Fij ¼
1
5

XNL

k¼1

Ck
ij z5

kþ1 � z5
k

� �
; Gij ¼

1
7

XNL

k¼1

Ck
ij z7

kþ1 � z7
k

� �
ð52Þ

The inertia terms are defined by

Ii ¼
1

iþ 1

XNL

k¼1

qðkÞ ziþ1
kþ1 � ziþ1

k

� �
ð53Þ

where q(k) is the material density, hk is the thickness, and zk, zk+1 are
the lower and upper z coordinate for each layer k.

4.2. Natural boundary conditions

This meshless method based on collocation with radial basis
functions needs the imposition of essential (e.g. w = 0) and
mechanical (e.g. Mxx = 0) boundary conditions. Assuming a rectan-
gular plate (for the sake of simplicity) Eq. (29) are expressed as
follows.

Given the number of degrees of freedom, at each boundary
point at edges x = min or x = max we impose:

Mxxu0 ¼ 2B13w2 þ A13w1 þ A11
@u0

@x
þ A12

@v0

@y
þ B11

@u1

@x
þ E11

� @u3

@x
þ B12

@v1

@y
þ E12

@v3

@y
ð54Þ

Mxxu1 ¼ B13w1 þ 2D13w2 þ B11
@u0

@x
þ D11

@u1

@x
þ F11

@u3

@x
þ B12

� @v0

@y
þ D12

@v1

@y
þ F12

@v3

@y
ð55Þ

Mxxu3 ¼ E13w1 þ 2F13w2 þ E11
@u0

@x
þ F11

@u1

@x
þ G11

@u3

@x
þ E12

� @v0

@y
þ F12

@v1

@y
þ G12

@v3

@y
ð56Þ

Mxxv0 ¼ A66
@u0

@y
þ A66

@v0

@x
þ B66

@u1

@y
þ E66

@u3

@y
þ B66

@v1

@x
þ E66

� @v3

@x
ð57Þ

Mxxv1 ¼ B66
@u0

@y
þ D66

@u1

@y
þ F66

@u3

@y
þ B66

@v0

@x
þ D66

@v1

@x

þ F66
@v3

@x
ð58Þ

Mxxv3 ¼ E66
@u0

@y
þ F66

@u1

@y
þ G66

@u3

@y
þ E66

@v0

@x
þ F66

@v1

@x
þ G66

� @v3

@x
ð59Þ

Mxxw0 ¼ 3D55u3 þ A55u1 þ A55
@w0

@x
þ B55

@w1

@x
þ D55

@w2

@x
ð60Þ

Mxxw1 ¼ B55u1 þ 3E55u3 þ B55
@w0

@x
þ D55

@w1

@x
þ E55

@w2

@x
ð61Þ

Mxxw2 ¼ D55u1 þ 3F55u3 þ D55
@w0

@x
þ E55

@w1

@x
þ F55

@w2

@x
ð62Þ

Similarly, given the number of degrees of freedom, at each bound-
ary point at edges y = min or y = max we impose:

Myyu0 ¼ A66
@u0

@y
þ A66

@v0

@x
þ B66

@u1

@y
þ E66

@u3

@y
þ B66

@v1

@x
þ E66

� @v3

@x
ð63Þ

Myyu1 ¼ B66
@u0

@y
þ D66

@u1

@y
þ F66

@u3

@y
þ B66

@v0

@x
þ D66

@v1

@x

þ F66
@v3

@x
ð64Þ

Myyu3 ¼ E66
@u0

@y
þ F66

@u1

@y
þ G66

@u3

@y
þ E66

@v0

@x
þ F66

@v1

@x
þ G66

� @v3

@x
ð65Þ

Myyv0 ¼ A12
@u0

@x
þ A22

@v0

@y
þ B12

@u1

@x
þ E12

@u3

@x
þ B22

@v1

@y
þ E22

� @v3

@y
ð66Þ

Myyv1 ¼ B12
@u0

@x
þ D12

@u1

@x
þ F12

@u3

@x
þ B22

@v0

@y
þ D22

@v1

@y

þ F22
@v3

@y
ð67Þ

Myyv3¼E12
@u0

@x
þF12

@u1

@x
þG12

@u3

@x
þE22

@v0

@y
þF22

@v1

@y
þG22

@v3

@y
ð68Þ
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Myyw0 ¼ 3D44v3 þ A44v1 þ A44
@w0

@y
þ B44

@w1

@y
þ D44

@w2

@y
ð69Þ

Myyw1 ¼ B44v1 þ 3E44v3 þ B44
@w0

@y
þ D44

@w1

@y
þ E44

@w2

@y
ð70Þ

Myyw2 ¼ D44v1 þ 3F44v3 þ D44
@w0

@y
þ E44

@w1

@y
þ F44

@w2

@y
ð71Þ

with Aij, Bij, Dij, Eij, Fij, Gij as in (52).

5. The radial basis function method

The governing equations are interpolated by radial basis func-
tion method. This meshless method was first used by Hardy [91]
in the early 1970s for the interpolation of geographical data. Kansa
[92,93] introduced in 1990 the concept of solving partial differen-
tial equations (PDE) by an unsymmetric RBF collocation method
based upon the multiquadric interpolation functions. Nowadays
this technique is well known for solving systems of partial differ-
ential equations with excellent accuracy [94–97]. For the sake of
completeness we present in the following the basics of collocation
with radial basis functions for static, vibrations, and buckling
problems.

5.1. Radial basis functions approximations

The radial basis function (/) approximation of a function (u) is
given by

~uðxÞ ¼
XN

i¼1

ai/ðkx� yik2Þ;x 2 Rn ð72Þ

where yi, i = 1, . . ., N is a finite set of distinct points (centers) in Rn.
Examples of the many RBFs that can be used are

/ðrÞ ¼ r3; cubic ð73Þ

/ðrÞ ¼ e�ðcrÞ2 ; Gaussian ð74Þ

/ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ r2

p
; Multiquadric ð75Þ

where the Euclidean distance r is real and non-negative and c is a
positive user defined shape parameter.

Considering N distinct interpolations, and knowing
u(xj),j = 1,2, . . . ,N, we find ai by the solution of a N � N linear
system

Aa ¼ u ð76Þ

where A = [/(kx � yik2)]N�N, a = [a1,a2, . . . ,aN]T and u = [u(x1),u
(x2), . . . ,u(xN)]T.

5.2. The static problem

Consider a linear elliptic partial differential operator L acting in
a bounded region X in Rn and another operator LB acting on a
boundary oX. We seek the computation of displacements (u) from
the global system of equations

Lu ¼ f in X; LBu ¼ gon@X ð77Þ

The external forces applied on the plate and the boundary condi-
tions applied along the perimeter of the plate, respectively, are at
the right-hand side of (77). The PDE problem defined in (77) will
be replaced by a finite problem, defined by an algebraic system of
equations, after the radial basis expansions.

5.3. Solution of the static problem

The solution of a static problem by radial basis functions con-
siders NI nodes in the domain and NB nodes on the boundary, with
a total number of nodes N = NI + NB. We denote the sampling points
by xi 2X, i = 1, . . ., NI and xi 2 oX, i = NI + 1, . . ., N. At the points in
the domain we solve the following system of equationsXN

i¼1

aiL/ðkx� yik2Þ ¼ fðxjÞ; j ¼ 1;2; . . . ;NI ð78Þ

or

LIa ¼ F ð79Þ

where

LI ¼ ½L/ðkx� yik2Þ�NI�N ð80Þ

At the points on the boundary, we impose boundary conditions as

XN

i¼1

aiLB/ðkx� yik2Þ ¼ gðxjÞ; j ¼ NI þ 1; . . . ;N ð81Þ

or

Ba ¼ G ð82Þ

where

B ¼ LB/½ðkxNIþ1 � yjk2Þ�NB�N

Therefore, we can write a finite-dimensional static problem as

LI

B

" #
a ¼

F
G


 �
ð83Þ

By inverting the system (83), we obtain the vector a. We then ob-
tain the solution u using the interpolation Eq. (72).

5.4. The eigenproblem

The eigenproblem looks for eigenvalues (k) and eigenvectors (u)
that satisfy

Luþ ku ¼ 0 in X; LBu ¼ 0 on @X ð84Þ

As in the static problem, the eigenproblem defined in (84) is re-
placed by a finite-dimensional eigenvalue problem, based on RBF
approximations.

5.5. Solution of the eigenproblem

We consider NI nodes in the interior of the domain and NB nodes
on the boundary, with N = NI + NB. We denote interpolation points
by xi 2X, i = 1, . . ., NI and xi 2 oX, i = NI + 1, . . ., N. At the points in
the domain, we define the eigenproblem asXN

i¼1

aiL/ðkx� yik2Þ ¼ k~uðxjÞ; j ¼ 1;2; . . . ;NI ð85Þ

or

LIa ¼ k~uI ð86Þ

where

LI ¼ ½L/ðkx� yik2Þ�NI�N ð87Þ

At the points on the boundary, we enforce the boundary conditions
as

XN

i¼1

aiLB/ðkx� yik2Þ ¼ 0; j ¼ NI þ 1; . . . ;N ð88Þ

or
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Ba ¼ 0 ð89Þ

Eqs. (86) and (89) can now be solved as a generalized eigenvalue
problem

LI

B

" #
a ¼ k

AI

0

" #
a ð90Þ

where

AI ¼ /½ðkxNI � yjk2Þ�NI�N

5.6. Discretization of the governing equations and boundary conditions

The radial basis collocation method follows a simple implemen-
tation procedure. Taking Eq. (83), we compute

a ¼ LI

B

" #�1
F
G


 �
ð91Þ

This a vector is then used to obtain solution ~u, by using (72). If
derivatives of ~u are needed, such derivatives are computed as

@~u
@x
¼
XN

j¼1

aj
@/j

@x
;

@2 ~u
@x2 ¼

XN

j¼1

aj
@2/j

@x2 ; etc ð92Þ

In the present collocation approach, we need to impose essential
and natural boundary conditions. Consider, for example, the condi-
tion w0 = 0, on a simply supported or clamped edge. We enforce the
conditions by interpolating as

w0 ¼ 0!
XN

j¼1

aW0
j /j ¼ 0 ð93Þ

Other boundary conditions are interpolated in a similar way.

5.7. Free vibrations problems

For free vibration problems we set the external force to zero,
and assume harmonic solution in terms of displacements u0, u1,
u3, v0, v1, v3, w0, w1, w2 as

u0 ¼ U0ðw; yÞeixt; u1 ¼ U1ðw; yÞeixt ; u3 ¼ U3ðw; yÞeixt ;

v0 ¼ V0ðw; yÞeixt; v1 ¼ V1ðw; yÞeixt; v3 ¼ V3ðw; yÞeixt;

w0 ¼W0ðw; yÞeixt; w1 ¼W1ðw; yÞeixt ; w2 ¼W2ðw; yÞeixt

ð94Þ

where x is the frequency of natural vibration. Substituting the har-
monic expansion into Eq. (90) in terms of the amplitudes U0, U1, U3,
V0, V1, V3, W0, W1, W2, we may obtain the natural frequencies and
vibration modes for the plate problem, by solving the eigenproblem

L �x2G
� 	

X ¼ 0 ð95Þ

where L collects all stiffness terms and G collects all terms related
to the inertial terms. In (95) X are the modes of vibration associated
with the natural frequencies defined as x.

5.8. Buckling problems

The eigenproblem associated to the governing equations is de-
fined as

½L � kG�X ¼ 0 ð96Þ

where L collects all stiffness terms and G collects all terms related
to the in-plane forces. In (96) X are the buckling modes associated
with the buckling loads defined as k.

6. Numerical examples

In the next examples the higher-order plate theory presented
before and collocation with RBFs are used for the analysis of simply
supported functionally graded square plates. It should be noted
that for the �zz = 0 case, we consider w = w0 instead of (6).

All examples use the Wendland RBF function [98] defined as

/ðrÞ ¼ ð1� crÞ8 þ ð32ðcrÞ3 þ 25ðcrÞ2 þ 8cr þ 1Þ ð97Þ

The shape parameter (c) is obtained by an optimization procedure
as detailed in Ferreira and Fasshauer [99]. The interpolation points
are Chebyshev R2 points. For a given number of nodes per side (N)
they are generated by MATLAB code as:

x ¼ cosðpi � ð0 : NÞ=NÞ0; y ¼ x;

A 172 points Chebyshev grid is illustrated in Fig. 6.
91 mathematical layers were considered in order to model the

continuous variation of properties across the thickness direction.
A significant number of mathematical layers is needed to ensure
correct computation of material properties at each thickness posi-
tion. The Young’s modulus of each layer, Ek(z), are computed con-
sidering a simple law-of-mixtures (33) or the Mori–Tanaka
procedure (36). Poisson’s ratio is considered constant for both
materials mm = mc = m = 0.3.
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Fig. 6. Chebyshev grid with N = 17.

Table 1
w convergence study for the bending analysis of plate A using higher-order plate
theory, p = 1, and a/h = 10.

Grid 132 172 212

w 0.5868 0.5868 0.5868

Table 2
rxx convergence study for the bending analysis of plate A using higher-order plate
theory, p = 1, and a/h = 10.

Grid 132 172 212

rxx 1.4911 1.4917 1.4917
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6.1. Plates in bending

In the following static examples, we consider that the plate is
subjected to a bi-sinusoidal transverse mechanical load of ampli-
tude load pz ¼ �pzsin px

a

� �
sin py

a

� �
applied at the top of the plate with

�pz ¼ 1. It should be noted that the load is applied at the top surface
(z = h/2).

6.1.1. Isotropic FGM square plate
In this example, an isotropic FGM square plate of type A is con-

sidered. The plate is graded from aluminum Em = 70 GPa at the bot-
tom to alumina Ec = 380 GPa at the top. The law-of-mixtures was
used for computing the Young’s modulus at each layer.

The transverse displacement, the normal stresses and the in-
plane and transverse shear stresses are presented in normalized
form as

�uz ¼
10h3Ec

a4�pz
uz; �rxx ¼

h
a�pz

rxx; �rxz ¼
h

a�pz
rxz; �rzz ¼

rzz

�pz
ð98Þ

An initial convergence study was performed for rxx
h
3

� �
and trans-

verse displacement w(0) at the center of the plate, considering
p = 1, a/h = 10, and Chebyshev grids of 132, 172, and 212 points. Re-
sults are presented in Tables 1 and 2. As seen in these tables, it is
sufficient to use 172 grid.

In Table 3 we present results for rxx and transverse displace-
ment for various exponents p of the power-law (1) considering a
172 points grid. The considered side-to-thickness ratios (a/h) are
4, 10 and 100, which means thickness h equals 0.25, 0.1 and 0.01,
respectively. Results are compared with the Classical Plate Theory
(CLPT), the first-order shear deformation theory (FSDT) with a cor-
rection factor k = 5/6, and those from Zenkour’s generalized shear

deformation theory [19], considering �zz = 0, and those from Carrera
et al. [59,53], and Neves et al. [68], accounting for �zz.

The results from present higher-order plate theory considering
�zz – 0 are in good agreement with those from Refs. [59,53,68] who
also considers �zz – 0. The present theory allows to conclude that
the values of rxx and transverse displacement considering �zz = 0
are higher than those considering �zz – 0. These differences de-
crease as the thickness of the plate decreases which is not surpris-
ing as thicker plates can stretch more in the thickness direction.

In Figs. 7 and 8 we present the evolution of the displacement
and stresses across the thickness direction according to present
shear deformation theory for various values of the exponent p,
and side to thickness ratio a/h = 4, using a 192 grid.

It can be concluded that the present higher-order (�zz – 0) the-
ory with radial basis function collocation provides excellent solu-
tion for FGM plates.

6.1.2. Sandwich with FGM core
In this example we analyze the bending of a square sandwich B-

type plate with thickness h. The bottom skin is aluminum (Em = 70
GPa) with thickness hb = 0.1h and the top skin is alumina (Ec = 380
GPa) with thickness ht = 0.1h. The core is in FGM with volume frac-
tion of the ceramic according to (2). The functional relationship for
Young’s modulus Ek(z) in the thickness direction z is obtained by
the rule of mixtures as in (33).

The transverse displacement and the normal stresses are pre-
sented in normalized form as

�uz ¼
10h3Ec

a4�pz
uz

a
2
;
b
2

� �
; �rxx ¼

h
a�pz

rxx
a
2
;
b
2

� �

�ryy ¼
h

a�pz
ryy

a
2
;
b
2

� �
; �rzz ¼

rzz

�pz

a
2
;
b
2

� �
ð99Þ

Table 3
A-type plate in bending. Effect of transverse normal strain �zz on rxx and deflection under present higher-order theory and using 172 points.

p �zz �rxxðh=3Þ �uzð0Þ

a/h 4 10 100 4 10 100

0 Present 0 0.5151 1.3124 13.161 0.3786 0.2961 0.2803
Present –0 0.5278 1.3176 13.161 0.3665 0.2942 0.2803

0.5 Present 0 0.5736 1.4629 14.672 0.5699 0.4579 0.4365
Present –0 0.5860 1.4680 14.673 0.5493 0.4548 0.4365

1 Ref. [59] –0 0.6221 1.5064 14.969 0.7171 0.5875 0.5625
CLPT 0 0.8060 2.0150 20.150 0.5623 0.5623 0.5623
FSDT (k = 5/6) 0 0.8060 2.0150 20.150 0.7291 0.5889 0.5625
GSDT [19] 0 1.4894 0.5889
Ref. [53] N = 4 0 0.7856 2.0068 20.149 0.7289 0.5890 0.5625
Ref. [53] N = 4 –0 0.6221 1.5064 14.969 0.7171 0.5875 0.5625
Ref. [68] –0 0.5925 1.4945 14.969 0.6997 0.5845 0.5624
Present 0 0.5806 1.4874 14.944 0.7308 0.5913 0.5648
Present –0 0.5911 1.4917 14.945 0.7020 0.5868 0.5647

4 Ref. [59] –0 0.4877 1.1971 11.923 1.1585 0.8821 0.8286
CLPT 0 0.6420 1.6049 16.049 0.8281 0.8281 0.8281
FSDT (k = 5/6) 0 0.6420 1.6049 16.049 1.1125 0.8736 0.828
GSDT [19] 0 1.1783 0.8651
Ref. [53] N = 4 0 0.5986 1.5874 16.047 1.1673 0.8828 0.8286
Ref. [53] N = 4 –0 0.4877 1.1971 11.923 1.1585 0.8821 0.8286
Ref. [68] –0 0.4404 1.1783 11.932 1.1178 0.8750 0.8286
Present 0 0.4338 1.1592 11.737 1.1552 0.8770 0.8241
Present –0 0.4330 1.1588 11.737 1.1108 0.8700 0.8240

10 Ref. [59] –0 0.3695 0.8965 8.9077 1.3745 1.0072 0.9361
CLPT 0 0.4796 1.1990 11.990 0.9354 0.9354 0.9354
FSDT (k = 5/6) 0 0.4796 1.1990 11.990 1.3178 0.9966 0.9360
GSDT [19] 0 0.8775 1.0089
Ref. [53] N = 4 0 0.4345 1.1807 11.989 1.3925 1.0090 0.9361
Ref. [53] N = 4 –0 0.1478 0.8965 8.9077 1.3745 1.0072 0.9361
Ref. [68] –0 0.3227 1.1783 11.932 1.3490 0.8750 0.8286
Present 0 0.3112 0.8468 8.6011 1.3760 0.9952 0.9228
Present –0 0.3097 0.8462 8.6010 1.3334 0.9888 0.9227
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The transverse shear stresses are normalized according to

�rxy¼
h

a�pz
rxyð0;0Þ; �rxz¼

h
a�pz

rxz 0;
b
2

� �
; �ryz¼

h
a�pz

ryz
a
2
;0

� �
ð100Þ

An initial convergence study was performed for rxz
h
6

� �
and trans-

verse displacement w(0) considering p = 4, a/h = 100, and Cheby-
shev grids of 132, 172, 192, and 212 points. Results are presented
in Tables 4 and 5. We consider that a 192 grid should be used inthe
following computation.

In Table 6 we present the values of rxz and out-of-plane dis-
placement for various values of exponent p of the material
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Fig. 7. A-type square plate subjected to sinusoidal load at the top, with a/h = 4. Dimensionless stresses ð�rÞ through the thickness direction according to present higher-order
theory for different values of p.
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Fig. 8. A-type square plate subjected to sinusoidal load at the top, with a/h = 4.
Dimensionless displacement ð �wÞ through the thickness direction according to
present higher-order theory for different values of p.

Table 4
w convergence study for the bending analysis of B-type plate using higher-order plate
theory, p = 4, and a/h = 100.

Grid 132 172 192 212

w 0.7749 0.7782 0.7784 0.7785

Table 5
rxz convergence study for the bending analysis of B-type plate using higher-order
plate theory, p = 4, and a/h = 100.

Grid 132 172 192 212

rxz 0.2696 0.2749 0.2753 0.2753
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power-law (p = 0, 0.5, 1, 4, 10) and various thickness to side ratios
(a/h = 4, 10, 100) according to the present higher-order theory con-
sidering zero and non-zero �zz strain using 192 points. Results are
tabulated and compared with available references.

In Figs. 9 and 10 we present the evolution of the displacement
and stresses across the thickness direction according to present
shear deformation theory for various values of the exponent p of
a plate with side to thickness ratio a/h = 100, using a 192 grid.

It can be concluded that the present approach is in very good
agreement with similar theories in the literature.

6.2. Free vibration of plates

In this example we study the free vibration of a simply sup-
ported isotropic FGM square plate (a = b = 1) of type A. The plate
is graded from aluminum (bottom) to zirconia (top). Em = 70 GPa,
qm = 2702 kg/m3, Ec = 200 GPa, and qc = 5700 kg/m3 are the corre-
sponding properties of the metal and zirconia, respectively.

We consider the Mori–Tanaka homogeneization scheme (36), as
in Vel and Batra [28] (here considered to be the exact solution), and
as in Qian et al. [17] and Neves et al. [68].

The frequency w has been non-dimensionalized as follows:

�w ¼ wh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qm=Em

q
ð101Þ

In Table 7 we present the results obtained with the theories consid-
ered and different values of p for a side to thickness ratio a/h = 5.

The first 10 natural frequencies obtained with present higher-
order shear deformation theory are listed in Table 8 (a/h = 20)
and Table 9 (a/h = 10) for p = 1.

In Fig. 11 the first 4 frequencies of a simply supported isotropic
functionally graded (Al/ZrO2) square plate, with p = 1, a 212 grid,

using present higher-order shear deformation theory and a side
to thickness ratio a/h = 20 are presented.

Excellent correlation is obtained with exact theories when
�zz – 0 is considered. Convergence solutions are obtained for all
cases.

6.3. Buckling loads of plates

In the next examples the higher-order plate theory and colloca-
tion with RBFs are used for the buckling analysis of simply sup-
ported functionally graded sandwich square plates (a = b) of type
C with side-to-thickness ratio a/h = 10. The uni-and bi-axial critical
buckling loads are analised.

The material properties are Em = 70E0 (aluminum) for the metal
and Ec = 380E0 (alumina) for the ceramic being E0 = 1GPa. The law-
of-mixtures (33) was used for the computation of Young’s modulus
for each layer. The non-dimensional parameter used is

P ¼ Pa2

100h3E0

:

An initial convergence study with the higher-order theory was con-
ducted for each buckling load type considerind grids of 132, 172, and
212 points. The uni-axial case is presented in Table 10 for the 2-2-1
sandwich with p = 5 and the bi-axial case is presented in Table 11
for the 1-2-1 sandwich with p = 1. Further results are obtained by
considering a grid of 172 points, which seems acceptable by the
convergence study.

The critical buckling loads obtained from the present approach
with �zz – 0 and �zz = 0 are tabulated in Tables 12 and 13 for various
power-law exponents p and thickness ratios. Both tables include re-
sults obtained from classical plate theory (CLPT), first-order shear

Table 6
Square B-type plate in bending. Effect of transverse normal strain �zz on rxz and w according to present higher-order plate theory, using 192 points.

p �zz �rxzðh=6Þ �uzð0Þ

a/h 4 10 100 4 10 100

0 Present 0 0.2193 0.2202 0.2202 0.4612 0.3736 0.3568
Present –0 0.2208 0.2227 0.2228 0.4447 0.3711 0.3568

0.5 Present 0 0.2511 0.2522 0.2522 0.6422 0.5277 0.5058
Present –0 0.2546 0.2581 0.2585 0.6168 0.5238 0.5058

1 Ref. [58] –0 0.2613 0.2605 0.2603 0.7628 0.6324 0.6072
CLPT 0 0.0000 0.0000 0.0000 0.6070 0.6070 0.6070
FSDT (k = 5/6) 0 0.2458 0.2458 0.2458 0.7738 0.6337 0.6073
Ref. [53] N = 4 0 0.2596 0.2593 0.2593 0.7735 0.6337 0.6072
Ref. [53] N = 4 –0 0.2604 0.2594 0.2593 0.7628 0.6324 0.6072
Ref. [68] 0 0.2703 0.2718 0.2720 0.7744 0.6356 0.6092
Ref. [68] –0 0.2742 0.2788 0.2793 0.7416 0.6305 0.6092
Present 0 0.2706 0.2720 0.2721 0.7746 0.6357 0.6092
Present –0 0.2745 0.2789 0.2795 0.7417 0.6305 0.6092

4 Ref. [58] –0 0.2429 0.2431 0.2432 1.0934 0.8321 0.7797
CLPT 0 0.0000 0.0000 0.0000 0.7792 0.7792 0.7792
FSDT (k = 5/6) 0 0.1877 0.1877 0.1877 1.0285 0.8191 0.7796
Ref. [53] N = 4 0 0.2400 0.2398 0.2398 1.0977 0.8308 0.7797
Ref. [53] N = 4 –0 0.2400 0.2398 0.2398 1.0930 0.8307 0.7797
Ref. [68] 0 0.2699 0.2726 0.2728 1.0847 0.8276 0.7785
Ref. [68] –0 0.2723 0.2778 0.2785 1.0391 0.8202 0.7784
Present 0 0.2671 0.2695 0.2696 1.0826 0.8272 0.7785
Present –0 0.2696 0.2747 0.2753 1.0371 0.8199 0.7784

10 Ref. [58] –0 0.2150 0.2174 0.2179 1.2232 0.8753 0.8077
CLPT 0 0.0000 0.0000 0.0000 0.8070 0.8070 0.8070
FSDT (k = 5/6) 0 0.1234 0.1234 0.1234 1.1109 0.8556 0.8075
Ref. [53] N = 4 0 0.1935 0.1944 0.1946 1.2240 0.8743 0.8077
Ref. [53] N = 4 –0 0.1932 0.1944 0.1946 1.2172 0.8740 0.8077
Ref. [68] 0 0.1998 0.2021 0.2022 1.2212 0.8718 0.8050
Ref. [68] –0 0.2016 0.2059 0.2064 1.1780 0.8650 0.8050
Present 0 0.1996 0.2018 0.2019 1.2183 0.8712 0.8050
Present –0 0.1995 0.2034 0.2039 1.1752 0.8645 0.8050
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deformation plate theory (FSDPT, K = 5/6 as shear correction factor),
Reddy’s higher-order shear deformation plate theory (TSDPT) [10],
and Zenkour’s sinusoidal shear deformation plate theory (SSDPT)

[29]. Table 12 refers to the uni-axial buckling load and Table 13 re-
fers to the bi-axial buckling load.

A good agreement between the present solution and references
considered, specially [10,29] is obtained. This allow us to conclude
that the present higher-order plate theory is good for the modeling
of simply supported sandwich FGM plates and that collocation
with RBFs is a good formulation. Present results with �zz = 0
approximates better Refs. [10,29] than �zz – 0 as the authors use
the �zz = 0 approach. This study also lead us to conclude that the
thickness stretching effect has a strong influence on the buckling
analysis of sandwich FGM plates as �zz = 0 gives higher fundamen-
tal buckling loads than �zz – 0.

The isotropic fully ceramic plate (first line on Tables 12 and 13)
has the higher fundamental buckling loads. As the core thickness to
the total thickness of the plate ratio ((h2 � h1)/h) increases the
buckling loads increase as well. Considering each column of both
tables we may conclude that the critical buckling loads decrease
as the power-law exponent p increases. By comparing Tables 12
and 13 we also conclude that the bi-axial buckling load of simply
supported sandwich square plate with FGM skins is half the uni-
axial one for the same plate.
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Fig. 9. Square B-type plate subjected to sinusoidal load at the top, with a/h = 100. Dimensionless stresses ð�rÞ through the thickness direction according to present higher-
order theory for different values of p.
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Fig. 10. Square B-type plate subjected to sinusoidal load at the top, with a/h = 100.
Dimensionless displacement ð �wÞ through the thickness direction according to
present higher-order theory for different values of p.
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In Fig. 12 the first four buckling modes of a simply supported 2-
1-2 sandwich square plate with FGM skins, p = 0.5, subjected to a
uni-axial in-plane compressive load, using the higher-order plate
theory and 172 grid is presented. Fig. 13 presents the first four buck-
ling modes of a simply supported 2-1-1 sandwich square plate with
FGM skins, p = 10, subjected to a bi-axial in-plane compressive load.

7. Conclusions

A Unified formulation coupled with collocation with radial basis
functions was proposed. A thickness-stretching higher-order shear
deformation theory was successfuly implemented for the static,
free vibration, and linearized buckling analysis of functionally
graded plates.

The present formulation was compared with analytical, mesh-
less or finite element methods and proved very accurate in both
static, vibration and buckling problems. The effect of �zz – 0
showed significance in thicker plates. Even for a thinner function-
ally graded plate, the rzz should always be considered in the
formulation.

For the first time, the complete governing equations and bound-
ary conditions of the higher-order plate theory are presented to

Table 7
Fundamental frequency of a SSSS A-type square plate (Al/ZrO2) with a/h = 5, using a 212 grid and present higher-order theory.

Source p = 0 p = 0.5 p = 1 p = 2 p = 3 p = 5 p = 10

Exact [28] 0.2192 0.2197 0.2211 0.2225
Ref. [17] 0.2152 0.2153 0.2172 0.2194
Ref. [68] (�zz = 0) 0.2184 0.2189 0.2202 0.2215
Ref. [68] (�zz – 0) 0.2193 0.2198 0.2212 0.2225
Present (�zz = 0) 0.2459 0.2219 0.2184 0.2191 0.2206 0.2220 0.2219
Present (�zz – 0) 0.2469 0.2228 0.2193 0.2200 0.2215 0.2230 0.2229

Table 8
First 10 frequencies of a SSSS A-type square plate (Al/ZrO2) with p = 1 with a/h = 20 and using the higher-order theory.

Source 1 2 3 4 5 6 7 8 9 10

Ref. [17] 0.0149 0.0377 0.0377 0.0593 0.0747 0.0747 0.0769 0.0912 0.0913 0.1029
Ref. [68] 0.0153 0.0377 0.0377 0.0596 0.0739 0.0739 0.0950 0.0950 0.1029 0.1029
�z = 0 132 0.0153 0.0377 0.0377 0.0596 0.0740 0.0740 0.0951 0.0951 0.1030 0.1030
�z – 0 132 0.0153 0.0377 0.0377 0.0596 0.0741 0.0741 0.0953 0.0953 0.1030 0.1030
�z = 0 172 0.0153 0.0377 0.0377 0.0595 0.0738 0.0738 0.0949 0.0949 0.1030 0.1030
�z – 0 172 0.0153 0.0377 0.0377 0.0596 0.0739 0.0739 0.0950 0.0950 0.1030 0.1030
�z = 0 212 0.0153 0.0377 0.0377 0.0595 0.0738 0.0738 0.0948 0.0948 0.1030 0.1030
�z – 0 212 0.0153 0.0377 0.0377 0.0596 0.0739 0.0739 0.0950 0.0950 0.1030 0.1030

Table 9
First 10 frequencies of a SSSS A-type square plate (Al/ZrO2) with p = 1 and a/h = 10 and using present higher-order theory.

Source 1 2 3 4 5 6 7 8 9 10

Ref. [17] 0.0584 0.1410 0.1410 0.2058 0.2058 0.2164 0.2646 0.2677 0.2913 0.3264
Ref. [68] 0.0596 0.1426 0.1426 0.2058 0.2058 0.2193 0.2676 0.2676 0.2910 0.3363
�z = 0 132 0.0595 0.1422 0.1422 0.2059 0.2059 0.2185 0.2664 0.2664 0.2912 0.3347
�z – 0 132 0.0596 0.1426 0.1426 0.2059 0.2059 0.2194 0.2678 0.2678 0.2912 0.3367
�z = 0 172 0.0595 0.1422 0.1422 0.2059 0.2059 0.2184 0.2663 0.2663 0.2912 0.3344
�z – 0 172 0.0596 0.1426 0.1426 0.2059 0.2059 0.2193 0.2676 0.2676 0.2912 0.3364
�z = 0 212 0.0595 0.1422 0.1422 0.2059 0.2059 0.2184 0.2663 0.2663 0.2912 0.3344
�z – 0 212 0.0596 0.1426 0.1426 0.2059 0.2059 0.2193 0.2676 0.2676 0.2912 0.3364
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Fig. 11. First 4 frequencies of a SSSS square plate of type A (Al/ZrO2), with p = 1, a
212 grid, present higher-order shear deformation theory and a/h = 20.

Table 10
Convergence study for the uni-axial buckling load of a simply supported 2-2-1
sandwich square plate with FGM skins and p = 5 case using the higher-order theory.

Grid 132 172 212

P 4.05112 4.05070 4.05065

Table 11
Convergence study for the bi-axial buckling load of a simply supported 1-2-1
sandwich square plate with FGM skins and p = 1 case using the higher-order theory.

Grid 132 172 212

P 3.66028 3.65998 3.65994
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Table 12
Uni-axial buckling load of simply supported plate of C-type using the higher-order theory and a grid with 172 points.

p Theory P

1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1

0 CLPT 13.73791 13.73791 13.73791 13.73791 13.73791 13.73791
FSDPT 13.00449 13.00449 13.00449 13.00449 13.00449 13.00449
TSDPT [10] 13.00495 13.00495 13.00495 13.00495 13.00495 13.00495
SSDPT [29] 13.00606 13.00606 13.00606 13.00606 13.00606 13.00606
present �zz – 0 12.95287 12.95287 12.95287 12.95287 12.95287 12.95287
present �zz = 0 13.00508 13.00508 13.00508 13.00508 13.00508 13.00508

0.5 CLPT 7.65398 8.25597 8.56223 8.78063 9.18254 9.61525
FSDPT 7.33732 7.91320 8.20015 8.41034 8.78673 9.19517
TSDPT [10] 7.36437 7.94084 8.22470 8.43645 8.80997 9.21681
SSDPT [29] 7.36568 7.94195 8.22538 8.43712 8.81037 9.21670
present �zz – 0 7.16207 7.71627 7.98956 8.19278 8.55172 8.94190
present �zz = 0 7.18728 7.74326 8.01701 8.22133 8.58129 8.97310

1 CLPT 5.33248 6.02733 6.40391 6.68150 7.19663 7.78406
FSDPT 5.14236 5.81379 6.17020 6.43892 6.92571 7.48365
TSDPT [10] 5.16713 5.84006 6.19394 6.46474 6.94944 7.50656
SSDPT [29] 5.16846 5.84119 6.19461 6.46539 6.94980 7.50629
present �zz – 0 5.06137 5.71135 6.05467 6.31500 6.78405 7.31995
present �zz = 0 5.07848 5.73022 6.07358 6.33556 6.80547 7.34367

5 CLPT 2.73080 3.10704 3.48418 3.65732 4.21238 4.85717
FSDPT 2.63842 3.02252 3.38538 3.55958 4.09285 4.71475
TSDPT [10] 2.65821 3.04257 3.40351 3.57956 4.11209 4.73469
SSDPT [29] 2.66006 3.04406 3.40449 3.58063 4.11288 4.73488
present �zz – 0 2.63652 3.00791 3.36255 3.53005 4.05070 4.64701
present �zz = 0 2.64681 3.01865 3.37196 3.54148 4.06163 4.66059

10 CLPT 2.56985 2.80340 3.16427 3.25924 3.79238 4.38221
FSDPT 2.46904 2.72626 3.07428 3.17521 3.68890 4.26040
TSDPT [10] 2.48727 2.74632 3.09190 3.19471 3.70752 4.27991
SSDPT [29] 2.48928 2.74844 3.13443 3.19456 3.14574 4.38175
present �zz – 0 2.47216 2.72046 3.06067 3.15761 3.66166 4.20550
present �zz = 0 2.48219 2.73080 3.06943 3.16837 3.67153 4.21792

Table 13
Bi-axial buckling load of simply supported plate of C-type using the higher-order theory and a grid with 172 points.

p Theory P

1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1

0 CLPT 6.86896 6.86896 6.86896 6.86896 6.86896 6.86896
FSDPT 6.50224 6.50224 6.50224 6.50224 6.50224 6.50224
TSDPT [10] 6.50248 6.50248 6.50248 6.50248 6.50248 6.50248
SSDPT [29] 6.50303 6.50303 6.50303 6.50303 6.50303 6.50303
present �zz – 0 6.47643 6.47643 6.47643 6.47643 6.47643 6.47643
present �zz = 0 6.50254 6.50254 6.50254 6.50254 6.50254 6.50254

0.5 CLPT 3.82699 4.12798 4.28112 4.39032 4.59127 4.80762
FSDPT 3.66866 3.95660 4.10007 4.20517 4.39336 4.59758
TSDPT [10] 3.68219 3.97042 4.11235 4.21823 4.40499 4.60841
SSDPT [29] 3.68284 3.97097 4.11269 4.21856 4.40519 4.60835
present �zz – 0 3.58104 3.85813 3.99478 4.09639 4.27586 4.47095
present �zz = 0 3.59364 3.87163 4.00851 4.11067 4.29064 4.48655

1 CLPT 2.66624 3.01366 3.20195 3.34075 3.59831 3.89203
FSDPT 2.57118 2.90690 3.08510 3.21946 3.46286 3.74182
TSDPT [10] 2.58357 2.92003 3.09697 3.23237 3.47472 3.75328
SSDPT [29] 2.58423 2.92060 3.09731 3.23270 3.47490 3.75314
present �zz – 0 2.53069 2.85568 3.02733 3.15750 3.39202 3.65998
present �zz = 0 2.53924 2.86511 3.03679 3.16778 3.40274 3.67183

5 CLPT 1.36540 1.55352 1.74209 1.82866 2.10619 2.42859
FSDPT 1.31921 1.51126 1.69269 1.77979 2.04642 2.35737
TSDPT [10] 1.32910 1.52129 1.70176 1.78978 2.05605 2.36734
SSDPT [29] 1.33003 1.52203 1.70224 1.79032 2.05644 2.36744
present �zz – 0 1.31826 1.50395 1.68128 1.76502 2.02535 2.32351
present �zz = 0 1.32340 1.50933 1.68598 1.77074 2.03081 2.33029

10 CLPT 1.28493 1.40170 1.58214 1.62962 1.89619 2.19111
FSDPT 1.23452 1.36313 1.53714 1.58760 1.84445 2.13020
TSDPT [10] 1.24363 1.37316 1.54595 1.59736 1.85376 2.13995
SSDPT [29] 1.24475 1.37422 1.56721 1.59728 1.57287 2.19087
present �zz – 0 1.23608 1.36023 1.53034 1.57880 1.83083 2.10275
present �zz = 0 1.24109 1.36540 1.53472 1.58419 1.83576 2.10896
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help readers to implement it successfully with the present or other
strong-form techniques.
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Fig. 12. First four buckling modes. Uni-axial buckling load of a simply supported 2-
1-2 plate C-type, p = 0.5, a 172 points grid, and using the higher-order theory.
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Fig. 13. First four buckling modes. Bi-axial buckling load of a simply supported 2-1-
1 plate C-type, p = 10, a 172 points grid, and using the higher-order theory.
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A hyperbolic sine shear deformation theory is used for the linear buckling analysis of functionally graded plates. The
theory accounts for through-the-thickness deformations.

The buckling governing equations and boundary conditions are derived using Carrera’s Unified Formulation and further
interpolated by collocation with radial basis functions. The collocation method is truly meshless, allowing a fast and simple
discretization of equations in the domain and on the boundary.

A numerical investigation has been conducted considering and neglecting the thickness stretching effects on the buck-
ling of sandwich plates with functionally graded skins. Numerical results demonstrate the high accuracy of the present
approach.

c© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

The concept of functionally graded materials (FGM) was first proposed by materials scientists in Japan in 1984 [1]. It
was introduced to satisfy the demand of ultra-high-temperature environment and to eliminate the stress singularities [2].
Due to the continuous change in material properties of an FGM, the interfaces between two materials disappear but the
characteristics of two or more different materials of the composite are preserved. Interested readers on FGM application
fields can refer to [1] or [3]. A review of the main developments in FGM can be found in Birman and Byrd [4].

In a conventional FGM plate a continuous variation of material properties over the thickness direction is obtained by
mixing two different materials [3]. The material properties of the FGM plate are assumed to change continuously throughout
the thickness of the plate, according to the volume fraction of the constituent materials. To describe the volume fractions
an exponential function can be used as in [5], or the sigmoid function as proposed in [6]. In the present work a power-law
function is used as in [7–10].

Many studies have been performed to analyse the behaviour of FGM plates. The static analysis of FGM plates has been
performed by Kashtalyan [11], Kashtalyan and Menshykova [12], Qian et al. [13], Zenkour [9, 10], Ramirez et al. [14],
Ferreira et al. [15,16], and Chi and Chung [17,18]. Vibrations problems of FGM plates can be found in Batra and Jin [19],
Ferreira et al. [20], Vel and Batra [21], Zenkour [22], and Cheng and Batra [23]. Other works could be mentioned on
static and free vibration analysis of FGM plates. There is also literature on the thermo-mechanical response of FGM plates:
Reddy and Chin [24], Reddy [25], Vel and Batra [26, 27], Cheng and Batra [28], Javaheri and Eslami [29]. However, the
analysis of mechanical buckling of FGM structures is less commom in the literature. It can be found in Najafizadeh and
Eslami [8], Zenkour [22], Cheng and Batra [23], Birman [30], Javaheri and Eslami [31].

∗ Corresponding author E-mail: ananeves@fe.up.pt
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2 A. M. A. Neves et al.: Buckling of FGM sandwich plates

Analysis of shear deformation plates with hyperbolic functions is not typical in the literature, in particular for FGM
plates. In fact, the analysis of FGM plates is tipically performed using the clasical plate theory (CLPT) [17, 18], the first-
order shear deformation theory (FSDT) [10,19,20,32] or higher-order shear deformation theories (HSDT) [13,15,20,25,32].
In [33–35] various hyperbolic functions were considered for the analysis of laminated plates. A hyperbolic function is used
for FGM plates in [36], using a specialized function.

In all previous investigations with hyperbolic functions, these latter are used for the in-plane expansions only and the
transverse displacement is considered as constant resulting in shear deformation theories that neglect the thickness stretch-
ing εzz = 0. Carrera et al. [37] recently investigated the effect of thickness stretching in FGM plates, using finite element
approximations. Most of refered studies on FGM plates was performed using the Finite Element Method. The use of al-
ternative methods for the analysis of plates, such as the meshless methods based on collocation with radial basis functions
(RBFs) is atractive due to the absence of a mesh and the ease of collocation methods. In recent years, radial basis func-
tions showed excellent accuracy in the interpolation of data and functions. Kansa [38] introduced the concept of solving
partial differential equations by an unsymmetric RBF collocation method based upon the multiquadric interpolation func-
tions. The authors have applied successfully the RBF collocation technique to the static and dynamic analysis of composite
structures [39–48].

The use of hyperbolic shear deformation theory accounting for εzz �= 0 for the buckling analysis of plates has not been
considered before. This paper adresses the thickness stretching effect on the buckling analysis of FGM plate by a meshless
technique based on collocation with radial basis functions. Carrera’s Unified Formulation (further denoted as CUF) [49,50]
is employed to obtain the algebraic governing equations and boundary conditions of the present shear deformation theory.
Such equations are then interpolated by radial basis functions to obtain an algebraic system of equations. The used theory
is a quasi-3D hyperbolic shear deformation theory, with different expansion for the in-plane displacements (u, v) and the
out-of-plane displacement (w). In-plane displacements are considered to be of hyperbolic sine type across the thickness
coordinate and the out-of-plane displacement is defined as quadratic in the thickness direction

u = u0 + zu1 + sinh
( πz

h

)
uZ ; v = v0 + zv1 + sinh

( πz

h

)
vZ ; w = w0 + zw1 + z2wZ . (1)

For the εzz = 0 case the transverse displacement is defined as w = w0. It turns out that the present formulation can
be seen as a generalization of the original CUF, by introducing different displacement fields for in-plane and out-of-plane
displacements.

2 Problem formulation

Consider a rectangular sandwich plate of plan-form dimensions a and b and uniform thickness h. The co-ordinate system
is taken such that the x-y plane coincides with the midplane of the plate (z ∈ [−h/2, h/2]).

The sandwich core is a ceramic material and skins are composed of a functionally graded material across the thickness
direction. The bottom skin varies from a metal-rich surface (z = h0 = −h/2) to a ceramic-rich surface while the top skin
face varies from a ceramic-rich surface to a metal-rich surface (z = h3 = h/2) as illustrated in Fig. 1. The volume fraction
of the ceramic phase is obtained from a simple rule of mixtures as:

Vc =

(
z − h0

h1 − h0

)p

, z ∈ [h0, h1],

Vc = 1, z ∈ [h1, h2], (2)

h0 = -h/2 

h3 = h/2 

h1

h2

z
METAL

METAL

CERAMIC

CERAMIC

CERAMIC

Fig. 1 Sandwich with isotropic core and FGM skins.
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Fig. 2 (online colour at: www.zamm-journal.org) Illus-
tration of a 2-1-1 sandwich with FGM skins for several
volume fractions.

Vc =

(
z − h3

h2 − h3

)p

, z ∈ [h2, h3],

where p is a scalar parameter that allows the user to define the gradation of material properties across the thickness direction
of the skins. With this formulation the interfaces between core and skins disappear. Note that the core of the present
sandwich and any isotropic material can be obtained as a particular case of the power-law function by setting p = 0. The
volume fraction for the metal phase is given as Vm = 1 − Vc. The sandwich may be symmetric or non-symmetric about
the mid-plane as we may vary the thickness of each face. Figure 2 shows a non-symmetric sandwich with volume fraction
defined by the power-law (2) for various exponents p, in which top skin thickness is the same as the core thickness and the
bottom skin thickness is twice the core thickness. Such thickness relation is denoted as 2-1-1. A bottom-core-top notation
is used. 1-1-1 means that skins and core have the same thickness.

The sandwich plate is subjected to compressive in-plane forces acting on the mid-plane of the plate. N̄xx and N̄yy denote
the in-plane loads perpendicular to the edges x = 0 and y = 0 respectively, and N̄xy denotes the distributed shear force
parallel to the edges x = 0 and y = 0 respectively (see Fig. 3).

y

x

Nyy

Nxx

Nxy

Nyx

Fig. 3 (online colour at: www.zamm-journal.org) Rectangular plate subjected to in-plane forces.

3 A quasi-3D hyperbolic sine plate shear deformation theory

In the following we derive the boundary conditions and the linearized equations of the hyperbolic sine plate shear defor-
mation theory leading to the eigenproblem for the study of buckling plates. The inertial terms are also accounted to help

www.zamm-journal.org c© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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readers to implement the hyperbolic sine theory successfully with any strong-form technique for free vibration or static
problems of plates as well.

3.1 Displacement field

The present theory is based on the following displacement field:

u(x, y, z, t) = u0(x, y, t) + zu1(x, y, t) + sinh
(πz

h

)
uZ(x, y, t), (3)

v(x, y, z, t) = v0(x, y, t) + zv1(x, y, t) + sinh
(πz

h

)
vZ(x, y, t), (4)

w(x, y, z, t) = w0(x, y, t) + zw1(x, y, t) + z2w2(x, y, t), (5)

where u, v, and w are the displacements in the x−, y−, and z− directions, respectively. u0, u1, uZ , v0, v1, vZ , w0, w1, and
w2 are the unknowns to be determined. A constant term is assumed for the transverse displacement component instead of
(5) (w = w0) to investigate the effect of the thickness stretching on the buckling loads.

3.2 Strains

The strains can be related to the displacement field as:

⎧
⎪⎨
⎪⎩

εxx

εyy

γxy

⎫
⎪⎬
⎪⎭

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∂u
∂x + 1

2

(
∂w0

∂x

)2

∂v
∂y + 1

2

(
∂w0

∂y

)2

∂u
∂y + ∂v

∂x + ∂w0

∂x
∂w0

∂y

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

,

⎧
⎪⎨
⎪⎩

γxz

γyz

εzz

⎫
⎪⎬
⎪⎭

=

⎧
⎪⎨
⎪⎩

∂u
∂z + ∂w

∂x
∂v
∂z + ∂w

∂y
∂w
∂z

⎫
⎪⎬
⎪⎭

, (6)

By substitution of the displacement field in (6), the strains are obtained:
⎧
⎪⎨
⎪⎩

εxx

εyy

γxy

⎫
⎪⎬
⎪⎭

=

⎧
⎪⎨
⎪⎩

ε
(0)
xx

ε
(0)
yy

γ
(0)
xy

⎫
⎪⎬
⎪⎭

+

⎧
⎪⎨
⎪⎩

ε
(nl)
xx

ε
(nl)
yy

γ
(nl)
xy

⎫
⎪⎬
⎪⎭

+ z

⎧
⎪⎨
⎪⎩

ε
(1)
xx

ε
(1)
yy

γ
(1)
xy

⎫
⎪⎬
⎪⎭

+ sinh
(πz

h

)
⎧
⎪⎨
⎪⎩

ε
(Z)
xx

ε
(Z)
yy

γ
(Z)
xy

⎫
⎪⎬
⎪⎭

, (7)

⎧
⎪⎨
⎪⎩

γxz

γyz

εzz

⎫
⎪⎬
⎪⎭

=

⎧
⎪⎨
⎪⎩

γ
(0)
xz

γ
(0)
yz

ε
(0)
zz

⎫
⎪⎬
⎪⎭

+ z

⎧
⎪⎨
⎪⎩

γ
(1)
xz

γ
(1)
yz

ε
(1)
zz

⎫
⎪⎬
⎪⎭

+ z2

⎧
⎪⎨
⎪⎩

γ
(2)
xz

γ
(2)
yz

ε
(2)
zz

⎫
⎪⎬
⎪⎭

+
π

h
cosh

( πz

h

)
⎧
⎪⎨
⎪⎩

γ
(Z)
xz

γ
(Z)
yz

ε
(Z)
zz

⎫
⎪⎬
⎪⎭

(8)

being the strain components obtained as

⎧
⎪⎨
⎪⎩

ε
(0)
xx

ε
(0)
yy

γ
(0)
xy

⎫
⎪⎬
⎪⎭

=

⎧
⎪⎪⎨
⎪⎪⎩

∂u0

∂x
∂v0

∂y
∂u0

∂y + ∂v0

∂x

⎫
⎪⎪⎬
⎪⎪⎭

;

⎧
⎪⎨
⎪⎩

ε
(nl)
xx

ε
(nl)
yy

γ
(nl)
xy

⎫
⎪⎬
⎪⎭

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1
2

(
∂w0

∂x

)2

1
2

(
∂w0

∂y

)2

∂w0

∂x
∂w0

∂y

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

, (9)

⎧
⎪⎨
⎪⎩

ε
(1)
xx

ε
(1)
yy

γ
(1)
xy

⎫
⎪⎬
⎪⎭

=

⎧
⎪⎪⎨
⎪⎪⎩

∂u1

∂x
∂v1

∂y
∂u1

∂y + ∂v1

∂x

⎫
⎪⎪⎬
⎪⎪⎭

;

⎧
⎪⎨
⎪⎩

ε
(Z)
xx

ε
(Z)
yy

γ
(Z)
xy

⎫
⎪⎬
⎪⎭

=

⎧
⎪⎪⎨
⎪⎪⎩

∂uZ

∂x
∂vZ

∂y
∂uZ

∂y + ∂vZ

∂x

⎫
⎪⎪⎬
⎪⎪⎭

, (10)

⎧
⎪⎨
⎪⎩

γ
(0)
xz

γ
(0)
yz

ε
(0)
zz

⎫
⎪⎬
⎪⎭

=

⎧
⎪⎨
⎪⎩

u1 + ∂w0

∂x

v1 + ∂w0

∂y

w1

⎫
⎪⎬
⎪⎭

;

⎧
⎪⎨
⎪⎩

γ
(1)
xz

γ
(1)
yz

ε
(1)
zz

⎫
⎪⎬
⎪⎭

=

⎧
⎪⎨
⎪⎩

∂w1

∂x
∂w1

∂y

2w2

⎫
⎪⎬
⎪⎭

, (11)

⎧
⎪⎨
⎪⎩

γ
(2)
xz

γ
(2)
yz

ε
(2)
zz

⎫
⎪⎬
⎪⎭

=

⎧
⎪⎨
⎪⎩

∂w2

∂x
∂w2

∂y

0

⎫
⎪⎬
⎪⎭

;

⎧
⎪⎨
⎪⎩

γ
(Z)
xz

γ
(Z)
yz

ε
(Z)
zz

⎫
⎪⎬
⎪⎭

=

⎧
⎪⎨
⎪⎩

uZ

vZ

0

⎫
⎪⎬
⎪⎭

, (12)

where ε
(nl)
αβ are the non-linear terms that will originate the linearized buckling equations.
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3.3 Elastic stress-strain relations

In the case of isotropic functionally graded materials, the 3D constitutive equations can be written as:
⎧
⎪⎨
⎪⎩

σxx

σyy

τxy

⎫
⎪⎬
⎪⎭

=

⎡
⎢⎣

C11 C12 0

C12 C11 0

0 0 C44

⎤
⎥⎦

⎧
⎪⎨
⎪⎩

εxx

εyy

γxy

⎫
⎪⎬
⎪⎭

+

⎡
⎢⎣

0 0 C12

0 0 C12

0 0 0

⎤
⎥⎦

⎧
⎪⎨
⎪⎩

γxz

γyz

εzz

⎫
⎪⎬
⎪⎭

,

(13)⎧
⎪⎨
⎪⎩

τxz

τyz

σzz

⎫
⎪⎬
⎪⎭

=

⎡
⎢⎣

0 0 0

0 0 0

C12 C12 0

⎤
⎥⎦

⎧
⎪⎨
⎪⎩

εxx

εyy

γxy

⎫
⎪⎬
⎪⎭

+

⎡
⎢⎣

C44 0 0

0 C44 0

0 0 C33

⎤
⎥⎦

⎧
⎪⎨
⎪⎩

γxz

γyz

εzz

⎫
⎪⎬
⎪⎭

.

The computation of the elastic constants Cij depends on which assumption of εzz we consider. If εzz = 0, then Cij are
the plane-stress reduced elastic constants:

C11 =
E

1 − ν2
; C12 = ν

E

1 − ν2
; C44 = G; C33 = 0, (14)

where E is the modulus of elasticity, ν is the Poisson’s ratio, and G is the shear modulus G = E
2(1+ν) .

It is interesting to note that the present theory does not require the use of shear-correction factors, as would be the case
of the first-order shear deformation theory (FSDT).

If εzz �= 0 (thickness stretching), then the elastic coefficients Cij are those of the three-dimensional stress state, given
by

C11 =
E(1 − ν2)

1 − 3ν2 − 2ν3
, C12 =

E(ν + ν2)

1 − 3ν2 − 2ν3
, (15)

C44 = G, C33 =
E(1 − ν2)

1 − 3ν2 − 2ν3
. (16)

3.4 Governing equations and boundary conditions

The governing equations of present theory are derived from the dynamic version of the Principle of Virtual Displacements
(also known as Hamilton’s Principle). It states that:

δU + δV = δK, (17)

where δU is the virtual strain energy, δV is the virtual work done by applied forces, and δK is the virtual kinetic energy.
The internal virtual work is

δU =

∫

Ω0

{ h/2∫

−h/2

[
σxx

(
δε(0)xx + zδε(1)xx + sinh

( πz

h

)
δε(Z)

xx

)
+ σyy

(
δε(0)yy + zδε(1)yy + sinh

(πz

h

)
δε(Z)

yy

)

+ σxy

(
δγ(0)

xy + zδγ(1)
xy + sinh

( πz

h

)
δγ(Z)

xy

)

+ σxz

(
δγ(0)

xz + zδγ(1)
xz + z2δγ(2)

xz +
π

h
cosh

( πz

h

)
δγ(Z)

xz

)

+ σyz

(
δγ(0)

yz + zδγ(1)
yz + z2δγ(2)

yz +
π

h
cosh

( πz

h

)
δγ(Z)

yz

)
+ σzz

(
δε(0)zz + zδε(1)zz

) ]
dz

}
dx dy, (18)

δU =

∫

Ω0

(
Nxxδε(0)xx + Mxxδε(1)xx + RZ

xxδε(Z)
xx + Nyyδε(0)yy + Myyδε

(1)
yy + RZ

yyδε
(Z)
yy

+ Nxyδγ
(0)
xy + Mxyδγ

(1)
xy + RZ

xyδγ(Z)
xy

+ Qxzδγ
(0)
xz + Mxzδγ

(1)
xz + R2

xzδγ
(2)
xz + RZ

xzδγ
(Z)
xz

+ Qyzδγ
(0)
yz + Myzδγ

(1)
yz + R2

yzδγ
(2)
yz + RZ

yzδγ
(Z)
yz + Qzzδε

(0)
zz + Mzzδε

(1)
zz

)
dx dy, (19)
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where Ω0 is the integration domain on plane (x, y) and

⎧
⎪⎨
⎪⎩

Nxx

Nyy

Nxy

⎫
⎪⎬
⎪⎭

=

h/2∫

−h/2

⎧
⎪⎨
⎪⎩

σxx

σyy

σxy

⎫
⎪⎬
⎪⎭

dz,

⎧
⎪⎨
⎪⎩

Qxz

Qyz

Qzz

⎫
⎪⎬
⎪⎭

=

h/2∫

−h/2

⎧
⎪⎨
⎪⎩

σxz

σyz

σzz

⎫
⎪⎬
⎪⎭

dz, (20)

⎧
⎪⎨
⎪⎩

Mxx

Myy

Mxy

⎫
⎪⎬
⎪⎭

=

h/2∫

−h/2

z

⎧
⎪⎨
⎪⎩

σxx

σyy

σxy

⎫
⎪⎬
⎪⎭

dz,

⎧
⎪⎨
⎪⎩

Mxz

Myz

Mzz

⎫
⎪⎬
⎪⎭

=

h/2∫

−h/2

z

⎧
⎪⎨
⎪⎩

σxz

σyz

σzz

⎫
⎪⎬
⎪⎭

dz, (21)

⎧
⎪⎨
⎪⎩

RZ
xx

RZ
yy

RZ
xy

⎫
⎪⎬
⎪⎭

=

h/2∫

−h/2

sinh
(πz

h

)
⎧
⎪⎨
⎪⎩

σxx

σyy

σxy

⎫
⎪⎬
⎪⎭

dz,

{
RZ

xz

RZ
yz

}
=

h/2∫

−h/2

π

h
cosh

(πz

h

){ σxz

σyz

}
dz, (22)

{
R2

xz

R2
yz

}
=

h/2∫

−h/2

z2

{
σxz

σyz

}
dz. (23)

The external virtual work due to external loads applied to the plate is given as:

δV = −
∫

Ω0

(
pxδu + pyδv + pzδw

)
dx dy

= −
∫

Ω0

(
px

(
δu0 + zδu1 + sinh

( πz

h

)
δuZ

)
+ py

(
δv0 + zδv1 + sinh

(πz

h

)
δvZ

)

+ pz

(
δw0 + zδw1 + z2δw2

) )
dx dy. (24)

The external virtual work due to in-plane forces and shear forces applied to the plate is given as:

δV = −
∫

Ω0

[
N̄xx

∂w0

∂x

δ∂w0

∂x
+ N̄xy

∂w0

∂y

δ∂w0

∂x
+ N̄yx

∂w0

∂x

δ∂w0

∂y
+ N̄yy

∂w0

∂y

δ∂w0

∂y

]
dx dy (25)

being N̄xx and N̄yy the in-plane loads perpendicular to the edges x = 0 and y = 0, respectively, and N̄xy and N̄yx the
distributed shear forces parallel to the edges x = 0 and y = 0, respectively.

The virtual kinetic energy is given as:

δK =

∫

Ω0

⎧
⎪⎨
⎪⎩

h/2∫

−h/2

ρ (u̇δu̇ + v̇δv̇ + ẇδẇ) dz

⎫
⎪⎬
⎪⎭

dx dy

=

∫

Ω0

[
I0 (u̇0δu̇0 + v̇0δv̇0 + ẇ0δẇ0)

+ I1 (u̇0δu̇1 + u̇1δu̇0 + v̇0δv̇1 + v̇1δv̇0 + ẇ0δẇ1 + ẇ1δẇ0)

+ I2 (u̇1δu̇1 + v̇1δv̇1 + ẇ0δẇ2 + ẇ1δẇ1 + ẇ2δẇ0)

+ I3 (ẇ1δẇ2 + ẇ2δẇ1) + I4ẇ2δẇ2

+ I5 (u̇0δu̇Z + u̇Zδu̇0 + v̇0δv̇Z + v̇Zδv̇0)

+ I6 (u̇Zδu̇Z + v̇Zδv̇Z)

+ I7 (u̇1δu̇Z + u̇Zδu̇1 + v̇Zδv̇1 + v̇1δv̇Z)
]
dx dy, (26)
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where the dots denote the derivative with respect to time t and the inertia terms are defined as

Ii =

h/2∫

−h/2

ρzidz i = 0, 1, 2, 3, 4 , (27)

I5 =

h/2∫

−h/2

ρ sinh
(πz

h

)
dz; I6 =

h/2∫

−h/2

ρ sinh2
(πz

h

)
dz; I7 =

h/2∫

−h/2

ρz sinh
( πz

h

)
dz. (28)

Substituting δU , δV , and δK in the virtual work statement (17), integrating by parts with respect to x, y, and t and
collecting the coefficients of δu0, δu1, δuZ , δv0, δv1, δvZ , δw0, δw1, δw2, the following governing equations are obtained:

δu0 : − ∂Nxx

∂x
− ∂Nxy

∂y
= I0ü0 + I1ü1 + I5üZ + px,

δv0 : − ∂Nxy

∂x
− ∂Nyy

∂y
= I0v̈0 + I1v̈1 + I5v̈Z + py,

δw0 : − ∂Qxz

∂x
− ∂Qyz

∂y
+ N̄xx

∂2w0

∂x2
+ N̄xy

∂2w0

∂y∂x
+ N̄yx

∂2w0

∂x∂y

+ N̄yy
∂2w0

∂y2
= I0ẅ0 + I1ẅ1 + I2ẅ2 + pz,

δu1 : − ∂Mxx

∂x
− ∂Mxy

∂y
+ Qxz = I1ü0 + I2ü1 + I7üZ + zpx,

δv1 : − ∂Mxy

∂x
− ∂Myy

∂y
+ Qyz = I1v̈0 + I2v̈1 + I7v̈Z + zpy,

δw1 : − ∂Mxz

∂x
− ∂Myz

∂y
+ Qzz = I1ẅ0 + I2ẅ1 + I3ẅ2 + zpz,

δuZ : − ∂RZ
xx

∂x
− ∂RZ

xy

∂y
+ RZ

xz = I5ü0 + I7ü1 + I6üZ + sinh
( πz

h

)
px,

δvZ : −
∂RZ

xy

∂x
−

∂RZ
yy

∂y
+ RZ

yz = I5v̈0 + I7v̈1 + I6v̈Z + sinh
(πz

h

)
py,

δw2 : − ∂R2
xz

∂x
−

∂R2
yz

∂y
+ 2Mzz = I2ẅ0 + I3ẅ1 + I4ẅ2 + z2pz. (29)

The mechanical boundary conditions are:

δu0 : nxNxx + nyNxy = nxN̄xx + nyN̄xy,

δv0 : nxNxy + nyNyy = nxN̄xy + nyN̄yy,

δw0 : nxQxz + nyQyz = nxQ̄xz + nyQ̄yz,

δu1 : nxMxx + nyMxy = nxM̄xx + nyM̄xy,

δv1 : nxMxy + nyMyy = nxM̄xy + nyM̄yy (30)

δw1 : nxMxz + nyMyz = nxM̄xz + nyM̄yz,

δuZ : nxRZ
xx + nyRZ

xy = nxR̄Z
xx + nyR̄

Z
xy,

δvZ : nxRZ
xy + nyRZ

yy = nxR̄Z
xy + nyR̄

Z
yy,

δw2 : nxR2
xz + nyR2

yz = nxR̄2
xz + nyR̄

2
yz,

where (nx, ny) denotes the unit normal-to-boundary vector.
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4 Governing equations and boundary conditions in the framework of
Unified Formulation

The governing equations and the boundary conditions are automatically obtained by the Carrera’s Unified Formulation
(CUF). Readers should consult [49, 50] for details.

In the CUF formulation we consider NL virtual (mathematical) layers of constant thickness, each containing a homoge-
nized modulus of elasticity, Ek, and a homogenized Poisson’s ratio, νk. The volume fraction of the ceramic phase is defined
for each layer k according to (2) and the elastic properties Ek and νk are computed considering the law-of-mixtures:

Ek(z) = EmVm + EcVc; νk(z) = νmVm + νcVc. (31)

4.1 Strains

Stresses and strains are separated into in-plane and normal components, denoted respectively by the subscripts p and n. The
mechanical strains in the kth layer can be related to the displacement field uk = {uk

x, uk
y, uk

z} via the geometrical relations:

εk
pG = [εxx, εyy, γxy]

kT = Dk(nl)
p uk , (32)

εk
nG = [γxz, γyz, εzz]

kT = (Dk
np + Dk

nz) uk ,

wherein the differential operator arrays are defined as follows:

Dk(nl)
p =

⎡
⎢⎣

∂x 0 ∂2
x/2

0 ∂y ∂2
y/2

∂y ∂x ∂x∂y

⎤
⎥⎦ , Dk

np =

⎡
⎢⎣

0 0 ∂x

0 0 ∂y

0 0 0

⎤
⎥⎦ , Dk

nz =

⎡
⎢⎣

∂z 0 0

0 ∂z 0

0 0 ∂z

⎤
⎥⎦ . (33)

Although one needs to account for the nonliner contributions for the buckling analysis, we can use the linear version
of CUF as the non-linear terms will only influence the equation refering to δw0. In fact, the compressive in-plane forces

and distributed shear forces only actuate on the mid-plane (z = 0) and the nonlinear terms are reduced to 1
2

(
∂w0

∂x

)2

,

1
2

(
∂w0

∂y

)2

, and ∂w0

∂x
∂w0

∂y . So we use

Dk
p =

⎡
⎢⎣

∂x 0 0

0 ∂y 0

∂y ∂x 0

⎤
⎥⎦ (34)

instead of D
k(nl)
p and just add the terms in referred equation.

4.2 Elastic stress-strain relations

The 3D constitutive equations in each layer k are given as:

σk
pC = Ck

pp εk
pG + Ck

pn εk
nG,

(35)

σk
nC = Ck

np εk
pG + Ck

nn εk
nG

with

Ck
pp =

⎡
⎢⎣

C11 C12 0

C12 C11 0

0 0 C44

⎤
⎥⎦ , Ck

pn =

⎡
⎢⎣

0 0 C12

0 0 C12

0 0 0

⎤
⎥⎦ ,

(36)

Ck
np =

⎡
⎢⎣

0 0 0

0 0 0

C12 C12 0

⎤
⎥⎦ , Ck

nn =

⎡
⎢⎣

C44 0 0

0 C44 0

0 0 C33

⎤
⎥⎦ .

These are the reduced matrices for isotropic or functionally graded materials only.
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The computation of the elastic constants Ck
ij depends on which assumption of εzz we consider. If εzz = 0, then Ck

ij are
the plane-stress reduced elastic constants:

Ck
11 =

Ek

1 − (νk)2
, Ck

12 = νk Ek

1 − (νk)2
, Ck

44 = Gk, Ck
33 = 0, (37)

where Ek is the modulus of elasticity, νk is the Poisson’s ratio, and Gk is the shear modulus Gk = Ek

2(1+νk)
for each layer.

If εzz �= 0 (thickness stretching), then Ck
ij are the three-dimensional elastic constants, given by

Ck
11 = Ck

33 =
Ek(1 − (νk)2)

1 − 3(νk)2 − 2(νk)3
, Ck

12 =
Ek(νk + (νk)2)

1 − 3(νk)2 − 2(νk)3
, Ck

44 = Gk. (38)

Substituting in the equilibrium equations (28) and performing the products, one obtains the following governing equa-
tions of the buckling problem:

δu0 : −∂xNxx − ∂yNxy = 0,

δv0 : −∂xNxy − ∂yNyy = 0,

δw0 : −∂xQxz − ∂yQyz + N̄xx
∂2w0

∂x2
+ 2N̄xy

∂2w0

∂x∂y
+ N̄yy

∂2w0

∂y2
= 0,

δu1 : −∂xMxx − ∂yMxy + Qxz = 0,

δv1 : −∂xMxy − ∂yMyy + Qyz = 0, (39)

δw1 : −∂xMxz − ∂yMyz + Qzz = 0,

δuZ : −∂xRZ
xx − ∂yRZ

xy + RZ
xz = 0,

δvZ : −∂xRZ
xy − ∂yRZ

yy + RZ
yz = 0,

δw2 : −∂xR2
xz − ∂yR2

yz + 2M2
zz = 0,

and the mechanical boundary conditions are as in (30).

4.3 Governing equations in terms of displacements

In order to discretize the governing equations by radial basis functions, we present in the following the explicit terms of the
equations of motion and the boundary conditions in terms of the generalized displacements.

δu0 : −
(

G11
∂2uZ

∂x2
+ G66

∂2uZ

∂y2

)
− (G12 + G66)

∂2vZ

∂x∂y
−
(

A11
∂2u0

∂x2
+ A66

∂2u0

∂y2

)

− (A12 + A66)
∂2v0

∂x∂y
−
(

B11
∂2u1

∂x2
+ B66

∂2u1

∂y2

)
− (B12 + B66)

∂2v1

∂x∂y

− A13
∂w1

∂x
− 2B13

∂w2

∂x
= 0, (40)

δu1 :

(
−D11

∂2u1

∂x2
+ A55u1 − D66

∂2u1

∂y2

)
+

(
H55uZ + N11

∂2uZ

∂x2
+ N66

∂2uZ

∂y2

)

+ (N12 + N66)
∂2vZ

∂x∂y
−
(

B11
∂2u0

∂x2
+ B66

∂2u0

∂y2

)
− (B12 + B66)

∂2v0

∂x∂y

− (D12 + D66)
∂2v1

∂x∂y
+ (B55 − B13)

∂w1

∂x
+ (D55 − 2D13)

∂w2

∂x
+ A55

∂w0

∂x
= 0, (41)
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δuZ : −
(

G11
∂2u0

∂x2
+ G66

∂2u0

∂y2

)
+ (O55 − G55 − G13)

∂w1

∂x

+

(
H55u1 + N11

∂2u1

∂x2
+ N66

∂2u1

∂y2

)
− (G12 + G66)

∂2v0

∂x∂y

+

(
−J11

∂2uZ

∂x2
+ R55uZ − J66

∂2uZ

∂y2

)
+ (P55 + 2N55 + 2N13)

∂w2

∂x

+ (N12 + N66)
∂2v1

∂x∂y
− (J12 + J66)

∂2vZ

∂x∂y
+ H55

∂w0

∂x
= 0, (42)

δv0 : − (G12 + G66)
∂2uZ

∂x∂y
−
(

G22
∂2vZ

∂y2
+ G66

∂2vZ

∂x2

)
− (A12 + A66)

∂2u0

∂x∂y

−
(

A22
∂2v0

∂y2
+ A66

∂2v0

∂x2

)
− (B12 + B66)

∂2u1

∂x∂y
−
(

B22
∂2v1

∂y2
+ B66

∂2v1

∂x2

)

− A23
∂w1

∂y
− 2B23

∂w2

∂y
= 0, (43)

δv1 :

(
−D22

∂2v1

∂y2
+ A44v1 − D66

∂2v1

∂x2

)

+

(
H44vZ + N22

∂2vZ

∂y2
+ N66

∂2vZ

∂x2

)
+ (N12 + N66)

∂2uZ

∂x∂y

− (B12 + B66)
∂2u0

∂x∂y
− (D12 + D66)

∂2u1

∂x∂y
−
(

B22
∂2v0

∂y2
+ B66

∂2v0

∂x2

)

+ (B44 − B23)
∂w1

∂y
+ (D44 − 2D23)

∂w2

∂y
+ A44

∂w0

∂y
= 0, (44)

δvZ : − (G12 + G66)
∂2u0

∂x∂y
+ (O44 − G44 − G23)

∂w1

∂y

+

(
H44v1 + N22

∂2v1

∂y2
+ N66

∂2v1

∂x2

)
−
(

G22
∂2v0

∂y2
+ G66

∂2v0

∂x2

)

+

(
−J22

∂2vZ

∂y2
+ R44vZ − J66

∂2vZ

∂x2

)
+ (P44 + 2N44 + 2N23)

∂w2

∂y

+ (N12 + N66)
∂2u1

∂x∂y
− (J12 + J66)

∂2uZ

∂x∂y
+ H44

∂w0

∂y
= 0, (45)

δw0 : −
(

A55
∂2w0

∂x2
+ A44

∂2w0

∂y2

)
−
(

B55
∂2w1

∂x2
+ B44

∂2w1

∂y2

)

−
(

D55
∂2w2

∂x2
+ D44

∂2w2

∂y2

)
− H55

∂uZ

∂x
− H44

∂vZ

∂y
− A55

∂u1

∂x
− A44

∂v1

∂y

+ N̄xx
∂2w0

∂x2
+ 2N̄xy

∂2w0

∂x∂y
+ N̄yy

∂2w0

∂y2
= 0, (46)

δw1 :

(
−E55

∂2w2

∂x2
+ 2B33w2 − E44

∂2w2

∂y2

)
+ (−O55 + G55 + G13)

∂uZ

∂x

+ (−O44 + G44 + G23)
∂vZ

∂y
+

(
−D55

∂2w1

∂x2
+ A33w1 − D44

∂2w1

∂y2

)
+ (B13 − B55)

∂u1

∂x

+ (B23 − B44)
∂v1

∂y
−
(

B55
∂2w0

∂x2
+ B44

∂2w0

∂y2

)
+ A13

∂u0

∂x
+ A23

∂v0

∂y
= 0, (47)
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δw2 :

(
−E55

∂2w1

∂x2
+ 2B33w1 − E44

∂2w1

∂y2

)
+

(
−F55

∂2w2

∂x2
+ 4D33w2 − F44

∂2w2

∂y2

)

− (P55 + 2N55 + 2N13)
∂uZ

∂x
− (P44 + 2N44 + 2N23)

∂vZ

∂y
+ (2D13 − D55)

∂u1

∂x

+ (2D23 − D44)
∂v1

∂y
−
(

D55
∂2w0

∂x2
+ D44

∂2w0

∂y2

)
+ 2B13

∂u0

∂x
+ 2B23

∂v0

∂y
= 0. (48)

Being Nl the number of mathematical layers across the thickness direction, the stiffness components can be computed
as follows.

Aij =

Nl∑

k=1

C
(k)
ij (zk+1 − zk) Bij =

1

2

Nl∑

k=1

C
(k)
ij

(
z2

k+1 − z2
k

)
,

Dij =
1

3

Nl∑

k=1

C
(k)
ij

(
z3

k+1 − z3
k

)
Eij =

1

4

Nl∑

k=1

C
(k)
ij

(
z4

k+1 − z4
k

)
,

Fij =
1

5

Nl∑

k=1

C
(k)
ij

(
z5

k+1 − z5
k

)
,

Gij =

Nl∑

k=1

C
(k)
ij

hk

π

[
cosh

(
πzk+1

hk

)
− cosh

(
πzk

hk

)]
,

Hij =

Nl∑

k=1

C
(k)
ij

[
sinh

(
πzk+1

hk

)
− sinh

(
πzk

hk

)]
,

Jij =

Nl∑

k=1

C
(k)
ij

[
hk

4π

[
sinh

(
2πzk+1

hk

)
− sinh

(
2πzk

hk

)]
− 1

2
(zk+1 − zk)

]
,

Nij =

Nl∑

k=1

C
(k)
ij

[(
hk

π

)2 (
sinh

(
πzk+1

hk

)
− sinh

(
πzk

hk

))
(49)

− hk

π

(
zk+1 cosh

(
πzk+1

hk

)
− zk cosh

(
πzk

hk

))]
,

Oij =

Nl∑

k=1

C
(k)
ij

[
zk+1 sinh

(
πzk+1

hk

)
− zk sinh

(
πzk

hk

)]
,

Pij =

Nl∑

k=1

C
(k)
ij

[
z2

k+1 sinh

(
πzk+1

hk

)
− z2

k sinh

(
πzk

hk

)]
,

Rij =

Nl∑

k=1

C
(k)
ij

[
π

4hk

[
sinh

(
2πzk+1

hk

)
− sinh

(
2πzk

hk

)]
+

1

2

(
π

hk

)2

(zk+1 − zk)

]
,

where hk is the thickness of each layer and zk, zk+1 are the lower and upper z coordinate for each layer k.

4.4 Natural boundary conditions

This meshless method based on collocation with radial basis functions needs the imposition of essential (e.g. w = 0) and
mechanical (e.g. Mxx = 0) boundary conditions. Assuming a rectangular plate (for the sake of simplicity) Eqs. (39) are
expressed as follows.

Given the number of degrees of freedom, at each boundary point at edges x = min or x = max we impose:
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Mxxu0 = 2B13w2 + A13w1 + A11
∂u0

∂x
+ A12

∂v0

∂y
+ B11

∂u1

∂x
+ B12

∂v1

∂y
+ G11

∂uZ

∂x
+ G12

∂vZ

∂y
, (50)

Mxxu1 = −N11
∂uZ

∂x
+ 2D13w2 + B13w1 − N12

∂vZ

∂y
+ B11

∂u0

∂x
+ D11

∂u1

∂x
+ B12

∂v0

∂y
+ D12

∂v1

∂y
, (51)

MxxuZ = −2N13w2 − N11
∂u1

∂x
− N12

∂v1

∂y
+ J11

∂uZ

∂x
+ J12

∂vZ

∂y
+ G13w1 + G11

∂u0

∂x
+ G12

∂v0

∂y
, (52)

Mxxv0 = A66
∂u0

∂y
+ A66

∂v0

∂x
+ B66

∂u1

∂y
+ B66

∂v1

∂x
+ G66

∂uZ

∂y
+ G66

∂vZ

∂x
, (53)

Mxxv1 = −N66
∂uZ

∂y
− N66

∂vZ

∂x
+ B66

∂u0

∂y
+ D66

∂u1

∂y
+ B66

∂v0

∂x
+ D66

∂v1

∂x
, (54)

MxxvZ = −N66
∂u1

∂y
− N66

∂v1

∂x
+ J66

∂uZ

∂y
+ J66

∂vZ

∂x
+ G66

∂u0

∂y
+ G66

∂v0

∂x
, (55)

Mxxw0 = H55uZ + A55u1 + A55
∂w0

∂x
+ B55

∂w1

∂x
+ D55

∂w2

∂x
, (56)

Mxxw1 = B55u1 + (O55 − G55)uZ + B55
∂w0

∂x
+ D55

∂w1

∂x
+ E55

∂w2

∂x
, (57)

Mxxw2 = D55u1 + (P55 + 2N55) uZ + D55
∂w0

∂x
+ E55

∂w1

∂x
+ F55

∂w2

∂x
. (58)

Similarly, given the number of degrees of freedom, at each boundary point at edges y = min or y = max we impose:

Myyu0 = A66
∂u0

∂y
+ A66

∂v0

∂x
+ B66

∂u1

∂y
+ B66

∂v1

∂x
+ G66

∂uZ

∂y
+ G66

∂vZ

∂x
, (59)

Myyu1 = −N66
∂uZ

∂y
− N66

∂vZ

∂x
+ B66

∂u0

∂y
+ D66

∂u1

∂y
+ B66

∂v0

∂x
+ D66

∂v1

∂x
, (60)

MyyuZ = −N66
∂u1

∂y
− N66

∂v1

∂x
+ J66

∂uZ

∂y
+ J66

∂vZ

∂x
+ G66

∂u0

∂y
+ G66

∂v0

∂x
, (61)

Myyv0 = A12
∂u0

∂x
+ A22

∂v0

∂y
+ B12

∂u1

∂x
+ B22

∂v1

∂y
+ G12

∂uZ

∂x
+ G22

∂vZ

∂y
, (62)

Myyv1 = −N12
∂uZ

∂x
− N22

∂vZ

∂y
+ B12

∂u0

∂x
+ D12

∂u1

∂x
+ B22

∂v0

∂y
+ D22

∂v1

∂y
, (63)

MyyvZ = −N12
∂u1

∂x
− N22

∂v1

∂y
+ J12

∂uZ

∂x
+ J22

∂vZ

∂y
+ G12

∂u0

∂x
+ G22

∂v0

∂y
, (64)

Myyw0 = H44vZ + A44v1 + A44
∂w0

∂y
+ B44

∂w1

∂y
+ D44

∂w2

∂y
, (65)

Myyw1 = B44v1 + (O44 − G44) vZ + B44
∂w0

∂y
+ D44

∂w1

∂y
+ E44

∂w2

∂y
, (66)

Myyw2 = D44v1 + (P44 + 2N44) vZ + D44
∂w0

∂y
+ E44

∂w1

∂y
+ F44

∂w2

∂y
, (67)

with Aij , Bij , Dij , Eij , Fij , Gij , Hij , Jij , Nij , Oij , Pij , Rij already given in (49).

5 The radial basis function method for buckling problems

The equations of motion and the boundary conditions are discretized by collocation with radial basis functions. Readers
should consult [38–48, 51, 52] for details.

c© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.zamm-journal.org



ZAMM · Z. Angew. Math. Mech. (2012) / www.zamm-journal.org 13

6 Numerical examples

In the next examples the hyperbolic sine plate theory and collocation with RBFs are used for the buckling analysis of simply
supported functionally graded sandwich square plates. The uni- and bi-axial critical buckling loads are analised. The plates
have side lengths a = b, thickness h, and the side-to-thickness ratio is a/h = 10.

The core material of the present sandwich plate is fully ceramic. The bottom skin varies from a metal-rich surface to
a ceramic-rich surface while the top skin face varies from a ceramic-rich surface to a metal-rich surface. The material
properties are Em = 70E0 (aluminum) and Ec = 380E0 (alumina) being E0 = 1GPa. Poisson’s ratio is νm = νc = ν =
0.3 for both aluminum and alumina. The non-dimensional parameter used is

P̄ =
Pa2

100h3E0
.

The chosen RBF is the Wendland with an optimized shape parameter. Readers should consult [16] for details on the
optimization method. All numerical examples consider a Chebyshev grid. A 172 points Chebyshev grid is illustrated in
Fig. 4. For a given number of nodes per side (N ), it is generated by MATLAB code:

x = cos(pi*(0:N)/N)’;
y=x;

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 4 (online colour at: www.zamm-journal.org) Chebyshev grid with
N=17.

91 mathematical layers were considered in order to model the continuous variation of properties across the thickness
direction. A significant number of mathematical layers is needed to ensure correct material properties at each thickness
position.

An initial convergence study with the hyperbolic sine theory was conducted for each buckling load type considerind
grids of 132, 172, and 212 points. The uni-axial case is presented in Table 1 for the 2-1-2 sandwich with p = 0.5 and the
bi-axial case is presented in Table 2 for the 2-2-1 sandwich with p = 10. Further results are obtained by considering a grid
of 172 points.

Table 1 Convergence study for the uni-axial buckling load of a simply supported 2-1-2 sandwich square plate with FGM
skins and p = 0.5 case using the hyperbolic sine theory.

grid 132 172 212

P̄ 7.71678 7.71617 7.71610

Table 2 Convergence study for the bi-axial buckling load of a simply supported 2-2-1 sandwich square plate with FGM
skins and p = 10 case using the hyperbolic sine theory.

grid 132 172 212

P̄ 1.83092 1.83083 1.83081
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The critical buckling loads obtained from the present approach with εzz �= 0 and εzz = 0 are tabulated and compared
with those from Zenkour [22] in Tables 3 and 4 for various power-law exponents p and thickness ratios. Both tables
include results obtained from classical plate theory (CLPT), first-order shear deformation plate theory (FSDT, K = 5/6
as shear correction factor), Reddy’s third-order shear deformation plate theory (TSDPT) [25], and Zenkour’s sinusoidal
shear deformation plate theory (SSDPT) [22]. Table 3 refers to the uni-axial buckling load and Table 4 refers to the bi-axial
buckling load.

Table 3 Uni-axial buckling load of simply supported sandwich square plates with FGM skins using the hyperbolic sine
theory and a grid with 172 points.

p Theory P̄

1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1

0 CLPT 13.73791 13.73791 13.73791 13.73791 13.73791 13.73791

FSDT 13.00449 13.00449 13.00449 13.00449 13.00449 13.00449

TSDPT [25] 13.00495 13.00495 13.00495 13.00495 13.00495 13.00495

SSDPT [22] 13.00606 13.00606 13.00606 13.00606 13.00606 13.00606

present εzz �= 0 12.95304 12.95304 12.95304 12.95304 12.95304 12.95304

present εzz = 0 13.00532 13.00532 13.00532 13.00532 13.00532 13.00532

0.5 CLPT 7.65398 8.25597 8.56223 8.78063 9.18254 9.61525

FSDT 7.33732 7.91320 8.20015 8.41034 8.78673 9.19517

TSDPT [25] 7.36437 7.94084 8.22470 8.43645 8.80997 9.21681

SSDPT [22] 7.36568 7.94195 8.22538 8.43712 8.81037 9.21670

present εzz �= 0 7.16191 7.71617 7.98959 8.19283 8.55184 8.94221

present εzz = 0 7.18707 7.74315 8.01707 8.22141 8.58146 8.97351

1 CLPT 5.33248 6.02733 6.40391 6.68150 7.19663 7.78406

FSDT 5.14236 5.81379 6.17020 6.43892 6.92571 7.48365

TSDPT [25] 5.16713 5.84006 6.19394 6.46474 6.94944 7.50656

SSDPT [22] 5.16846 5.84119 6.19461 6.46539 6.94980 7.50629

present εzz �= 0 5.06123 5.71125 6.05467 6.31501 6.78413 7.32025

present εzz = 0 5.07825 5.73007 6.07357 6.33558 6.80559 7.34408

5 CLPT 2.73080 3.10704 3.48418 3.65732 4.21238 4.85717

FSDT 2.63842 3.02252 3.38538 3.55958 4.09285 4.71475

TSDPT [25] 2.65821 3.04257 3.40351 3.57956 4.11209 4.73469

SSDPT [22] 2.66006 3.04406 3.40449 3.58063 4.11288 4.73488

present εzz �= 0 2.63658 3.00819 3.36256 3.53014 4.05069 4.64707

present εzz = 0 2.64662 3.01870 3.37187 3.54145 4.06157 4.66071

10 CLPT 2.56985 2.80340 3.16427 3.25924 3.79238 4.38221

FSDT 2.46904 2.72626 3.07428 3.17521 3.68890 4.26040

TSDPT [25] 2.48727 2.74632 3.09190 3.19471 3.70752 4.27991

SSDPT [22] 2.48928 2.74844 3.13443 3.19456 3.14574 4.38175

present εzz �= 0 2.47199 2.72089 3.06071 3.15785 3.66166 4.20550

present εzz = 0 2.48179 2.73094 3.06936 3.16842 3.67146 4.21795

There is a good agreement between the present solution and references considered, specially [25] and [22]. This allow
us to conclude that the present hyperbolic plate theory is good for the modeling of simply supported sandwich FGM plates
and that the collocation with RBFs is a good approach. Present results with εzz = 0 approximate better the results of
references [25] and [22] than εzz �= 0 as the authors use the εzz = 0 approach. This study also leads us to conclude that the
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Table 4 Bi-axial buckling load of simply supported sandwich square plates with FGM skins using the hyperbolic sine
theory and a grid with 172 points.

p Theory P̄

1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1

0 CLPT 6.86896 6.86896 6.86896 6.86896 6.86896 6.86896

FSDT 6.50224 6.50224 6.50224 6.50224 6.50224 6.50224

TSDPT [25] 6.50248 6.50248 6.50248 6.50248 6.50248 6.50248

SSDPT [22] 6.50303 6.50303 6.50303 6.50303 6.50303 6.50303

present εzz �= 0 6.47652 6.47652 6.47652 6.47652 6.47652 6.47652

present εzz = 0 6.50266 6.50266 6.50266 6.50266 6.50266 6.50266

0.5 CLPT 3.82699 4.12798 4.28112 4.39032 4.59127 4.80762

FSDT 3.66866 3.95660 4.10007 4.20517 4.39336 4.59758

TSDPT [25] 3.68219 3.97042 4.11235 4.21823 4.40499 4.60841

SSDPT [22] 3.68284 3.97097 4.11269 4.21856 4.40519 4.60835

present εzz �= 0 3.58096 3.85809 3.99480 4.09641 4.27592 4.47110

present εzz = 0 3.59354 3.87157 4.00853 4.11071 4.29073 4.48676

1 CLPT 2.66624 3.01366 3.20195 3.34075 3.59831 3.89203

FSDT 2.57118 2.90690 3.08510 3.21946 3.46286 3.74182

TSDPT [25] 2.58357 2.92003 3.09697 3.23237 3.47472 3.75328

SSDPT [22] 2.58423 2.92060 3.09731 3.23270 3.47490 3.75314

present εzz �= 0 2.53062 2.85563 3.02733 3.15750 3.39207 3.66013

present εzz = 0 2.53913 2.86503 3.03679 3.16779 3.40280 3.67204

5 CLPT 1.36540 1.55352 1.74209 1.82866 2.10619 2.42859

FSDT 1.31921 1.51126 1.69269 1.77979 2.04642 2.35737

TSDPT [25] 1.32910 1.52129 1.70176 1.78978 2.05605 2.36734

SSDPT [22] 1.33003 1.52203 1.70224 1.79032 2.05644 2.36744

present εzz �= 0 1.31829 1.50409 1.68128 1.76507 2.02534 2.32354

present εzz = 0 1.32331 1.50935 1.68594 1.77072 2.03078 2.33036

10 CLPT 1.28493 1.40170 1.58214 1.62962 1.89619 2.19111

FSDT 1.23452 1.36313 1.53714 1.58760 1.84445 2.13020

TSDPT [25] 1.24363 1.37316 1.54595 1.59736 1.85376 2.13995

SSDPT [22] 1.24475 1.37422 1.56721 1.59728 1.57287 2.19087

present εzz �= 0 1.23599 1.36044 1.53036 1.57893 1.83083 2.10275

present εzz = 0 1.24090 1.36547 1.53468 1.58421 1.83573 2.10897

thickness stretching effect has some influence on the buckling analysis of sandwich FGM plates as εzz = 0 gives higher
fundamental buckling loads than εzz �= 0. The last model is globally less stiff due to transverse stretching and for that
reason smaller critical loads are obtained.

The isotropic fully ceramic plate (first line on Tables 3 and 4) has the highest fundamental buckling loads. This may be
explained by the bending stiffness which is the highest for this ceramic case. Considering each column of both tables we
may conclude that the critical buckling loads decrease as the power-law exponent p increases. As the core to plate total
thickness ratio ((h2 − h1)/h) increases the buckling loads increase as well, as can be seen in Tables 3 and 4). From the
comparison of Tables 3 and 4 we conclude that the bi-axial buckling load of any simply supported sandwich square plate
with FGM skins is half the uni-axial one for the same plate.
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In Fig. 5 the first four buckling modes of a simply supported 2-1-1 sandwich square plate with FGM skins, p = 5,
subjected to a uni-axial in-plane compressive load, using the hyperbolic sine theory and a grid with 172 points is presented.
Figure 6 presents the first four buckling modes of a simply supported 1-1-1 sandwich square plate with FGM skins, p = 1,
subjected to a bi-axial in-plane compressive load.
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Fig. 5 First four buckling modes. Uni-axial buckling load of a simply supported 2-1-1 sandwich square plate with FGM
skins, p = 5, a 172 points grid, and using the hyperbolic sine theory.
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Fig. 6 First four buckling modes. Bi-axial buckling load of a simply supported 1-1-1 sandwich square plate with FGM
skins, p = 1, a 172 points grid, and using the hyperbolic sine theory.
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7 Conclusions

A novel application of a unified formulation by a meshless discretization is proposed. A thickness-stretching hyperbolic
sine shear deformation theory was implemented for the buckling analysis of functionally graded sandwich plates.

The present formulation was compared with analytical, meshless or finite element methods and showed very accurate
results. The effect of εzz �= 0 showed to be significant in such sandwich problems.

For the first time, the complete governing equations and boundary conditions of the hyperbolic sine theory are presented
to help readers to implement it successfully with this or other strong-form techniques.
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a b s t r a c t

In this paper, a variation of Murakami’s Zig-Zag theory is proposed for the analysis of functionally graded
plates. The new theory includes a hyperbolic sine term for the in-plane displacements expansion and
accounts for through-the-thickness deformation, by considering a quadratic evolution of the transverse
displacement with the thickness coordinate.

The governing equations and the boundary conditions are obtained by a generalization of Carrera’s Uni-
fied Formulation, and further interpolated by collocation with radial basis functions.

Numerical examples on the static analysis of functionally graded sandwich plates demonstrate the
accuracy of the present approach. The thickness stretching effect on such problems is studied.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The strong difference of mechanical properties between faces
and core in sandwich structures (or layered composites) introduces
a discontinuity of the deformed core-faces planes at the interfaces.
This is known as Zig-Zag (ZZ) effect. Such discontinuities make dif-
ficult the use of classical theories such as Kirchhoff [1] or Reissner–
Mindlin [2,3] type theories (see the books by Zenkert [4], and Vin-
son [5] to trace accurate responses of sandwich structures). Two
possibilities can be used to capture the ZZ effect (see the overviews
by Burton and Noor [6], Noor et al. [7], Altenbach [8], Librescu and
Hause [9], Vinson [10], and Demasi [11]): the so-called layer-wise
models, and a Zig-Zag function (ZZF) in the framework of mixed
multilayered plate theories. An historical review on ZZ theories
has been provided by Carrera [12].

The first alternative can be computational expensive for lami-
nates with large number of layers as the degrees-of-freedom
increase as the number of layers increases. Considering the second
alternative, Murakami [13] proposed a ZZF that is able to repro-
duce the slope discontinuity. Equivalent single layer models with
only displacement unknowns can be developed on the basis of
ZZF. A review of early developments on the application of ZZF
has been provided in the review article by Carrera [14]. The advan-
tages of analyze multilayered anisotropic plate and shells using the

ZZF as well as the Finite Element implementation have been dis-
cussed by Carrera [15]. Further studies on the use of Murakami’s
Zig-Zag function (MZZF) have been documented in [15–17].

The use of alternative methods to the Finite Element Methods
for the analysis of plates, such as the meshless methods based on
radial basis functions (RBFs) is attractive due to the absence of a
mesh and the ease of collocation methods. The use of radial basis
function for the analysis of structures and materials has been pre-
viously studied by numerous authors [18–34].

Carrera’s Unified Formulation (CUF) was proposed in [14,35,36]
for laminated plates and shells and extended to functionally
graded (FG) plates in [37–39]. The present formulation is a gener-
alization of the original CUF in the sense that considers different
displacement fields for in-plane and out-of-plane displacements.

In this paper the application of ZZF to bending analysis of thin
and thick FG sandwich plates is studied. A new displacement the-
ory is used, considering a quadratic variation of the transverse dis-
placements (allowing for through-the-thickness deformations),
and introducing a hyperbolic sine term in the in-plane displace-
ment expansion. This can be seen as a variation of the original
Murakami’s ZZ displacement field. CUF is combined with RBFs for
the static analysis: the principle of virtual displacements is used
under CUF to obtain the governing equations and boundary equa-
tions and these are interpolated by collocation with RBFs.

The paper is organized as follows. The problem we are dealing
with is introduced in Section 2. Then, the state-of-the-art review
on the use of Zig-Zag functions and the displacement field of the
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present shear deformation theory is presented in Section 3. For the
sake of completeness CUF and the radial basis functions collocation
technique for the static analysis of FG plates are briefly reviewed in
Sections 4 and 5, respectively. Numerical examples on the static
analysis of simply supported functionally graded sandwich square
plates are presented and discussed in Section 6. These include the
computation of the displacements and stresses of sandwich plates
with FGM in the core or in the skins, considering several material
power-law exponents, side-to-thickness ratios and skin-core-skin
ratios as well. Final conclusions are presented in Section 7.

2. Problem formulation

Consider a rectangular plate of plan-form dimensions a and b
and uniform thickness h. The co-ordinate system is taken such that
the x-y plane (z = 0) coincides with the midplane of the plate
(z 2 [�h/2,h/2]). The plate is subjected to a transverse mechanical
load applied at the top of the plate.

Two different types of functionally graded sandwich plates are
studied: sandwich plates with FG core and sandwich plates with
FG skins.

In the sandwich plate with FG core the bottom skin is fully me-
tal (isotropic) and the top skin is fully ceramic (isotropic as well).
The core layer is graded from metal to ceramic so that there are
no interfaces between core and skins, as illustrated in Fig. 1. The
volume fraction of the ceramic phase in the core is obtained by
adapting the typical polynomial material law as:

Vc ¼ 0:5þ zc

hc

� �p

ð1Þ

where zc 2 [h1,h2], hc = h2 � h1 is the thickness of the core, and p > 0
is the power-law exponent that defines the gradation of material
properties across the thickness direction as shown in Fig. 3 (left).

In sandwich plates with FG skins the core is fully ceramic (iso-
tropic) and skins are composed of a functionally graded material
across the thickness direction. The bottom skin varies from a me-
tal-rich surface (z = �h/2) to a ceramic-rich surface while the top
skin face varies from a ceramic-rich surface to a metal-rich surface
(z = h/2), as illustrated in Fig. 2. There are no interfaces between
core and skins. The volume fraction of the ceramic phase in the
skins is obtained as:

Vc ¼ z�h0
h1�h0

� �p
; z 2 ½�h=2;h1�

Vc ¼ z�h3
h2�h3

� �p
; z 2 ½h2;h=2�

ð2Þ

where p P 0 is a scalar parameter that allows the user to define grada-
tion of material properties across the thickness direction of the skins.
The p = 0 case corresponds to the (isotropic) fully ceramic plate.

The sandwich plate with FG skins may be symmetric or non-
symmetric about the mid-plane as we may vary the thickness of
each face. Fig. 3 (right) shows a non-symmetric sandwich with vol-
ume fraction defined by the power-law (2) for various exponents p,
in which top skin thickness is the same as the core thickness and
the bottom skin thickness is twice the core thickness. Such thick-
ness relation is denoted as 2-1-1. A bottom-core-top notation is

Nomenclature

CUF Carrera’s Unified Formulation
FG Functionally graded
FGM Functionally graded material
FSDT First-order shear deformation theory
MZZF Murakami’s Zig-Zag function
PDE Partial differential equations

PVD Principle of virtual displacements
RBF Radial basis function
SSSS Simply-supported
ZZ Zig-Zag
ZZF Zig-Zag function

Fig. 1. Sandwich plate with FG core and isotropic skins.

Fig. 2. Sandwich plate with isotropic core and FG skins.
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being used. 1-1-1 means that skins and core have the same
thickness.

In both sandwich plates the volume fraction for the metal phase
is given as Vm = 1 � Vc.

3. A new hyperbolic sine ZZF theory

3.1. The Zig-Zag function

The Murakami’s Zig-Zag function Z(z) dependes on the adimen-
sioned layer coordinate, fk, according to the following formula:

ZðzÞ ¼ ð�1Þkfz ð3Þ

fk is defined as fk ¼ 2zk
hk

where zk is the layer thickness coordinate

and hk is the thickness of the kth layer.
Z(z) has the following properties:

(1) It is a piece-wise linear function of layer coordinates zk.
(2) Z(z) has unit amplitude for the whole layers.
(3) The slope Z0ðzÞ ¼ dZ

dz assumes opposite sign between two-
adjacent layers. Its amplitude is layer thickness
independent.

3.2. Overview on Murakami’s Zig-Zag theories

In 1986, a refinement of FSDT by inclusion of ZZ effects and
transverse normal strains was introduced in Murakami’s original
ZZF [13], defined by the following displacement field:

u ¼ u0 þ zu1 þ ð�1Þk 2
hk

z� 1
2 zk þ zkþ1ð Þ

� �
uZ

v ¼ v0 þ zv1 þ ð�1Þk 2
hk

z� 1
2 zk þ zkþ1ð Þ

� �
vZ

w ¼ w0 þ zw1 þ ð�1Þk 2
hk

z� 1
2 zk þ zkþ1ð Þ

� �
wZ

8>>><>>>: ð4Þ

where u and v are the in-plane displacements and w is the trans-
verse displacement. The involved unknows are u0, u1, uZ, v0, v1, vZ,
w0, w1, and wZ: u0, v0 and w0 are translations of a point at the mid-
plane; u1, v1 and w1 are rotations as in the typical FSDT; and the
additional degrees of freedom uZ, vZ and wZ have a meaning of dis-
placement. zk, zk+1 are the bottom and top z-coordinates at each
layer.

More recently, another possible FSDT theory has been investi-
gated by Carrera [15] and Demasi [16], ignoring the through-the-
thickness deformations:

u ¼ u0 þ zu1 þ ð�1Þk 2
hk

z� 1
2 zk þ zkþ1ð Þ

� �
uZ

v ¼ v0 þ zv1 þ ð�1Þk 2
hk

z� 1
2 zk þ zkþ1ð Þ

� �
vZ

w ¼ w0

8>><>>: ð5Þ

with u0, u1, uZ, v0, v1, vZ, w0, zk, and zk+1 as before.
Ferreira et al. [40] and Rodrigues et al. [41] used a ZZF theory

involving the following expansion of displacements

u ¼ u0 þ zu1 þ ð�1Þk 2
hk

z� 1
2 zk þ zkþ1ð Þ

� �
uZ

v ¼ v0 þ zv1 þ ð�1Þk 2
hk

z� 1
2 zk þ zkþ1ð Þ

� �
vZ

w ¼ w0 þ zw1 þ z2w2

8>><>>: ð6Þ

This represents a variation of the Murakami’s original theory, allow-
ing for a quadratic evolution of the transverse displacement across
the thickness direction. Furthermore, Ferreira et al. [42] used two
higher order ZZF theories allowing for a quadratic evolution of the
transverse displacement across the thickness direction as well and
involving the following displacement fields:

u ¼ u0 þ zu1 þ z3u3 þ ð�1Þk 2
hk

z� 1
2 zk þ zkþ1ð Þ

� �
uZ

v ¼ v0 þ zv1 þ z3v3 þ ð�1Þk 2
hk

z� 1
2 zk þ zkþ1ð Þ

� �
vZ

w ¼ w0 þ zw1 þ z2w2

8>><>>: ð7Þ

u ¼ u0 þ zu1 þ sin pz
h

� �
u3 þ ð�1Þk 2

hk
z� 1

2 zk þ zkþ1ð Þ
� �

uZ

v ¼ v0 þ zv1 þ sin pz
h

� �
v3 þ ð�1Þk 2

hk
z� 1

2 zk þ zkþ1ð Þ
� �

vZ

w ¼ w0 þ zw1 þ z2w2

8>><>>: ð8Þ

In Eqs. (7) and (8), w2 denote higher-order translations and u3 and
v3 denote rotations. u0, v0, w0, u1, v1, w1, uz, and vz, are as in (4)–(6).

3.3. The hyperbolic sine ZZF shear deformation theory

All previous cited work using ZZ functions deals with laminated
plates or shells. In the present work a new hyperbolic sine ZZF the-
ory is introduced for the analysis of functionally graded sandwich
plates. The choice of the new displacement field is based on previ-
ous work by the authors and the role of the Zig-Zag effect on sand-
wich structures. The authors have sucessfuly used a hyperbolic
sine quasi-3D shear deformation theory accounting for thickness
stretching without the Zig-Zag effect in the study of functionally
graded plates [43]. The present theory adds the terms to consider
the Zig-Zag effect. The present theory is based on the following dis-
placement field:

u ¼ u0 þ zu1 þ sinh pz
h

� �
u3 þ ð�1Þk 2

hk
z� 1

2 zk þ zkþ1ð Þ
� �

uZ

v ¼ v0 þ zv1 þ sinh pz
h

� �
v3 þ ð�1Þk 2

hk
z� 1

2 zk þ zkþ1ð Þ
� �

vZ

w ¼ w0 þ zw1 þ z2w2

8>><>>: ð9Þ
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Fig. 3. Effect of the power-law exponent in a sandwich plate with FG core (left) and in a 2-1-1 sandwich plate with FG skins (right).

Fig. 4. Scheme of the expansions involved in the displacement field.
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The involved unknowns have the same meaning as in equations (7)
and (8). The expansion of the degrees of freedom u0, u1, u3, v0, v1, v3,
w0, w1, and w2 are functions of the thickness coordinate only. These
are layer-independent, unlike those of uZ and vZ, as illustrated in
Figs. 4 and 5. Fig. 4 shows the meaning of the unknows in the in-
plane displacements expansion in present theory: u0, v0 (transla-
tions), u1, v1 (rotations), u3 and v3 (rotations). In Fig. 5 one can visu-
alize that this ZZF correspondence to a rotation per layer.

4. The Unified Formulation for the static analysis of FG
sandwich plates

In this section it is shown how to obtain the fundamental nuclei
under CUF, which allows the derivation of the governing equations
and boundary conditions for FG plates.

4.1. Functionally graded materials

A conventional FG plate considers a continuous variation of
material properties over the thickness direction by mixing two dif-
ferent materials [44]. The material properties of the FG plate are
assumed to change continuously throughout the thickness of the
plate, according to the volume fraction of the constituent materi-
als. Although one can use CUF for one-layer, isotropic plate, we
consider a multi-layered plate. In fact, the sandwiches in study
present three physical layers, kp = 1, 2, 3, each containing a differ-
ent displacement field. Nevertheless, we are dealing with function-
ally graded materials and becomes mandatory to model the
continuos variation of properties across the thickness direction. A
considerable number of layers is needed to ensure correct compu-
tation of material properties at each thickness position, and for
that reason we consider Nl = 91 virtual (mathematical) layers of
constant thickness. In the following, kp refers to physical layers
and k = 1, . . ., 91 refers to virtual layers.

The CUF procedure applied to FG materials starts by evaluating
the volume fraction of the two constituents for each layer. Then, a
homogenization technique is employed to find the values of the
modulus of elasticity, Ek, and Poisson’s ratio, mk, of each layer.

To describe the volume fractions an exponential function can be
used as in [45], or the sigmoid function as proposed in [46]. In the
present work a power-law function is used as most researchers do
[47–50]. In the typical FG plate the power-law function defines the
volume fraction of the ceramic phase as:

Vc ¼ 0:5þ z
h

� �p

ð10Þ

where z 2 [�h/2,h/2], h is the thickness of the plate, and p is a scalar
parameter that allows the user to define gradation of material prop-
erties across the thickness direction. In both sandwich plates, the
volume fraction of the ceramic phase of the FG layers are obtained
by adapting the typical power-law. Furthermore, we need to com-
pute the volume fraction for each layer. In the sandwich plate with
FG core case, (1) becomes:

Vk
c ¼ 0; in the bottom skin

Vk
c ¼ 0:5þ ~zc

hc

� �p
; in the core

Vk
c ¼ 1; in the top skin

8>>><>>>: ð11Þ

where ~zc is the thickness coordinate of a point of each (virtual) core
layer, and hc and p are as in (1).

Considering (2), for the sandwich plate with FG skins case one
has:

Vk
c ¼

~z�h0
h1�h0

� �p
; in the bottom skin

Vk
c ¼ 1; in the core

Vk
c ¼

~z�h3
h2�h3

� �p
; in the top skin

8>>>><>>>>: ð12Þ

where ~z is the thickness coordinate of a point of each (virtual) skin
layer.

At this step, a homogenization procedure is used. The one con-
sidered in present work is the law-of-mixtures, the same used by
the referenced authors, which states that:

EkðzÞ ¼ EmVm þ EcVc; mkðzÞ ¼ mmVm þ mcVc ð13Þ

Other homogeneization procedures could be used, for example the
Mori–Tanaka one [51,52].

4.2. Modeling of the displacement components

According to the Unified Formulation by Carrera, the three dis-
placement components ux, uy(=v) and uz(=w) and their relative
variations are modeled as:

ðux;uy;uzÞ ¼ Fs ðuxs;uys;uzsÞ
ðdux; duy; duzÞ ¼ Fs ðduxs; duys; duzsÞ ð14Þ

Resorting to the displacement field in Eq. (9), we choose vectors

Fs ¼ 1 z sinh pz
h

� �
ð�1Þkp 2

hkp
z� 1

2 ðzkp þ zkpþ1Þ
� �h i

for in-plane

displacements and Fs = [1 z z2] for displacement w. In this case,
thickness-stretching is considered. For the thickness effect study,
in the case that thickness-stretching is not allowed, the vector for
transverse displacement is replaced with Fs = 1, meaning that we
are considering the expansion w = w0 in the displacement field.

4.3. Strains

Strains are separated into in-plane and normal components, de-
noted respectively by the subscripts p and n. The mechanical
strains in the kth layer can be related to the displacement field
uk ¼ uk

x;u
k
y;u

k
z

n o
via the geometrical relations (G):

�k
pG ¼ ½�xx; �yy; cxy�

kT ¼ Dk
puk; ð15Þ

�k
nG ¼ ½cxz; cyz; �zz�kT ¼ ðDk

np þ Dk
nzÞ uk;

wherein the differential operator arrays are defined as follows:
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Fig. 5. Zig-Zag effect for the 1-8-1 (left) and the 2-1-1 sandwichs (right).
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Dk
p ¼

@x 0 0
0 @y 0
@y @x 0

264
375; Dk

np ¼
0 0 @x

0 0 @y

0 0 0

264
375; Dk

nz ¼
@z 0 0
0 @z 0
0 0 @z

264
375;
ð16Þ

If �zz = 0 is considered, thickness-stretching is not allowed. In this
case, �k

pG and the differential operator array Dk
p remain as before,

but the other strains are reduced to

�k
nG ¼ ½cxz; cyz�

kT ¼ Dk
np þ Dk

nz

� �
uk; ð17Þ

wherein the differential operator arrays are defined as:

Dk
np ¼

0 0 @x

0 0 @y

� 	
; Dk

nz ¼
@z 0 0
0 @z 0

� 	
; ð18Þ

4.4. Elastic stress–strain relations

To define the constitutive equations (C), stresses are separated
into in-plane and normal components as well.

The 3D constitutive equations are given as:

rk
pC ¼ ½rxx;ryy;rxy�kT ¼ Ck

pp �
k
pG þ Ck

pn �
k
nG

rk
nC ¼ ½rxz;ryz;rzz�kT ¼ Ck

np �
k
pG þ Ck

nn �
k
nG

ð19Þ

with

Ck
pp ¼

Ck
11 Ck

12 0

Ck
12 Ck

22 0

0 0 Ck
66

2664
3775 Ck

pn ¼
0 0 Ck

13

0 0 Ck
23

0 0 0

264
375

Ck
np ¼

0 0 0
0 0 0

Ck
13 Ck

23 0

264
375 Ck

nn ¼
Ck

55 0 0

0 Ck
44 0

0 0 Ck
33

2664
3775

ð20Þ

and the Ck
ij are the three-dimensional elastic constants

Ck
11 ¼ Ck

22 ¼ Ck
33 ¼

Ekð1�ðmkÞ2Þ
1�3ðmkÞ2�2ðmkÞ3

;

Ck
12 ¼ Ck

13 ¼ Ck
23 ¼

EkðmkþðmkÞ2Þ
1�3ðmkÞ2�2ðmkÞ3

;

Ck
44 ¼ Ck

55 ¼ Ck
66 ¼ Gk

ð21Þ

where the modulus of elasticity and Poisson’s ratio were defined in
(13), and G is the shear modulus Gk ¼ Ek

2ð1þmkÞ.

For the �zz = 0 case, the plane-stress case is used:

rk
pC ¼ ½rxx;ryy;rxy�kT ¼ Ck

pp �
k
pG

rk
nC ¼ ½rxz;ryz�kT ¼ Ck

nn �
k
nG

ð22Þ

with Ck
pp and �k

pG as before, �k
nG ¼ ½cxz; cyz�

kT and

Ck
nn ¼

Ck
55 0

0 Ck
44

" #
ð23Þ

and Ck
ij are the plane-stress reduced elastic constants:

Ck
11 ¼ Ck

22 ¼
Ek

1� ðmkÞ2
; Ck

12 ¼ mk Ek

1� ðmkÞ2
; ð24Þ

Ck
44 ¼ Ck

55 ¼ Ck
66 ¼ Gk ð25Þ

4.5. Principle of virtual displacements

In the framework of the Unified Formulation, the Principle of
Virtual Displacements (PVD) for the pure-mechanical case is writ-
ten as:

XNl

k¼1

Z
Xk

Z
Ak

d�k
pG

T
rk

pC þ d�k
nG

T
rk

nC

n o
dXkdz ¼

XNl

k¼1

dLk
e ð26Þ

where Xk and Ak are the integration domains in plane (x,y) and z
direction, respectively. As stated before, G means geometrical rela-
tions and C constitutive equations, and k indicates the virtual layer.
T is the transpose operator and dLk

e is the external work for the kth
layer.

Substituting the geometrical relations (G), the constitutive
equations (C), and the modeled displacement field (Fs and Fs), all
for the kth layer, (26) becomes:Z

Xk

Z
Ak

Dk
p Fsduk

s

� �T
Ck

ppDk
p Fsuk

sþCk
pnðD

k
nXþDk

nzÞFsuk
s

� ��
þ Dk

nXþDk
nz

� �
Fsduk

s

� �T
Ck

npDk
p Fsuk

sþCk
nnðD

k
nXþDk

nzÞFsuk
s

� �	
dXkdz

¼ dLk
e ð27Þ

Applying now the formula of integration by parts, (27) becomes:Z
Xk

ððDXÞdakÞT akdXk ¼ �
Z

Xk

dakT
DT

X

� �
ak

� �
dXk

þ
Z

Ck

dakTððIXÞakÞdCk ð28Þ

where IX matrix is obtained applying the Gradient theorem:Z
X

@w
@xi

dt ¼
I

C
niwds ð29Þ

being ni the components of the normal bn to the boundary along the
direction i. After integration by parts, the governing equations and
boundary conditions for the plate in the mechanical case are
obtained:Z

Xk

Z
Ak

duk
s

� �T �Dk
p

� �T
Ck

ppðD
k
pÞ þ Ck

pnðD
k
nXÞ þ Dk

nz

� ���
þ �Dk

nX þ Dk
nz

� �T
Ck

npðD
k
pÞ þ Ck

nnðD
k
nX þ Dk

nzÞ
� ��

FsFsuk
s

	
dxdydz

þ
Z

Xk

Z
Ak

ðduk
s Þ

T IkT
p Ck

ppðD
k
pÞ þ Ck

pnðD
k
nX þ Dk

nzÞ
� �

þ IkT
np Ck

np Dk
p

� ���h
þCk

nn Dk
nX þ Dk

nz

� ���
FsFsuk

s

i
dxdydz ¼

Z
Xk

dukT
s Fspk

udXk: ð30Þ

where Ik
p and Ik

np depend on the boundary geometry:

Ik
p ¼

nx 0 0
0 ny 0
ny nx 0

264
375; Ik

np ¼
0 0 nx

0 0 ny

0 0 0

264
375: ð31Þ

The normal to the boundary of domain X is:

n̂ ¼
nx

ny

� 	
¼

cosðuxÞ
cosðuyÞ

" #
ð32Þ

where ux and uy are the angles between the normal n̂ and the
direction x and y respectively.

4.6. Governing equations and boundary conditions

The governing equations for a multi-layered plate subjected to
mechanical loadings are:

duk
s

T
: Kkss

uu uk
s ¼ Pk

us ð33Þ

where the fundamental nucleus Kkss
uu is obtained as:

34 A.M.A. Neves et al. / Advances in Engineering Software 52 (2012) 30–43



Kkss
uu ¼ �Dk

p

� �T
Ck

pp Dk
p

� �
þ Ck

pnðD
k
nXÞ þ Dk

nz

� ��
þ �Dk

nX þ Dk
nz

� �T
Ck

npðD
k
pÞ þ Ck

nnðD
k
nX þ Dk

nzÞ
� �	

FsFs ð34Þ

and the corresponding Neumann-type boundary conditions on Ck

are:

Pkss
d uk

s ¼ Pkss
d

�uk
s; ð35Þ

where:

Pkss
d ¼ IkT

p Ck
pp Dk

p

� �
þ Ck

pnðD
k
nX þ Dk

nzÞ
� �h

þIkT
np Ck

npðD
k
pÞ þ Ck

nnðD
k
nX þ Dk

nzÞ
� �i

FsFs ð36Þ

and Pk
us are variationally consistent loads with applied pressure.

For FG materials, the fundamental nuclei in explicit form
becomes:

Kkss
uu11
¼ �@s

x@
s
xC11 þ @s

z@
s
zC55 � @s

y@
s
yC66

� �
FsFs

Kkss
uu12
¼ �@s

x@
s
yC12 � @s

y@
s
xC66

� �
FsFs

Kkss
uu13
¼ �@s

x@
s
zC13 þ @s

z@
s
xC55

� �
FsFs

Kkss
uu21
¼ �@s

y@
s
xC12 � @s

x@
s
yC66

� �
FsFs

Kkss
uu22
¼ �@s

y@
s
yC22 þ @s

z@
s
zC44 � @s

x@
s
xC66

� �
FsFs

Kkss
uu23
¼ �@s

y@
s
zC23 þ @s

z@
s
yC44

� �
FsFs

Kkss
uu31
¼ @s

z@
s
xC13 � @s

x@
s
zC55

� �
FsFs

Kkss
uu32
¼ @s

z@
s
yC23 � @s

y@
s
zC44

� �
FsFs

Kkss
uu33
¼ @s

z@
s
zC33 � @s

y@
s
yC44 � @s

x@
s
xC55

� �
FsFs

ð37Þ

Pkss
11 ¼ nx@

s
xC11 þ ny@

s
yC66

� �
FsFs

Pkss
12 ¼ nx@

s
yC12 þ ny@

s
xC66

� �
FsFs

Pkss
13 ¼ nx@

s
zC13

� �
FsFs

Pkss
21 ¼ ny@

s
xC12 þ nx@

s
yC66

� �
FsFs

Pkss
22 ¼ ny@

s
yC22 þ nx@

s
xC66

� �
FsFs

Pkss
23 ¼ ny@

s
zC23

� �
FsFs

Pkss
31 ¼ nx@

s
zC55

� �
FsFs

Pkss
32 ¼ ny@

s
zC44

� �
FsFs

Pkss
33 ¼ ny@

s
yC44 þ nx@

s
xC55

� �
FsFs

ð38Þ

5. The radial basis function method applied to static problems

Recently, radial basis functions (RBFs) have enjoyed consider-
able success and research as a technique for interpolating data
and functions. A radial basis function, /(kx � xjk) is a spline that
depends on the Euclidian distance between distinct data centers
xj; j ¼ 1;2; . . . ;N 2 Rn, also called nodal or collocation points.
Although most work to date on RBFs relates to scattered data
approximation and in general to interpolation theory, there has re-
cently been an increased interest in their use for solving partial dif-
ferential equations (PDEs). This approach, which approximates the
whole solution of the PDE directly using RBFs, is truly a mesh-free
technique. Kansa [53] introduced the concept of solving PDEs by an
unsymmetric RBF collocation method based upon the MQ interpo-
lation functions, in which the shape parameter may vary across the
problem domain.

The radial basis function (/) approximation of a function (u) is
given by

~uðxÞ ¼
XN

i¼1

ai/ðkx� yik2Þ; x 2 Rn ð39Þ

where yi, i = 1, . . ., N is a finite set of distinct points (centers) in Rn.
The most common RBFs are

Cubic : /ðrÞ ¼ r3

Thin plate splines : /ðrÞ ¼ r2 logðrÞ
Wendland functions : /ðrÞ ¼ ð1� rÞmþpðrÞ

Gaussian : /ðrÞ ¼ e�ðcrÞ2

Multiquadrics : /ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ r2

p
Inverse Multiquadrics : /ðrÞ ¼ ðc2 þ r2Þ�1=2

where the Euclidian distance r is real and non-negative and c is a
positive shape parameter. In the present work, we consider the
compact-support Wendland function defined as

/ðrÞ ¼ ð1� c rÞ8þð32ðc rÞ3 þ 25ðc rÞ2 þ 8c r þ 1Þ ð40Þ

The shape parameter (c) is obtained by an optimization procedure,
as detailed in Ferreira and Fasshauer [54].

Considering N distinct interpolations, and knowing u(xj), j = 1, 2,
. . ., N, we find ai by the solution of a N � N linear system

Aa ¼ u ð41Þ

where A = [/(kx � yik2)]N�N, a = [a1,a2, . . . ,aN]T and u = [u(x1),
u(x2), . . . ,u(xN)]T.

Consider a linear elliptic partial differential operator L acting in
a bounded region X in Rn and another operator LB acting on a
boundary oX. In the static problems we seek the computation of
displacements (u) from the global system of equations

Lu ¼ f in X ð42Þ
LBu ¼ g on @X ð43Þ

The right-hand side of (42) and (43) represent the external forces
applied on the plate and the boundary conditions applied along
the perimeter of the plate, respectively. The PDE problem defined
in (42) and (43) will be replaced by a finite problem, defined by
an algebraic system of equations, after the radial basis expansions.

The solution of a static problem by radial basis functions con-
siders NI nodes in the domain and NB nodes on the boundary, with
a total number of nodes N = NI + NB. In the present work, a R2

Chebyshev grid is employed (see Fig. 6) and a square plate is com-

−1 1
−1

1

x

y

Fig. 6. A sketch of a R2 Chebyshev grid with 112 points.
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puted with side length a = 2. For a given number of nodes per side
(N + 1) they are generated by MATLAB code as:

x ¼ cosðpi � ð0 : NÞ=NÞ0; y ¼ x;

One advantage of such mesh is the concentration of points near the
boundary.

We denote the sampling points by xi 2X, i = 1, . . ., NI and
xi 2 oX, i = NI + 1, . . ., N. At the points in the domain we solve the
following system of equationsXN

i¼1

aiL/ðkx� yik2Þ ¼ fðxjÞ; j ¼ 1;2; . . . ;NI ð44Þ

or

LIa ¼ F ð45Þ

where

LI ¼ ½L/ðkx� yik2Þ�NI�N ð46Þ

At the points on the boundary, we impose boundary conditions asXN

i¼1

aiLB/ðkx� yik2Þ ¼ gðxjÞ; j ¼ NI þ 1; . . . ;N ð47Þ

or

Ba ¼ G ð48Þ

where

B ¼ LB/½ðkxNIþ1 � yjk2Þ�NB�N

Therefore, we can write a finite-dimensional static problem as

LI

B

" #
a ¼

F
G

� 	
ð49Þ

By inverting the system (49), we obtain the vector a. We then ob-
tain the solution u using the interpolation Eq. (39).

The radial basis collocation method follows a simple implemen-
tation procedure. Taking Eq. (49), we compute

a ¼ LI

B

" #�1
F
G

� 	
ð50Þ

This a vector is then used to obtain solution ~u, by using (39). If
derivatives of ~u are needed, such derivatives are computed as

@~u
@x
¼
XN

j¼1

aj
@/j

@x
ð51Þ

@2 ~u
@x2 ¼

XN

j¼1

aj
@2/j

@x2 ; etc ð52Þ

In the present collocation approach, we need to impose essential
and natural boundary conditions. Consider, for example, the condi-
tion w = 0, on a simply supported or clamped edge. We enforce the
conditions by interpolating as

w ¼ 0!
XN

j¼1

aW
j /j ¼ 0 ð53Þ

Other boundary conditions are interpolated in a similar way.

6. Numerical examples

In this section the shear deformation plate theory is combined
with radial basis functions collocation for the static analysis of
functionally graded sandwich plates. Displacements and stresses
of simply supported (SSSS) square (a = b = 2) sandwich plates with

FGM in the core or in the skins, both symmetric and unsymmetric,
are analyzed. Various side-to-thickness ratios, power-law expo-
nents, and skin-core-skin thickness ratios are considered. The plate
is subjected to a bi-sinusoidal transverse mechanical load,
p ¼ pz cos px

a

� �
cos py

a

� �
(see Fig. 6), applied at the top of the plate.

As stated before, all numerical examples are performed employ-
ing a Chebyshev grid and the Wendland function as defined in (40)
with an optimized shape parameter. The plate is a sandwich, phys-
icaly divided into 3 layers, but we consider 91 virtual layers. The
power-law function is used to describe the volume fraction of
the metal and ceramic phases (see (1) and (2)) and the material
homogeneization technique adopted is the law of mixtures (13),
the same used in the references.

The following material properties are used:

zirconia Young’s modulus : Ec ¼ 151 GPa ð54Þ

aluminum Young’s modulus : Em ¼ 70 GPa ð55Þ

alumina Young’s modulus : Ec ¼ 380 GPa ð56Þ

with Poisson’s ratio constant m = 0.3. Only Young’s modulus needs a
homogeneization technique.

An initial study was performed for each type of sandwich to
show the convergence of the present approach and select the num-
ber of Chebyshev points to use in the computation of the static
problems problems.

6.1. Sandwich with FG core

The static analysis of sandwich plates with FG core is now per-
formed. In the following examples the materials are aluminum
(55) and alumina (56). The thickness of each skin layer is
hs = 0.1h and the core layer thickness is hc = 0.8h, i.e., we are deal-
ing with a 1-8-1 sandwich.

The non-dimensional parameters used are:

�w ¼ 10Ech3

a4pz
w; evaluated at the center of the plate

�rxx ¼
h

apz
rxx; evaluated at the center of the plate

�rxy ¼
h

apz
rxy; evaluated at the corner of the plate

�rxz ¼
h

apz
rxz; evaluated at the midpoint of the side

rzz ¼ rzz; evaluated at center of the plate

ð57Þ

Two convergence studies were performed, varying the exponent
power-law p and the side-to-thickness ratio a/h. Table 1 refers to
p = 1 and a/h = 4 and Table 2 refers to p = 10 and a/h = 100. A 152

grid was chosen for the following static problems.
Table 3 and Figs. 7 and 8 refer to the out-of-plane displacement.

In Table 3 we tabulate the values of the deflection obtained with

Table 1
Convergence study for a sandwich with FG core with p = 1 and a/h = 4.

Grid 92 112 132 152 172 192

�wð0Þ 0.7411 0.7417 0.7417 0.7417 0.7417 0.7417
�rxxðh3Þ 0.6224 0.6236 0.6235 0.6236 0.6236 0.6236

�rxyðh3Þ 0.3263 0.3164 0.3164 0.3165 0.3164 0.3164
�rxzð0Þ 0.2329 0.2333 0.2332 0.2332 0.2332 0.2332
�rxzðh6Þ 0.2745 0.2748 0.2747 0.2747 0.2747 0.2747

�rxzðh3Þ 0.2195 0.2193 0.2192 0.2192 0.2192 0.2192

rzz(0) 0.3316 0.3311 0.3312 0.3312 0.3312 0.3312
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present approach for various power-law exponents p and side-to-
thickness ratios a/h, and compare with available references. In
Fig. 7, the thickness-stretching effect on the deformed of the sim-
ply supported sandwich square plate with FG core, with p = 1
and a/h = 10, is visualized. Figure is the plot of the top (z = h/2) of
the plate. Fig. 8 presents the out-of-plane displacement through

the thickness direction, for a sandwich with FG core with side-
to-thickness ratio a/h = 4, varying the exponent power-law value p.

Table 3 and Fig. 8 lead us to the conclusion that the deflection of
a SSSS sandwich plate with FG core increases as the power-law
exponent of the material p increases. The results depend on con-
sider or neglect warping in the thickness direction. The warping ef-
fect is more significative in thicker plates.

Tables 4–8 and Figs. 9–14, refer to stresses. In tables we tabu-
late and compare with available references the results obtained

Table 2
Convergence study for a sandwich with FG core with p = 10 and a/h = 100.

Grid 92 112 132 152 172 192

�wð0Þ 0.6794 0.8035 0.8009 0.8045 0.8048 0.8050
�rxxðh3Þ 7.5645 9.1864 9.3955 9.4300 9.4187 9.4272

�rxyðh3Þ 3.4217 4.9099 5.0405 5.0641 5.0641 5.0735
�rxzð0Þ 0.2002 0.2188 0.2017 0.2056 0.2047 0.2052
�rxzðh6Þ 0.1970 0.2216 0.2025 0.2065 0.2055 0.2060

�rxzðh3Þ 0.2137 0.3072 0.2612 0.2685 0.2657 0.2659

rzz (0) 0.2003 0.1858 0.1850 0.1834 0.1850 0.1839

Table 3
�wð0Þ of a sandwich plate with FG core, for several exponents p and ratios a/h.

�zz p = 1 p = 4 p = 5 p = 10

a/h = 4
Ref. LD4 [38] 0 0.7629 1.1327 1.2232
Ref. LM4 [38] –0 0.7629 1.1329 1.2244
Ref. [55] N = 4 0 0.7735 1.0977 1.2240
Ref. [55] N = 4 –0 0.7628 1.0930 1.2172
Ref. [?] 0 0.7744 1.0847 1.2212
Ref. [?] –0 0.7416 1.0391 1.1780
Present 0 0.7746 1.0833 1.1236 1.2183
Present –0 0.7417 1.0378 1.0783 1.1753

a/h = 10
Ref. [55] N = 4 0 0.6337 0.8308 0.8743
Ref. [55] N = 4 –0 0.6324 0.8307 0.8740
Ref. [?] 0 0.6356 0.8276 0.8718
Ref. [?] –0 0.6305 0.8202 0.8650
Present 0 0.6357 0.8273 0.8415 0.8712
Present –0 0.6305 0.8200 0.8342 0.8645

a/h = 100
Ref. LD4 [38] 0 0.6073 0.7892 0.8077
Ref. LM4 [38] –0 0.6073 0.7892 0.8077
Ref. [55] N = 4 0 0.6072 0.7797 0.8077
Ref. [55] N = 4 –0 0.6072 0.7797 0.8077
Ref. [?] 0 0.6092 0.7785 0.8050
Ref. [?] –0 0.6092 0.7784 0.8050
Present 0 0.6087 0.7779 0.7870 0.8045
Present –0 0.6086 0.7778 0.7870 0.8045
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Fig. 7. Deformed of the SSSS sandwich square plate with FG core (p = 1, a/h = 10),
subjected to sinusoidal load at the top, according to the hyperbolic sine ZZ theory,
considering and disregarding thickness-stretching.
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Fig. 8. Out-of-plane displacement through the thickness direction of a SSSS
sandwich square plate with FG core, a/h = 4, subjected to sinusoidal load at the
top, according to the hyperbolic sine ZZ theory, for several values of p.

Table 4
�rxxðh=3Þ of a sandwich plate with FG core, for several exponents p and ratios a/h.

�zz p = 1 p = 4 p = 5 p = 10

a/h = 4
Ref. LD4 [38] 0 0.6530 0.4693 0.3627
Ref. LM4 [38] –0 0.6531 0.4672 0.3611
Present 0 0.6130 0.4643 0.4304 0.3247
Present –0 0.6236 0.4605 0.4243 0.3156

a/h = 10
Present 0 1.5700 1.2514 1.1777 0.9214
Present –0 1.5743 1.2498 1.1751 0.9176

a/h = 100
Ref. LD4 [38] 0 15.784 12.065 9.5501
Ref. LM4 [38] –0 15.784 12.065 9.5500
Present 0 15.7826 12.6971 11.9800 9.4300
Present –0 15.7841 12.6975 11.9805 9.4300

Table 5
�rxyðh=3Þ of a sandwich plate with FG core, for several exponents p and ratios a/h.

�zz p = 1 p = 4 p = 5 p = 10

a/h = 4
Ref. LD4 [38] 0 0.3007 0.1999 0.1412
Ref. LM4 [38] –0 0.3007 0.1996 0.1403
Ref. [?] 0 0.3303 0.2317 0.1745
Ref. [?] –0 0.3167 0.2248 0.1687
Present 0 0.3301 0.2500 0.2318 0.1749
Present –0 0.3165 0.2425 0.2249 0.1692

a/h = 10
Present 0 0.8453 0.6738 0.6341 0.4962
Present –0 0.8400 0.6709 0.6315 0.4939

a/h = 100
Ref. LD4 [38] 0 8.4968 6.4942 5.1402
Ref. LM4 [38] –0 8.4968 6.4942 5.1401
Ref. [?] 0 8.4888 6.4454 5.0745
Ref. [?] –0 8.4911 6.4441 5.0754
Present 0 8.4644 6.8194 6.4400 5.0672
Present –0 8.4689 6.8102 6.4392 5.0628
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with present approach for various exponents of the power-law p
and side-to-thickness ratios a/h. In figures we present stresses
through the thickness direction of a SSSS sandwich square plate
with FG core, a/h = 100 according to the hyperbolic sine ZZ theory,
for several values of p.

In all tables, results obtained with present hyperbolic sine ZZ
theory and RBF collocation are in good agreement with references.

6.2. Sandwich with FG skins

We now focus on sandwich plates with isotropic core and FG
skins. All examples consider a sandwich plate made of aluminum
(55) and zirconia (54) and with side-to-thickness ratio a/h = 10. Ta-

Table 6
�rxzð0Þ of a sandwich plate with FG core, for several exponents p and ratios a/h.

�zz p = 1 p = 4 p = 5 p = 10

a/h = 4
Ref. LD4 [38] 0 0.2345 0.1998 0.2113
Ref. LM4 [38] –0 0.2345 0.2026 0.2124
Present 0 0.2334 0.1880 0.1863 0.2017
Present –0 0.2332 0.1873 0.1857 0.2015

a/h = 10
Present 0 0.2353 0.1905 0.1889 0.2044
Present –0 0.2353 0.1900 0.1887 0.2050

a/h = 100
Ref. LD4 [38] 0 0.2375 0.2046 0.2149
Ref. LM4 [38] –0 0.2375 0.2055 0.2122
Present 0 0.2367 0.1911 0.1895 0.2050
Present –0 0.2368 0.1907 0.1894 0.2056

Table 7
�rzzð0Þ ¼ h

apz
rzz

a
2 ;

a
2 ; 0

� �
of a sandwich plate with FG core, for several exponents p and

ratios a/h.

�zz p = 1 p = 4 p = 5 p = 10

a/h = 4
Ref. LD4 [38] 0 0.0922 0.0911 0.1064
Ref. LM4 [38] –0 0.0922 0.0924 0.1067
Ref. [?] –0 0.0827 0.0522 0.0443
Present –0 0.0828 0.0580 0.0524 0.0445

a/h = 10
Present –0 0.0338 0.0239 0.0216 0.0183

a/h = 100
Ref. LD4 [38] 0 0.0038 0.0037 0.0043
Ref. LM4 [38] –0 0.0038 0.0037 0.0042
Ref. [?] –0 0.0034 0.0022 0.0018
Present –0 0.0034 0.0024 0.0022 0.0018

Table 8
�rxzðh=6Þ of a sandwich plate with FG core, for several exponents p and ratios a/h.

�zz p = 1 p = 4 p = 5 p = 10

a/h = 4
Ref. [55] N = 4 0 0.2604 0.2400 0.1932
Ref. [55] N = 4 –0 0.2596 0.2400 0.1935
Ref. [?] 0 0.2703 0.2699 0.1998
Ref. [?] –0 0.2742 0.2723 0.2016
Present 0 0.2709 0.2706 0.2537 0.1995
Present –0 0.2747 0.2732 0.2560 0.2013

a/h = 10
Ref. [55] N = 4 0 0.2594 0.2398 0.1944
Ref. [55] N = 4 –0 0.2593 0.2398 0.1944
Ref. [?] 0 0.2718 0.2726 0.2021
Ref. [?] –0 0.2788 0.2778 0.2059
Present 0 0.2724 0.2735 0.2566 0.2017
Present –0 0.2793 0.2789 0.2615 0.2055

a/h = 100
Ref. [55] N = 4 0 0.2593 0.2398 0.1946
Ref. [55] N = 4 –0 0.2593 0.2398 0.1946
Ref. [?] 0 0.2720 0.2728 0.2022
Ref. [?] –0 0.2793 0.2785 0.2064
Present 0 0.2743 0.2747 0.2576 0.2230
Present –0 0.2816 0.2805 0.2630 0.2065
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Fig. 9. �rxx through the thickness direction of a SSSS sandwich square plate with FG
core, a/h = 100, subjected to sinusoidal load at the top, according to the hyperbolic
sine ZZ theory, for several values of p.
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Fig. 10. �rxy through the thickness direction of a SSSS sandwich square plate with FG
core, a/h = 100, subjected to sinusoidal load at the top, according to the hyperbolic
sine ZZ theory, for several values of p.
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Fig. 11. �rxz through the thickness direction of a SSSS sandwich square plate with FG
core, a/h = 100, subjected to sinusoidal load at the top, according to the hyperbolic
sine ZZ theory, for several values of p.
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bles are organized so that the material power-law exponent in-
creases from up to down (p = 0, 0.2, 0.5, 1, 2, 5, 10) and the core
thickness to the total thickness of the plate ratio increases from left
to right hc

h ¼ 1
5 ;

1
4 ;

1
3 ;

2
5 ;

1
2

� �
.

The non-dimensional displacements and stresses are given as

�w ¼ 10hE0

a2pz
w; evaluated at the center of the plate

�u ¼ 10hE2
0

a2pz
u; evaluated at the center of the plate

�rxx ¼
10h2

a2pz
rxx; evaluated at the center of theplate

�rxz ¼
h

apz
rxz; evaluated at the midpoint of the side

ð58Þ
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Fig. 12. �rzz through the thickness direction of a SSSS sandwich square plate with FG
core, a/h = 100, subjected to sinusoidal load at the top, according to the hyperbolic
sine ZZ theory, for several values of p.
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Fig. 13. �ryy through the thickness direction of a SSSS sandwich square plate with FG
core, a/h = 100, subjected to sinusoidal load at the top, according to the hyperbolic
sine ZZ theory, for several values of p.
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Fig. 14. �ryz through the thickness direction of a SSSS sandwich square plate with FG
core, a/h = 100, subjected to sinusoidal load at the top, according to the hyperbolic
sine ZZ theory, for several values of p.

Table 9
Convergence study for a 2-1-2 sandwich with FG skins and p = 1.

Grid 112 132 152 172 192

�wð0Þ 0.3069 0.3069 0.3070 0.3070 0.3070
�rxx 1.4835 1.4801 1.4813 1.4810 1.4811
�rxz 0.2749 0.2744 0.2745 0.2745 0.2745

Table 10
Convergence study for a 2-2-1 sandwich with FG skins and p = 5.

Grid 112 132 152 172 192

�wð0Þ 0.3489 0.3490 0.3490 0.3490 0.3490
�rxx 1.5917 1.5880 1.5893 1.5889 1.5891
�rxz 0.2673 0.2667 0.2669 0.2668 0.2668

Table 11
�wð0Þ of a sandwich plate with FG skins, for several exponents p and skin-core-skin
ratios.

Source 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1

p = 0
SSDPT 0.19605 0.19605 0.19605 0.19605
TSDPT 0.19606 0.19606 0.19606 0.19606
FSDPT 0.19607 0.19607 0.19607 0.19607
CLPT 0.18560 0.18560 0.18560 0.18560
Present �zz = 0 0.1961 0.1961 0.1961 0.1961 0.1961
Present �zz – 0 0.1949 0.1949 0.1949 0.1949 0.1949

p = 0.2
Present �zz = 0 0.2312 0.2290 0.2276 0.2249 0.2223
Present �zz – 0 0.2297 0.2275 0.2261 0.2235 0.2209

p = 0.5
Present �zz = 0 0.2667 0.2614 0.2583 0.2519 0.2460
Present �zz – 0 0.2650 0.2597 0.2566 0.2503 0.2444

p = 1
SSDPT 0.30624 0.29194 0.28082 0.27093
TSDPT 0.30632 0.29199 0.28085 0.27094
FSDPT 0.30750 0.29301 0.28168 0.27167
CLPT 0.29417 0.28026 0.26920 0.25958
Present �zz = 0 0.3090 0.2995 0.2949 0.2838 0.2740
Present �zz – 0 0.3070 0.2975 0.2929 0.2820 0.2722

p = 2
SSDPT 0.35218 0.33280 0.31611 0.30260
TSDPT 0.35231 0.33289 0.31617 0.30263
FSDPT 0.35408 0.33441 0.31738 0.30370
CLPT 0.33942 0.32067 0.30405 0.29095
Present �zz = 0 0.3542 0.3399 0.3351 0.3186 0.3053
Present �zz – 0 0.3519 0.3376 0.3329 0.3164 0.3032

p = 5
SSDPT 0.39160 0.37128 0.34950 0.33474
TSDPT 0.39183 0.37145 0.34960 0.33480
FSDPT 0.39418 0.37356 0.35123 0.33631
CLPT 0.37789 0.35865 0.33693 0.32283
Present �zz = 0 0.3930 0.3746 0.3729 0.3514 0.3370
Present �zz – 0 0.3905 0.3722 0.3705 0.3490 0.3347

p = 10
SSDPT 0.40376 0.38490 0.34916 0.34119
TSDPT 0.40407 0.38551 0.36215 0.34824
FSDPT 0.40657 0.38787 0.36395 0.34996
CLPT 0.38941 0.37236 0.34915 0.33612
Present �zz = 0 0.4051 0.3861 0.3868 0.3637 0.3503
Present �zz – 0 0.4026 0.3835 0.3843 0.3612 0.3480

A.M.A. Neves et al. / Advances in Engineering Software 52 (2012) 30–43 39



Two convergence studies were performed, varying the exponent
power-law p and the symmetry of the sandwich. Table 9 refers to
the symmetric 2-1-2 plate with p = 1 and Table 10 refers to the
non-symmetric 2-2-1 plate with p = 5. A 152 grid was chosen for
the following static problems.

Results refering to the displacements of a sandwich plate with
FG skins are presented in Table 11 and Figs. 15–17. In Table 11,

the transverse displacement are tabulated and compared with
available references, for several values of p and skin-core-skin
thickness ratios. In Fig. 15, the influence of the thickness-stretching
on the deformed of the symmetric 1-2-1 simply supported sand-
wich square plate with FG skins, with p = 10, subjected to sinusoi-
dal load at the top, is visualized. Fig. 15 is the plot of the bottom
(z = �h/2) of the plate. In Figs. 16 and 17 the influence of the
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Fig. 15. Deformed of the SSSS 1-2-1 sandwich square plate with FG skins, p = 10,
subjected to sinusoidal load at the top, according to the hyperbolic sine ZZ theory,
considering and disregarding thickness-stretching.
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Fig. 16. Out-of-plane displacement through the thickness of the SSSS 2-1-2
sandwich square plate with FG skins, subjected to sinusoidal load at the top,
according to the hyperbolic sine ZZ theory, for various values of p.
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Fig. 17. In-plane displacement through the thickness of the SSSS 2-1-2 sandwich
square plate with FG skins, subjected to sinusoidal load at the top, according to the
hyperbolic sine ZZ theory, for various values of p.

Table 12
�rxxðh=2Þ of a sandwich plate with FG skins, for several exponents p and skin-core-skin
ratios.

Source 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1

p = 0
SSDPT 2.05452 2.05452 2.05452 2.05452
TSDPT 2.04985 2.04985 2.04985 2.04985
FSDPT 1.97576 1.97576 1.97576 1.97576
Present �zz = 0 1.9947 1.9945 1.9947 1.9946 1.9946
Present �zz – 0 2.0066 2.0064 2.0066 2.0065 2.0064

p = 0.2
Present �zz = 0 1.0962 1.0705 1.0795 1.0526 1.0533
Present �zz – 0 1.1024 1.0767 1.0857 1.0587 1.0595

p = 0.5
Present �zz = 0 1.2690 1.2088 1.2285 1.1679 1.1694
Present �zz – 0 1.2757 1.2153 1.2351 1.1743 1.1759

p = 1
SSDPT 1.49859 1.42892 1.32342 1.32590
TSDPT 1.49587 1.42617 1.32062 1.32309
FSDPT 1.45167 1.38303 1.27749 1.28096
Present �zz = 0 1.4742 1.3700 1.4067 1.3026 1.3064
Present �zz – 0 1.4813 1.3768 1.4137 1.3092 1.3133

p = 2
SSDPT 1.72412 1.63025 1.47387 1.48283
TSDPT 1.72144 1.62748 1.47095 1.47988
FSDPT 1.67496 1.58242 1.42528 1.43580
Present �zz = 0 1.6920 1.5386 1.6017 1.4476 1.4588
Present �zz – 0 1.6994 1.5456 1.6088 1.4543 1.4659

p = 5
SSDPT 1.91547 1.81838 1.61477 1.64106
TSDPT 1.91302 1.81580 1.61181 1.63814
FSDPT 1.86479 1.76988 1.56401 1.59309
Present �zz = 0 1.8761 1.6836 1.7833 1.5826 1.6123
Present �zz – 0 1.8838 1.6909 1.7906 1.5893 1.6195

p = 10
SSDPT 1.97313 1.88147 1.61979 1.64851
TSDPT 1.97126 1.88376 1.66660 1.70417
FSDPT 1.92165 1.83754 1.61645 1.65844
Present �zz = 0 1.9316 1.7328 1.8485 1.6327 1.6761
Present �zz – 0 1.9397 1.7405 1.8559 1.6395 1.6832
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Fig. 18. �rxx through the thickness of the SSSS 2-1-2 sandwich square plate with FG
skins, subjected to sinusoidal load at the top, according to the hyperbolic sine ZZ
theory, for various values of p.
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power-law exponent p in the displacements ux and w, respectively,
can be visualized. The figures refer to the simply supported 2-1-2
sandwich square plate with FG skins, subjected to sinusoidal load
at the top, and presents the displacements through the thickness,
according to the hyperbolic sine ZZ theory, for various values of p.

The deflection of a simply supported sandwich plate with FG
skins increases as the power-law of the material increases. This
is seen in Table 11 for all studied plates and in Fig. 16 for a partic-
ular one. As the core thickness to the plate thickness ratio in-
creases, the transverse displacement decreases. The results
depend on the �zz approach.

Table 12 and Fig. 18 present results refering to �rxx. The values
obtained with present hyperbolic sine ZZ theory and RBF colloca-
tion are tabulated in Table 12 and compared with available refer-
ences, for various p and skin-core-skin thickness ratios. Fig. 18
shows the stress through the thickness for the simply supported
2-1-2 sandwich square plate with FG skins, subjected to sinusoidal
load at the top, for various values of p (see Figs. 19–23).

In all tables, a good agreement between the present solution
and references considered is obtained. (See Table 13).

7. Conclusions

In this paper we presented a study using the radial basis func-
tion collocation method to analyze static deformations of thin
and thick functionally graded sandwich plates using a variation
of Murakami’s Zig-Zag function, considering a hyperbolic sine term
for the in-plane displacement expansion and allowing for through-
the-thickness deformations. This has not been done before and
serves to fill the gap of knowledge in this area.
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Fig. 19. �rxz through the thickness of the SSSS 2-1-2 sandwich square plate with FG
skins, subjected to sinusoidal load at the top, according to the hyperbolic sine ZZ
theory, for various values of p.
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Fig. 20. �rxy through the thickness of the SSSS 2-1-2 sandwich square plate with FG
skins, subjected to sinusoidal load at the top, according to the hyperbolic sine ZZ
theory, for various values of p.
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Fig. 21. �ryy through the thickness of the SSSS 2-1-2 sandwich square plate with FG
skins, subjected to sinusoidal load at the top, according to the hyperbolic sine ZZ
theory, for various values of p.
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Fig. 22. �ryz through the thickness of the SSSS 2-1-2 sandwich square plate with FG
skins, subjected to sinusoidal load at the top, according to the hyperbolic sine ZZ
theory, for various values of p.
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Fig. 23. �rzz through the thickness of the SSSS 2-1-2 sandwich square plate with FG
skins, subjected to sinusoidal load at the top, according to the hyperbolic sine ZZ
theory, for various values of p.
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Using the Unified Formulation, the plate formulation was easily
discretized by radial basis functions collocation. The hardworking
of deriving the equations of motion and boundary conditions is
eliminated with the present approach. The combination of Carre-
ra’s Unified Formulation and collocation with RBFs proved to be
a simple yet powerful alternative to other finite element or mesh-
less methods in the static deformation of thin and thick function-
ally graded sandwich plates.

Numerical examples were performed on simply supported
sandwich plates, made of functionally graded materials in the core
or in the skins, for various material power-law exponents and side-
to-thickness and skin-core-skin thickness ratios. Obtained results
were presented in figures and tables and compared with references
and these demonstrate the accuracy of present approach.

Allow or not extensibility in the thickness direction has influ-
ence on the obtained results, more significatively in thicker plates.
The rzz should be considered in the formulation, even for thinner
functionally graded samdwich plates.
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Abstract

In this paper various sinusoidal shear deformation theories are used for the buck-
ling analysis of functionally graded sandwich plates. The theories may account for
through-the-thickness deformations and the Zig-Zag effect.

The governing equations and boundary conditions are derived using the Principle
of Virtual Work under a generalization of Carrera’s Unified Formulation and further
interpolated by collocation with radial basis functions.

A numerical investigation has been conducted on the buckling analysis of sandwich
plates with functionally graded skins. The influence of the thickness stretching and
the Zig-Zag effects on these problems is investigated. Numerical results demonstrate
the accuracy of the present approach.

Keywords: Buckling; plates; Functionally graded materials; meshless methods



1 Introduction

The buckling phenomenon consists of a sudden change of equilibrium geometry
at a certain critical load. It is one of the characteristic failure modes of slender
structures such as laminated composite plates.

Functionally graded (FG) materials were first proposed by Bever and Duwez
[Bever and Duwez, 1972] in 1972. The modelling of FG materials is important
to understand the behavior of FG structures.

When compared to isotropic and laminated plates, the literature on FG plates
is relatively scarce [Miyamoto et al., 1999,Ferrante and Graham-Brady, 2005]
[Yin et al., 2004,Zhong and Shang, 2008,Nguyen et al., 2007,Birman and Byrd, 2007]
[Koizumi, 1997]. The thermo-mechanical response of FG plates was considered
by Reddy and Chin [Reddy and Chin, 1998], Reddy [Reddy, 2000], Vel and
Batra [Vel and Batra, 2003,Vel and Batra, 2002], Cheng and Batra [Cheng and Batra, 2000c],
Javaheri and Eslami [R. and R., 2002]. Studies on the mechanical behaviour
of FG plates include the static analysis of FG plates performed by Kashtalyan
[Kashtalyan, 2004], Kashtalyan and Menshykova [Kashtalyan and Menshykova, 2009],
Qian et al. [Qian et al., 2004], Zenkour [Zenkour, 2005a,Zenkour, 2006], Ramirez
et al. [Ramirez et al., 2006], Ferreira et al. [Ferreira et al., 2005d,Ferreira et al., 2007],
Chi and Chung [Chi and Chung, 2006a,Chi and Chung, 2006b], and Cheng
and Batra [Cheng and Batra, 2000a]. Vibrations problems of FG plates can be
found in Batra and Jin [Batra and Jin, 2005], Ferreira et al. [Ferreira et al., 2006b],
Vel and Batra [Vel and Batra, 2004], Zenkour [Zenkour, 2005b], Roque et al.
[Roque et al., 2007], and Cheng and Batra [Cheng and Batra, 2000b]. Me-
chanical buckling of FG plates can be found in Najafizadeh and Eslami [Najafizadeh and Eslami, 2002],
Zenkour [Zenkour, 2005b], Cheng and Batra [Cheng and Batra, 2000b], Bir-
man [Birman, 1995], Javaheri and Eslami [Javaheri and Eslami, 2002].

Most of the shear deformation theories neglect the thickness stretching ǫzz,
being the transverse displacement considered to be independent of thick-
ness coordinates. The effect of thickness stretching in FG plates has been
recently investigated by Carrera et al. [Carrera et al., 2011]. The zig-zag ef-
fect is produced by the large difference of mechanical properties of sandwich
skins and core. For sandwich plates, the classical plate theories of Kirchhoff
[Kirchhoff, 1850] or Reissner-Mindlin [Reissner, 1945,Mindlin, 1951] present
some difficulties. Two possibilities can be used to capture the ZZ effect (see the
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overviews by Burton and Noor [Burton and Noor, 1995], Noor et al. [Noor et al., 1996],
Altenbach [Altenbach, 1998], Librescu and Hause [Librescu and Hause, 2000],
Vinson [Vinson, 2001], and Demasi [Demasi, 2008a]): the so-called layer-wise
models, and a zig-zag function (ZZF) in the framework of mixed multilay-
ered plate theories. An historical review on ZZ theories has been provided by
Carrera [Carrera, 2003].

In order to avoid the computationally expensive layerwise theories, Murakami
[Murakami, 1986] proposed a ZZF that is able to reproduce the slope dis-
continuity. A review of early developments on the application of ZZF has
been provided in the review article by Carrera [Carrera, 2001]. The advan-
tages of analysing multilayered anisotropic plate and shells using the ZZF
as well as the Finite Element implementation have been discussed by Carrera
[Carrera, 2004], and by others [Carrera, 2004,Demasi, 2008b,Brischetto et al., 2009].

This paper focus on the buckling analysis of functionally graded sandwich
plates. It adresses the influence of the warping effects in the thickness direc-
tion as well as the Zig-Zag (ZZ) effects on these problems. Four sinusoidal
theories are used. The governing equations and boundary conditions are de-
rived under a generalized version of Carrera’s Unified Formulation (CUF)
[Carrera, 1996,Carrera, 2001] based on the principle of virtual displacements
and further interpolated by collocation with radial basis functions (RBF). This
meshless technique can be seen as an efficient alternative to the finite elements
method [Ferreira, 2003a,Ferreira, 2003b,Ferreira et al., 2003,Ferreira et al., 2005c]
[Ferreira et al., 2005a,Ferreira et al., 2006a,Ferreira et al., 2005b,Ferreira et al., 2004]
[Neves et al., 2011a,Neves et al., 2011b].

2 Problem formulation

A rectangular sandwich plate of plan-form dimensions a and b and uniform
thickness h is considered. The co-ordinate system is taken such that the x-y
plane (z = 0) coincides with the midplane of the plate.

The sandwich core is fully ceramic (isotropic) and skins are composed of a
functionally graded material across the thickness direction. The bottom skin
varies from a metal-rich surface (z = −h/2) to a ceramic-rich surface while
the top skin face varies from a ceramic-rich surface to a metal-rich surface
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(z = h/2) as illustrated in figure 1. There are no interfaces between core and
skins. The volume fraction of the ceramic phase is obtained from a simple rule
of mixtures as:





Vc =
(

z−h0

h1−h0

)p
in the bottom skin

Vc = 1 in the core

Vc =
(

z−h3

h2−h3

)p
in the top skin

(1)

where z ∈ [−h/2, h/2], h0, h1, h2, and h3 are the z-coordinates of the interfaces
of the layers as visualized in figure 1, and p ≥ 0 is a scalar parameter that
allows the user to define gradation of material properties across the thickness
direction of the skins. The p = 0 case corresponds to the (isotropic) fully
ceramic plate. The volume fraction for the metal phase is given as Vm = 1−Vc.

The sandwiches may be symmetric or non-symmetric about the mid-plane as
we may vary the thickness of each face. Figure 2 shows a non-symmetric sand-
wich with volume fraction defined by the power-law (1) for various exponents
p, in which top skin thickness is the same as the core thickness and the bottom
skin thickness is twice the core thickness. Such thickness relation is denoted as
2-1-1. A bottom-core-top notation is being used. 1-1-1 means that skins and
core have the same thickness.

The sandwich plate is subjected to compressive in-plane forces acting on the
mid-plane of the plate. N̄xx and N̄yy denote the in-plane loads perpendicular
to the edges x = 0 and y = 0 respectively, and N̄xy denote the distributed
shear force parallel to the edges x = 0 and y = 0 respectively (see fig. 3).

3 Overview of existing zig-zag theories

The Murakami’s zig-zag function Z(z) dependes on the adimensioned layer
coordinate, ζk, according to the following formula:

Z(z) = (−1)kζz (2)

ζk is defined as ζk = 2zk
hk

where zk is the layer coordinate in the thickness
direction and hk is the thickness of the kth layer.

Z(z) has the following properties:
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(1) It is a piece-wise linear function of layer coordinates zk,
(2) Z(z) has unit amplitude for the whole layers,
(3) the slope Z ′(z) = dZ

dz
assumes opposite sign between two-adjacent layers.

Its amplitude is layer thickness independent.

In 1986, a refinement of FSDT by inclusion of ZZ effects and transverse normal
strains was introduced in Murakami’s original ZZF [Murakami, 1986], defined
by the following displacement field:





u = u0 + zu1 + (−1)k 2
hk

(
z − 1

2
(zk + zk+1)

)
uZ

v = v0 + zv1 + (−1)k 2
hk

(
z − 1

2
(zk + zk+1)

)
vZ

w = w0 + zw1 + (−1)k 2
hk

(
z − 1

2
(zk + zk+1)

)
wZ

(3)

where u and v are the in-plane displacements and w is the transverse dis-
placement. The involved unknows are u0, u1, uZ , v0, v1, vZ , w0, w1, and wZ :
u0, v0 and w0 are translations of a point at the midplane; u1, v1 and w1 are
rotations as in the typical FSDT; and the additional degrees of freedom uZ ,
vZ and wZ have a meaning of displacement. zk, zk+1 are the bottom and top
z-coordinates at each layer.

More recently, another possible FSDT theory has been investigated by Car-
rera [Carrera, 2004] and Demasi [Demasi, 2008b], ignoring the through-the-
thickness deformations:





u = u0 + zu1 + (−1)k 2
hk

(
z − 1

2
(zk + zk+1)

)
uZ

v = v0 + zv1 + (−1)k 2
hk

(
z − 1

2
(zk + zk+1)

)
vZ

w = w0

(4)

with u0, u1, uZ , v0, v1, vZ , w0, zk, and zk+1 as before.

Ferreira et al. [Ferreira et al., 2011a] and Rodrigues et al. [Rodrigues et al., 2011]
used a ZZF theory involving the following expansion of displacements





u = u0 + zu1 + (−1)k 2
hk

(
z − 1

2
(zk + zk+1)

)
uZ

v = v0 + zv1 + (−1)k 2
hk

(
z − 1

2
(zk + zk+1)

)
vZ

w = w0 + zw1 + z2w2

(5)

This represents a variation of the Murakami’s original theory, allowing for a
quadratic evolution of the transverse displacement across the thickness direc-
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tion. Furthermore, Ferreira et al. [Ferreira et al., 2011b] used two higher order
ZZF theories allowing for a quadratic evolution of the transverse displacement
across the thickness direction as well and involving the following displacement
fields:





u = u0 + zu1 + z3u3 + (−1)k 2
hk

(
z − 1

2
(zk + zk+1)

)
uZ

v = v0 + zv1 + z3v3 + (−1)k 2
hk

(
z − 1

2
(zk + zk+1)

)
vZ

w = w0 + zw1 + z2w2

(6)

The use of a sinusoidal shear deformation theory for composite laminated
plates and shells was first presented by Touratier [Touratier, 1992a,Touratier, 1991]
[Touratier, 1992b] in the early 1990’s. Later Vidal and Polit [Vidal and Polit, 2008]
used a sinusoidal shear deformation theory for composite laminated beams.
The use of sinusoidal plate theories for functionally graded plates was first
presented by Zenkour [Zenkour, 2006], where a ǫzz = 0 approach was used. Re-
cently Neves et al. [Neves et al., 2011a,Neves et al., 2011b] successfully used
a sinusoidal plate theory for the bending and stress analysis of functionally
graded plates.





u = u0 + zu1 + sin
(
πz
h

)
u3 + (−1)k 2

hk

(
z − 1

2
(zk + zk+1)

)
uZ

v = v0 + zv1 + sin
(
πz
h

)
v3 + (−1)k 2

hk

(
z − 1

2
(zk + zk+1)

)
vZ

w = w0 + zw1 + z2w2

(7)

All previous cited work using ZZ functions deals with laminated plates or
shells. Refering to functionally graded sandwiches, the authors have sucess-
fuly used two hyperbolic-sine shear deformation theories for the static study
of functionally graded sandwich plates [Neves et al., 2012]. They both account
for the Zig-Zag effect, but only one allows for warping in the thickness direc-
tion:





u = u0 + zu1 + sinh
(
πz
h

)
u3 + (−1)k 2

hk

(
z − 1

2
(zk + zk+1)

)
uZ

v = v0 + zv1 + sinh
(
πz
h

)
v3 + (−1)k 2

hk

(
z − 1

2
(zk + zk+1)

)
vZ

w = w0

(8)
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



u = u0 + zu1 + sinh
(
πz
h

)
u3 + (−1)k 2

hk

(
z − 1

2
(zk + zk+1)

)
uZ

v = v0 + zv1 + sinh
(
πz
h

)
v3 + (−1)k 2

hk

(
z − 1

2
(zk + zk+1)

)
vZ

w = w0 + zw1 + z2w2

(9)

4 The present sinus shear deformation theories

In this paper we compare four sinusoidal shear deformation theories. In-plane
displacements (u, v) are considered to be of sinusoidal type across the thickness
coordinate and may include or not the terms to account for the zig-zag effect.
The transverse displacement (w) may be defined as constant if warping is not
allowed, or as parabolic in the thickness direction if warping is allowed.

For the easy reading of the paper, nomenclature is now introduced. All the-
ories are named sinus, as they all consider a sinusoidal expansion across the
thickness coordinate for the in-plane displacements. In addition the name will
include the ZZ letters if the zig-zag effect is considered, and will include the
0 number if ǫzz = 0, i. e., thickness-stretching is not allowed (see table 1).

The displacement fields of each theory are as follows:

Displacement field of sinus theory:





u = u0 + zu1 + sin
(
πz
h

)
us

v = v0 + zv1 + sin
(
πz
h

)
vs

w = w0 + zw1 + z2w2

(10)

Displacement field of sinus0 theory:





u = u0 + zu1 + sin
(
πz
h

)
us

v = v0 + zv1 + sin
(
πz
h

)
vs

w = w0

(11)
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Displacement field of sinusZZ theory:




u = u0 + zu1 + sin
(
πz
h

)
us + (−1)k 2

hk

(
z − 1

2
(zk + zk+1)

)
uZ

v = v0 + zv1 + sin
(
πz
h

)
vs + (−1)k 2

hk

(
z − 1

2
(zk + zk+1)

)
vZ

w = w0 + zw1 + z2w2

(12)

Displacement field of sinusZZ0 theory:




u = u0 + zu1 + sin
(
πz
h

)
us + (−1)k 2

hk

(
z − 1

2
(zk + zk+1)

)
uZ

v = v0 + zv1 + sin
(
πz
h

)
vs + (−1)k 2

hk

(
z − 1

2
(zk + zk+1)

)
vZ

w = w0

(13)

The expansion of the degrees of freedom u0, u1, us, v0, v1, vs, w0, w1, and w2

are functions of the thickness coordinate only. These are layer-independent,
unlike those of uZ and vZ , as illustrated in figures 4 and 5.

5 The Unified Formulation for the buckling analysis of FG sand-
wich plates

In this section it is shown how to obtain the fundamental nuclei under CUF,
which allows the derivation of the governing equations and boundary condi-
tions for FG plates.

5.1 Functionally graded materials

A conventional FG plate considers a continuous variation of material proper-
ties over the thickness direction by mixing two different materials [Miyamoto et al., 1999].
The material properties of the FG plate are assumed to change continuously
throughout the thickness of the plate, according to the volume fraction of the
constituent materials. Although one can use CUF for one-layer, isotropic plate,
we consider a multi-layered plate. In fact, the sandwiches in study present 3
physical layers, kp = 1, 2, 3, and depending on the considered theory may have
different displacement fields. Nevertheless, we are dealing with functionally
graded materials and becomes mandatory to model the continuos variation
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of properties across the thickness direction. A considerable number of layers
is needed to ensure correct computation of material properties at each thick-
ness position, and for that reason we consider Nl = 91 virtual (mathematical)
layers of constant thickness. In the following, kp refers to physical layers and
k = 1, ..., 91 refers to virtual layers.

The CUF procedure applied to FG materials starts by evaluating the volume
fraction of the two constituents for each layer. To describe the volume frac-
tions an exponential function can be used as in [Jin and Batra, 1996], or the
sigmoid function as proposed in [Chung and Chi, 2001]. In the present work a
power-law function is used as most researchers do [Praveen and Reddy, 1998]
[Najafizadeh and Eslami, 2002,Zenkour, 2005a,Zenkour, 2006]. In the typical
FG plate the power-law function defines the volume fraction of the ceramic
phase as:

Vc =
(
0.5 +

z

h

)p

(14)

where z ∈ [−h/2, h/2], h is the thickness of the plate, and p is a scalar pa-
rameter that allows the user to define gradation of material properties across
the thickness direction. In the present sandwich plate, the volume fraction
of the ceramic phase of the FG skins are obtained by adapting the typical
power-law. Furthermore, we need to compute the volume fraction for each
layer. Considering (1), one has:





V k
c =

(
z̃−h0

h1−h0

)p
, z ∈ [h0, h1]

V k
c = 1, z ∈ [h1, h2]

V k
c =

(
z̃−h3

h2−h3

)p
, z ∈ [h2, h3]

(15)

where z̃ is the thickness coordinate of a point of each (virtual) skin layer, and
h0, h1, h2, h3, and p ≥ 0 are as in (1).

Having the volume fraction of each constituent, a homogenization procedure is
employed to find the values of the modulus of elasticity, Ek, and Poisson’s ra-
tio, νk, of each layer. A possible homogenization technique is the Mori-Tanaka
one [Mori and Tanaka, 1973,Y. and Benveniste, 1987], and other possibility is
the law-of-mixtures. In the present work we use the last one so that we can
compare our results with referenced authors. The law-of-mixtures states that:

Ek(z) = EmVm + EcVc; νk(z) = νmVm + νcVc (16)
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5.2 Displacements

According to the Unified Formulation by Carrera, the three displacement com-
ponents ux, uy(=v) and uz(=w) and their relative variations are modeled as:

(ux, uy, uz) = Fτ (uxτ , uyτ , uzτ ) (δux, δuy, δuz) = Fs (δuxs, δuys, δuzs)

(17)

The vectors are chosen by resorting to the displacement field. In the present
formulation the thickness functions of each theory are as follows

sinus theory:




Fsux = Fsuy = Fτux = Fτuy =

[
1 z sin

(
πz
h

)]

Fsuz = Fτuz = [1 z z2]
(18)

sinus0 theory:




Fsux = Fsuy = Fτux = Fτuy =

[
1 z sin

(
πz
h

)]

Fsuz = Fτuz = [1]
(19)

sinusZZ theory:




Fsux = Fsuy = Fτux = Fτuy =

[
1 z sin

(
πz
h

)
(−1)kp 2

hkp

(
z − 1

2
(zkp + zkp+1)

)]

Fsuz = Fτuz = [1 z z2]

(20)

sinusZZ0 theory:




Fsux = Fsuy = Fτux = Fτuy =

[
1 z sin

(
πz
h

)
(−1)kp 2

hkp

(
z − 1

2
(zkp + zkp+1)

)]

Fsuz = Fτuz = [1]

(21)

The present formulation can be seen as a generalization of the original Car-
rera’s Unified Formulation in the sense that different expansions for the in-
plane and the out-of-plane displacement are considered.

10



5.3 Strains

Stresses and strains are separated into in-plane and normal components, de-
noted respectively by the subscripts p and n.

The geometrical relations (G) between the mechanical strains in the kth layer
and the displacement field uk = {ukx, uky, ukz} depend on the option of consid-
ering or not the warping in thickness direction.

For the sinus and sinusZZ theories, G can be stated as follows:

ǫkpG = [ǫxx, ǫyy, γxy]
kT = Dk(nl)

p uk , (22)

ǫknG = [γxz, γyz, ǫzz]
kT = (Dk

np +Dk
nz) u

k ,

wherein the differential operator arrays are defined as follows:

Dk(nl)
p =




∂x 0 ∂2x/2

0 ∂y ∂
2
y/2

∂y ∂x ∂x∂y



, Dk

np =




0 0 ∂x

0 0 ∂y

0 0 0



, Dk

nz =




∂z 0 0

0 ∂z 0

0 0 ∂z



, (23)

Although one needs to account for the nonliner contributions for the buckling
analysis, we can use the linear version of CUF as the non-linear terms will
only influence the equation refering to δw0. In fact, the compressive in-plane
forces and distributed shear forces only actuate on the mid-plane (z = 0) and
the nonlinear terms are reduced to 1

2

(
∂w0

∂x

)2
, 1

2

(
∂w0

∂y

)2
, and ∂w0

∂x
∂w0

∂y
.

For the sinus and sinusZZ theories (ǫzz 6= 0, i.e., warping is allowed), we use

Dk
p =




∂x 0 0

0 ∂y 0

∂y ∂x 0




(24)

instead of Dk(nl)
p and just add the terms in referred equation.

For the sinus0 and sinusZZ0 theories (ǫzz = 0, i.e., warping is not allowed),
ǫkpG and the differential operator array Dk

p remain as before, but the other
strains are reduced to

11



ǫknG = [γxz, γyz]
kT = (Dk

np +Dk
nz) u

k , (25)

wherein the differential operator arrays are defined as:

Dk
np =



0 0 ∂x

0 0 ∂y


 , Dk

nz =



∂z 0 0

0 ∂z 0


 , (26)

5.4 Elastic stress-strain relations

To define the constitutive equations (C), stresses are separated into in-plane
and normal components as well. The elastic stress-strain relations depend on
which assumption of ǫzz we consider.

For the sinus and sinusZZ theories, the 3D constitutive equations are used:

σk
pC = [σxx, σyy, σxy]

kT = Ck
pp ǫ

k
pG +Ck

pn ǫ
k
nG

σk
nC = [σxz, σyz, σzz]

kT = Ck
np ǫ

k
pG +Ck

nn ǫ
k
nG

(27)

with

Ck
pp =




Ck
11 C

k
12 0

Ck
12 C

k
11 0

0 0 Ck
44




Ck
pn =




0 0 Ck
12

0 0 Ck
12

0 0 0




Ck
np =




0 0 0

0 0 0

Ck
12 C

k
12 0




Ck
nn =




Ck
44 0 0

0 Ck
44 0

0 0 Ck
11




(28)

and the Ck
ij are the three-dimensional elastic constants

Ck
11 =

Ek(1 − (νk)2)

1 − 3(νk)2 − 2(νk)3
; Ck

12 =
Ek(νk + (νk)2)

1 − 3(νk)2 − 2(νk)3
; Ck

44 =
Ek

2(1 + νk)
(29)

where the modulus of elasticity and Poisson’s ratio were defined in (16).
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For the sinus0 and sinusZZ0 theories, as we have ǫzz = 0, the plane-stress
case is used:

σk
pC = [σxx, σyy, σxy]

kT = Ck
pp ǫ

k
pG

σk
nC = [σxz, σyz]

kT = Ck
nn ǫ

k
nG

(30)

with Ck
pp and ǫkpG as before, ǫknG = [γxz, γyz]

kT and

Ck
nn =



Ck

44 0

0 Ck
44


 (31)

and Ck
ij are the plane-stress reduced elastic constants:

Ck
11 =

Ek

1 − (νk)2
; Ck

12 = νk
Ek

1 − (νk)2
; Ck

44 =
Ek

2(1 + νk)
(32)

5.5 Principle of virtual displacements

In the framework of the Unified Formulation, the Principle of Virtual Dis-
placements (PVD) for the pure-mechanical case is written as:

Nl∑

k=1

∫

Ωk

∫

Ak

{
δǫkpG

T
σk
pC + δǫknG

T
σk
nC

}
dΩkdz =

Nl∑

k=1

δLk
e (33)

where Ωk and Ak are the integration domains in plane (x,y) and z direction,
respectively. As stated before, G means geometrical relations and C constitu-
tive equations, and k indicates the virtual layer. T is the transpose operator
and δLk

e is the external work for the kth layer.

Substituting the geometrical relations (G), the constitutive equations (C), and
the modeled displacement field (Fτ and Fs), all for the kth layer, (33) becomes:

∫

Ωk

∫

Ak

[
(Dk

p Fsδu
k
s)

T (Ck
ppD

k
p Fτu

k
τ +Ck

pn(D
k
nΩ +Dk

nz)Fτu
k
τ )

+ ((Dk
nΩ +Dk

nz)Fsδu
k
s)

T (Ck
npD

k
p Fτu

k
τ +Ck

nn(D
k
nΩ +Dk

nz)Fτu
k
τ )

]
dΩkdz = δLk

e

(34)
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Applying now the formula of integration by parts, (34) becomes:
∫

Ωk

(
(DΩ)δa

k
)T

akdΩk = −
∫

Ωk

δakT
(
(DT

Ω)a
k
)
dΩk +

∫

Γk

δakT
(
(IΩ)a

k
)
dΓk

(35)

where IΩ matrix is obtained applying the Gradient theorem:
∫

Ω

∂ψ

∂xi
dυ =

∮

Γ
niψds (36)

being ni the components of the normal n̂ to the boundary along the direction
i. After integration by parts, the governing equations and boundary conditions
for the plate in the mechanical case are obtained:
∫

Ωk

∫

Ak

( δuk
s)

T
[((

− Dk
p

)T(
Ck

pp(D
k
p) +Ck

pn(D
k
nΩ +Dk

nz

)

+
(

− Dk
nΩ +Dk

nz

)T(
Ck

np(D
k
p) +Ck

nn(D
k
nΩ +Dk

nz)
))

FτFsu
k
τ

]
dxdydz

+
∫

Ωk

∫

Ak

( δuk
s)

T
[(

IkTp
(
Ck

pp(D
k
p) +Ck

pn(D
k
nΩ +Dk

nz)
)

+ IkTnp
(
Ck

np(D
k
p) +Ck

nn(D
k
nΩ +Dk

nz)
))

FτFsu
k
τ

]
dxdydz =

∫

Ωk

δukT
s Fsp

k
udΩk .

(37)

where Ikp and Iknp depend on the boundary geometry:

Ikp =




nx 0 0

0 ny 0

ny nx 0



, Iknp =




0 0 nx

0 0 ny

0 0 0



. (38)

The normal to the boundary of domain Ω is:

n̂ =



nx

ny


 =



cos(ϕx)

cos(ϕy)


 (39)

where ϕx and ϕy are the angles between the normal n̂ and the direction x and
y respectively.
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5.6 Governing equations and boundary conditions

The governing equations for a multi-layered plate subjected to mechanical
loadings are:

δuk
s

T
: Kkτs

uu uk
τ = Pk

uτ (40)

where the fundamental nucleus Kkτs
uu is obtained as:

Kkτs
uu =

[(
− Dk

p

)T(
Ck

pp(D
k
p) +Ck

pn(D
k
nΩ +Dk

nz

)

+
(

− Dk
nΩ +Dk

nz

)T(
Ck

np(D
k
p) +Ck

nn(D
k
nΩ +Dk

nz)
)]
FτFs

(41)

and the corresponding Neumann-type boundary conditions on Γk are:

Πkτs
d uk

τ = Πkτs
d ūk

τ , (42)

where:

Πkτs
d =

[
IkTp

(
Ck

pp(D
k
p) +Ck

pn(D
k
nΩ +Dk

nz)
)
+

IkTnp
(
Ck

np(D
k
p) +Ck

nn(D
k
nΩ +Dk

nz)
)]
FτFs

(43)

and Pk
uτ are variationally consistent loads with applied pressure.

For FG materials, the fundamental nuclei in explicit form becomes:

Kkτs
uu11

=(−∂τx∂sxC11 + ∂τz ∂
s
zC55 − ∂τy∂

s
yC66)FτFs

Kkτs
uu12

=(−∂τx∂syC12 − ∂τy∂
s
xC66)FτFs

Kkτs
uu13

=(−∂τx∂szC13 + ∂τz ∂
s
xC55)FτFs

Kkτs
uu21

=(−∂τy∂sxC12 − ∂τx∂
s
yC66)FτFs

Kkτs
uu22

=(−∂τy∂syC22 + ∂τz ∂
s
zC44 − ∂τx∂

s
xC66)FτFs

Kkτs
uu23

=(−∂τy∂szC23 + ∂τz ∂
s
yC44)FτFs

Kkτs
uu31

=(∂τz ∂
s
xC13 − ∂τx∂

s
zC55)FτFs

Kkτs
uu32

=(∂τz ∂
s
yC23 − ∂τy∂

s
zC44)FτFs

Kkτs
uu33

=(∂τz ∂
s
zC33 − ∂τy∂

s
yC44 − ∂τx∂

s
xC55)FτFs

(44)
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Πkτs
11 =(nx∂

s
xC11 + ny∂

s
yC66)FτFs

Πkτs
12 =(nx∂

s
yC12 + ny∂

s
xC66)FτFs

Πkτs
13 =(nx∂

s
zC13)FτFs

Πkτs
21 =(ny∂

s
xC12 + nx∂

s
yC66)FτFs

Πkτs
22 =(ny∂

s
yC22 + nx∂

s
xC66)FτFs

Πkτs
23 =(ny∂

s
zC23)FτFs

Πkτs
31 =(nx∂

s
zC55)FτFs

Πkτs
32 =(ny∂

s
zC44)FτFs

Πkτs
33 =(ny∂

s
yC44 + nx∂

s
xC55)FτFs

(45)

5.7 Equations of motion and boundary conditions in terms of displacements

In order to discretize the linearized buckling equations by radial basis func-
tions, we need the explicit terms of that equations and the corresponding
boundary conditions as well in terms of the generalized displacements. The
explicit governing equations and corresponding boundary conditions in terms
of generalized displacements for the static and free vibration analysis of func-
tionally graded plates of the sinus theory can be found in [Neves et al., 2011b].
Those equations are the same for the buckling problem, by setting to zero the
terms with the inertias (Ii) as well as the external forces (pz), and adding the
non-linear terms to the δw0 equation. For the sake of completeness we present
here the equation of the buckling problem of sinus theory that corresponds
to the w0 variable.

δw0 : A13
∂u1
∂x

+ 2B13
∂uZ
∂x

+ A23
∂v1
∂y

+ 2B23
∂vZ
∂y

− A55
∂2w0

∂x2
− A44

∂2w0

∂y2

−B55
∂2w1

∂x2
−B44

∂2w1

∂y2
−D55

∂2wZ

∂x2
−D44

∂2wZ

∂y2

+N̄xx
∂2w0

∂x2
+ 2N̄xy

∂2w0

∂x∂y
+ N̄yy

∂2w0

∂y2
= 0 (46)
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The stiffness components of this equation can be computed as follows:

Aij =
Nl∑

k=1

ckij (zk+1 − zk) ; Bij =
1

2

Nl∑

k=1

ckij
(
z2k+1 − z2k

)
; Dij =

1

3

Nl∑

k=1

ckij
(
z3k+1 − z3k

)

(47)
where Nl is the number of mathematical layers across the thickness direc-
tion, hk is the thickness of each layer, and zk, zk+1 are the lower and upper
z coordinate for each layer k. N̄xx, N̄xy, and N̄yy denote the in-plane applied
loads.

6 The radial basis function method applied to buckling problems

Recently, radial basis functions (RBFs) have enjoyed considerable success and
research as a technique for interpolating data and functions. A radial ba-
sis function, φ(‖x − xj‖) is a spline that depends on the Euclidian distance
between distinct data centers xj, j = 1, 2, ..., N ∈ Rn, also called nodal or
collocation points. Although most work to date on RBFs relates to scattered
data approximation and in general to interpolation theory, there has recently
been an increased interest in their use for solving partial differential equations
(PDEs). This approach, which approximates the whole solution of the PDE
directly using RBFs, is truly a mesh-free technique. Kansa [Kansa, 1990] in-
troduced the concept of solving PDEs by an unsymmetric RBF collocation
method based upon the MQ interpolation functions, in which the shape pa-
rameter may vary across the problem domain.

The radial basis function (φ) approximation of a function (u) is given by

ũ(x) =
N∑

i=1

αiφ (‖x− yi‖2) ,x ∈ Rn (48)

where yi, i = 1, .., N is a finite set of distinct points (centers) in Rn.

Derivatives of ũ are computed as

∂ũ
∂x

=
N∑

j=1

αj
∂φj

∂x
(49)
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∂2ũ
∂x2

=
N∑

j=1

αj
∂2φj

∂x2
, etc (50)

In the present collocation approach, one needs to impose essential and natural
boundary conditions. Consider, for example, the condition w = 0, on a simply
supported or clamped edge. The conditions are enforced by interpolating as

w = 0 →
N∑

j=1

αW
j φj = 0 (51)

Other boundary conditions are interpolated in a similar way.

The most common RBFs are

Cubic: φ(r) = r3

Thin plate splines: φ(r) = r2 log(r)

Wendland functions: φ(r) = (1 − r)m+p(r)

Gaussian: φ(r) = e−(cr)2

Multiquadrics: φ(r) =
√
c2 + r2

Inverse Multiquadrics: φ(r) = (c2 + r2)−1/2

where the Euclidian distance r is real and non-negative and c is a positive
shape parameter. In the present work, we consider the compact-support Wend-
land function [Wendland, 1998] defined as

φ(r) = (1 − c r)8+
(
32(c r)3 + 25(c r)2 + 8c r + 1

)
(52)

The shape parameter (c) is obtained by an optimization procedure, as detailed
in Ferreira and Fasshauer [Ferreira and Fasshauer, 2006].

Considering N distinct interpolations, and knowing u(xj), j = 1, 2, ..., N , one
finds αi by the solution of a N ×N linear system

Aα = u (53)

where A = [φ (‖x− yi‖2)]N×N , α = [α1, α2, ..., αN ]
T and u = [u(x1), u(x2), ..., u(xN )]

T .

Consider a linear elliptic partial differential operator L acting in a bounded
region Ω in Rn and another operator LB acting on a boundary ∂Ω. The eigen-
problem looks for eigenvalues (λ) and eigenvectors (u) that satisfy
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Lu + λu = 0 in Ω (54)

LBu = 0 on ∂Ω (55)

The eigenproblem defined in (54) and (55) will be replaced by a finite-dimensional
eigenvalue problem, after the radial basis approximations.

The solution of the eigenproblem by radial basis functions considers NI nodes
in the interior of the domain and NB nodes on the boundary, with a total
number of nodes N = NI +NB. In the present work, a ℜ2 Chebyshev grid is
employed (see figure 6) and a square plate is computed with side length a = 2.
For a given number of nodes per side (N+1) they are generated by MATLAB
code as:

x = cos(pi*(0:N)/N)’; y=x;

One advantage of such mesh is the concentration of points near the boundary.

The interpolation points are denoted by xi ∈ Ω, i = 1, ..., NI and xi ∈ ∂Ω, i =

NI+1, ..., N . At the points in the domain, the following eigenproblem is defined

N∑

i=1

αiLφ (‖x− yi‖2) = λũ(xj), j = 1, 2, ..., NI (56)

or

LIα = λũI (57)

where

LI = [Lφ (‖x− yi‖2)]NI×N (58)

At the points on the boundary, the imposed boundary conditions are

N∑

i=1

αiLBφ (‖x− yi‖2) = 0, j = NI + 1, ..., N (59)

or

Bα = 0 (60)

where B = LBφ [(‖xNI+1 − yj‖2)]NB×N .

Therefore, one can write a finite-dimensional eigenvalue problem and solve
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equations (57) and (60) as a generalized eigenvalue problem



LI

B


α = λ



AI

0


α (61)

where
AI = φ [(‖xNI

− yj‖2)]NI×N

The eigenproblem associated to the linearized buckling equations is defined as

[L − λG]X = 0 (62)

where L collects all stiffness terms and G collects all terms related to the in-
plane forces. In (62) X are the buckling modes associated with the buckling
loads defined as λ.

7 Numerical results

In this section the sinusoidal shear deformation plate theories are combined
with radial basis functions collocation for the buckling analysis of functionally
graded sandwich plates. The plate is subjected to compressive in-plane forces
acting on the mid-plane of the plate. The buckling loads of simply supported
(SSSS) square (a = b = 2, see figure 6) sandwich plates with FG materials
in the skins are analysed, for both symmetric and unsymmetric plates. The
plates have side lengths a = b, thickness h, being the span-to-thickness ratio
a/h taken to be 10.

As stated before, all numerical examples are performed employing a Chebyshev
grid and the Wendland function as defined in (52) with an optimized shape
parameter. The bottom skin varies from a metal-rich surface to a ceramic-rich
surface while the top skin face varies from a ceramic-rich surface to a metal-rich
surface. The core material of the present sandwich plate is fully ceramic. Recall
that the plate is a sandwich, physicaly divided into 3 layers, although 91 virtual
layers are considered for the evaluation of stiffness components. The power-
law function is used to describe the volume fraction of the metal and ceramic
phases (see (1)) and the material homogeneization technique adopted is the
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law of mixtures (16), the same used in the references. The material properties
are Em = 70E0 (aluminum) and Ec = 380E0 (alumina) being E0 = 1GPa.
Poisson’s ratio is νm = νc = ν = 0.3 for both aluminum and alumina. The
homogeneization technique is applied to the Young’s modulus only. Various
power-law exponents, and skin-core-skin thickness ratios are considered in the
following.

Both the uni- and bi-axial critical buckling load are studied. An initial study
was performed for each type of buckling load to show the convergence of the
present approach and select the number of Chebyshev points to use in the
computation of the buckling problems. The non-dimensional parameter used
is

P̄ =
Pa2

100h3E0

.

7.1 Uni-axial buckling load

The uni-axial case convergence study is presented in table 2 for the 1-1-1
sandwich with p = 1. Based on this study a grid of 172 points was used for
the forward uni-axial buckling study.

The first four buckling modes of a simply supported 2-2-1 sandwich square
plate with FG skins, p = 10, subjected to a uni-axial in-plane compressive
load, using present sinusoidal theories are presented in figures 7 to 10.

The critical buckling loads obtained from the present approach with sinus,
sinus0, sinusZZ, and sinusZZ0 theories are tabulated and compared with
available references in table 3 for various power-law exponents p and skin-
core-skin thickness ratios. The table includes results obtained from classical
plate theory (CLPT), first-order shear deformation plate theory (FSDPT,K =

5/6 as shear correction factor), Reddy’s third-order shear deformation plate
theory (TSDPT) [Reddy, 2000], and Zenkour’s sinusoidal shear deformation
plate theory (SSDPT) [Zenkour, 2005b]. The table is organized so that the
material power-law exponent increases from up to down (p = 0, 0.5, 1, 5, 10)
and the core thickness to the total thickness of the plate ratio increases from
left to right

(
hc

h
= 0, 1

5
, 1
4
, 1
3
, 2
5
, 1
2

)
. In the particular case of the 1-0-1 sandwich,

the sandwich degenerates in a FG two layers plate (see figure 11 on the left)
and the ZZF is as in figure 11 on the right.
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7.2 Bi-axial buckling load

The bi-axial case convergence study is presented in table 4 for the 2-1-1 sand-
wich with p = 5. A grid of 172 points was used for the forward bi-axial buckling
study.

In figures 12 to 15 the first four buckling modes of a simply supported 2-1-2
sandwich square plate with FG skins, p = 0.5, subjected to a bi-axial in-plane
compressive load, using present sinusoidal theories are presented.

The critical buckling loads obtained from the present approach with sinus,
sinus0, sinusZZ, and sinusZZ0 theories are tabulated in table 5 for various
power-law exponents p and skin-core-skin thickness ratios. As for the uni-axial
case, results are compared with those from classical plate theory (CLPT),
first-order shear deformation plate theory (FSDPT, K = 5/6 as shear cor-
rection factor), Reddy’s third-order shear deformation plate theory (TSDPT)
[Reddy, 2000], and Zenkour’s sinusoidal shear deformation plate theory (SS-
DPT) [Zenkour, 2005b]. The table is organized so that the material power-law
exponent increases from up to down and the core thickness to the total thick-
ness of the plate ratio increases from left to right. As in the uni-axial load
case, the 1-0-1 case becomes as in figure 11.

7.3 Discussion of results

Results obtained with the present formulation are in good agreement with
considered references (except for the classical plate theory, which is not ad-
equate for this type of plates). This allow us to conclude that the sinusoidal
plate theories combined with collocation with radial basis functions are good
for the modeling of SSSS sandwich plates with FG skins.

The isotropic fully ceramic plate (first line on tables 3 and 5) has the higher
fundamental buckling loads. As the core thickness to the total thickness of the
plate ratio increases the buckling loads increase as well. We may also conclude
that the critical buckling loads decrease as the power-law exponent p increases.
From the comparison of tables 3 and 5 we deduce that the bi-axial buckling
load of any simply supported sandwich square plate with FG skins is half the
uni-axial one for the same plate.
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The zig-zag effects have influence on the buckling loads of SSSS sandwich
plates with functionally graded skins. By comparing sinus and sinusZZ the-
ories we see that the first one (without ZZ effect) gives higher buckling loads
than the other (with ZZ effects). Same happens to sinus0 and sinusZZ0 the-
ories. The influence of the ZZ effect is also seen in the first column of tables 3
and 5: for the isotropic fully ceramic plate, different values are obtained.

Another thing to note is that the sinus0 and sinusZZ0 theories are in better
agreement with [Reddy, 2000] and [Zenkour, 2005b] than sinus and sinusZZ
theories. This can be explained by the ǫzz = 0 option that the four theories
sinus0, sinusZZ0, [Reddy, 2000] and [Zenkour, 2005b] share. The influence
of the warping effects is stronger than the ZZ effects.

8 Conclusions

For the first time, a study on the influence of Zig-Zag and warping effects
on buckling problems of functionally graded sandwich plates by radial basis
function collocation was performed. For that purpose, four sinusoidal theories
were compared. The computation procedure becomes fast and straightforward
in MATLAB as a consequence of combining a generalized version of Carrera’s
Unified Formulation and collocation with radial basis functions. The colloca-
tion code depends only on the choice of two vectors and the buckling loads
for any type of C0

z shear deformation theory are obtained just by changing Fτ

and Fs. The present formulation was compared with available references and
proved very accurate in buckling problems.

Although buckling loads of sandwich plates with functionally graded skins
depend on both warping and zig-zag effects, the influence of the warping effects
is stronger.
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Fig. 10. First four buckling modes. Uni-axial buckling load of a simply supported
2-2-1 sandwich square plate with FG skins, p = 10, and using the sinusZZ0 theory.
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Fig. 12. First four buckling modes. Bi-axial buckling load of a simply supported
2-1-2 sandwich square plate with FG skins, p = 0.5, and using the sinus theory.
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Fig. 13. First four buckling modes. Bi-axial buckling load of a simply supported
2-1-2 sandwich square plate with FG skins, p = 0.5, and using the sinus0 theory.
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Fig. 14. First four buckling modes. Bi-axial buckling load of a simply supported
2-1-2 sandwich square plate with FG skins, p = 0.5, and using the sinusZZ theory.
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Fig. 15. First four buckling modes. Bi-axial buckling load of a simply supported
2-1-2 sandwich square plate with FG skins, p = 0.5, and using the sinusZZ0 theory.
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theory considers Zig-Zag effect allows tichness-stretching

sinus no yes

sinus0 no no

sinusZZ yes yes

sinusZZ0 yes no
Table 1
The present sinus theories.
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grid 132 172 212

P̄ sinus 6.31557 6.31502 6.31495

P̄ sinusZZ 6.31474 6.31414 6.31406
Table 2
Convergence study for the uni-axial buckling load of a simply supported 1-1-1 sand-
wich square plate with FG skins and p = 1 case using the sinus and sinusZZ theory.
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p Theory 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1

0 CLPT 13.73791 13.73791 13.73791 13.73791 13.73791 13.73791

FSDPT 13.00449 13.00449 13.00449 13.00449 13.00449 13.00449

TSDPT [Reddy, 2000] 13.00495 13.00495 13.00495 13.00495 13.00495 13.00495

SSDPT [Zenkour, 2005b] 13.00606 13.00606 13.00606 13.00606 13.00606 13.00606

sinus 12.95311 12.95311 12.95311 12.95311 12.95311 12.95311

sinus0 13.00543 13.00543 13.00543 13.00543 13.00543 13.00543

sinusZZ 12.95300 12.95196 12.95281 12.95203 12.95190 12.95310

sinusZZ0 13.00532 13.00437 13.00515 13.00447 13.00427 13.00545

0.5 CLPT 7.65398 8.25597 8.56223 8.78063 9.18254 9.61525

FSDPT 7.33732 7.91320 8.20015 8.41034 8.78673 9.19517

TSDPT [Reddy, 2000] 7.36437 7.94084 8.22470 8.43645 8.80997 9.21681

SSDPT [Zenkour, 2005b] 7.36568 7.94195 8.22538 8.43712 8.81037 9.21670

sinus 7.16230 7.71642 7.98960 8.19279 8.55168 8.94166

sinus0 7.18761 7.74350 8.01710 8.22139 8.58128 8.97284

sinusZZ 7.16223 7.71597 7.98960 8.19183 8.55081 8.94150

sinusZZ0 7.18755 7.74310 8.01710 8.22052 8.58039 8.97271

1 CLPT 5.33248 6.02733 6.40391 6.68150 7.19663 7.78406

FSDPT 5.14236 5.81379 6.17020 6.43892 6.92571 7.48365

TSDPT [Reddy, 2000] 5.16713 5.84006 6.19394 6.46474 6.94944 7.50656

SSDPT [Zenkour, 2005b] 5.16846 5.84119 6.19461 6.46539 6.94980 7.50629

sinus 5.06151 5.71145 6.05468 6.31499 6.78398 7.31966

sinus0 5.07874 5.73041 6.07363 6.33558 6.80542 7.34331

sinusZZ 5.06147 5.71123 6.05471 6.31414 6.78338 7.31949

sinusZZ0 5.07869 5.73022 6.07366 6.33480 6.80476 7.34317

5 CLPT 2.73080 3.10704 3.48418 3.65732 4.21238 4.85717

FSDPT 2.63842 3.02252 3.38538 3.55958 4.09285 4.71475

TSDPT [Reddy, 2000] 2.65821 3.04257 3.40351 3.57956 4.11209 4.73469

SSDPT [Zenkour, 2005b] 2.66006 3.04406 3.40449 3.58063 4.11288 4.73488

sinus 2.63640 3.00755 3.36252 3.52992 4.05069 4.64692

sinus0 2.64695 3.01855 3.37203 3.54149 4.06168 4.66043

sinusZZ 2.63631 3.00698 3.35966 3.52994 4.05056 4.64688

sinusZZ0 2.64687 3.01793 3.36937 3.54152 4.06160 4.66038

10 CLPT 2.56985 2.80340 3.16427 3.25924 3.79238 4.38221

FSDPT 2.46904 2.72626 3.07428 3.17521 3.68890 4.26040

TSDPT [Reddy, 2000] 2.48727 2.74632 3.09190 3.19471 3.70752 4.27991

SSDPT [Zenkour, 2005b] 2.48928 2.74844 3.13443 3.19456 3.14574 4.38175

sinus 2.47230 2.71991 3.06061 3.15730 3.66163 4.20546

sinus0 2.48259 2.73058 3.06950 3.16827 3.67158 4.21787

sinusZZ 2.47213 2.71679 3.05227 3.15658 3.66000 4.20449

sinusZZ0 2.48242 2.72733 3.06150 3.16749 3.67015 4.21685

Table 3
Uni-axial buckling P̄ load of simply supported sandwich square plates with FG skins
using the sinusoidal theory.
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grid 132 172 212

P̄ sinus 1.68144 1.68127 1.68125

P̄ sinusZZ 1.68002 1.67983 1.67981
Table 4
Convergence study for the bi-axial buckling load of a simply supported 2-1-1 sand-
wich square plate with FG skins and p = 5 case using the sinus and sinusZZ theory.
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p Theory 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1

0 CLPT 6.86896 6.86896 6.86896 6.86896 6.86896 6.86896

FSDPT 6.50224 6.50224 6.50224 6.50224 6.50224 6.50224

TSDPT [Reddy, 2000] 6.50248 6.50248 6.50248 6.50248 6.50248 6.50248

SSDPT [Zenkour, 2005b] 6.50303 6.50303 6.50303 6.50303 6.50303 6.50303

sinus 6.47656 6.47656 6.47656 6.47656 6.47656 6.47656

sinus0 6.50272 6.50272 6.50272 6.50272 6.50272 6.50272

sinusZZ 6.47650 6.47598 6.47641 6.47601 6.47595 6.47655

sinusZZ0 6.50266 6.50219 6.50258 6.50224 6.50214 6.50272

0.5 CLPT 3.82699 4.12798 4.28112 4.39032 4.59127 4.80762

FSDPT 3.66866 3.95660 4.10007 4.20517 4.39336 4.59758

TSDPT [Reddy, 2000] 3.68219 3.97042 4.11235 4.21823 4.40499 4.60841

SSDPT [Zenkour, 2005b] 3.68284 3.97097 4.11269 4.21856 4.40519 4.60835

sinus 3.58115 3.85821 3.99480 4.09640 4.27584 4.47083

sinus0 3.59380 3.87175 4.00855 4.11069 4.29064 4.48642

sinusZZ 3.58112 3.85799 3.99480 4.09592 4.27541 4.47075

sinusZZ0 3.59377 3.87155 4.00855 4.11026 4.29020 4.48636

1 CLPT 2.66624 3.01366 3.20195 3.34075 3.59831 3.89203

FSDPT 2.57118 2.90690 3.08510 3.21946 3.46286 3.74182

TSDPT [Reddy, 2000] 2.58357 2.92003 3.09697 3.23237 3.47472 3.75328

SSDPT [Zenkour, 2005b] 2.58423 2.92060 3.09731 3.23270 3.47490 3.75314

sinus 2.53076 2.85573 3.02734 3.15750 3.39199 3.65983

sinus0 2.53937 2.86520 3.03681 3.16779 3.40271 3.67165

sinusZZ 2.53073 2.85562 3.02735 3.15707 3.39169 3.65975

sinusZZ0 2.53935 2.86511 3.03683 3.16740 3.40238 3.67158

5 CLPT 1.36540 1.55352 1.74209 1.82866 2.10619 2.42859

FSDPT 1.31921 1.51126 1.69269 1.77979 2.04642 2.35737

TSDPT [Reddy, 2000] 1.32910 1.52129 1.70176 1.78978 2.05605 2.36734

SSDPT [Zenkour, 2005b] 1.33003 1.52203 1.70224 1.79032 2.05644 2.36744

sinus 1.31820 1.50377 1.68126 1.76496 2.02535 2.32346

sinus0 1.32348 1.50927 1.68601 1.77075 2.03084 2.33022

sinusZZ 1.31816 1.50349 1.67983 1.76497 2.02528 2.32344

sinusZZ0 1.32344 1.50897 1.68469 1.77076 2.03080 2.33019

10 CLPT 1.28493 1.40170 1.58214 1.62962 1.89619 2.19111

FSDPT 1.23452 1.36313 1.53714 1.58760 1.84445 2.13020

TSDPT [Reddy, 2000] 1.24363 1.37316 1.54595 1.59736 1.85376 2.13995

SSDPT [Zenkour, 2005b] 1.24475 1.37422 1.56721 1.59728 1.57287 2.19087

sinus 1.23615 1.35996 1.53030 1.57865 1.83081 2.10273

sinus0 1.24130 1.36529 1.53475 1.58414 1.83579 2.10893

sinusZZ 1.23606 1.35840 1.52613 1.57829 1.83000 2.10224

sinusZZ0 1.24121 1.36367 1.53075 1.58374 1.83508 2.10843

Table 5
Bi-axial buckling load P̄ of simply supported sandwich square plates with FG skins
using the sinusoidal theory.
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a b s t r a c t

This paper deals with free vibration problems of functionally graded shells. The analysis is performed by
radial basis functions collocation, according to a higher-order shear deformation theory that accounts for
through-the-thickness deformation.

The equations of motion and the boundary conditions are obtained by Carrera’s Unified Formulation
resting upon the principle of virtual work, and further interpolated by collocation with radial basis
functions.

Numerical results include spherical as well as cylindrical shell panels with all edges clamped or simply
supported and demonstrate the accuracy of the present approach.

� 2012 Elsevier Masson SAS. All rights reserved.

1. Introduction

Functionally graded materials (FGM) are a class of composite
materials that were first proposed by Bever and Duwez in 1972. In
a typical FGM shell the material properties continuously vary
over the thickness direction by mixing two different materials
(Miyamoto et al., 1999). The computational modeling of FGM is an
important tool to the understanding of the structures behavior, and
has been the target of intense research (Miyamoto et al., 1999;
Ferrante and Graham-Brady, 2005; Yin et al., 2004; Zhong and
Shang, 2008; Nguyen et al., 2007; Birman and Byrd, 2007; Koizumi,
1997). The continuous development of new structural materials
leads to ever increasingly complex structural designs that require
careful analysis. Although analytical techniques are very important,
the use of numerical methods to solve shell mathematical models
of complex structures has become essential.

The most common numerical procedure for the analysis of the
shells is the finite element method (Carrera, 2003; Chapelle and
Bathe, 2003; Flügge, 1960; Scordelis and Lo, 1964; Reddy, 1982).
This paper considers collocation with radial basis functions as
a meshless technique. A radial basis function, fðkx� xjkÞ depends

on the Euclidian distance between distinct collocation points
xj;j ¼ 1;2;.;N˛Rn. The unsymmetrical Kansa method (Kansa,
1990) is employed in this work, for its good accuracy and easy
implementation. The use of radial basis function for the analysis of
structures and materials has been previously studied (Hon et al.,
1997, 1999; Wang et al., 2002; Liu and Gu, 2001; Liu and Wang,
2002; Wang and Liu, 2002; Chen et al., 2003; Dai et al., 2004; Liu
and Chen, 2002; Liew et al., 2004; Huang and Li, 2004; Liu et al.,
2002; Xiang et al., 2009, 2010; Ferreira et al., 2006). Advantages
of this technique are absence of mesh, ease of discretization of
governing equations and boundary conditions and ease of coding
as well. The authors have applied the RBF collocation to the analysis
of composite beams and plates (Ferreira, 2003a, 2003b; Ferreira
et al., 2003). The combination of CUF and meshless methods has
been performed in Ferreira et al. (2011a, 2011b, 2011c) and
Rodrigues et al. (2011) for laminated plates, in Ferreira et al. (2011d,
2011e) for laminated shells, and in Neves et al. (2011, 2012) for FGM
plates.

In this paper it is investigated for the first time how the Unified
Formulation by Carrera (Carrera, 2001; Carrera, 2004; Carrera and
Brischetto, 2008; Soave et al., 2010; Kröplin et al., 2006; Carrera,
2003) can be combined with radial basis functions collocation to
the free vibration analysis of thin and thick FG shells, using
a higher-order shear deformation theory (HSDT), allowing for
through-the-thickness deformations. The effect of ezz s 0 in these
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problems is also investigated. The quality of the present method in
predicting free vibrations of thin and thick FG shells is demon-
strated through numerical examples.

2. The Unified Formulation applied to shell HSDT

The Unified Formulation (UF) proposed by Carrera has been
applied in several finite element analysis of beams, plates, and
shells, either using the Principle of Virtual Displacements, or by
using the Reissner’s Mixed Variational theorem. The stiffness
matrix components, the external force terms or the inertia terms
can be obtained directly with this UF, irrespective of the shear
deformation theory being considered. We present in the following
the details of the formulation.

2.1. Shell geometry

Shells are bi-dimensional structures inwhich one dimension (in
general the thickness in z direction) is negligible with respect to the
other two in-plane dimensions. The CUF formulation applied to
FGM shells considers virtual (mathematical) layers of constant
thickness. The geometry and the reference system are indicated in
Fig. 1.

2.2. A higher-order shear deformation theory

The present higher-order shear deformation theory involves the
following expansion of displacements

uða;b; z; tÞ ¼ u0ða;b; tÞ þ zu1ða; b; tÞ þ z3u3ða;b; tÞ (1)

yða;b; z; tÞ ¼ y0ða;b; tÞ þ zy1ða; b; tÞ þ z3y3ða;b; tÞ (2)

wða; b; z; tÞ ¼ w0ða; b; tÞ þ zw1ða; b; tÞ þ z2w2ða; b; tÞ (3)

where u, v, and w are the displacements in the a-, b-, and z-direc-
tions, respectively. u0, u1, u3, y0, y1, y3,w0,w1, andw2 are functions to
be determined. u0, y0 and w0 are translations of a point at the
middle-surface of the shell, and u1, y1, u3, y3 denote rotations. The
consideration of higher-order terms in w allows the study of the
thickness-stretching effects.

2.3. Governing equations and boundary conditions

The functionally graded shell is divided into a number (NL) of
uniform thickness layers. The square of an infinitesimal linear

segment in the kth layer, the associated infinitesimal area and
volume are given by:

ds2k ¼ Hk2
a da2 þ Hk2

b db2 þ Hk2
z dz2;

dUk ¼ Hk
aH

k
bda db;

dVk ¼ Hk
aH

k
bH

k
zda db dz;

(4)

where the metric coefficients are:

Hk
a ¼ Ak

�
1þ z=Rka

�
; Hk

b ¼ Bk
�
1þ z=Rkb

�
; Hk

z ¼ 1: (5)

k denotes the k-layer of the multilayered shell; Rka and Rkb are the
principal radii of curvature along the coordinates a and b respec-
tively. Ak and Bk are the coefficients of the first fundamental form of
Uk (Gk is the Uk boundary). In this work, the attention has been
restricted to shells with constant radii of curvature (cylindrical,
spherical, toroidal geometries) for which Ak ¼ Bk ¼ 1.

The Principle of Virtual Displacements (PVD) for the pure-
mechanical case can be expressed as:

XNL
k¼1

Z
Uk

Z
Ak

n
dekpG

T
skpC þ deknG

T
sknC

o
dUkdz ¼

XNL
k¼1

dLke (6)

where Uk and Ak are the integration domains in plane (a, b) and z
direction, respectively. Here, k indicates the layer and T the trans-
pose of a vector. G means geometrical relations and C constitutive
equations and dLke is the external work for the kth layer.

Stresses and strains are separated into in-plane and normal
components, denoted respectively by the subscripts p and n. The
mechanical strains in the kth layer can be related to the displace-
ment field uk ¼

n
uka;u

k
b;u

k
z

o
via the geometrical relations:

ekpG ¼
h
ekaa; e

k
bb; e

k
ab

iT ¼ �
Dk
p þ Ak

p

�
uk; eknG ¼

h
ekaz; e

k
bz; e

k
zz

iT
¼
�
Dk
nU þ Dk

nz � Ak
n

�
ukT (7)

The explicit form of the introduced arrays follows:

Dk
p ¼

2
666666664

va

Hk
a

0 0

0
vb

Hk
b

0

vb

Hk
b

va

Hk
a

0

3
777777775
; Dk

nU ¼

2
666664
0 0

va

Hk
a

0 0
vb

Hk
b

0 0 0

3
777775; D

k
nz ¼

2
4vz 0 0
0 vz 0
0 0 vz

3
5; (8)
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Fig. 1. Geometry and notations for a multilayered shell (doubly curved).
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Ak
p ¼

2
666664
0 0

1
Hk
aRka

0 0
1

Hk
b
Rk
b

0 0 0

3
777775; Ak

n ¼

2
666664

1
Hk
aRka

0 0

0
1

Hk
b
Rk
b

0

0 0 0

3
777775: (9)

The 3D constitutive equations are given as:

skpC ¼ Ck
ppe

k
pG þ Ck

pne
k
nG

sknC ¼ Ck
npe

k
pG þ Ck

nne
k
nG

(10)

In the case of functionally graded materials, the matrices Ck
pp,

Ck
pn, C

k
np, and Ck

nn are reduced to:

Ck
pp ¼

2
64C

k
11 Ck

12 0
Ck
12 Ck

11 0
0 0 Ck

44

3
75 Ck

pn ¼

2
640 0 Ck

12
0 0 Ck

12
0 0 0

3
75

Ck
np ¼

2
4 0 0 0

0 0 0
Ck
12 Ck

12 0

3
5 Ck

nn ¼

2
64C

k
44 0 0
0 Ck

44 0
0 0 Ck

33

3
75

(11)

The computation of elastic constants Ck
ij for each layer, considers

the following steps:

(1) computation of volume fraction of the ceramic and metal
phases

(2) computation of elastic properties Ek and nk

(3) computation of elastic constants Cij

In the present work, the volume fraction of the ceramic phase is
defined according to the power-law:

Vk
c ¼

�
0:5þ z

h

�p

(12)

being z˛½�h=2;h=2�; h the thickness of the shell, and the exponent p
a scalar parameter that defines gradation of material properties
across the thickness direction. The volume fraction of the metal
phase is given as Vk

m ¼ 1� Vk
c .

The Young’s modulus, Ek, and Poisson’s ratio, nk, are computed
by the law-of-mixtures:

EkðzÞ ¼ EmVk
m þ EcVk

c ; nkðzÞ ¼ nmVk
m þ ncVk

c ; (13)

Then, the computation of the elastic constants Ck
ij is performed,

depending on the assumption of ezz. If ezz ¼ 0, then Ck
ij are the plane-

stress reduced elastic constants:

Ck
11 ¼

Ek

1��nk�2; Ck
12 ¼ nk

Ek

1��nk�2; Ck
44 ¼

Ek

2
�
1þnk

�; C33 ¼ 0 (14)

where Ek is the modulus of elasticity, nk is the Poisson’s ratio found
in previous step.

If ezz s 0 (thickness-stretching), then Ck
ij are the three-

dimensional elastic constants, given by

Ck
11 ¼ Ekð1� ðnkÞ2Þ

1� 3
�
nk
�2�2

�
nk
�3; Ck

12 ¼ Ekðnk þ ðnkÞ2Þ
1� 3

�
nk
�2�2

�
nk
�3 (15)

Ck
44 ¼ Ek

2
�
1þ nk

�; Ck
33 ¼ Ekð1� ðnkÞ2Þ

1� 3
�
nk
�2�2

�
nk
�3 (16)

The three displacement components ua, ub and uz (given in
(1)e(3)) and their relative variations can be modeled by CUF as:

�
ua;ub;uz

�
¼ Fs

�
uas;ubs;uzs

� �
dua; dub; duz

�
¼ Fs

�
duas; dubs; duzs

�
(17)

where Fs are functions of the thickness coordinate z and s is a sum
index. In the present formulation the thickness functions are

Fsua ¼ Fsub ¼ Fsua ¼ Fsub ¼ �
1 z z3

	
(18)

for in-plane displacements u, y and

Fsw ¼ Fsw ¼ �
1 z z2

	
(19)

for transverse displacement w. All the terms of the equations of
motion are then obtained by integrating through the thickness
direction.

Substituting the geometrical relations, the constitutive equa-
tions and the unified formulation into the variational statement
PVD, for the kth layer, one obtains:

XNL
k¼1

8><
>:
Z
Uk

Z
Ak

n��
DpþAp

�
duk
�T�

Ck
pp
�
DpþAp

�
uk

þCk
pnðDnUþDnz�AnÞuk

�
þ
�
ðDnUþDnz�AnÞduk

�T

�
�
Ck
np
�
DpþAp

�
ukþCk

nnðDnUþDnz�AnÞuk
�o

dUkdzk

9>=
>;

¼
XNL
k¼1

dLke ð20Þ

At this point, the formula of integration by parts is applied:

Z
Uk

�
ðDUÞdak

�T
akdUk ¼ �

Z
Uk

dak
T
��

DT
U

�
ak
�
dUk

þ
Z
Gk

dak
T
�
ðIUÞak

�
dGk ð21Þ

where IU matrix is obtained applying the Divergence theorem:

Z
U

vj

vxi
dy ¼

I
G

nijds (22)

being ni the components of the normal n̂ to the boundary along the
direction i. After integration by parts and the substitution of CUF,
the governing equations and boundary conditions for the shell in
the mechanical case are obtained:
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where Ikp and Iknp depend on the boundary geometry:

Ip ¼

2
6666664
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Ha

0 0

0
nb
Hb

0

nb
Hb

na
Ha

0

3
7777775
; Inp ¼

2
66664
0 0

na
Ha

0 0
nb
Hb

0 0 0

3
77775; : (24)

The normal to the boundary of domain U is:

n̂ ¼


na
nb

�
¼


cosð4aÞ
cos
�
4b

� � (25)

where 4a and 4b are the angles between the normal n̂ and the
direction a and b respectively.

The governing equations for a multi-layered shell subjected to
mechanical loadings are:

dukT
s : Kkss

uu u
k
s ¼ Pk

us (26)

where the fundamental nucleus Kkss
uu is obtained as:
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Z
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andthecorrespondingNeumann-typeboundaryconditionsonGkare:

Pkss
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s ; (28)

where:
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Z
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and Pk
us are variationally consistent loads with applied pressure.

2.4. Fundamental nuclei

The fundamental nucleo Kkss
uu is reported for functionally graded

doubly curved shells (radii of curvature in both a and b directions
(see Fig. 1)):
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where

The application of boundary conditions makes use of the
fundamental nucleo Pd in the form:
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Note that all the equations written for the shell degenerate to
those for the plate when 1=Rak ¼ 1=Rbk ¼ 0. In practice, the radii of
curvature are set to 109 for analysis of plates with the present
formulation.

2.5. Dynamic governing equations

The PVD for the dynamic case is expressed as:
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dLke (33)

where rk is themass density of the kth layer and double dots denote
acceleration.

By substituting the geometrical relations and the constitutive
equations, one obtains the following governing equations:

duk
s
T
: Kkss

uu u
k
s ¼ Mkss€uk

s þ Pk
us (34)

In the case of free vibrations one has:

duk
s
T
: Kkss

uu u
k
s ¼ Mkss€uk

s (35)

where Mkss is the fundamental nucleus for the inertial term, given
by

Mkss
ij ¼ rkJkssab ; i ¼ j

Mkss
ij ¼ 0; isj

(36)

The meaning of the integral Jkss
ab

has been illustrated in Equation
(31). The geometrical and mechanical boundary conditions are the
same of the static case.

3. The radial basis function method for free vibration
problems

Consider a linear elliptic partial differential operator L acting in
a bounded region U in Rn and another operator LB acting on
a boundary vU. The eigenproblem looks for eigenvalues (l) and
eigenvectors (u) that satisfy

Luþ lu ¼ 0 in U (37)

LBu ¼ 0 on vU (38)

The eigenproblem defined in (37) and (38) will be replaced by
a finite-dimensional eigenvalue problem, after the radial basis
approximations.

The radial basis function (f) approximation of a function (u) is
given by

~uðxÞ ¼
XN
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�
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where yi; i ¼ 1; ::;N is a finite set of distinct points (centers) in Rn.
Derivatives of ~u are computed as
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v~u
vx

¼
XN
j¼1

aj
vfj

vx
(40)

v2~u
vx2

¼
XN
j¼1

aj
v2fj

vx2
; etc (41)

In the present collocation approach, one needs to impose
essential and natural boundary conditions. Consider, for example,
the condition w ¼ 0, on a simply supported or clamped edge. The
conditions are enforced by interpolating as

w ¼ 0/
XN
j¼1

aWj fj ¼ 0 (42)

Other boundary conditions are interpolated in a similar way.
Examples of some common RBFs are

Cubic: fðrÞ ¼ r3

Thin plate splines: fðrÞ ¼ r2logðrÞ
Wendland functions: fðrÞ ¼ ð1� rÞmþpðrÞ
Gaussian: fðrÞ ¼ e�ðcrÞ2

Multiquadrics: fðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ r2

p
Inverse Multiquadrics: fðrÞ ¼ �

c2 þ r2
��1=2

where the Euclidian distance r is real and non-negative and c is
a positive shape parameter. Considering N distinct interpolations,
and knowing uðxjÞ; j ¼ 1;2;.;N, one finds ai by the solution of
a N � N linear system

Aa ¼ u (43)

where A ¼ ½fðkx� yik2Þ�N�N , a ¼ ½a1;a2;.;aN �T and

u ¼ ½uðx1Þ;uðx2Þ;.;uðxNÞ�T .
The solution of the eigenproblem by radial basis functions

considers NI nodes in the interior of the domain and NB nodes on
the boundary, with a total number of nodes N ¼ NI þ NB. The
interpolation points are denoted by xi˛U; i ¼ 1;.;NI and
xi˛vU; i ¼ NI þ 1;.;N. At the points in the domain, the following
eigenproblem is defined

XN
i¼1

aiLf
�kx� yik2

� ¼ l~u
�
xj
�
; j ¼ 1;2;.;NI (44)

or

LIa ¼ l~uI (45)

where

LI ¼ �Lf�kx� yik2
�	

NI�N (46)

At the points on the boundary, the imposed boundary condi-
tions are

XN
i¼1

aiLBf
�kx� yik2

� ¼ 0; j ¼ NI þ 1;.;N (47)

or

Ba ¼ 0 (48)

where B ¼ LBf½kxNIþ1 � yjk2�NB�N :

Therefore, one can write a finite-dimensional eigenvalue
problem and solve Equations (45) and (48) as a generalized
eigenvalue problem



LI

B

�
a ¼ l



AI

0

�
a (49)

where

AI ¼ f
h�


xNI

� yj




2

�i
NI�N

For free vibration problems an harmonic solution is assumed for
the displacements u0;u1; y0; y1;.

u0 ¼ U0ðx;yÞeiut ; u1 ¼ U1ðx;yÞeiut ; u3 ¼ U3ðx;yÞeiut
y0 ¼ V0ðx;yÞeiut ; y1 ¼ V1ðx;yÞeiut ; y3 ¼ V3ðx;yÞeiut
w0 ¼ W0ðx;yÞeiut ; w1 ¼ W1ðx;yÞeiut ; w2 ¼ W2ðx;yÞeiut

(50)

where u is the frequency of natural vibration. Substituting the
harmonic expansion into Equation (49) in terms of the amplitudes
U0, U1, U3, V0, V1, V3, W0, W1, W2, one can obtain the natural
frequencies and vibration modes for the plate or shell problem, by
solving the eigenproblemh
L � u2G

i
X ¼ 0 (51)

where L collects all stiffness terms and G collects all terms related
to the inertial terms. In (51) X are the modes of vibration associated
with the natural frequencies defined as u.

4. Numerical results

In this section the higher-order shear deformation theory is
combined with radial basis functions collocation for the free
vibration analysis of functionally graded shell panels. Examples
include spherical (Rx ¼ Ry ¼ R) as well as cylindrical (Rx ¼ R and
Ry ¼ N) shell panels with all edges clamped (CCCC) or simply
supported (SSSS). Particular cases of these are also considered:
isotropic materials (fully ceramic, p ¼ 0, and fully metal, p ¼ N)
and plates (Rx ¼ Ry ¼ N). To study the effect of ezz s 0 in these
problems, the case ezz ¼ 0 is implemented by considering w ¼ w0

instead (3).
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Fig. 2. A sketch of a Chebyshev grid for 172 points.
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Results are compared with those from Pradyumna and
Bandyopadhyay (2008), who used finite elements formulation
and a HSDT disregarding through-the-thickness deformations.

The following material properties are used:

silicon nitride ðSi3N4Þ :
Ec ¼ 322:2715 GPa; nc ¼ 0:24; rc ¼ 2370 Kg=m3 (52)

stainless steel ðSUS304Þ :
Em ¼ 207:7877 GPa; nm ¼ 0:31776; rm ¼ 8166 Kg=m3 (53)

aluminum :
Em ¼ 70 GPa; nm ¼ 0:3; rm ¼ 2707 Kg=m3 (54)

alumina :
Ec ¼ 380 GPa; nc ¼ 0:3; rc ¼ 3000 Kg=m3 (55)

The non-dimensional frequency is given as

w ¼ wa2
ffiffiffiffiffiffiffiffiffi
rmh
D

r
where D ¼ Emh3

12
�
1� n2m

� : (56)

In all numerical examples a Chebyshev grid is employed (see
Fig. 2) and the Wendland function defined as

fðrÞ ¼ ð1� crÞ8þ
�
32ðcrÞ3þ25ðcrÞ2þ8cr þ 1

�
(57)

Here, the shape parameter (c) is obtained by an optimization
procedure, as detailed in Ferreira and Fasshauer (2006).

An initial study was performed to show the convergence of the
present approach and select the number of points to use in the
computation of the vibration problems. Results are presented in
Table 1 and refer to the first four vibration modes of a clamped
functionally graded cylindrical shell panel composed of
silicon nitride (52) and stainless steel (53), with side-to-thickness
ratio a/h ¼ 10, side-to-radius ratio a/R ¼ 0.1, power law exponent

p ¼ 0.2, and a ¼ b ¼ 2. A 172 grid was chosen for the following
vibration problems.

4.1. Clamped functionally graded cylindrical shell panel

The free vibration of clamped FG cylindrical shell panels is
analyzed.

In Table 2 the first 4 vibration modes of a square clamped FG
cylindrical shell panel with constituents silicon nitride (52) and
stainless steel (53), side-to-thickness ratio a/h ¼ 10, side-to-radius
ratio a/R ¼ 0.1, and several power law exponents p are presented.
Results are compared with Pradyumna and Bandyopadhyay (2008)
and those from Yang and Shen (2003), with the differential quad-
rature approximation and Galerkin technique, both neglecting
through-the-thickness deformations.

In Fig. 3 the first 4 modes of a CCCC square FG cylindrical
shell panel, with constituents silicon nitride and stainless steel,
ratios a/h ¼ 10 and R/a ¼ 10, and power law exponent p ¼ 0.2 are
presented.

The fundamental frequency of square clamped FG cylindrical
shell panels composed of aluminum (54) and alumina (55), with
side-to-radius ratio a/R ¼ 0.1, various side-to-thickness ratios a/h
and power law exponents p are presented in Table 3.

The results of the present approach in Tables 2 and 3 compare
well with references. The combination of present HSDT and the
meshless technique based on collocation with radial basis function
shows very good accuracy in the free vibration analysis of FG shells.

In Table 4 the fundamental frequency of square clamped FG
cylindrical shell panels composed of aluminum (54) and alumina
(55), with side-to-thickness ratios a/h ¼ 10, are presented consid-
ering various side-to-radius ratio a/R, and power law exponents p.

4.2. Simply supported functionally graded cylindrical shell panel

The free vibration of simply supported FG cylindrical shell
panels is now analyzed.

Table 5 presents the fundamental frequency of a square simply
supported FG cylindrical shell panel with constituents aluminum
(54) and alumina (55), length-to-thickness ratio a/h ¼ 10, and
several length-to-radius ratio a/R and several power law exponents
p as well.

In Fig. 4 the relationships between fundamental frequency and
the radius-to-length ratio R/a is visualized for various power law
exponents p. It refers to the square simply supported FG cylin-
drical shell panel composed from aluminum (54) and alumina

Table 1
Initial study. Square CCCC FG cylindrical panel, Si3N4 and SUS304, a/h¼ 10, a/R¼ 0.1,
p ¼ 0.2.

Grid 132 172 192 212

1st 60.3483 60.3431 60.3499 60.3479
2nd 115.2450 115.2134 115.2315 115.2044
3rd 115.3917 115.3665 115.3755 115.3347
4th 162.1741 162.0337 162.0727 162.0860

Table 2
First 4 modes of a CCCC square FG cylindrical shell panel, Si3N4 and SUS304, a/h ¼ 10, a/R ¼ 0.1, for several p.

Mode Source p ¼ 0 (Si3N4) p ¼ 0.2 p ¼ 2 p ¼ 10 p ¼ N (SUS304)

1 Ref. (Pradyumna and Bandyopadhyay, 2008) 72.9613 60.0269 39.1457 33.3666 32.0274
Ref. (Yang and Shen, 2003) 74.518 57.479 40.750 35.852 32.761
Present ezz ¼ 0 74.2634 60.0061 40.5259 35.1663 32.6108
Present ezz s 0 74.5821 60.3431 40.8262 35.4229 32.8593

2 Ref. (Pradyumna and Bandyopadhyay, 2008) 138.5552 113.8806 74.2915 63.2869 60.5546
Ref. (Yang and Shen, 2003) 144.663 111.717 78.817 69.075 63.314
Present ezz ¼ 0 141.6779 114.3788 76.9725 66.6482 61.9329
Present ezz s 0 142.4281 115.2134 77.6639 67.1883 62.4886

3 Ref. (Pradyumna and Bandyopadhyay, 2008) 138.5552 114.0266 74.3868 63.3668 60.6302
Ref. (Yang and Shen, 2003) 145.740 112.531 79.407 69.609 63.806
Present ezz ¼ 0 141.8485 114.5495 77.0818 66.7332 62.0082
Present ezz s 0 142.6024 115.3665 77.7541 67.2689 62.5668

4 Ref. (Pradyumna and Bandyopadhyay, 2008) 195.5366 160.6235 104.7687 89.1970 85.1788
Ref. (Yang and Shen, 2003) 206.992 159.855 112.457 98.386 90.370
Present ezz ¼ 0 199.1566 160.7355 107.9484 93.3350 86.8160
Present ezz s 0 200.3158 162.0337 108.9677 94.0923 87.6341
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(55), with side-to-thickness ratio a/h ¼ 10. The graphic on the left
was obtained from tabulated values on Table 5 and the right one is
more detailed for values of p smaller or equal than 5 (p ¼ 0.5, 1, 2,
3, 4, 5).

4.3. Clamped functionally graded spherical shell panel

We now study the free vibration of clamped FG spherical shell
panels.

The fundamental frequency of a square clamped FG spherical
shell panel with constituents aluminum (54) and alumina (55), and
side-to-thickness ratio a/h ¼ 10, considering various side-to-radius
ratios a/R, and several power law exponents p are presented in
Table 6.

4.4. Simply supported functionally graded spherical shell panel

This example considers the free vibration of simply supported
FG spherical shell panels.

The fundamental frequency of a square simply supported FG
spherical shell panel composed of aluminum (54) and alumina (55),
with side-to-thickness ratio a/h ¼ 10, are presented in Table 7

considering various side-to-radius ratios a/R as well power law
exponents p.

4.5. Discussion

All results presented in Tables 2e7 are in excellent agreement
with references considered. Exceptions are p ¼ 10 and R/a ¼ 5, 10,
50 for the SSSS panels where the maximum difference is 26%, and
p ¼ 2, 10 and R/a ¼ 5, 10, 50 for the CCCC panels where the
maximum difference is 33%. The authors did not find any expla-
nation for these exceptions. In all other cases the maximum
difference is 7%. The relative errors here presented were evaluated
as ðpresent value� reference value=reference valueÞ � 100.

A detailed analysis of previous tables lead us to the following
conclusions:

� Boundary conditions: Clamped FG shell panels present higher
frequency values than simply supported ones.

� Geometry: Lower radii of curvature values present higher
frequency values, i.e., the fundamental frequency decreases as
the ratio R/a increases.

� Material properties: The fundamental frequency of FG shell
panels decreases as the exponent p in power-law increases.

Another conclusion from all tables, as easily seen in Fig. 4, is that
the fundamental frequency decreases as the radius of curvature
increases. The fall-off is faster for smaller values of R (R/a) and then
shows fast convergence.

In all studied cases the ezz ¼ 0 approach gives lower values than
the ezz s 0 one suggesting a small impact on the fundamental
frequency over the range of parameters used in the study. The effect
of the ezz approach shows higher significance in thicker shells (see
Table 2) and seems independent of the radius of curvature (see
Tables 4e7).

5. Concluding remarks

For the first time, Carrera’s Unified Formulation was combined
with the radial basis functions collocation technique for the free
vibration analysis of functionally graded shells. A higher-order
shear deformation theory that allows extensibility in the thick-
ness direction was implemented and the effect of ezz s 0 was
studied.

Numerical results were compared with other sources and the
present approach demonstrated to be successful in the free vibra-
tion analysis of functionally graded shells and easy to implement.

This paper deals onlywith shells with constant curvature radius.
In the future further studies on structures with arbitrary geometry
are to be done.

eig = 60.343060043733

x−coordinate

y−
co

or
di

na
te

−1 0 1
−1

−0.5

0

0.5

1
eig = 115.213411236518

x−coordinate

y−
co

or
di

na
te

−1 0 1
−1

−0.5

0

0.5

1

eig = 115.366533991520

x−coordinate

y−
co

or
di

na
te

−1 0 1
−1

−0.5

0

0.5

1
eig = 162.033725184600

x−coordinate

y−
co

or
di

na
te

−1 0 1
−1

−0.5

0

0.5

1

Fig. 3. First 4 modes of a CCCC square FG cylindrical shell panel, Si3N4 and SUS304,
a/h ¼ 10, a/R ¼ 0.1, p ¼ 0.2.

Table 3
Fundamental frequencies of CCCC square FG cylindrical shell panels composed of aluminum and alumina, R/a ¼ 0.1, for various a/h and p.

p Source a/h ¼ 5 a/h ¼ 10 a/h ¼ 15 a/h ¼ 20 a/h ¼ 50 a/h ¼ 100

0 FSDT 56.5548 70.8035 75.7838 77.5654 85.4346 103.4855
Ref. (Pradyumna and Bandyopadhyay, 2008) 58.2858 71.7395 75.0439 77.0246 84.8800 102.9227
Present ezz ¼ 0 59.0433 72.3272 76.4904 78.4918 85.6073 102.3351
Present ezz s 0 59.7741 72.8141 76.8148 78.7342 85.7713 102.7871

0.5 FSDT 47.2468 57.7597 62.2838 63.8393 70.3199 87.1049
Ref. (Pradyumna and Bandyopadhyay, 2008) 48.7185 58.5305 61.5835 63.1381 69.8604 86.5452
Present ezz ¼ 0 49.3050 59.5188 62.6780 64.2371 70.4237 85.4780
Present ezz s 0 49.9508 59.9353 62.9544 64.4438 70.5664 85.9029

1 FSDT 42.0305 51.0884 55.4209 56.7991 62.8458 77.7762
Ref. (Pradyumna and Bandyopadhyay, 2008) 43.4243 52.0173 54.7015 56.0880 62.2152 77.0774
Present ezz ¼ 0 43.9548 52.8776 55.6437 57.0255 62.7088 76.6386
Present ezz s 0 44.5754 53.2759 55.9081 57.2226 62.8414 77.0381
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Table 5
Fundamental frequencies of SSSS square FG cylindrical shell panels composed of aluminum and alumina, a/h ¼ 10, for various R/a and p.

p Source R/a ¼ 0.5 R/a ¼ 1 R/a ¼ 5 R/a ¼ 10 R/a ¼ 50 Plate

0 Ref. (Pradyumna and Bandyopadhyay, 2008) 68.8645 51.5216 42.2543 41.9080 41.7963 41.7917
Present ezz ¼ 0 70.1594 52.1938 42.6701 42.3153 42.2008 42.1961
Present ezz s 0 69.9872 52.1101 42.7172 42.3684 42.2560 42.2513

0.2 Ref. (Pradyumna and Bandyopadhyay, 2008) 64.4001 47.5968 40.1621 39.8472 39.7465 39.7426
Present ezz ¼ 0 65.3889 47.9338 38.7168 38.3840 38.2842 38.2827
Present ezz s 0 65.2100 47.8590 38.7646 38.4368 38.3384 38.3368

0.5 Ref. (Pradyumna and Bandyopadhyay, 2008) 59.4396 43.3019 37.2870 36.9995 36.9088 36.9057
Present ezz ¼ 0 60.4255 43.6883 34.8768 34.5672 34.4809 34.4820
Present ezz s 0 60.2422 43.6239 34.9273 34.6219 34.5365 34.5376

1 Ref. (Pradyumna and Bandyopadhyay, 2008) 53.9296 38.7715 33.2268 32.9585 32.8750 32.8726
Present ezz ¼ 0 54.8909 39.1753 30.9306 30.6485 30.5759 30.5792
Present ezz s 0 54.7074 39.1246 30.9865 30.7077 30.6355 30.6386

2 Ref. (Pradyumna and Bandyopadhyay, 2008) 47.8259 34.3338 27.4449 27.1789 27.0961 27.0937
Present ezz ¼ 0 48.7807 34.7654 27.5362 27.2979 27.2423 27.2472
Present ezz s 0 48.6005 34.7289 27.5977 27.3616 27.3055 27.3102

10 Ref. (Pradyumna and Bandyopadhyay, 2008) 37.2593 28.2757 19.3892 19.1562 19.0809 19.0778
Present ezz ¼ 0 38.2792 28.8072 24.2472 24.1063 24.0762 24.0802
Present ezz s 0 38.1172 28.7611 24.2839 24.1444 24.1125 24.1171

N Ref. (Pradyumna and Bandyopadhyay, 2008) 31.9866 24.1988 19.0917 18.9352 18.8848 18.8827
Present ezz ¼ 0 31.7000 23.5827 19.2796 19.1193 19.0675 19.0654
Present ezz s 0 31.6222 23.5448 19.3008 19.1433 19.0924 19.0903
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Fig. 4. Fundamental frequency as a function of the radius-to-length ratio for several p.

Table 4
Fundamental frequencies of CCCC square FG cylindrical shell panels composed of aluminum and alumina, a/h ¼ 10, for various R/a and p.

p Source R/a ¼ 0.5 R/a ¼ 1 R/a ¼ 5 R/a ¼ 10 R/a ¼ 50 Plate

0 Ref. (Pradyumna and Bandyopadhyay, 2008) 129.9808 94.4973 71.8861 71.0394 70.7660 70.7546
Present ezz ¼ 0 133.6037 95.5849 73.1640 72.3304 72.0614 72.0502
Present ezz s 0 134.5056 96.0131 73.6436 72.8141 72.5465 72.5353

0.2 Ref. (Pradyumna and Bandyopadhyay, 2008) 119.6109 87.3930 68.1152 67.3320 67.0801 67.0698
Present ezz ¼ 0 121.8612 87.8148 66.6620 65.8808 65.6371 65.6299
Present ezz s 0 122.7375 88.1659 67.1004 66.3235 66.0814 66.0743

0.5 Ref. (Pradyumna and Bandyopadhyay, 2008) 108.1546 79.5689 63.1896 62.4687 62.2380 62.2291
Present ezz ¼ 0 110.2017 80.0146 60.2477 59.5215 59.3022 59.2985
Present ezz s 0 111.0739 80.3049 60.6568 59.9353 59.7178 59.7142

1 Ref. (Pradyumna and Bandyopadhyay, 2008) 96.0666 71.2453 56.5546 55.8911 55.6799 55.6722
Present ezz ¼ 0 97.9069 71.6716 53.5430 52.8800 52.6864 52.6856
Present ezz s 0 98.7955 71.9167 53.9340 53.2759 53.0841 53.0835

2 Ref. (Pradyumna and Bandyopadhyay, 2008) 84.4431 62.9748 36.2487 35.6633 35.4745 35.4669
Present ezz ¼ 0 86.3088 63.4398 47.5205 46.9447 46.7820 46.7835
Present ezz s 0 87.2271 63.6675 47.9060 47.3343 47.1726 47.1741

10 Ref. (Pradyumna and Bandyopadhyay, 2008) 69.8224 51.3803 33.6611 33.1474 32.9812 32.9743
Present ezz ¼ 0 71.7634 52.0900 40.8099 40.4145 40.3028 40.3037
Present ezz s 0 72.3922 52.2780 41.0985 40.7046 40.5923 40.5929

N Ref. (Pradyumna and Bandyopadhyay, 2008) 61.0568 44.2962 32.4802 32.0976 31.9741 31.9689
Present ezz ¼ 0 60.3660 43.1880 33.0576 32.6810 32.5594 32.5543
Present ezz s 0 60.7735 43.3815 33.2743 32.8995 32.7786 32.7735
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Abstract

In this paper the Carrera’s Unified Formulation (CUF) is combined with a radial
basis function collocation technique. A higher-order theory that considers deforma-
tions in the thickness direction was developed under CUF to predict the buckling
behaviour of laminated plates. The obtained governing equations and boundary con-
ditions are then interpolated by collocation with radial basis functions.

The accuracy and efficiency of the combination of the two techniques for buckling
problems of laminated plates are demonstrated through numerical experiments.

1 Introduction

The buckling phenomenon consists of a sudden change of equilibrium geometry
at a certain critical load. It is one of the characteristic failure modes of slender
structures such as plates. Laminated plates are widely used in the aerospace
industry. The buckling analysis of laminated plates by numerical methods is
fundamental for adequate design.

Some relevant work on the buckling of thick plates includes those of Putcha
and Reddy [1], Baba [2], Reddy and Phan [3], Liew et al. [4,5], Tumino et al. [6],



Wang et al. [7], Ni et al. [8], and Kitipornchai et al. [9]. A comprehensive state-
of-the-art review was presented by Leissa [10,11]. Recent reviews on buckling
of laminated structures can be found in [12,13].

The present higher-order plate theory considers a third-order expansion across
the thickness coordinate, z, for the in-plane displacements and a quadratic ex-
pansion in the thickness direction for the transverse displacement, w, allowing
for through-the-thickness deformations. The linearized buckling equations and
boundary conditions are obtained using the Principle of Virtual Displacements
under Carrera’s Unified Formulation (CUF) [14]. This formulation proposed
by Carrera has been successfully applied in the analysis of composite laminated
and functionally graded beams, plates and shells in [15–18], using either the
Principle of Virtual Displacements or the Reissner mixed variational theorem,
and layer-wise as well as equivalent single-layer descriptions, mostly with finite
element methods.

The analysis of plates by finite elements methods is now fully established.
In recent years, radial basis functions (RBFs) showed excellent accuracy in
the interpolation of data and functions. Kansa [19] introduced the concept
of solving partial differential equations by an unsymmetric RBF collocation
method based upon the multiquadric interpolation functions. The authors
have recently applied the RBF collocation to the static deformations and free
vibrations of composite beams and plates [20–27].

The authors have successfully combined CUF and meshless methods in [28–
31] for laminated plates and in [32,33] for functionally graded plates. In this
paper, CUF is adopted to provide the linearized buckling equations and bound-
ary conditions of the higher-order theory for laminated plates. The governing
equations and the boundary conditions are then collocated with radial basis
functions. The objective of this paper is to study the buckling behaviour of
multilayered plates by a combination of CUF and the radial basis functions
collocation technique, as a first endeavour.

Examples are presented in section 4 and include both uni- and bi-axial com-
pressive loadings and several boundary conditions of symmetric cross-ply plates.

2 Formulation

2.1 Geometry and forces

Consider a rectangular plate of plan-form dimensions a and b and uniform
thickness h. The co-ordinate system is taken such that the x-y plane coincides

2
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Fig. 1. Rectangular plate subjected to compressive in-plane forces and distributed
shear forces.

with the midplane of the plate (z ∈ [−h/2, h/2]). The plate is composed of a
number of layers (NL) of orthotropic material.

The plate may be subjected to compressive in-plane forces acting on the mid-
plane of the plate z = 0 and distributed shear force (see fig. 1). N̄xx and
N̄yy denote the in-plane loads perpendicular to the edges x = 0 and y = 0
respectively, and N̄xy denote the distributed shear force parallel to the edges
x = 0 and y = 0 respectively.

2.2 Constitutive equations

For each lamina, the generic constitutive equations are expressed by Hooke’s
Law, in material axes:

σm = Hmǫm (1)

being σm and ǫm the stresses vector and strains vector, respectively, written
in material reference coordinates as:

σT
m = [σ11 σ22 σ12 σ13 σ23 σ33] (2)

ǫTm = [ǫ11 ǫ22 γ12 γ13 γ23 ǫ33] (3)
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being Hm the stiffness matrix

Hm =




C11 C12 0 0 0 C13

C12 C22 0 0 0 C23

0 0 C66 0 0 0

0 0 0 C55 0 0

0 0 0 0 C44 0

C13 C23 0 0 0 C33




(4)

The computation of the elastic constants Cij depends on the assumption on
the strain ǫzz.

Thickness-stretching effects can be considered by allowing ǫzz 6= 0. In this
case, Cij are the 3D elastic constants given by

C11 = E1
(1 − ν23ν32)

∆
, C12 = E1

(ν21 + ν31ν23)

∆
= E2

(ν12 + ν32ν13)

∆

C22 = E2
(1 − ν13ν31)

∆
, C13 = E1

(ν31 + ν21ν32)

∆
= E3

(ν13 + ν12ν23)

∆

C33 = E3
(1 − ν12ν21)

∆
, C23 = E2

(ν32 + ν12ν31)

∆
= E3

(ν23 + ν21ν13)

∆
C44 = G23, C55 = G13, C66 = G12

∆ = 1 − ν12ν21 − ν23ν32 − ν13ν31 − 2ν12ν32ν13

(5)

Here, E1, E2, and E3 are the Young’s moduli in directions 1, 2, and 3, re-
spectively, νij (i, j = 1, 2, 3) are the Poisson’s ratios, defined as the ratio of
transverse strain in the jth direction to the axial strain in the ith direction,
when stressed in the i-direction, and G23, G13, and G13 are the shear moduli
in the 2-3, 1-3, 1-2 planes, respectively.

On the other hand, if ǫzz = 0 is considered, thickness stretching is not allowed.
Consequently, Cij are the plane-stress reduced elastic constants in the material
axes:

C11 =
E1

∆
; C12 = ν21

E1

∆
= ν12

E2

∆
; C22 =

E2

∆
; ∆ = 1 − ν12ν21

C66 = G12; C44 = G23; C55 = G13; C33 = C13 = C23 = 0
(6)

The material coordinate system (x1, y1, z1) is obtained from the plate coordi-
nate system (x, y, z) by rotating the xy-plane by an angle θ, see figure 2. Note
that z = z1. For each layer, a rotation matrix is considered depending on the
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Fig. 2. A layer with plate and material coordinate systems.

angle θ between the 1-coordinate and the x-coordinate.

T k =




cos2 θ sin2 θ − sin 2θ 0 0 0

sin2 θ cos2 θ sin 2θ 0 0 0

1
2
sin 2θ −1

2
sin 2θ cos 2θ 0 0 0

0 0 0 cos θ sin θ 0

0 0 0 − sin θ cos θ 0

0 0 0 0 0 1




(7)

Stresses and deformations can be then obtained by

σ = Tσm and ǫ = T Tǫm (8)

being σ and ǫ the stresses vector and strains vector, respectively, written in
plate reference coordinates

σT = [σxx σyy σxy σxz σyz σzz] (9)

ǫT = [ǫxx ǫyy γxy γxz γyz ǫzz] (10)

Considering equations (1) and (8), the constitutive law in plate coordinates
can be obtaines as

σ = THmT
Tǫ (11)
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Defining H = THmT
T for each layer, the elastic stress-strains relation be-

comes σk = Hkǫk.

2.3 Displacement field

In the present work, the buckling behaviour of the laminated plate is modelled
by an higher-order plate theory based on the following displacement field:

u(x, y, z, t) = u0(x, y, t) + zu1(x, y, t) + z3u3(x, y, t)

v(x, y, z, t) = v0(x, y, t) + zv1(x, y, t) + z3v3(x, y, t)

w(x, y, z, t) = w0(x, y, t) + zw1(x, y, t) + z2w2(x, y, t)

(12)

where u, v, and w are the displacements in the x−, y−, and z− directions,
respectively. u0, u1, u3, v0, v1, v3, w0, w1, and w2 are the generalized displace-
ments to be determined.

According to CUF, the displacement vector uk of a single layer is defined as:

uk(x, y, z) = [uk
x uk

y uk
z ]

T (13)

where the superscript T denotes the transpose operator.

2.4 Strains

For the buckling analysis we need to account for the nonlinear contributions.
Strains ǫ are related to the displacement primary unknowns u according to

ǫk = D(nl)uk where D(nl) =




∂x 0 ∂2
x/2

0 ∂y ∂2
y/2

∂y ∂x ∂x∂y

∂z 0 ∂x

0 ∂z ∂y

0 0 ∂z




(14)

Noting that the compressive in-plane forces and distributed shear forces only
actuate on the mid-plane, then z = 0, and the nonlinear terms are reduced to
1
2

(
∂w0

∂x

)2
, 1
2

(
∂w0

∂y

)2
, and ∂w0

∂x
∂w0

∂y
. As these terms will only influence the equation
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refering to δw0, we use the linear version of CUF and just add the terms in
referred equation. The linear strain-displacement relation can be written as

ǫk = Duk with D =




∂x 0 0

0 ∂y 0

∂y ∂x 0

∂z 0 ∂x

0 ∂z ∂y

0 0 ∂z




(15)

2.5 Governing equations

Some results are here repeated for the sake of completeness. Details on the
meshless version of CUF such as how to obtain the fundamental nuclei, govern-
ing equations and boundary conditions in terms of resultants, and governing
equations and boundary conditions in terms of resultants can be found in
[33,34].

The three displacement components ux, uy and uz, given in (12) or (13), and
their relative variations can be modelled as:

(ux, uy, uz) = Fτ (uxτ , uyτ , uzτ ) (δux, δuy, δuz) = Fs (δuxs, δuys, δuzs)
(16)

In the present HSDT the thickness functions for inplane displacements u, v
are

Fsux = Fsuy = Fτux = Fτuy =
[
1 z z3

]
(17)

and for transverse displacement w are

Fsuz = Fτuz =
[
1 z z2

]
. (18)

According to CUF, the Principle of Virtual Displacements (PVD) can be
stated as:

NL∑

k=1

∫

Ωk

∫

Ak

{
δǫk

T
σk
}
dΩkdz = 0 (19)

where Ωk and Ak are the integration domains in plane (x,y) and z direction,
respectively, k indicates the layer and T the transpose of a vector. Substituting
the constitutive equations and applying the formula of integration by parts,
the governing equations and boundary conditions for the multi-layered plate
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are obtained:

δuk
s

T
: Kkτs

uu uk
τ = 0 (20)

except for δw0, that will include more terms due to the nonlinear contributions.

The fundamental nuclei Kkτs
uu in explicit form is obtained as:

Kkτs
uu11

=(−∂τ
x∂

s
xC11 − ∂τ

x∂
s
yC16 + ∂τ

z ∂
s
zC55 − ∂τ

y∂
s
xC16 − ∂τ

y∂
s
yC66)FτFs

Kkτs
uu12

=(−∂τ
x∂

s
yC12 − ∂τ

x∂
s
xC16 + ∂τ

z ∂
s
zC45 − ∂τ

y∂
s
yC26 − ∂τ

y∂
s
xC66)FτFs

Kkτs
uu13

=(−∂τ
x∂

s
zC13 − ∂τ

y∂
s
zC36 + ∂τ

z ∂
s
yC45 + ∂τ

z ∂
s
xC55)FτFs

Kkτs
uu21

=(−∂τ
y∂

s
xC12 − ∂τ

y∂
s
yC26 + ∂τ

z ∂
s
zC45 − ∂τ

x∂
s
xC16 − ∂τ

x∂
s
yC66)FτFs

Kkτs
uu22

=(−∂τ
y∂

s
yC22 − ∂τ

y∂
s
xC26 + ∂τ

z ∂
s
zC44 − ∂τ

x∂
s
yC26 − ∂τ

x∂
s
xC66)FτFs

Kkτs
uu23

=(−∂τ
y∂

s
zC23 − ∂τ

x∂
s
zC36 + ∂τ

z ∂
s
yC44 + ∂τ

z ∂
s
xC45)FτFs

Kkτs
uu31

=(∂τ
z ∂

s
xC13 + ∂τ

z ∂
s
yC36 − ∂τ

y∂
s
zC45 − ∂τ

x∂
s
zC55)FτFs

Kkτs
uu32

=(∂τ
z ∂

s
yC23 + ∂τ

z ∂
s
xC36 − ∂τ

y∂
s
zC44 − ∂τ

x∂
s
zC45)FτFs

Kkτs
uu33

=(∂τ
z ∂

s
zC33 − ∂τ

y∂
s
yC44 − ∂τ

y∂
s
xC45 − ∂τ

x∂
s
yC45 − ∂τ

x∂
s
xC55)FτFs

(21)

and the corresponding Neumann-type boundary conditions on Γk are:

Πkτs
11 =(nx∂

s
xC11 + nx∂

s
yC16 + ny∂

s
xC16 + ny∂

s
yC66)FτFs

Πkτs
12 =(nx∂

s
yC12 + nx∂

s
xC16 + ny∂

s
yC26 + ny∂

s
xC66)FτFs

Πkτs
13 =(nx∂

s
zC13 + ny∂

s
zC36)FτFs

Πkτs
21 =(ny∂

s
xC12 + ny∂

s
yC26 + nx∂

s
xC16 + nx∂

s
yC66)FτFs

Πkτs
22 =(ny∂

s
yC22 + ny∂

s
xC26 + nx∂

s
yC26 + nx∂

s
xC66)FτFs

Πkτs
23 =(ny∂

s
zC23 + nx∂

s
zC36)FτFs

Πkτs
31 =(ny∂

s
zC45 + nx∂

s
zC55)FτFs

Πkτs
32 =(ny∂

s
zC44 + nx∂

s
zC45)FτFs

Πkτs
33 =(ny∂

s
yC44 + ny∂

s
xC45 + nx∂

s
yC45 + nx∂

s
xC55)FτFs

(22)

where (nx, ny) denotes the unit normal-to-boundary vector.

The linearized buckling equations in terms of resultants are:
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δu0 :
NL∑

k=1

(
−∂Nk

xx

∂x
− ∂Nk

xy

∂y

)
= 0

δv0 :
NL∑

k=1

(
−∂Nk

xy

∂x
− ∂Nk

yy

∂y

)
= 0

δw0 :
NL∑

k=1

(
−∂Qk

xz

∂x
− ∂Qk

yz

∂y

)
+ N̄xx

∂2w0

∂x2
+ 2N̄xy

∂2w0

∂x∂y
+ N̄yy

∂2w0

∂y2
= 0

δu1 :
NL∑

k=1

(
−∂Mk

xx

∂x
− ∂Mk

xy

∂y
+Qk

xz

)
= 0

δv1 :
NL∑

k=1

(
−∂Mk

xy

∂x
− ∂Mk

yy

∂y
+Qk

yz

)
= 0

δw1 :
NL∑

k=1

(
−∂Mk

xz

∂x
− ∂Mk

yz

∂y
+Qk

zz

)
= 0

δu3 :
NL∑

k=1

(
−∂Rk

xx

∂x
− ∂Rk

xy

∂y
+ 3Rk

xz

)
= 0

δv3 :
NL∑

k=1

(
−∂Rk

xy

∂x
− ∂Rk

yy

∂y
+ 3Rk

yz

)
= 0

δw2 :
NL∑

k=1

(
−∂Rk

xz

∂x
− ∂Rk

yz

∂y
+ 2Mk

zz

)
= 0

(23)

where the resultants are given by




Nk
xx

Nk
yy

Nk
xy





= (zk+1 − zk)





σk
xx

σk
yy

σk
xy





dz,





Qk
xz

Qk
yz

Qk
zz





= (zk+1 − zk)





σk
xz

σk
yz

σk
zz





dz (24)





Mk
xx

Mk
yy

Mk
xy





=
z2k+1 − z2k

2





σk
xx

σk
yy

σk
xy





dz,





Mk
xz

Mk
yz

Mk
zz





=
z2k+1 − z2k

2





σk
xz

σk
yz

σk
zz





dz (25)





Rk
xx

Rk
yy

Rk
xy





=
z4k+1 − z4k

4





σk
xx

σk
yy

σk
xy





dz,




Rk

xz

Rk
yz





=
z3k+1 − z3k

3




σk
xz

σk
yz




dz. (26)
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Fig. 3. Chebyshev grid with N=17

Here, zk and zk+1 are the lower and upper z coordinate of the kth layer,
respectively.

The linearized governing equations and boundary conditions in terms of dis-
placements of the present HSDT for functionally graded plates were derived
by the authors and presented in detail in [34]. Note that the case of function-
ally graded materials is a particular case of the present HSDT and more terms
are necessary in equations for laminated composites.

3 The radial basis function method

The equations of motion previously obtained are interpolated by means of
collocation with radial basis functions. The unsymmetrical method by Kansa
[19] is adopted on a Chebyshev grid. For a given number of nodes per side
(N), it is generated by MATLAB code:

x = cos(pi*(0:N)/N)’;
y=x;

A 172 points (N = 17) Chebyshev grid is illustrated in figure 3. The radial
basis function used is the Wendland function [35] defined as

φ(r) = (1 − cr)8+
(
32(cr)3 + 25(cr)2 + 8cr + 1

)
(27)

where the Euclidian distance r is real and non-negative and c is a positive
shape parameter. In the present work the shape parameter (c) is obtained by
an optimization procedure, as detailed in Ferreira and Fasshauer [36].

Details on the application of this meshless method to buckling problems can
be found in previous works by the authors [28,31,37,38].
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present Ref. [39] Ref. [5] Ref. [3] Ref. [37] Ref. [38]

192 points 212 points

132 23.3706 23.453 23.463 23.849 23.2444 23.4261

172 23.3697

212 23.3696
Table 1
Uni-axial buckling load of four-layer [0/90/90/0] SSSS laminated plate according to
the higher-order theory. N̄ = N̄xxa

2/(E2h
3), N̄xy = 0, N̄yy = 0.

4 Numerical examples

In the next examples we use the present higher-order plate theory for the
buckling analysis of square laminated plates. Three-layer [0/90/0] and four-
layer [0/90/90/0] square cross-ply laminates with various boundary conditions
are chosen to compute the uni- and bi-axial buckling loads. The plates have
side lengths a = b, thickness h, and the span-to-thickness ratio a/h is taken
to be 10. All layers are assumed to be of the same thickness and material
properties:

E1/E2 = 40;G12/E2 = G13/E2 = 0.6;G23/E2 = 0.5; ν12 = 0.25

Figure 4 and table 1 refer to the uni-axial buckling load of four-layer [0/90/90/0]
laminated plate with all edges simply supported. The first four buckling modes
are presented in figure 4 and table 1 lists the critical uni-axial buckling load
for 132, 172, and 212 points grid. We compare results with exact solutions by
Khdeir and Librescu [39], differential quadrature results by Liew and Huang
[5] based on the FSDT, analytical results by Reddy and Phan [3] based on
an HSDT, Ferreira et al. [37] based on the same HSDT as in [3] but using a
meshless technique, and Ferreira et al. [38] based on the FSDT and using a
meshless technique.

Figures 5, 6, and 7, and table 2 refer to the bi-axial buckling load of three-
layer [0/90/0] laminated plate simply supported along the edges parallel to
the x-axis. The other two edges may be simply supported (S) or clamped (C).
Each figure illustrates the first 4 buckling modes of a plate with a different
boundary condition. For these figures a 172 points grid was used and N̄ =
N̄xxa

2/(E2h
3), N̄xy = 0, N̄yy = N̄xx. In table 2 results are compared with

exact solutions by Khdeir and Librescu [39], differential quadrature results by
Liew and Huang [5] based on the FSDT, and Ferreira et al. [38] based on the
FSDT and using a meshless technique and 212 points.

The present approach is in very good agreement with the reference solutions.
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Fig. 4. First 4 buckling modes for a uni-axial buckling load of four-layer
[0/90/90/0] SSSS laminated plate, using a 112 points grid and higher-order the-
ory. N̄ = N̄xxa

2/(E2h
3), N̄xy = 0, N̄yy = 0

.

Method SSSS SSSC SCSC

Ref. [39] 10.202 11.602 13.290

Ref. [5] 10.178 11.575 13.260

Ref. [38] 10.1969 11.5972 13.2919

present 132 10.1498 11.5888 13.3592

present 172 10.1487 11.5877 13.3582

present 212 10.1486 11.5876 13.3581
Table 2
Bi-axial buckling load of three-layer [0/90/0] laminated plate according to the
higher-order theory. N̄ = N̄xxa

2/(E2h
3), N̄xy = 0, N̄yy = N̄xx.

The present HSDT computed by combining CUF and the radial basis functions
collocation technique is very accurate for the buckling analysis of cross-ply
plates.

In figures 4 to 7 the mode shapes are correct. Note that in figures 5 to 7 the
first mode does not correspond to the critical mode. However, we decided to

12
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Fig. 5. First 4 buckling modes for a bi-axial buckling load of three-layer [0/90/0]
SSSS laminated plate, using a 172 points grid and the higher-order theory.
N̄ = N̄xxa

2/(E2h
3), N̄xy = 0, N̄yy = N̄xx

.

keep the same organization of modes as in comparative sources.

5 Conclusions

A novel application of a Unified formulation by a meshless discretization was
proposed. A thickness-stretching higher-order shear deformation theory was
implemented for the buckling analysis of composite laminated plates.

The present formulation was compared with analytical, meshless or finite ele-
ment methods and proved very accurate in buckling problems.

Acknowledgements

The first author acknowledges support from FCT grant SFRH/BD/45554/2008.

13



eig = 13.358179811033

−1 0 1
−1

−0.5

0

0.5

1
eig = 15.234964926500

−1 0 1
−1

−0.5

0

0.5

1

eig = 18.785570655577

−1 0 1
−1

−0.5

0

0.5

1
eig = 19.726440557527

−1 0 1
−1

−0.5

0

0.5

1

Fig. 6. First 4 buckling modes for a bi-axial buckling load of three-layer [0/90/0]
SCSC laminated plate, using a 172 points grid and the higher-order theory.
N̄ = N̄xxa

2/(E2h
3), N̄xy = 0, N̄yy = N̄xx

.
References

[1] N. S. Putcha and J. N. Reddy. Stability and natural vibration analysis of
laminated plates by using a mixed element based on a refined plate theory. J.
Sound and Vibration, 104(2):285–300, 1986.

[2] B.O.Baba. Buckling response of rectangular laminated composite plates with
cutouts. Science and Engineering of Composite Materials, 14:17–24, 2007.

[3] J. N. Reddy and N. D. Phan. Stability and vibration of isotropic, orthotropic
and laminated plates according to a higher-order shear deformation theory. J.
Sound and Vibration, 98(2):157–170, 1985.

[4] K. M. Liew, J. Wang, T. Y. Ng, and M. J. Tan. Free vibration and buckling
analyses of shear-deformable plates based on fsdt meshfree method. Journal of
Sound and Vibration, 276:997–1017, 2004.

[5] K. M. Liew and Y. Q. Huang. Bending and buckling of thick symmetric
rectangular laminates using the moving least-squeares differential quadrature
method. Int J Mech Sci, 45:95–114, 2003.

[6] D. Tumino, F. Cappello, and D. Rocco. 3d buckling analysis of multidelaminated

14



eig = 11.587725059965

−1 0 1
−1

−0.5

0

0.5

1
eig = 14.461793158009

−1 0 1
−1

−0.5

0

0.5

1

eig = 14.929160494685

−1 0 1
−1

−0.5

0

0.5

1
eig = 18.396011229899

−1 0 1
−1

−0.5

0

0.5

1

Fig. 7. First 4 buckling modes for a bi-axial buckling load of three-layer [0/90/0]
SSSC laminated plate, using a 172 points grid and the higher-order theory.
N̄ = N̄xxa

2/(E2h
3), N̄xy = 0, N̄yy = N̄xx

.
composite specimens. Science and Engineering of Composite Materials, 14:181–
188, 2007.

[7] C.M. Wang, K.M. Liew, Y. Xiang, and S. Kitipornchai. Buckling of rectangular
mindlin plates with internal line supports. International Journal of Solids and
Structures, 30(1):1 – 17, 1993.

[8] Q.-Q. Ni, J. Xie, and M. Iwamoto. Shear buckling analysis of angle-ply laminates
with higher- order shear deformation and pb-2 ritz functions. Science and
Engineering of Composite Materials, 11:123–136, 2004.

[9] S. Kitipornchai, Y. Xiang, C. M. Wang, and K. M. Liew. Buckling of thick skew
plates. International Journal for Numerical Methods in Engineering, 36(8):1299–
1310, 1993.

[10] Arthur W. Leissa. Buckling of laminated composite plates and shell panels.
Flight Dynamics Laboratory Report No. AFWAL-TR-85-3069, 1985.

[11] Arthur W. Leissa. A review of laminated composite plate buckling. Applied
Mechanics Reviews, 40(5):575–591, 1987.

[12] M. D’Ottavio and E. Carrera. Variable-kinematics approach for linearized
buckling analysis of laminated plates and shells. American Institute of
Aeronautics and Astronautics Journal, 48(9):1987–1996, 2010.

15



[13] P. Nali, E. Carrera, and S. Lecca. Assessments of refined theories for buckling
analysis of laminated plates. Composite Structures, 93(2):456 – 464, 2011.

[14] Erasmo Carrera. Theories and finite elements for multilayered plates and shells:
A unified compact formulation with numerical assessment and benchmarking.
Archives of Computational Methods in Engineering, 10:215–296.

[15] E. Carrera, F. Miglioretti, and M. Petrolo. Accuracy of refined finite elements
for laminated plate analysis. Composite Structures, 93(5):1311 – 1327, 2011.

[16] M. Cinefra, E. Carrera, L. Della Croce, and C. Chinosi. Refined shell elements
for the analysis of functionally graded structures. Composite Structures, In
Press, Accepted Manuscript:–, 2011.

[17] M. Cinefra and M. Soave. Accurate vibration analysis of multilayered plates
made of functionally graded materials. Mechanics of Advanced Materials and
Structures, 18(1):3–13, 2011.

[18] E. Carrera, M. Petrolo, and P. Nali. Unified formulation applied to free
vibrations finite element analysis of beams with arbitrary section. Shock and
Vibration, 18(3):485–502, 2011.

[19] E. J. Kansa. Multiquadrics- a scattered data approximation scheme with
applications to computational fluid dynamics. i: Surface approximations and
partial derivative estimates. Computers and Mathematics with Applications,
19(8/9):127–145, 1990.

[20] A. J. M. Ferreira. A formulation of the multiquadric radial basis function method
for the analysis of laminated composite plates. Composite Structures, 59:385–
392, 2003.

[21] A. J. M. Ferreira. Thick composite beam analysis using a global meshless
approximation based on radial basis functions. Mechanics of Advanced Materials
and Structures, 10:271–284, 2003.

[22] A. J. M. Ferreira, C. M. C. Roque, and P. A. L. S. Martins. Analysis of composite
plates using higher-order shear deformation theory and a finite point formulation
based on the multiquadric radial basis function method. Composites: Part B,
34:627–636, 2003.

[23] A.J.M. Ferreira, C.M.C. Roque, R.M.N. Jorge, and E.J. Kansa. Static
deformations and vibration analysis of composite and sandwich plates using
a layerwise theory and multiquadrics discretizations. Engineering Analysis with
Boundary Elements, 29(12):1104 – 1114, 2005.

[24] A.J.M. Ferreira, C.M.C. Roque, and R.M.N. Jorge. Analysis of composite plates
by trigonometric shear deformation theory and multiquadrics. Computers &
Structures, 83(27):2225 – 2237, 2005.

[25] A.J.M. Ferreira, R.C. Batra, C.M.C. Roque, L.F. Qian, and R.M.N. Jorge.
Natural frequencies of functionally graded plates by a meshless method.
Composite Structures, 75(1-4):593 – 600, 2006.

16



[26] A.J.M. Ferreira, C.M.C. Roque, and R.M.N. Jorge. Free vibration analysis
of symmetric laminated composite plates by fsdt and radial basis functions.
Computer Methods in Applied Mechanics and Engineering, 194(39-41):4265 –
4278, 2005.

[27] A. J. M. Ferreira, C. M. C. Roque, and P. A. L. S. Martins. Radial
basis functions and higher-order shear deformation theories in the analysis of
laminated composite beams and plates. Composite Structures, 66(1-4):287 –
293, 2004.

[28] A.J.M. Ferreira, C.M.C. Roque, E. Carrera, M. Cinefra, and O. Polit. Radial
basis functions collocation and a unified formulation for bending, vibration and
buckling analysis of laminated plates, according to a variation of murakamiâĂŹs
zig-zag theory. European Journal of Mechanics - A/Solids, 30(4):559 – 570, 2011.

[29] J.D. Rodrigues, C.M.C. Roque, A.J.M. Ferreira, E. Carrera, and M. Cinefra.
Radial basis functions-finite differences collocation and a unified formulation
for bending, vibration and buckling analysis of laminated plates, according to
murakami’s zig-zag theory. Composite Structures, 93(7):1613 – 1620, 2011.

[30] A.J.M. Ferreira, C.M.C. Roque, E. Carrera, and M. Cinefra. Analysis of thick
isotropic and cross-ply laminated plates by radial basis functions and a unified
formulation. Journal of Sound and Vibration, 330(4):771 – 787, 2011.

[31] A. J.M. Ferreira, C. M.C. Roque, E. Carrera, M. Cinefra, and O. Polit. Two
higher order zig-zag theories for the accurate analysis of bending, vibration and
buckling response of laminated plates by radial basis functions collocation and
a unified formulation. Journal of Composite Materials, 2011.

[32] A.M.A. Neves, A.J.M. Ferreira, E. Carrera, C.M.C. Roque, M. Cinefra, R.M.N.
Jorge, and C.M.M. Soares. Bending of fgm plates by a sinusoidal plate
formulation and collocation with radial basis functions. Mechanics Research
Communications, 38(5):368 – 371, 2011.

[33] A.M.A. Neves, A.J.M. Ferreira, E. Carrera, C.M.C. Roque, M. Cinefra, R. M.N.
Jorge, and C.M.M. Soares. A quasi-3d sinusoidal shear deformation theory for
the static and free vibration analysis of functionally graded plates. Composites
Part B, In Press, Accepted Manuscript:–, 2011.

[34] A.M.A. Neves, A.J.M. Ferreira, E. Carrera, M. Cinefra, C.M.C. Roque, R. M.N.
Jorge, and C.M.M. Soares. Static, free vibration and buckling analysis of
isotropic and sandwich functionally graded plates using a quasi-3d higher-
order shear deformation theory and a meshless technique. Composites Part
B: Engineering, submitted:–, 2011.

[35] H. Wendland. Error estimates for interpolation by compactly supported radial
basis functions of minimal degree. J. Approx. Theory, 93:258–296, 1998.

[36] A. J. M. Ferreira and G. E. Fasshauer. Computation of natural frequencies of
shear deformable beams and plates by a rbf-pseudospectral method. Computer
Methods in Applied Mechanics and Engineering, 196:134–146, 2006.

17



[37] A.J.M. Ferreira, C.M.C. Roque, A.M.A. Neves, R.M.N. Jorge, C.M.M. Soares,
and J.N. Reddy. Buckling analysis of isotropic and laminated plates by radial
basis functions according to a higher-order shear deformation theory. Thin-
Walled Structures, 49(7):804 – 811, 2011.

[38] A.J.M. Ferreira, C.M.C. Roque, A.M.A. Neves, R.M.N. Jorge, C.M.M. Soares,
and K.M. Liew. Buckling and vibration analysis of isotropic and laminated
plates by radial basis functions. Composites Part B: Engineering, 42(3):592 –
606, 2011.

[39] A. A. Khdeir and L. Librescu. Analysis of symmetric cross-ply elastic plates
using a higher-order theory. part ii: buckling and free vibration. Compos Struct,
9:259–277, 1988.

18





3

Papers on the radial basis function

collocation technique

249



250 Papers on the radial basis function collocation technique

3.1 On the RBF-Direct method

3.1.1 Adaptive methods for analysis of composite plates with

radial basis functions

Ana M. A. Neves, T. A. Driscoll, A. R. H. Heryudono, A. J. M. Ferreira, C. M. M.

Soares, R. M. N. Jorge, C. M. C. Roque, Adaptive methods for analysis of composite

plates with radial basis functions, Mechanics of Advanced Materials and Structures,

Volume 18, 2011, pages 420-430.



Mechanics of Advanced Materials and Structures, 18:420–430, 2011
Copyright © Taylor & Francis Group, LLC
ISSN: 1537-6494 print / 1537-6532 online
DOI: 10.1080/15376494.2010.528155

Adaptive Methods for Analysis of Composite Plates
with Radial Basis Functions

A. M. A. Neves,1 T. A. Driscoll,2 A. R. H. Heryudono,2 A. J. M. Ferreira,1

C. M. M. Soares,3 and R. M. N. Jorge1

1Departamento de Engenharia Mecânica e Gestão Industrial, Faculdade de Engenharia da
Universidade do Porto, Rua Dr. Roberto Frias, Porto, Portugal
2Department of Mathematical Sciences, University of Delaware, Newark, Delaware, USA
3IDMEC—Instituto de Engenharia Mecânica—Instituto Superior Técnico, Av. Rovisco Pais, 1096 Lisboa
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Driscoll and Heryudono [1] developed an adaptive method for
radial basis functions method. This article addresses the adaptive
analysis of composite plates in bending with radial basis multi-
quadric functions using Driscoll and Heryudono’s technique. In
this article, various laminates, thickness to side length ratios, and
boundary conditions are considered. The method allows for a more
natural and automatic selection of the problem grid, where the user
must only define the error tolerance. The results obtained show an
interesting and promising approach to the static analysis of com-
posite laminates.

Keywords radial basis functions, adaptive methods, composite,
plates, residual, subsampling, multiquadric

1. INTRODUCTION
Radial basis function (RBF) methods are a good alterna-

tive method for the numerical solution of partial differential
equations (PDEs) [2–6]. Compared to low-order methods, such
as finite differences, finite volumes, and finite elements, RBF-
based methods offer numerous advantages, such as mesh-free
discretization and simple implementation. The imposition of the
essential and natural boundary conditions is straightforward.

Also, depending on how the RBFs are chosen, high-order or
spectral convergence can be achieved [7].

For the application of fixed-grid RBF methods to laminated
composite beams and plates, readers should consult [8–10].

Adaptive methods may be preferred over fixed grid methods
in problems that exhibit high degrees of localizations such as
steep gradients or corners. The goal is to obtain a numerical
solution such that the error is below a prescribed accuracy with

Received 21 August 2008; accepted 25 January 2010.
Address correspondence to António Ferreira, Departamento de

Engenharia Mecânica e Gestão Industrial, Faculdade de Engenharia
da Universidade do Portó, Rua Dr. Robertó Frias, Portó, 4200-465,
Portugal. E-mail: ferreira@fe.up.pt

the smallest number of degrees of freedom. Since RBF meth-
ods are completely meshfree, requiring only interpolation nodes
and a set of points called centers defining the basis functions,
implementing adaptivity in terms of refining and coarsening
nodes is straightforward. Driscoll and Heryudono [1] developed
an adaptive algorithm for RBFs where results obtained on in-
terpolation, boundary-value, and time-dependent problems are
encouraging.

In the present work, we apply the residual subsampling tech-
nique developed by Driscoll and Heryudono to the static analysis
of isotropic and symmetric laminated composite plates.

We considered the First Order-Shear Deformation Theory
(FSDT) [11].

The method starts with nonoverlapping boxes, each contain-
ing an active center. Once an interpolant has been computed for
the active center set, the residual of the resulting approximation
is sampled on a finer node set in each box. Nodes from the finer
set are added to or removed from the set of centers based on the
size of the residual of the PDE at those points. The interpolant
is then recomputed using the new active center set for a new
approximation.

We organize the article as follows. In Section 2 we review the
governing differential equations for the bending of laminated
plates using the FSDT. The RBF implementation is shortly
reviewed in Section 3. In Section 4 we explain in detail the
application of the residual subsampling technique to plates. Nu-
merical results for isotropic and composite square plates are pre-
sented in subsections 5.1 and 5.2, respectively, and discussed in
subsections 5.3. Finally some conclusions are presented in
Section 6.

2. ANALYSIS OF SYMMETRIC LAMINATED PLATES
Several laminate theories, such as the classical laminate

theory, the first-order shear deformation theory, and the
higher-order shear deformation theory, have been proposed in
the literature (see [11] for a review).
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ADAPTIVE METHODS FOR ANALYSIS OF COMPOSITE PLATES 421

In the present study, the First-Order Shear Deformation The-
ory (FSDT) was used. This theory is based on the assumed
displacement field

u = u0 + zθx

v = v0 + zθy (1)

w = w0

where u and v are the in-plane displacements at any point
(x, y, z) and (u0, v0, w0) are the displacement components along
the (x, y, z) coordinate directions, respectively, of a point on the
midplane, usually considered at z = 0.

The transverse displacement w(x, y) and the rotations
θx (x, y) and θy(x, y) about the y- and x- axes are independently
interpolated due to uncoupling between inplane displacements
and bending displacements for symmetrically laminated plates.
The equations of motion for the bending of laminated plates
[11,12] are obtained as:

D11
∂2θx

∂x2
+ D16

∂2θy

∂x2
+ (D12 + D66)

∂2θy

∂x∂y
+ 2D16

∂2θx

∂x∂y

+ D66
∂2θx

∂y2
+ D26

∂2θy

∂y2
+ −k A45

(
θy + ∂w

∂y

)

− k A55

(
θx + ∂w

∂x

)
= 0 (2)

D16
∂2θx

∂x2
+ D66

∂2θy

∂x2
+ (D12 + D66)

∂2θx

∂x∂y
+ 2D26

∂2θy

∂x∂y

+ D26
∂2θx

∂y2
+ D22

∂2θy

∂y2
+ −k A44

(
θy + ∂w

∂y

)

− k A45

(
θx + ∂w

∂x

)
= 0 (3)

∂

∂x

[
k A45

(
θy + ∂w

∂y

)
+ k A55

(
θx + ∂w

∂x

)]

+ ∂

∂y

[
k A44

(
θy + ∂w

∂y

)
+k A45

(
θx + ∂w

∂x

)]
= q, (4)

where q is the applied load, Dij and Aij are the bending and
shear stiffness components, and k is the shear correction factor.
Here h denotes the total thickness of the composite plate.

The bending moments Mx , My , and Mxy and the shear forces
Qx and Qy are expressed as functions of the displacement gra-
dients and the material stiffness components as

Mx = D11
∂θx

∂x
+ D12

∂θy

∂y
+ D16

(
∂θx

∂y
+ ∂θy

∂x

)
(5)

My = D12
∂θx

∂x
+ D22

∂θy

∂y
+ D26

(
∂θx

∂y
+ ∂θy

∂x

)
(6)

Mxy = D16
∂θx

∂x
+ D26

∂θy

∂y
+ D66

(
∂θx

∂y
+ ∂θy

∂x

)
(7)

Qx = k A55

(
θx + ∂w

∂x

)
+ k A45

(
θy + ∂w

∂y

)
(8)

Qy = k A45

(
θx + ∂w

∂x

)
+ k A55

(
θy + ∂w

∂y

)
. (9)

The boundary conditions for an arbitrary edge with sim-
ply supported, clamped, or free-edge conditions are defined as
follows:

1. Simply supported:
• SS1: w = 0; Mn = 0; Mns = 0.
• SS2: w = 0; Mn = 0; θs = 0.

2. Clamped: w = 0; θn = 0; θs = 0.
3. Free: Qn = 0; Mn = 0; Mns = 0.

In previous equations, the subscripts n and s refer to the nor-
mal and tangential directions of the edge, respectively; Mn, Mns,

and Qn represent the normal bending moment, twisting moment
and shear force on the plate edge; θn and θs represent the ro-
tations about the tangential and normal coordinates at the plate
edge. The stress resultants on an edge whose normal is repre-
sented by n = (nx , ny) can be expressed as

Mn = n2
x Mx + 2nx ny Mxy + n2

y My (10)

Mns = (
n2

x − n2
y

)
Mxy − nx ny(My − Mx ) (11)

Qn = nx Qx + ny Qy (12)

θn = nxθx + nyθy (13)

θs = nxθy − nyθx , (14)

where nx and ny are the direction cosines of a unit normal vector
at a point at the laminated plate boundary [11,12].

Note that we can analyze Mindlin isotropic plates by consid-
ering D11 = D22 = D = Eh3

12(1−ν2) , D12 = νD11, D66 = Gh3

12 ,
A55 = A44 = kGh and D16 = D26 = A45 = 0, where E is
the modulus of elasticity and ν is Poisson’s ratio of the isotropic
material.

For further details about the FSDT, readers should consult
[11].

3. THE COLLOCATION TECHNIQUE
The meshless radial basis functions method was first used

by Hardy [13, 14] in the interpolation of geographical data.
Later, Kansa used it for the solution of PDE [2, 3]. Nowadays
this technique is well known for solving systems of PDEs with
excellent accuracy [2–6].

Both Hardy and Kansa used the multiquadric radial basis
function

g(r, c) =
√

(r2 + c2); (15)
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but many other radial basis functions can be used as interpolation
functions [15], such as the

g(r, c) = 1/
√

(r2 + c2); inverse multiquadric

g(r, c) = e−cr2
; c > 0 gaussian

g(r ) = r2 log r ; thin plate spline

Radial basis functions depend on a distance r between points
in a grid and may depend on a shape parameter c. Typically, r
represents the Euclidean distance, but it is not necessary to be
this one.

More details about the RBF meshfree method can be found
in [15].

In this article, we use the multiquadric radial basis function.
It depends on the Euclidean distance r and on a shape parameter
c that influences the function surface shape.

3.1. Collocation with Radial Basis Functions
Consider the generic boundary value problem with a domain

� and boundary ∂�, and linear differential operators L and B:

Lu(x) = f (x), x ∈ � ⊂ Rn; Bu|∂� = q. (16)

The function u(x) is approximated considering N interpolation
points:

u � ū =
N∑

j=1

α j g j , (17)

where α j are parameters to be determined. We consider a global
collocation method where the linear operators L and B acting at
the domain �\∂� and at the boundary ∂� define a set of global
equations in the form

(
Li i Lib

Bbi Bbb

) (
αi

αb

)
=

(
fi

qb

)
or

[
L

] [
α
] = [

λ
]
, (18)

where i and b denote the domain (interior) and boundary nodes,
respectively; fi and qb are external conditions at the domain
and at the boundary. The collocation technique produces an
unsymmetric (full) coefficient matrix.

The function g represents a radial basis function. In our
formulation we consider the multiquadric function in the form

g(r, ε) =
√

1 + (εr )2. (19)

It depends on the Euclidean distance r and on a shape param-
eter ε that works as a fine tuning for better performance. This
formulation is equivalent to the one in (15) if we set ε = 1/c.

We are using different shape function ε for all nodes, so that:

gi (r, ε) = (1 + (‖x − x j‖εi )
2)

1
2 . (20)

Applying the collocation method with N centers (bound-
ary and interior included) and g j defined in (20), the govern-
ing differential equations (2) to (4) are interpolated for each
node as

N∑
j=1

α
θx
j D11

∂2g j

∂x2
+

N∑
j=1

α
θy

j D16
∂2g j

∂x2
+

N∑
j=1

α
θy

j (D12+D16)
∂2g j

∂x∂y

+ 2
N∑

j=1

α
θx
j D16

∂2g j

∂x∂y
+

N∑
j=1

α
θx
j D66

∂2g j

∂y2
+

N∑
j=1

α
θy

j D26
∂2g j

∂y2

− k
N∑

j=1

α
θy

j A45g j − k
N∑

j=1

αw
j A45

∂g j

∂y
− k

N∑
j=1

α
θx
j A55g j

− k
N∑

j=1

αw
j A55

∂g j

∂x
= 0 (21)

N∑
j=1

α
θx
j D16

∂2g j

∂x2
+

N∑
j=1

α
θy

j D66
∂2g j

∂x2
+

N∑
j=1

α
θx
j (D12+D66)

∂2g j

∂x∂y

+ 2
N∑

j=1

α
θy

j D26
∂2g j

∂x∂y
+

N∑
j=1

α
θx
j D26

∂2g j

∂y2
+

N∑
j=1

α
θy

j D22
∂2g j

∂y2

− k
N∑

j=1

α
θy

j A44g j − k
N∑

j=1

αw
j A44

∂g j

∂y
− k

N∑
j=1

α
θx
j A45g j

− k
N∑

j=1

αw
j A45

∂g j

∂x
= 0 (22)

k
N∑

j=1

α
θy

j A45
∂g j

∂x
+ k

N∑
j=1

αw
j A45

∂2g j

∂x∂y
+ k

N∑
j=1

α
θx
j A55

∂g j

∂x

+k
N∑

j=1

αw
j A55

∂2g j

∂x2
+k

N∑
j=1

α
θy

j A44
∂g j

∂y
+k

N∑
j=1

αw
j A44

∂2g j

∂y2

+ k
N∑

j=1

α
θx
j A45

∂g j

∂y
+ k

N∑
j=1

αw
j A45

∂2g j

∂x∂y
= q. (23)

The vector of 3N unknowns α j is composed by the αi param-

eters for w0, θx , and θy , denoted as αw
j , αθx

j , and α
θy

j , respectively.
Both simply supported and clamped nodes include the bound-

ary condition wi = 0, interpolated as

N∑
j=1

αw
j gi = 0. (24)

Depending on the boundary condition, different equations
have to be added to this one, by modifying the corresponding
i th row:
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ADAPTIVE METHODS FOR ANALYSIS OF COMPOSITE PLATES 423

1. For a clamped edge, we also impose θx = 0 and θy = 0 at
all boundary nodes i by the following interpolation

N∑
j=1

α
θx
j gi = 0 (25)

N∑
j=1

α
θy

j gi = 0. (26)

2. Simply supported edge

(a) For each node i of a simply supported edge x = a,
we must add Mx = 0 and θy = 0,

D11

N∑
j=1

α
θx
j

∂gi

∂x
+ D12

N∑
j=1

α
θy

j

∂gi

∂y

+ D16

⎛
⎝ N∑

j=1

α
θx
j

∂gi

∂y
+

N∑
j=1

α
θy

j

∂gi

∂x

⎞
⎠ = 0

(27)
N∑

j=1

α
θy

j gi = 0 (28)

(b) Similarly, for each node i of a simply supported
edge y = a, we will impose My = 0 and θx = 0,

D12

N∑
j=1

α
θx
j

∂gi

∂x
+ D22

N∑
j=1

α
θy

j

∂gi

∂y

+ D26

⎛
⎝ N∑

j=1

α
θx
j

∂gi

∂y
+

N∑
j=1

α
θy

j

∂gi

∂x

⎞
⎠ = 0

(29)
N∑

j=1

α
θx
j gi = 0. (30)

4. THE RESIDUAL SUBSAMPLING TECHNIQUE
APPLIED TO PLATES

The application of the residual subsampling technique [1] to
plates can be summarized as follows.

The user prescribes first both the lower and the higher residual
thresholds and the number of initial non-overlapping boxes in
the domain �. When applied to 2D, the boxes are quadrilaterals
and each box contains one RBF center and four residual points,
in which the residual is evaluated. The residual points do not
contribute to the RBF solution, only the RBF centers do.

Figure 1 represents four initial boxes with its centers and
residual points.

RBF center

Residual point

FIG. 1. Initial set of boxes, RBF centers, and residual points.

With the current set of RBF centers, we evaluate the PDE
solution, as

Lα = f, (31)

where L , f correspond to Eqs. (16)–(18).
Parameters α are then used to obtain the solution

Aα = u, (32)

where A is the RBF interpolation matrix and u the current
solution at the RBF centers (displacements w and rotations
θx , θy).

At each residual point the residual is obtained by

Lu − f = r. (33)

If, in each box, any residual value is larger than the higher
prescribed residual tolerance, we then proceed to the next iter-
ation with a refined set of boxes. At any box it is possible to
have up to 4 new boxes. The case where we have 3 new ones is
illustrated in Figure 2.

For every new box the value of the shape parameter εi (see Eq.
(19)) is set double of that of its parents. Furthermore, whenever
a box generates a new box the value of ε of the existing box is
also doubled. We are somehow trying to keep the shape of the
basis function constant on all scales as defined by local node
spacing, since we double the shape parameter when centers
become twice together.

In those boxes, wherein all residual points, the residual r
is lower than the lower prescribed tolerance, RBF centers are

RBF center

Residual point

FIG. 2. Refined set of boxes, RBF centers, and residual points.
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424 A.M.A. NEVES ET AL.

removed. In Figure 3 is illustrated the case of the four residual
points associated to the RBF center located at the left and bottom
having all residual smaller than the lower threshold imposed at
the beginning.

If in each box all residuals meet the expected tolerance, we
then remove that RBF center and proceed with a coarser grid.

For the new RBF center grid we iterate again by

• setting up a new shape parameter for each box;
• evaluating the solution Lα = f and Aα = u; and
• controling residuals at the new residual points in each

box Lu − f = r and proceed as before.

5. NUMERICAL EXPERIMENTS FOR PLATES IN
BENDING

We consider both isotropic and composite square plates in
bending with length a and thickness h. The thickness to length
ratios considered are a/h = 10 and a/h = 100.

The boundary conditions are either all edges simply-
supported (SSSS) or all edges clamped (CCCC).

We consider a fixed boundary with 49 equally spaced points
per side.

In the domain, we start with N = 4 (corresponding to 42 =
16 boxes) or N = 5 (corresponding to 52 = 25 boxes), being
these quite coarse grids.

In Figure 4 the initial centers and residual points considered
are presented for N = 4 and N = 5. When the chosen N is
even, we introduce the plate central point as a center, without
considering any checkbox or residual ckeckpoint. This was done
to make possible the comparison with the exact solution as we
always compare results by this adaptive method with analytical
solutions obtained by series solutions. Errors are expressed in %.

The initial shape parameter is ε = 2/N for each center box,
corresponding to ε = 2/4 or ε = 2/5. The chosen higher resid-
ual tolerance is 5∗10−4 and the lower one is 5∗10−7.

When applying the RBF collocation technique, the same set
of points is usually used for centers and interpolation (collo-
cation). In the present study that was done at the step of the
algorithm where we obtain α by solving Eq. (31). However, at
the step of the algorithm where the residual is evaluated by Eq.
(33), the boxes centers were the collocation points and the resid-
ual points were the boxes centers and so matrix L in (33) has

TABLE 1
Isotropic square plate SSSS, a/h = 10, 16 initial boxes.

Centers Error (%) Adds

209 1.077958e + 000 64
273 4.654796e − 001 63
336 7.690783e − 001 9
345 7.477775e − 001 2
347 7.407987e − 001 2
349 7.634622e − 001 0

TABLE 2
Isotropic square plate SSSS, a/h = 10, 25 initial boxes.

Centers Eerror (%) Adds

217 3.545147e + 000 100
317 7.549590e − 001 5
322 7.601606e − 001 0

dimension 3N ∗ 3M , being N the total number of centers (cen-
ter boxes and boundary points) and M the number of residual
points.

The process stops when there are no more points to be added.

5.1. Isotropic Plates
In this subsection, we consider an isotropic plate with modu-

lus of elasticity E = 10, 920 and Poisson’s coefficient ν = 0.25.
The non-dimensional transverse displacement is given by

w = 102 E2h3

a4
w (34)

for every solution.
In the following tables, we present the number of centers,

the relative error in percentage, and the number of centers to be
added at each iteration for the different isotropic plates analyzed.
In all performed tests, there are no points to be removed.

In Tables 1 and 2 we present the evolution of the method for
the isotropic square plate in bending, with thickness to length ra-
tio a/h = 10, and simply-supported (SSSS) boundary condition.
In Table 1 we show results with 16 initial boxes and in Table
2 we show results with 25 initial boxes. The analytical solution
obtained by Lévy series solutions for this case is 4.7543.

In Figure 3 the centers and the boxes at the third iteration are
presented for the isotropic square plate in bending, with thick-
ness to length ratio a/h = 10, simply-supported, and starting
with 16 boxes. In Figure 6 we present the final centers and the
deformed shape for the same case.

The final RBF centers and deformed shape of the isotropic
square plate in bending, with thickness to length ratio a/h = 10,
simply supported, starting with 25 boxes are shown in Figure 7.

In Table 3 is possible to see the evolution of the itera-
tive method when applied to the isotropic simply supported

RBF center

Residual point

FIG. 3. Coarse set of RBF centers.
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ADAPTIVE METHODS FOR ANALYSIS OF COMPOSITE PLATES 425

FIG. 4. Initial boxes for N = 4 (on the left) and N = 5 (on the right).

square plate, with thickness to length ratio a/h = 100, in
bending, starting with 16 boxes. Results for the same plate
but using 25 initial boxes are shown in Table 4. The analyti-
cal solution obtained by Lévy series solutions for this case is
4.5720.

The final set of RBF centers of the isotropic simply supported
square plate in bending, with thickness to length ratio a/h = 100
are shown in Figure 8. On the left the case of 16 initial boxes
is illustrated, and on the right the case of 25 initial boxes is
illustrated.

FIG. 5. Distribution of centers (left) and boxes (right) at third iteration, isotropic square plate, SSSS, a/h = 10, 16 initial boxes.
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426 A.M.A. NEVES ET AL.

FIG. 6. Final centers and deformed shape of isotropic square plate, SSSS, a/h = 10, 16 initial boxes.

TABLE 3
Isotropic square plate SSSS, a/h = 100, 16 initial boxes.

Centers Error (%) Adds

209 9.999748e + 001 64
273 3.417590e + 000 168
441 5.100564e − 001 175
616 1.198528e − 002 25
641 5.794928e − 002 0

TABLE 4
Isotropic square plate SSSS, a/h = 100, 25 initial boxes.

Centers Error (%) Adds

217 1.728831e + 001 100
317 1.162787e + 000 141
458 7.501994e − 002 16
474 2.619898e − 002 19
493 5.042478e − 002 6
499 1.589558e − 002 2
501 5.990400e − 002 5
506 3.266486e − 002 2
508 3.155965e − 002 8
516 2.367293e − 002 1
517 1.635045e − 002 1
518 2.050627e − 002 0

5.2. Composite Plates
The examples considered here are limited to symmetric

cross-ply laminates with layers of equal thickness and with
identical material properties. The composite plates laminates
are [0/90/0] (having 3 layers, each one with thickness h/3), and
[0/90/90/0] (denoted as [0/90]s and having 4 layers, each one
with thickness h/4).

The material properties are

E1 = 25E2; G23 = 0.2E2; G12 = G13 = 0.5E2;

ν12 = 0.25; ν21 = ν12
E2

E1

As in the isotropic case, the tables below illustrate the evolu-
tion of the entire process of the iterative technique applied to the
bending analysis of plates with respect to the number of RBF
centers, the percentual relative error, and the number of centers
to be added at each iteration. Once again, there are no points to
be removed in all studied cases.

We use the same non-dimensional factor as in Eq. (34).
Tables 5 (16 initial boxes) and 6 (25 initial boxes) refer to

the case of the composite [0/90/0] square plate in bending, with
thickness to length ratio a/h = 10, and simply-supported (SSSS)
boundary condition. The error is obtained by comparing with
Mindlin solution [16], w̄ = 1.0211.

The set of RBF centers at the end of the iterative process
of the [0/90/0] simply-supported square plate in bending, with
thickness to length ratio a/h = 10 are presented in Figure 7.

D
ow

nl
oa

de
d 

by
 [

b-
on

: B
ib

lio
te

ca
 d

o 
co

nh
ec

im
en

to
 o

nl
in

e 
U

P]
 a

t 0
7:

31
 1

8 
D

ec
em

be
r 

20
11

 



ADAPTIVE METHODS FOR ANALYSIS OF COMPOSITE PLATES 427

FIG. 7. Final centers and deformed shape of isotropic square plate, SSSS, a/h = 10, 25 initial boxes.

TABLE 5
[0/90/0] square plate SSSS, a/h = 10, 16 initial boxes.

Centers Error (%) Adds

209 1.654938e + 000 64
273 5.681379e − 002 33
306 2.037581e − 001 70
376 3.746343e − 001 78
454 1.127763e − 001 23
477 1.680405e − 001 4
481 3.267953e − 001 3
484 9.192459e − 002 4
488 5.203128e − 002 2
490 1.329159e − 001 0

TABLE 6
[0/90/0] square plate SSSS, a/h = 10, 25 initial boxes.

Centers Error (%) Adds

217 2.534830e+000 98
315 1.683086e − 001 31
346 1.696108e − 001 21
367 1.790651e − 001 1
368 1.612302e − 001 0

On the left we show the case of 16 initial boxes and on the right
the case of 25 initial boxes.

Table 7 illustrates the iterative process results for laminated
[0/90/0] simply supported square plate in bending, with a/h
= 100 and 16 initial boxes. Table 8 presents results for the
same problem, but with 25 initial boxes. Error is obtained
by comparing the solution with the Mindlin solution [16],
w̄ = 0.6701.

Table 9 illustrates the iterative process results for laminated
[0/90/0] clamped square plate in bending, with a/h = 10 and 16
initial boxes. Table 10 presents results for the same problem,
but with 25 initial boxes. Error is obtained by comparing the
solution with the Mindlin solution [16], w̄ = 0.4829.

Table 11 illustrates the iterative process results for laminated
[0/90]s simply supported square plate in bending, with a/h =
10 and 16 initial boxes. Table 12 presents results for the same

TABLE 7
[0/90/0] square plate SSSS, a/h = 100, 16 initial boxes.

Centers Error (%) Adds

209 3.619099e + 000 64
273 7.461579e − 001 170
443 1.243793e + 000 125
568 1.816361e − 001 50
618 5.638896e − 002 15
633 1.571762e − 001 4
637 1.110252e − 001 0
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428 A.M.A. NEVES ET AL.

TABLE 8
[0/90/0] square plate SSSS, a/h = 100, 25 initial boxes.

Centers Error (%) Adds

217 9.756506e + 000 100
317 2.809135e − 001 71
388 1.355320e − 001 27
415 2.087332e − 001 20
435 2.012888e − 001 19
454 1.142907e − 001 11
465 1.947379e − 001 28
493 2.773958e − 001 16
509 1.792259e − 001 5
514 2.683916e − 001 6
520 2.199761e − 001 0

problem, but with 25 initial boxes. Error is obtained by com-
paring the solution with the Navier solution [11], w̄ = 1.0250.

Table 13 illustrates the iterative process results for laminated
[0/90]s simply supported square plate in bending, with a/h =
100 and 16 initial boxes. Table 14 presents results for the same
problem, but with 25 initial boxes. Error is obtained by compar-
ing the solution with the Navier solution [11], w̄ = 0.6833.

5.3. Discussion of Results
On the numerical examples presented, the number of itera-

tions varies from 3 to 13. In every case the error is inferior to
1% after a few iterations. This is a very satisfactory result.

TABLE 9
[0/90/0] square plate CCCC, a/h = 10, 16 initial boxes.

Centers Error (%) Adds

209 1.882287e + 000 60
269 4.101527e − 001 60
329 3.416589e − 002 41
370 2.623125e − 001 86
456 4.951293e − 001 28
484 6.473929e − 002 8
492 1.792660e − 002 24
516 1.677414e − 002 11
527 2.957150e − 002 2
529 4.054957e − 003 2
531 1.841740e − 002 2
533 1.273115e − 002 4
537 8.016174e − 003 0

TABLE 10
[0/90/0] square plate CCCC, a/h = 10, 25 initial boxes.

Centers Error (%) Adds

217 1.810916e − 001 100
317 7.859572e − 003 31
348 2.139349e − 002 28
376 6.628577e − 003 2
378 2.498585e − 002 10
388 1.358878e − 002 0

FIG. 8. Final centers of the isotropic square plate, SSSS, a/h = 100, 16 (left) and 25 (right) initial boxes.
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ADAPTIVE METHODS FOR ANALYSIS OF COMPOSITE PLATES 429

TABLE 11
[0/90]s square plate SSSS, a/h = 10, 16 initial boxes.

Centers Error (%) Adds

401 1.556392e + 000 64
465 2.962116e − 001 68
533 1.578955e − 001 75
608 4.448880e − 001 48
656 2.274114e − 001 18
674 9.422296e − 002 8
682 1.123366e − 001 7
689 1.659383e − 001 10
699 2.400472e − 001 3
702 2.035321e − 001 3
705 2.367390e − 001 6
711 2.533541e − 001 0

TABLE 12
[0/90]s square plate SSSS, a/h = 10, 25 initial boxes.

Centers Error (%) Adds

409 2.607549e + 000 97
506 2.909581e − 001 37
543 2.425400e − 001 15
558 2.032778e − 001 11
569 2.095007e − 001 0

TABLE 13
[0/90]s square plate SSSS, a/h = 100, 16 initial boxes.

Centers Error (%) Adds

401 1.158316e + 001 64
465 6.423911e − 001 155
620 2.633451e + 000 131
751 1.097797e − 001 74
825 2.712160e − 001 1
826 2.015782e − 001 3
829 2.789185e − 001 0

TABLE 14
[0/90]s square plate SSSS, a/h = 100, 25 initial boxes.

Centers Error (%) Adds

409 9.781134e + 000 100
509 6.547123e − 001 86
595 2.146976e − 001 9
604 4.799680e − 001 30
634 3.497355e − 001 15
649 3.209971e − 001 16
665 3.653390e − 001 7
672 3.684787e − 001 0

FIG. 9. Final centers of the [0/90/0] square plate, SSSS, a/h = 10, 16 (left) and 25 (right) initial boxes.
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430 A.M.A. NEVES ET AL.

Taking in to consideration the number of initial boxes, two
remarks are to be made. At the end of the iterative process,
we always obtain more points if we start with 16 boxes, but it
doesn’t seem to have any influence in the number of iterations.

Thin plates generate more points than thick plates. The
clamped case needs more points than the simply supported case.

At the end of each iteration process, the cloud of points is
more dense near the boundary than in the central zone of the
plate.

The process used to find α from equation Lα = f is determi-
nant for the performance of the process. The GMRES method is
less sensitive to the shape parameter ε than the backslash Matlab
operator \ and it has influence on the number of centers to add
and remove and, consequently, in the number of final RBF cen-
ters. The backslash Matlab operator generates more points and
the deformed plate frequently degenerates. Using the GMRES
Matlab command, the deformed is more stable from the begin-
ning till the end of the iterative process, but it is much more time
consuming. This can be explained with the computational cost
and the storage requirements that, according to [17], increases
linearly with the number of iterations.

6. CONCLUSION
This article addresses the adaptive static analysis of isotropic

and composite plates with radial basis multiquadric functions.
The residual subsampling technique proposed by Driscoll

and Heryudono [1] was used for the domain with a fixed bound-
ary grid.

Numerical tests were then performed on the bending analysis
of isotropic and symmetric cross-ply laminated square plates. A
first-order shear deformation theory was used. When applying
the Driscoll and Heryudono residual subsampling technique to
bending analysis, the residual has to be improved to take in to
consideration the degrees of freedom, three in this case.

In this technique, the user must prescribe the residual toler-
ance, the initial number of nodes, and the initial shape parameter.
This parameter is then modified for each nodal box in order to
control the conditioning of the coefficient matrix.

We calculate the error of the present method with respect to
the exact solutions. The results obtained show that the adaptive
method converges to a very good solution after a few iterations
even by starting with a very coarse grid.

Further studies, including optimization of the shape param-
eter in each iteration, are sought. The combination of optimiza-
tion techniques with adaptive methods may reduce the number
of nodes in each iteration. The present method may generate
quite a large number of nodes, depending on the thickness of
the plate, and the way we select the shape parameters.
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1 Introduction

This paper addresses for the first time the analysis of laminated composite
plates by oscillatory radial basis functions. These functions are very rarely used
in the solution of PDEs, and this paper aims to prove that such functions can
be very accurate in the vibration and buckling analysis of laminated composite
plates.

A radial basis function, φ(‖x− xj‖) is a spline that depends on the Euclidian
distance between distinct data centers xj, j = 1, 2, ..., N ∈ Rn, also called
nodal or collocation points.

The use of oscillatory radial basis functions has not been seen in the litera-
ture. This paper investigates the accuracy of such functions in the analysis of
laminated composite plates.

It is well known that the classical laminated plate theory(CLPT) based on the
Kirchhoff theory yields acceptable results only for thin laminates [1]. First-
order [2,3] and higher-order [4,5] shear deformation theories have been devel-
oped to include transverse shear deformation effects. Here we use a refined
version of Kant’s theories (see Kant [4]) with the following displacement field
for isotropic or symmetric cross-ply laminated plates:

u = zu1 + z3u3; v = zv1 + z3v3; w = w0 + z2w2 (1)



This theory accounts for transverse normal stress and through-the-thickness
deformation.

Some relevant works on vibration and buckling of thick plates include those
of Wang et al. [6], Khdeir and Librescu [7], Bhimaraddi [8], Kitipornchai et
al. [9], Liew et al. [10–12], and Reddy et al. [13,14]. An historical review
on laminated plates and shells has been presented by Carrera [15]. The use
of alternative methods to the finite element methods such as the meshless
methods based on radial basis functions is atractive due to the absence of a
mesh and the ease of collocation methods. The use of radial basis function
for the analysis of structures and materials has been previously studied by
numerous authors [16–27]. More recently the authors have applied RBFs to
the static deformations of composite beams and plates [28–30].

Although much work has been done with analytical or meshless methods,
there is no research on vibration and buckling analysis of laminated plates by
oscillating radial basis functions.

2 Radial basis functions

The radial basis function (φ) approximation of a function (u) is given by

ũ(x) =
N∑

i=1

αiφ (‖x − yi‖2) ,x ∈ Rn (2)

where yi, i = 1, .., N is a finite set of distinct points (centers) in Rn. The
coefficients αi are chosen so that ũ satisfies some boundary conditions. The
most common RBFs are

φ(r) = r3 ,cubic
φ(r) = r2 log(r) ,thin plate splines
φ(r) = (1 − r)m+p(r) ,Wendland functions

φ(r) = e−(cr)2 ,Gaussian
φ(r) =

√
c2 + r2 ,Multiquadrics

φ(r) = (c2 + r2)−1/2 ,Inverse Multiquadrics

where the Euclidian distance r is real and non-negative, p(r) is a polinomial,
and c is a shape parameter, a positive constant.
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In this paper we use an oscillating function, a linear Gaussian-Laguerre, de-
fined as

φ(r) = 1/π e−(cr)2
(
2 − (cr)2

)
(3)

This function is strictly positive definite in R2 and infinitely smooth. The
Laguerre-Gaussians functions family tends to a Gaussian function φ(r) =
e−(cr)2 . We will compare the Gaussian with oscillating function in the paper.

In figure 1 we illustrate the shape of the oscillating functions.
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Fig. 1. Oscillating and Gaussian functions

2.1 Solution of the interpolation problem

Hardy [31] introduced multiquadrics in the analysis of scattered geographical
data. In the 1990’s Kansa [32] used multiquadrics for the solution of partial
differential equations.

Considering N distinct interpolations, and given u(xj), j = 1, 2, ..., N , we find
αi by the solution of a N × N linear system

Aα = u (4)

where A = [φ (‖x − yi‖2)]N×N , α = [α1, α2, ..., αN ]
T and u = [u(x1), u(x2), ..., u(xN )]

T .
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The RBF interpolation matrix A is positive definite for some RBFs [33], but
in general provides ill-conditioned systems.

2.2 Solution of the static problem

The solution of a static problem by radial basis functions considers NI nodes
in the domain and NB nodes on the boundary, with total number of nodes
N = NI +NB.

We denote the sampling points by xi ∈ Ω, i = 1, ..., NI and xi ∈ ∂Ω, i =
NI + 1, ..., N . At the points in the domain we solve the following system of
equations

N∑

i=1

αiLφ (‖x − yi‖2) = f(xj), j = 1, 2, ..., NI (5)

or
LIα = F (6)

where
LI = [Lφ (‖x − yi‖2)]NI×N (7)

For the boundary conditions we have

N∑

i=1

αiLBφ (‖x − yi‖2) = g(xj), j = NI + 1, ..., N (8)

or
Bα = G (9)

Therefore we can write a finite-dimensional static problem as



LI

B


α =




F

G


 (10)

where

LI = Lφ [(‖xNI
− yj‖2)]NI×N ,B = LBφ [(‖xNI+1 − yj‖2)]NB×N

By inverting the system (10), we obtain the vector of parameters α. We then
proceed to the solution by the interpolation equation (2).

2.3 Solution of the eigenproblem

We consider NI nodes in the interior of the domain and NB nodes on the
boundary, with N = NI +NB.
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We denote interpolation points by xi ∈ Ω, i = 1, ..., NI and xi ∈ ∂Ω, i =
NI + 1, ..., N . For the points in the domain, the following problem is defined

N∑

i=1

αiLφ (‖x − yi‖2) = λũ(xj), j = 1, 2, ..., NI (11)

or
LIα = λũI (12)

where
LI = [Lφ (‖x − yi‖2)]NI×N (13)

For the boundary conditions we have

N∑

i=1

αiLBφ (‖x − yi‖2) = 0, j = NI + 1, ..., N (14)

or
Bα = 0 (15)

Therefore we can write a finite-dimensional problem as a generalized eigen-
value problem 


LI

B


α = λ



AI

0


α (16)

where

AI = φ [(‖xNI
− yj‖2)]NI×N ,B = LBφ [(‖xNI+1 − yj‖2)]NB×N

We seek the generalized eigenvalues and eigenvectors of these matrices.

3 Numerical examples

3.1 Free vibrations

The example considered is a simply supported square plate of the cross-ply
lamination [0◦/90◦/90◦/0◦]. The thickness and length of the plate are denoted
by h and a, respectively. The thickness-to-span ratio h/a = 0.2 is employed in
the computation. The example considers a Chebyshev grid. All layers of the
laminate are assumed to be of the same thickness, density and made of the
same linearly elastic composite material. The following material parameters
of a layer are used:

E1

E2

= 10, 20, 30 or 40;G12 = G13 = 0.6E2;G3 = 0.5E2; ν12 = 0.25
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The subscripts 1 and 2 denote the directions normal and transverse to the
fiber direction in a lamina, which may be oriented at an angle to the plate
axes. The ply angle of each layer is measured from the global x-axis to the
fiber direction. In all examples we use a shear correction factor k = π2/12, as
proposed in [34].

Table 1 lists the fundamental frequency of the simply supported laminate
made of various modulus ratios of E1/E2. It is found that the results are in
very close agreement with the values of [35,36] and the meshfree results of
Liew [34] based on the FSDT. The relative errors between the analytical and
present solutions are shown in brackets. For all E1/E2 ratios errors are below
0.5%. Results for all E1/E2 ratios converge quite well. In figures 2 the first
eight modes are illustrated, for E1/E2 = 10, using 13 × 13 nodes, showing a
very smooth shape.

3.2 Buckling

The following typical dimensionless composite material properties are used in
the buckling analysis:

E1/E2 = 10, 20, 30, 40;G12/E2 = G13/E2 = 0.6;G23/E2 = 0.5; ν12 = 0.25

The critical buckling loads are xomputed for simply-supported square bidirec-
tional composite plates, with a/h = 10, under adimensional uni-axial buckling
load (N̄xxa

2/(E2h
3)). All layers are assumed to be of the same thickness and

material properties. Table 2 lists the uni-axial buckling loads of the four-layer
simply supported laminated plate discretized with a regular grid. Exact solu-
tions by Khdeir and Librescu [7] and differential quadrature results by Liew
et al. [11] based on the FSDT are also presented for comparison. It is found
that the critical buckling load is obtained with a few grid points. The present
results are in excellent correlation with those of Khdeir and Librescu [7], and
those of Liew et al. [11]. Both linear Laguerre-Gaussian and Gaussian func-
tions present excellent convergence properties.

4 Conclusions

In this paper we used the radial basis function collocation method to analyse
buckling loads and free vibrations of isotropic and laminated plates. Here we
used oscillating functions, and a higher-order shear deformation theory by
Kant, accounting for through-the-thickness deformation.
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Fig. 2. First eight vibration modes of the simply-supported cross-ply laminated
square plate [0◦/90◦/90◦/0◦], E1/E2 = 10, 13 × 13 nodes

The oscillating radial basis functions, here used for the first time in the vibra-
tion and buckling analysis of composite plates, prove to be excellent alterna-
tive to non-oscillating functions, such as the Gaussians, and present excellent
convergence and accurate results.
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Method Grid E1/E2

10 20 30 40

Liew [34] 8.2924 9.5613 10.320 10.849

Exact (Reddy, Khdeir)[35,36] 8.2982 9.5671 10.326 10.854

Present Oscillatory 9 × 9 8.3000 9.5413 10.2688 10.7654

13 × 13 8.2999 9.5411 10.2686 10.7652

17 × 17 8.2999 9.5411 10.2686 10.7652

21 × 21 8.2999 9.5411 10.2686 10.7652

Error in % w.r.t. [35,36] (0.09) (0.21) (0.49) (0.77)

Present Gaussians 9 × 9 8.2999 9.5411 10.2686 10.7652

13 × 13 8.2999 9.5411 10.2686 10.7652

17 × 17 8.2999 9.5411 10.2686 10.7652

21 × 21 8.2999 9.5411 10.2686 10.7652
Table 1
The normalized fundamental frequency of the simply-supported cross-ply laminated
square plate [0◦/90◦/90◦/0◦] (w̄ = (wa2/h)

√
ρ/E2, h/a = 0.2)

Grid Approach Liew et al. [11] Khdeir and Librescu [7]

23.463 23.453

Present, Oscillatory

9 × 9 23.2928

13 × 13 23.2915

17 × 17 23.2916 (0.69)

Present, Gaussian

9 × 9 23.2916

13 × 13 23.2916

17 × 17 23.2916 (0.69)

Table 2
Uni-axial buckling load of four-layer [0◦/90◦/90◦/0◦] simply supported laminated
plate ( N̄ = N̄xxa

2/(E2h
3), N̄xy = 0, N̄yy = 0)
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Abstract This paper addresses the static and free vibration
analysis of rectangular plates resting on Pasternak founda-
tions. The Pasternak foundation is described by a two-
parameter model. The numerical approach is based on
collocation with radial basis functions. The model allows
the analysis of arbitrary boundary conditions and irregular
geometries. It is shown that the present method, based on
a first-order shear deformation theory produces highly accu-
rate displacements and stresses, as well as natural frequencies
and modes.

Keywords Plates on Pasternak foundations ·
Plates on elastic foundations · Plates on Winkler
foundations · Free vibrations · Radial basis functions ·
Collocation

1 Introduction

Many engineering problems can be modeled as isotropic rect-
angular plates, such as bases of machines, pavement of roads
or footing of buildings. One way to describe the behaviour
of such plates is the Pasternak (two-parameter) model [1].
The Winkler model [2] can be considered a special case of
the Pasternak model.

The analysis of Pasternak plates was conducted previ-
ously by several authors, using various approaches. Leissa [3]

A. J. M. Ferreira (B) · C. M. C. Roque · A. M. A. Neves ·
R. M. N. Jorge
Departamento de Engenharia Mecânica, Faculdade de
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C. M. M. Soares
Departamento de Engenharia Mecânica, Instituto Superior Técnico,
Av. Rovisco Pais, Lisboa, Portugal

considered a thin-plate theory, Lam et al. [4] derived the
exact solutions of bending, buckling and vibration of a Levy-
plate, Xiang et al. [5] derived an analytical vibration solution,
Omurtag et al. [6] used the finite element method,
Matsunaga [7] developed a special higher-order plate the-
ory, Shen et al. [8] used the the Rayleigh-Ritz method, and
Ayvaz et al. [9] used the modified Vlasov model to study
the earthquake response of rectangular thin plates on elastic
foundation.

In the recent years, some attempts have been made for the
vibration analysis of rectangular thick plates on Pasternak
foundations. Liew and Teo [10], and Liew et al. [11], Han
and Liew [12] used the differential quadrature method to
analyse the vibration characteristics of rectangular plates on
elastic foundations. Also, Zhou et al. [13] used the Chebyshev
polynomials as admissible functions to study the three-
dimensional vibration of rectangular plates on elastic foun-
dations by the Ritz method.

Meshless methods are not widely used for the analysis
of Mindlin plates on elastic foundations. Civalek [14] used
the singular convolution method for the bending analysis of
Mindlin plates on elastic foundations. Also, a boundary ele-
ment method was used by Chucheepsakul and Chinnaboon
[15] to analyse plates by a two-parameter model.

Recently, radial basis functions (RBFs) have enjoyed con-
siderable success and research as a technique for interpolat-
ing data and functions. A RBFs, φ(‖x − x j‖) is a spline that
depends on the Euclidian distance from distinct data centers
x j , j = 1, 2, . . . , N ∈ Rn , also called nodal or collocation
points.

Although most work to date on RBFs relates to scattered
data approximation and in general to interpolation theory,
there has recently been an increased interest in their use for
solving partial differential equations (PDEs). This approach,
which approximates the whole solution of the PDE directly

123



792 Comput Mech (2010) 46:791–803

using RBFs, is very attractive due to the fact that this is truly
a mesh-free technique.

Kansa [16] introduced the concept of solving PDEs using
RBFs. Kansa’s method is an unsymmetric RBF collocation
method based upon the MQ interpolation functions, in which
the shape parameter is considered to be variable across the
problem domain. The distribution of the shape parameter is
obtained by an optimization approach, in which the value of
theshapeparameter isassumedtobeproportional to thecurva-
tureof theunknownsolutionof theoriginalPDE. In thisway, it
is possible to reduce the condition number of the matrix at the
expense of implementing an additional iterative algorithm. In
the present work, we implemented the unsymmetric colloca-
tion method in its simpler form, without any optimization of
the interpolation functions and the collocation points.

The analysis of plates by finite element methods is now
fully established. The use of alternative methods such as
the meshless methods based on RBFs is atractive due to the
absence of a mesh and the ease of collocation methods. The
use of RBF for the analysis of structures and materials has
been previously studied by numerous authors [17–28]. More
recently the authors have applied RBFs to the static defor-
mations of composite beams and plates [29–31].

In this paper it is investigated for the first time the use of
RBFs to plates on elastic foundations by the Pasternak model,
using a first-order shear deformation theory. The quality of
the present method in predicting static deformations, and free
vibrations of plates on Winkler and Pasternak foundations is
compared and discussed with other methods in some numer-
ical examples.

2 The RBF method

2.1 The static problem

RBF approximations are grid-free numerical schemes that
can exploit accurate representations of the boundary, are easy
to implement and can be spectrally accurate [32,33].

In this section the formulation of a global unsymmetrical
collocation RBF-based method to compute eigenvalues of
elliptic operators is presented.

Consider a linear elliptic partial differential operator L
and a bounded region � in Rn with some boundary ∂�.

The static problems aims the computation of displace-
ments (primary variables) (u) from the global system of
equations

Lu = f in � (1)

L Bu = g on ∂� (2)

where L and L B are linear operators in the domain and on
the boundary, respectively. The right-hand side of (1) and

(2) represent the external forces applied on the plate and the
boundary conditions applied along the perimeter of the plate,
respectively. The PDE problem defined in (1) and (2) will be
replaced by a finite problem, defined by an algebraic system
of equations, after the radial basis expansions.

2.2 The eigenproblem

The eigenproblem looks for eigenvalues (λ) and eigenvectors
(u) that satisfy

Lu − λu = 0 in � (3)

L Bu = 0 on ∂� (4)

As in the static problem, the eigenproblem defined in (3)
and (4) is replaced by a finite-dimensional eigenvalue prob-
lem, based on RBF approximations.

2.3 Radial basis functions

The RBF (φ) approximation of a function (u) is given by

ũ(x) =
N

∑

i=1

αiφ
(‖x − yi‖2

)

, x ∈ Rn (5)

where yi , i = 1, . . . , N is a finite set of distinct points (cen-
ters) in Rn . The coefficients αi are chosen so that ũ satisfies
some boundary conditions. The most common RBFs are

φ(r) = r3, cubic

φ(r) = r2 log(r), thin plate splines

φ(r) = (1 − r)m+ p(r), Wendland functions

φ(r) = e−(cr)2
, Gaussian

φ(r) =
√

c2 + r2, multiquadrics

φ(r) = (c2 + r2)−1/2, inverse multiquadrics

where the Euclidian distance r is real and non-negative and
c is a shape parameter, a positive constant. In the Wendland
functions, p(r) is a polynomial function, which can be defined
in various ways. In this paper, the Wendland function was
chosen as

φ(r) = (1 − cr)8+
(

32(cr)3 + 25(cr)2 + 8cr + 1
)

. (6)

2.4 Solution of the interpolation problem

Hardy [34] introduced multiquadrics in the analysis of scat-
tered geographical data. In the 1990s Kansa [16] used mul-
tiquadrics for the solution of PDEs.

Considering N distinct interpolations, and knowing u(x j ),

j = 1, 2, . . . , N , we find αi by the solution of a N × N linear
system

Aα = u (7)
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where A = [φ (‖x − yi‖2)]N×N , α = [α1, α2, . . . , αN ]T

and u = [u(x1), u(x2), . . . , u(xN )]T . The RBF interpola-
tion matrix A is positive definite for some RBFs [35], but in
general provides ill-conditioned systems.

2.5 Solution of the static problem

The solution of a static problem by RBFs considers NI nodes
in the domain and NB nodes on the boundary, with total num-
ber of nodes N = NI + NB .

We denote the sampling points by xi ∈ �, i = 1, . . . , NI

and xi ∈ ∂�, i = NI + 1, . . . , N . At the domain points we
solve the following system of equations

N
∑

i=1

αi Lφ
(‖x − yi‖2

) = f(x j ), j = 1, 2, . . . , NI (8)

or

L I α = F (9)

where

L I = [

Lφ
(‖x − yi‖2

)]

NI ×N . (10)

For the boundary conditions we have

N
∑

i=1

αi L Bφ
(‖x − yi‖2

) = g(x j ), j = NI + 1, . . . , N

(11)

or

Bα = G. (12)

Therefore we can write a finite-dimensional static problem
as
[

L I

B

]

α =
[

FI

GI

]

(13)

where

AI = φ
[(∥

∥xNI − y j
∥

∥

2

)]

NI ×N
,

BI = L Bφ
[(‖xNI +1 − y j‖2

)]

NB×N .

By inverting the system (13), we obtain the vector of α. We
then proceed to the solution by the interpolation equation (5).

2.6 Solution of the eigenproblem

We consider NI nodes in the interior of the domain and NB

nodes on the boundary, with N = NI + NB .
We denote interpolation points by xi ∈ �, i = 1, . . . , NI

and xi ∈ ∂�, i = NI + 1, . . . , N . For the interior points we
have that

N
∑

i=1

αi Lφ
(‖x − yi‖2

) = λ̃u(x j ), j = 1, 2, . . . , NI (14)

or

L I α = λ̃uI (15)

where

L I = [

Lφ
(‖x − yi‖2

)]

NI ×N (16)

For the boundary conditions we have

N
∑

i=1

αi L Bφ
(‖x − yi‖2

) = 0, j = NI + 1, . . . , N (17)

or

Bα = 0. (18)

Therefore we can write a finite-dimensional problem as a
generalized eigenvalue problem

[

L I

B

]

α = λ

[

AI

0

]

α (19)

where

AI = φ
[(∥

∥xNI − y j
∥

∥

2

)]

NI ×N
,

BI = L Bφ
[(∥

∥xNI +1 − y j
∥

∥

2

)]

NB×N

We seek the generalized eigenvalues and eigenvectors of
these matrices.

In this paper we follow a second algorithm (see [36] for
details) that can be formulated as follows. We can write

α = A−1
[

uI

0NB×1

]

(20)

where 0p×q is a p × q zero matrix, and

A =
[

AI

B

]

(21)

We can write a standard eigenvalue problem as

LφuI = λuI (22)

where Lφ is a NI × NI matrix given by

Lφ = L I A−1
[

INI ×NI

0NB×NI

]

(23)

The RBF approximation of the eigenpairs of (3)–(4) is
now obtained by computing the eigenvalues and eigenvec-
tors of the matrix Lφ . The eigenproblem (22) has dimension
NI × NI whereas eigenproblem (19) has dimension N × N .
However in (22) we need to invert matrix A, which represents
an extra computing cost when compared to (19).
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3 Static and free vibration analysis of plates
on Pasternak foundations

3.1 Equations of motion and boundary conditions

Based on the FSDT (first-order shear deformation theory),
the transverse displacement w(x, y, t) and the rotations
θx (x, y, t) and θy(x, y, t) about the y− and x−axes as
functions of time, t , are independently interpolated due to
uncoupling between inplane displacements and bending dis-
placements for plates on Pasternak foundations. The equa-
tions of motion for the free vibration of plates on Pasternak
foundations [10–12] are:

D11
∂2θx

∂x2 + D16
∂2θy

∂x2 + (D12 + D66)
∂2θy

∂x∂y

+2D16
∂2θx

∂x∂y
+ D66

∂2θx

∂y2 + D26
∂2θy

∂y2

−k A45

(

θy + ∂w

∂y

)

− k A55

(

θx + ∂w

∂x

)

= I2
∂2θx

∂t2

(24)

D16
∂2θx

∂x2 + D66
∂2θy

∂x2 + (D12 + D66)
∂2θx

∂x∂y

+2D26
∂2θy

∂x∂y
+ D26

∂2θx

∂y2 + D22
∂2θy

∂y2

−k A44

(

θy + ∂w

∂y

)

− k A45

(

θx + ∂w

∂x

)

= I2
∂2θy

∂t2

(25)

∂

∂x

[

k A45

(

θy + ∂w

∂y

)

+ k A55

(

θx + ∂w

∂x

)]

+ ∂

∂y

[

k A44

(

θy + ∂w

∂y

)

+ k A45

(

θx + ∂w

∂x

)]

−k f w + G f

(

∂2w

∂x2 + ∂2w

∂y2

)

+ q = I0
∂2w

∂t2 (26)

where q is the external applied load, Di j and Ai j are the
bending and shear stiffness components, and Ii are the mass
inertias defined as [37]

I0 =
h
2

∫

− h
2

ρdz, I2 =
h
2

∫

− h
2

ρz2dz. (27)

Here ρ and h denote the density and the total thickness
of the plate, respectively. Also, k f is the Winkler foundation
stiffness while G f is the shear stiffness of the elastic founda-
tion. The Winkler foundation can be considered as a special
case of the Pasternak foundation where a shear interaction
between the spring elements is assumed. The shear correc-

tion factor, k, is here taken as 5/6, by assuming a rectangular
cross-section of the plate.

The bending moments and shear forces are expressed as
functions of the displacement gradients and the material con-
stitutive equations by

Mx = D11
∂θx

∂x
+ D12

∂θy

∂y
+ D16

(

∂θx

∂y
+ ∂θy

∂x

)

(28)

My = D12
∂θx

∂x
+ D22

∂θy

∂y
+ D26

(

∂θx

∂y
+ ∂θy

∂x

)

(29)

Mxy = D16
∂θx

∂x
+ D26

∂θy

∂y
+ D66

(

∂θx

∂y
+ ∂θy

∂x

)

(30)

Qx = k A55

(

θx + ∂w

∂x

)

+ k A45

(

θy + ∂w

∂y

)

(31)

Qy = k A45

(

θx + ∂w

∂x

)

+ k A55

(

θy + ∂w

∂y

)

(32)

For free vibration problems we set q = 0, and assume
harmonic solution in terms of displacements w, θx , θy in the
form

w(x, y, t) = W (w, y)eiωt (33)

θx (x, y, t) = 
x (w, y)eiωt (34)

θy(x, y, t) = 
y(w, y)eiωt (35)

where ω is the frequency of natural vibration. Substituting the
harmonic expansion into equations of motion we obtain the
following equations in terms of the amplitudes W, 
x , 
y

D11
∂2
x

∂x2 + D16
∂2
y

∂x2 + (D12 + D66)
∂2
y

∂x∂y

+2D16
∂2
x

∂x∂y
+ D66

∂2
x

∂y2 + D26
∂2
y

∂y2

−k A45

(


y + ∂W

∂y

)

− k A55

(


x + ∂W

∂x

)

= −I2ω
2
x (36)

D16
∂2
x

∂x2 + D66
∂2
y

∂x2 + (D12 + D66)
∂2
x

∂x∂y

+2D26
∂2
y

∂x∂y
+ D26

∂2
x

∂y2 + D22
∂2
y

∂y2

−k A44

(


y + ∂W

∂y

)

− k A45

(


x + ∂W

∂x

)

= −I2ω
2
y (37)

∂

∂x

[

k A45

(


y + ∂W

∂y

)

+ k A55

(


x + ∂W

∂x

)]

+ ∂

∂y

[

k A44

(


y + ∂W

∂y

)

+ k A45

(


x + ∂W

∂x

)]

−k f W + G f

(

∂2W

∂x2 + ∂2W

∂y2

)

= −I0ω
2W. (38)
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The boundary conditions for an arbitrary edge with simply
supported, clamped and free edge conditions are as follows:

(a) Simply supported

• SS1, w = 0; Mn = 0; Mns = 0
• SS2, w = 0; Mn = 0; θs = 0

(b) Clamped, w = 0; θn = 0; θs = 0
(c) Free, Qn = 0; Mn = 0; Mns = 0

In previous equations, the subscripts n and s refer to the
normal and tangential directions of the edge, respectively;
Mn, Mns and Qn represent the normal bending moment,
twisting moment and shear force on the plate edge; θn and
θs represent the rotations about the tangential and normal
coordinates at the plate edge.

The stress resultants on an edge whose normal is repre-
sented by n = (nx , ny) can be expressed as

Mn = n2
x Mx + 2nx ny Mxy + n2

y My (39)

Mns = (

n2
x − n2

y

)

Mxy − nx ny(My − Mx) (40)

Qn = nx Qx + ny Qy (41)

θn = nxθx + nyθy (42)

θs = nxθy − nyθx (43)

where nx and ny are the direction cosines of a unit normal
vector at a point at the laminated plate boundary [37,38].

4 Discretization of the equations of motion
and boundary conditions

The radial basis collocation method follows a simple imple-
mentation procedure. Taking Eq. (13), we compute

α =
[

L I

B

]−1 [

FI

GI

]

(44)

This α vector is then used to obtain solution ũ, by using (7). If
derivatives of ũ are needed, such derivatives are computed as

∂ũ
∂x

=
N

∑

j=1

α j
∂φ j

∂x
(45)

∂2ũ
∂x2 =

N
∑

j=1

α j
∂2φ j

∂x2 , etc. (46)

The equations of motion and the boundary conditions can
now be discretized according to the RBF collocation, as

D11

N
∑

j=1

α

x
j

∂2φ j

∂x2 + D16

N
∑

j=1

α

y
j

∂2φ j

∂x2

+(D12 + D66)

N
∑

j=1

α

y
j

∂2φ j

∂x∂y

+2D16

N
∑

j=1

α

x
j

∂2φ j

∂x∂y
+ D66

N
∑

j=1

α

x
j

∂2φ j

∂y2

+D26

N
∑

j=1

α

y
j

∂2φ j

∂y2

−k A45

⎛

⎝

N
∑

j=1

α

y
j φ j +

N
∑

j=1

αW
j

∂φ j

∂y

⎞

⎠

−k A55

⎛

⎝

N
∑

j=1

α

x
j φ j +

N
∑

j=1

αW
j

∂φ j

∂x

⎞

⎠

= −I2ω
2

N
∑

j=1

α

x
j φ j (47)

D16

N
∑

j=1

α

x
j

∂2φ j

∂x2 + D66

N
∑

j=1

α

y
j

∂2φ j

∂x2

+(D12 + D66)

N
∑

j=1

α

x
j

∂2φ j

∂x∂y

+2D26

N
∑

j=1

α

y
j

∂2φ j

∂x∂y
+ D26

N
∑

j=1

α

x
j

∂2φ j

∂y2

+D22

N
∑

j=1

α

y
j

∂2φ j

∂y2

−k A44

⎛

⎝

N
∑

j=1

α

y
j φ j +

N
∑

j=1

αW
j

∂φ j

∂y

⎞

⎠

−k A45

⎛

⎝

N
∑

j=1

α

x
j φ j +

N
∑

j=1

αW
j

∂φ j

∂x

⎞

⎠

= −I2ω
2

N
∑

j=1

α

y
j φ j (48)

∂

∂x

⎡

⎣k A45

⎛

⎝

N
∑

j=1

α

y
j φ j +

N
∑

j=1

αW
j

∂φ j

∂y

⎞

⎠

+ k A55

⎛

⎝

N
∑

j=1

α

x
j φ j +

N
∑

j=1

αW
j

∂φ j

∂x

⎞

⎠

⎤

⎦

+ ∂

∂y

⎡

⎣k A44

⎛

⎝

N
∑

j=1

α

y
j φ j +

N
∑

j=1

αW
j

∂φ j

∂y

⎞

⎠
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Table 1 Convergence study for deflections, moments and shear forces of uniformly loaded square CCCC plates on Winkler foundations
(K = 1; ν = 0.3)

h/a Grid (points) w (×10−3qa4/D) Mxx (×10−2qa2/D) Myy (×10−2qa2/D) Mxy (×10−2qa2/D) Qx (×qa) Qy (×qa)

x = y = 0 x = y = 0 x = y = 0 x = y = −1 x = 0; y = −1 x = −1, y = 0

0.01 13 × 13 1.783 2.390 3.300 0.062 0.133 −0.648

17 × 17 1.924 2.441 3.292 0.190 0.206 −0.507

21 × 21 1.819 1.978 2.592 0.156 0.832 −0.225

25 × 25 1.965 2.500 3.548 0.101 0.284 −0.512

29 × 29 1.918 2.414 3.333 0.102 0.233 −0.513

33 × 33 1.918 2.437 3.319 0.101 0.246 −0.515

0.05 13 × 13 1.990 2.454 3.276 0.463 0.239 −0.515

17 × 17 1.989 2.471 3.319 0.465 0.244 −0.509

21 × 21 1.989 2.473 3.321 0.468 0.245 −0.509

25 × 25 1.989 2.472 3.322 0.466 0.245 −0.509

0.1 13 × 13 2.204 2.561 3.282 0.849 0.246 −0.502

17 × 17 2.205 2.573 3.317 0.849 0.248 −0.500

21 × 21 2.206 2.575 3.321 0.851 0.248 −0.500

25 × 25 2.206 2.575 3.321 0.850 0.248 −0.500

0.2 13 × 13 3.014 2.910 3.283 1.432 0.256 −0.476

17 × 17 3.015 2.914 3.296 1.432 0.256 −0.475

21 × 21 3.015 2.914 3.298 1.433 0.256 −0.474

25 × 25 3.015 2.915 3.298 1.433 0.256 −0.474

Table 2 Convergence study for deflections, moments and shear forces of uniformly loaded square CCCC plates on Winkler foundations
(K = 3; ν = 0.3)

h/a Grid (points) w (×10−3qa4/D) Mxx (×10−2qa2/D) Myy (×10−2qa2/D) Mxy (×10−2qa2/D) Qx (×qa) Qy (×qa)

x = y = 0 x = y = 0 x = y = 0 x = y = −1 x = 0; y = −1 x = −1, y = 0

0.01 13 × 13 1.629 2.161 2.991 0.059 0.125 −0.607

17 × 17 1.750 2.187 2.962 0.179 0.194 −0.474

21 × 21 1.656 1.759 2.313 0.148 0.785 −0.208

25 × 25 1.785 2.239 3.197 0.095 0.267 −0.477

29 × 29 1.745 2.163 3.001 0.097 0.219 −0.479

33 × 33 1.744 2.184 2.988 0.095 0.231 −0.481

0.05 13 × 13 1.803 2.189 2.936 0.434 0.224 −0.480

17 × 17 1.803 2.206 2.976 0.436 0.229 −0.474

21 × 21 1.802 2.208 2.978 0.439 0.229 −0.474

25 × 25 1.803 2.207 2.979 0.437 0.230 −0.474

0.1 13 × 13 1.975 2.258 2.905 0.786 0.229 −0.464

17 × 17 1.976 2.270 2.937 0.787 0.230 −0.462

21 × 21 1.976 2.272 2.941 0.788 0.231 −0.462

25 × 25 1.976 2.272 2.941 0.787 0.231 −0.462

0.2 13 × 13 2.589 2.459 2.777 1.276 0.232 −0.426

17 × 17 2.590 2.462 2.789 1.277 0.232 −0.425

21 × 21 2.590 2.463 2.790 1.278 0.231 −0.425

25 × 25 2.590 2.463 2.790 1.278 0.232 −0.425
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Table 3 Convergence study for deflections, moments and shear forces of uniformly loaded square CCCC plates on Winkler foundations
(K = 5; ν = 0.3)

h/a Grid (points) w (×10−3qa4/D) Mxx (×10−2qa2/D) Myy (×10−2qa2/D) Mxy (×10−2qa2/D) Qx (×qa) Qy (×qa)

x = y = 0 x = y = 0 x = y = 0 x = y = −1 x = 0; y = −1 x = −1, y = 0

0.01 13 × 13 1.016 1.258 1.772 0.045 0.091 −0.443

17 × 17 1.071 1.211 1.688 0.137 0.144 −0.343

21 × 21 1.018 0.910 1.227 0.114 0.600 −0.140

25 × 25 1.090 1.238 1.848 0.073 0.199 −0.342

29 × 29 1.069 1.195 1.718 0.074 0.164 −0.346

33 × 33 1.069 1.212 1.709 0.073 0.173 −0.347

0.05 13 × 13 1.088 1.188 1.643 0.324 0.167 −0.343

17 × 17 1.088 1.203 1.672 0.325 0.170 −0.340

21 × 21 1.088 1.205 1.673 0.327 0.170 −0.339

25 × 25 1.088 1.204 1.674 0.326 0.171 −0.340

0.1 13 × 13 1.140 1.170 1.545 0.555 0.166 −0.324

17 × 17 1.141 1.180 1.567 0.556 0.167 −0.322

21 × 21 1.141 1.181 1.569 0.557 0.167 −0.322

25 × 25 1.141 1.181 1.569 0.556 0.167 −0.322

0.2 13 × 13 1.289 1.095 1.245 0.787 0.155 −0.271

17 × 17 1.289 1.097 1.251 0.788 0.155 −0.270

21 × 21 1.289 1.098 1.252 0.789 0.154 −0.269

25 × 25 1.289 1.098 1.252 0.788 0.154 −0.269

Table 4 Convergence study for deflections, moments and shear forces of uniformly loaded square SSSS plates on Winkler foundations
(K = 1; ν = 0.3)

h/a Grid (points) w (×10−3qa4/D) Mxx (×10−2qa2/D) Myy (×10−2qa2/D) Mxy (×10−2qa2/D) Qx (×qa) Qy (×qa)

x = y = 0 x = y = 0 x = y = 0 x = y = −1 x = 0; y = −1 x = −1, y = 0

0.01 13 × 13 3.957 4.664 4.664 2.832 0.378 −0.378

17 × 17 4.046 4.753 4.754 3.224 0.336 −0.335

21 × 21 4.063 4.780 4.780 3.242 0.337 −0.335

25 × 25 4.049 4.770 4.770 3.237 0.333 −0.331

29 × 29 4.054 4.775 4.775 3.240 0.336 −0.336

33 × 33 4.054 4.775 4.775 3.241 0.337 −0.337

0.05 13 × 13 4.100 4.751 4.751 3.237 0.338 −0.338

17 × 17 4.103 4.773 4.773 3.241 0.337 −0.337

21 × 21 4.104 4.775 4.775 3.240 0.337 −0.337

25 × 25 4.104 4.775 4.775 3.241 0.337 −0.337

0.1 13 × 13 4.258 4.760 4.760 3.241 0.338 −0.338

17 × 17 4.261 4.773 4.773 3.241 0.337 −0.337

21 × 21 4.261 4.774 4.774 3.240 0.337 −0.337

25 × 25 4.261 4.774 4.774 3.240 0.337 −0.337

0.2 13 × 13 4.887 4.768 4.768 3.241 0.338 −0.338

17 × 17 4.888 4.771 4.771 3.240 0.337 −0.337

21 × 21 4.888 4.772 4.772 3.238 0.337 −0.337

25 × 25 4.888 4.772 4.772 3.239 0.337 −0.337
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Table 5 Convergence study for deflections, moments and shear forces of uniformly loaded square SSSS plates on Winkler foundations
(K = 3; ν = 0.3)

h/a Grid (points) w (×10−3qa4/D) Mxx (×10−2qa2/D) Myy (×10−2qa2/D) Mxy (×10−2qa2/D) Qx (×qa) Qy (×qa)

x = y = 0 x = y = 0 x = y = 0 x = y = −1 x = 0; y = −1 x = −1, y = 0

0.01 13 × 13 3.270 3.785 3.785 2.354 0.335 −0.335

17 × 17 3.343 3.855 3.856 2.736 0.292 −0.291

21 × 21 3.356 3.878 3.878 2.751 0.293 −0.291

25 × 25 3.345 3.871 3.872 2.748 0.289 −0.287

29 × 29 3.349 3.875 3.875 2.751 0.292 −0.292

33 × 33 3.349 3.875 3.875 2.751 0.293 −0.293

0.05 13 × 13 3.378 3.843 3.843 2.743 0.294 −0.294

17 × 17 3.381 3.863 3.863 2.746 0.292 −0.292

21 × 21 3.381 3.865 3.865 2.745 0.292 −0.292

25 × 25 3.381 3.865 3.865 2.745 0.292 −0.292

0.1 13 × 13 3.481 3.821 3.821 2.729 0.292 −0.292

17 × 17 3.483 3.833 3.833 2.729 0.291 −0.291

21 × 21 3.483 3.834 3.834 2.727 0.291 −0.291

25 × 25 3.483 3.834 3.834 2.728 0.291 −0.291

0.2 13 × 13 3.871 3.713 3.713 2.662 0.286 −0.286

17 × 17 3.873 3.715 3.715 2.661 0.285 −0.285

21 × 21 3.873 3.716 3.716 2.659 0.285 −0.285

25 × 25 3.873 3.716 3.716 2.660 0.285 −0.285

Table 6 Convergence study for deflections, moments and shear forces of uniformly loaded square SSSS plates on Winkler foundations
(K = 5; ν = 0.3)

h/a Grid (points) w (×10−3qa4/D) Mxx (×10−2qa2/D) Myy (×10−2qa2/D) Mxy (×10−2qa2/D) Qx (×qa) Qy (×qa)

x = y = 0 x = y = 0 x = y = 0 x = y = −1 x = 0; y = −1 x = −1, y = 0

0.01 13 × 13 1.471 1.502 1.502 1.098 0.221 −0.221

17 × 17 1.503 1.525 1.526 1.450 0.175 −0.175

21 × 21 1.509 1.539 1.539 1.460 0.177 −0.174

25 × 25 1.504 1.539 1.540 1.461 0.173 −0.171

29 × 29 1.506 1.540 1.540 1.461 0.176 −0.176

33 × 33 1.506 1.540 1.540 1.462 0.176 −0.176

0.05 13 × 13 1.508 1.507 1.507 1.451 0.177 −0.177

17 × 17 1.509 1.524 1.524 1.453 0.176 −0.176

21 × 21 1.509 1.525 1.525 1.451 0.176 −0.176

25 × 25 1.509 1.526 1.526 1.452 0.176 −0.176

0.1 13 × 13 1.518 1.471 1.471 1.423 0.174 −0.174

17 × 17 1.519 1.480 1.480 1.422 0.173 −0.173

21 × 21 1.519 1.482 1.482 1.420 0.173 −0.173

25 × 25 1.519 1.482 1.482 1.421 0.173 −0.173

0.2 13 × 13 1.550 1.326 1.326 1.313 0.163 −0.163

17 × 17 1.551 1.327 1.327 1.312 0.162 −0.162

21 × 21 1.551 1.328 1.328 1.310 0.162 −0.162

25 × 25 1.551 1.328 1.328 1.311 0.162 −0.162
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Table 7 Deflections, moments and shear forces of uniformly loaded square SS plates on Winkler foundations (ν = 0.3)

K h/a Method w (×10−3qa4/D) Mxx (×10−2qa2/D) Myy (×10−2qa2/D) Mxy (×10−2qa2/D) Qx (×qa) Qy (xqa)

x = y = 0 x = y = 0 x = y = 0 x = y = −1 x = 0; y = −1 x = −1, y = 0

1 0.01 Present (21 × 21 points) 4.050 4.776 4.784 3.234 0.334 −0.341

Kobayashi and Sonoda [39] 4.054 4.775 4.775 3.241 0.337 −0.337

0.05 Present (21 × 21 points) 4.104 4.775 4.775 3.241 0.337 −0.337

Kobayashi and Sonoda [39] 4.104 4.775 4.775 3.241 0.337 −0.337

0.1 Present (21 × 21 points) 4.261 4.774 4.774 3.240 0.337 −0.337

Kobayashi and Sonoda [39] 4.261 4.774 4.774 3.240 0.337 −0.337

0.2 Present (21 × 21 points) 4.888 4.772 4.772 3.239 0.337 −0.337

Kobayashi and Sonoda [39] 4.888 4.772 4.772 3.239 0.337 −0.337

3 0.01 Present (21 × 21 points) 3.345 3.877 3.885 2.745 0.290 −0.297

Kobayashi and Sonoda [39] 3.349 3.875 3.875 2.751 0.293 −0.293

0.05 Present (21 × 21 points) 3.381 3.865 3.865 2.745 0.292 −0.292

Kobayashi and Sonoda [39] 3.381 3.865 3.865 2.746 0.292 −0.292

0.1 Present (21 × 21 points) 3.483 3.834 3.834 2.728 0.291 −0.291

Kobayashi and Sonoda [39] 3.483 3.834 3.834 2.728 0.291 −0.291

0.2 Present (21 × 21 points) 3.873 3.716 3.716 2.660 0.285 −0.285

Kobayashi and Sonoda [39] 3.873 3.716 3.716 2.660 0.284 −0.284

5 0.01 Present (21 × 21 points) 1.505 1.545 1.552 1.458 0.174 −0.181

Kobayashi and Sonoda [39] 1.506 1.540 1.540 1.462 0.176 −0.176

0.05 Present (21 × 21 points) 1.509 1.526 1.526 1.452 0.176 −0.176

Kobayashi and Sonoda [39] 1.509 1.526 1.526 1.452 0.175 −0.175

0.1 Present (21 × 21 points) 1.519 1.482 1.482 1.421 0.173 −0.173

Kobayashi and Sonoda [39] 1.519 1.482 1.482 1.421 0.172 −0.172

0.2 Present (21 × 21 points) 1.551 1.328 1.328 1.311 0.162 −0.162

Kobayashi and Sonoda [39] 1.551 1.328 1.328 1.311 0.162 −0.162
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where N represents the total number of points of the discret-
ization. Vectors αW

j , α
x , α
y correspond to the vector of
unknowns related to translations W , and rotations 
x , 
y ,
respectively.

Boundary conditions can be discretized as follows. For a
simply supported plate, along the perimeter we enforce the
SS2 conditions as

w = 0 →
N

∑
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αW
j φ j = 0 (50)
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θs = 0 → nx

N
∑

j=1

α

y
j φ j + ny

N
∑

j=1

α

x
j φ j = 0. (52)

The eigenproblem is then defined as a generalized eigen-
problem (19) or standard eigenproblem (22) and solved by
MATLAB in our case.
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Table 8 Deflections, moments and shear forces of uniformly loaded square CC plates on Winkler foundations (ν = 0.3)

K h/a Method w (×10−3qa4/D) Mxx (×10−2qa2/D) Myy (×10−2qa2/D) Mxy (×10−2qa2/D) Qx (×qa) Qy (×qa)

x = y = 0 x = y = 0 x = y = 0 x = y = −1 x = 0; y = −1 x = −1, y = 0

1 0.01 Present (21 × 21 points) 1.868 2.629 2.876 0.094 0.408 −0.190

Kobayashi and Sonoda [39] 1.918 2.437 3.320 0.101 0.244 −0.515

0.05 Present (21 × 21 points) 1.989 2.471 3.322 0.467 0.244 −0.509

Kobayashi and Sonoda [39] 1.989 2.472 3.321 0.466 0.245 −0.509

0.1 Present (21 × 21 points) 2.206 2.575 3.321 0.850 0.248 −0.500

Kobayashi and Sonoda [39] 2.206 2.575 3.321 0.850 0.245 −0.500

0.2 Present (21 × 21 points) 3.015 2.915 3.298 1.433 0.256 −0.474

Kobayashi and Sonoda [39] 3.015 2.915 3.298 1.433 0.256 −0.474

3 0.01 Present (21 × 21 points) 1.701 2.371 2.578 0.089 0.384 −0.174

Kobayashi and Sonoda [39] 1.744 2.184 2.989 0.095 0.229 −0.480

0.05 Present (21 × 21 points) 1.803 2.206 2.978 0.438 0.229 −0.474

Kobayashi and Sonoda [39] 1.802 2.207 2.978 0.437 0.230 −0.474

0.1 Present (21 × 21 points) 1.976 2.272 2.941 0.787 0.231 −0.462

Kobayashi and Sonoda [39] 1.976 2.272 2.941 0.787 0.231 −0.462

0.2 Present (21 × 21 points) 2.590 2.463 2.790 1.277 0.232 −0.425

Kobayashi and Sonoda [39] 2.590 2.463 2.790 1.278 0.231 −0.425

5 0.01 Present (21 × 21 points) 1.047 1.369 1.423 0.067 0.291 −0.112

Kobayashi and Sonoda [39] 1.069 1.212 1.709 0.073 0.172 −0.347

0.05 Present (21 × 21 points) 1.088 1.204 1.673 0.326 0.170 −0.340

Kobayashi and Sonoda [39] 1.088 1.204 1.673 0.326 0.171 −0.340

0.1 Present (21 × 21 points) 1.141 1.181 1.569 0.556 0.167 −0.322

Kobayashi and Sonoda [39] 1.141 1.181 1.569 0.556 0.167 −0.322

0.2 Present (21 × 21 points) 1.289 1.098 1.252 0.788 0.154 −0.269

Kobayashi and Sonoda [39] 1.289 1.098 1.252 0.788 0.154 −0.269

Table 9 Convergence of
frequency parameters �1,1 for
the flexural modes of thin and
moderately thick square plates
on Winkler foundation (K2 = 0)

Boundary condition t/b K1 13 × 13 points 17 × 17 points 21 × 21 points

SSSS (ν = 0.3) 0.01 102 2.2444 2.2416 2.2414

5 × 102 3.0238 3.0217 3.0215

0.1 2 × 102 2.3990 2.3989 2.3989

103 3.7008 3.7213 3.7213

CCCC (ν = 0.15) 0.015 1390.2 5.3073 5.2440 5.2442

2780.4 6.5141 6.4626 6.4627

5 Numerical examples

In all following examples a Chebyshev grid was used (in
MATLAB : x = cos(pi ∗ (0 : N )/N )′; y = x). The Wend-
land function used was

φ(r) = (1 − cr)8+
(

32(cr)3 + 25(cr)2 + 8cr + 1
)

. (53)

where the shape parameter is taken as 0.1.

5.1 Static results

Numerical results are presented for the uniformly loaded
square plate (a/b = 1) for the various values of thickness-to-
span ratio h/a and dimensionless foundation modulus K =
(

k f a4/D
)1/4

. Here, D = Eh3

12(1−ν2)
is the flexural rigidity. The

Poisson’s ratio of 0.3 is taken for all cases. In Tables 1, 2, 3
we present a convergence study for fully-clamped (CCCC)
plates, using various thickness-to-side ratios, for K = 1, 3,
and K = 5. In Tables 4, 5, 6, we perform a similar con-
vergence study for simply-supported (SSSS) plates. For both
clamped and simply-supported plates the convergence is
excellent. For thinner plates (h/a = 0.01) we need more
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Table 10 Comparison of
frequency parameters � for the
flexural modes of thin and
moderately thick square plates
on Winkler foundation (K2 = 0)

Boundary condition t/b K1 Methods �1,1 �1,2,�2,1 �2,2

SSSS (ν = 0.3) 0.01 102 Zhou et al. [13] 2.2413 5.0973 8.0527

Classical [3] 2.2420 5.1016 8.0639

Mindlin [5] 2.2413 5.0971 8.0523

Present (21 × 21 points) 2.2414 5.0967 8.0542

5 × 102 Zhou et al. [13] 3.0214 5.4850 8.3035

Classical [3] 3.0221 5.4894 8.3146

Mindlin [5] 3.0215 5.4850 8.3032

Present (21 × 21 points) 3.0216 5.4846 8.3051

0.1 2 × 102 Zhou et al. [13] 2.3951 4.8262 7.2338

Mindlin [5] 2.3989 4.8194 7.2093

Present (21 × 21 points) 2.3989 4.8194 7.2093

103 Zhou et al. [13] 3.7008 5.5661 7.7335

Mindlin [5] 3.7212 5.5844 7.7353

Present (21 × 21 points) 3.7213 5.5844 7.7353

CCCC (ν = 0.15) 0.015 1390.2 Zhou et al. [13] 5.2446 8.3156 11.541

Classical [3] 5.2510 8.3427 11.602

Finite element [6] 5.2588 8.4322 11.674

Present (21 × 21 points) 5.2438 8.3129 11.546

2780.4 Zhou et al. [13] 6.4629 9.1324 12.142

Classical [3] 6.4686 9.1582 12.202

Finite element [6] 6.4601 9.2482 12.263

Present (21 × 21 points) 6.4625 9.1302 12.147

Table 11 Comparison of
frequency parameters � for the
flexural modes of thin and
moderately thick square plates
on Pasternak foundation

Boundary condition t/b K1 K2 Methods �1,1 �1,2,�2,1 �2,2

SSSS (ν = 0.3) 0.01 102 10 Zhou et al. [13] 2.6551 5.5717 8.5406

Mindlin [5] 2.6551 5.5718 8.5405

Present (21 × 21 points) 2.6559 5.5718 8.5384

5 × 102 10 Zhou et al. [13] 3.3398 5.9285 8.7775

Mindlin [5] 3.3400 5.9287 8.7775

Present (21 × 21 points) 3.3406 5.9285 8.7754

0.1 2 × 102 10 Zhou et al. [13] 2.7756 5.2954 7.7279

Mindlin [5] 2.7842 5.3043 7.7287

Present (21 × 21 points) 2.7902 5.3452 7.8255

103 10 Zhou et al. [13] 3.9566 5.9757 8.1954

Mindlin [5] 3.9805 6.0078 8.2214

Present (21 × 21 points) 3.9844 6.0430 8.3112

CCCC (ν = 0.15) 0.015 1390.2 166.83 Zhou et al. [13] 8.1675 12.823 16.833

Finite element [6] 8.1375 12.898 16.932

Present (21 × 21 points) 8.1669 12.821 16.842

points than for thicker plates, to obtain an acceptable con-
vergence of the transverse displacements.

The present method is compared with a Levy-type method
by Kobayashi and Sonoda [39], Tables 7 and 8. Due to the

Levy approach, edges y = constant are simply-supported.
The boundary conditions denoted by SS represent simply-
supported bords along the perimeter, while CC indicates
that the edges y = constant are simply-supported and the
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opposite edges are clamped. From the convergence results
in Tables 1, 2, 3, 4, 5, 6, it seems quite reasonable to use
a 21 × 21 grid for all SSSS and CCCC cases. The results
here presented show an excellent correlation with results by
Kobayashi and Sonoda [39]. In most cases, results are iden-
tical, being the larger differences obtained for CCCC plates,
and h/a = 0.01.

5.2 Free vibration results

Numerical results are presented for square plates (a/b = 1).
The non-dimensional parameters are given as

� = ωb2

π2

√

ρt/D, K1 = k f a4

D
, K2 = G f a2

D
(54)

In Table 9 we present a convergence study of the frequency
parameters �1,1 for the flexural modes of thin and moder-
ately thick square plates on Winkler foundation (K2 = 0).
A 21 × 21 points grid was chosen to compare the present
method with 3D results by Zhou et al. [13] who used a Ritz
method to solve the three-dimensional problem of plates on
Winkler foundations, Table 10. Natural frequencies are in
excellent agreement with the Mindlin [5] results for thicker
plates, and in good agreement with the results by Zhou et al.
[13] and the classical results of Leissa [3] for thinner plates.

In Table 11 we present the frequency parameters � for the
flexural modes of thin and moderately thick square plates
on Pasternak foundation. We present results for SSSS and
CCCC boundary conditions, and several values of K1, K2.
We compare our results with those of Zhou et al. [13], using
a 3D Ritz approach, and those of Xiang et al. [5] , who used
a Mindlin approach. Our results are in excellent agreement
with those of [5] and [13] in both SSSS and CCCC boundary
conditions, and in both thin and thick plates.

In Figs. 1 and 2, we illustrate the eigenmodes for a CCCC
plate, with t/b = 0.015, K1 = 2780.4, using a 21 × 21 grid.
The modes are quite stable.

6 Conclusions

In this paper we used, for the first time, the RBF collocation
method to analyse static deformations and free vibrations of
plates on Pasternak foundations. The first-order shear defor-
mation theory set of equations of motion define a static prob-
lem and an eigenproblem which can be solved by various
algorithms.

The present results were compared with existing analyt-
ical solutions, and finite element schemes and are in very
good agreement.

The present method is a simple yet powerful alternative to
other finite element or meshless methods in the static defor-
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Fig. 1 First four vibrational modes: CCCC, t/b = 0.015, K1 =
2780.4, grid 21 × 21
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Fig. 2 Fifth to eighth vibrational modes: CCCC, t/b = 0.015, K1 =
2780.4, grid 21 × 21

mation and free vibration analysis of plates on Pasternak
foundations.
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a b s t r a c t

This paper addresses the buckling and vibration analysis of isotropic and laminated plates by a first-order
shear deformation theory. The numerical approach is based on collocation with radial basis functions.
The model allows the analysis of arbitrary boundary conditions and irregular geometries. It is shown that
the present method, based on a first-order shear deformation theory produces highly accurate natural
frequencies and modes of vibration, as well as critical loads and modes.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Composite laminated plates are widely used in various applica-
tions due to their high strength-to-weight ratio and flexibility in
design. It is well known that the classical laminated plate theory
(CLPT) based on the Kirchhoff hypothesis yields acceptable results
only for thin laminates [1]. The structures designed based on the
CLPT analysis may be unsafe because the CLPT underestimates
the transverse deformation and overpredicts the buckling load of
the laminated plate. Therefore, first-order [2,3] and higher-order
[4,5] shear deformation theories have been developed to include
transverse shear deformation effects.

Recently, radial basis functions (RBFs) have enjoyed consider-
able success and research as a technique for interpolating data
and functions. A radial basis function, /(kx � xjk) is a spline that
depends on the Euclidian distance between distinct data centers
xj; j ¼ 1;2; . . . ;N 2 Rn, also called nodal or collocation points.

Although most work to date on RBFs relates to scattered data
approximation and in general to interpolation theory, there has re-
cently been an increased interest in their use for solving partial dif-
ferential equations (PDEs). This approach, which approximates the
whole solution of the PDE directly using RBFs, is very attractive due
to the fact that this is truly a mesh-free technique. Kansa [6] intro-
duced the concept of solving PDEs using RBFs. Kansa’s method is an

unsymmetric RBF collocation method based upon the multiquad-
rics (MQ) interpolation functions, in which the shape parameter
is considered to be variable across the problem domain. The distri-
bution of the shape parameter is obtained by an optimization ap-
proach, in which the value of the shape parameter is assumed to
be proportional to the curvature of the unknown solution of the
original partial differential equation. In this way, it is possible to
reduce the condition number of the matrix at the expense of
implementing an additional iterative algorithm. In the present
work, we have implemented the unsymmetric collocation method
in its simpler form, without any optimization of the interpolation
functions and the collocation points.

The analysis of plates by finite element methods is now fully
established. The use of alternative methods such as the meshless
methods based on radial basis functions is attractive due to the ab-
sence of a mesh and the ease of collocation methods. The use of
radial basis function for the analysis of structures and materials
has been previously studied by numerous authors [7–18]. More re-
cently the authors have applied RBFs to the static deformations of
composite beams and plates [19–21].

Some relevant works on vibration and buckling of thick plates
include those of Wang et al. [22], Khdeir and Librescu [23], Bhimar-
addi [24], Kitipornchai et al. [25], Liew et al. [26–28], and Reddy
et al. [29,30]. An historical review on laminated plates and shells
has been presented by Carrera [31]. Although much work has been
done with analytical or meshless methods, there is no research on
buckling analysis of laminated plates by radial basis functions. This
paper tries to fill that gap in this research field.
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The objective of this paper is then to determine both the elastic
buckling loads of the Mindlin plates that are subjected to partial in-
plane edge loads and the natural frequencies and modes of vibra-
tion by collocation with radial basis functions.

2. The radial basis function method

2.1. The static problem

Radial basis functions (RBF) approximations are grid-free
numerical schemes that can exploit accurate representations of
the boundary, are easy to implement and can be spectrally accu-
rate [32,33].

In this section the formulation of a global unsymmetrical collo-
cation RBF-based method to compute eigenvalues of elliptic oper-
ators is presented.

Consider a linear elliptic partial differential operator L and a
bounded region X in Rn with some boundary @X.

The static problems aims the computation of displacements
(primary variables) (u) from the global system of equations

Lu ¼ f in X; LBu ¼ g on @X ð1Þ

where L, LB are linear operators in the domain and on the bound-
ary, respectively. The right-hand side of (1) represents the external
forces applied on the plate and the boundary conditions applied
along the perimeter of the plate, respectively. The PDE problem de-
fined in (1) is replaced by a finite problem, defined by an algebraic
system of equations, from the radial basis expansions.

2.2. The eigenproblem

The eigenproblem looks for eigenvalues (k) and eigenvectors (u)
that satisfy

Luþ ku ¼ 0 in X; LBu ¼ 0 on @X ð2Þ

As in the static problem, the eigenproblem defined in (2) is re-
placed by a finite-dimensional eigenvalue problem, based on RBF
approximations.

2.3. Radial basis functions

The radial basis function (/) approximation of a function (u) is
defined as

euðxÞ ¼XN

i¼1

ai/ kx� yik2ð Þ;x 2 Rn ð3Þ

where yi, i = 1,. . .,N is a finite set of distinct points (centers) in Rn.
The coefficients ai are chosen so that eu satisfies some variation-
ally-consistent boundary conditions. The most common RBFs are

/ðrÞ ¼ r3; cubic

/ðrÞ ¼ r2 logðrÞ; thin plate splines
/ðrÞ ¼ ð1� rÞmþpðrÞ; Wendland functions

/ðrÞ ¼ e�ðcrÞ2 ; Gaussian

/ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ r2

p
; Multiquadrics

/ðrÞ ¼ ðc2 þ r2Þ�1=2
; Inverse Multiquadrics

2.4. Solution of the interpolation problem

Hardy [34] introduced multiquadrics in the analysis of scattered
geographical data. In the 1990’s Kansa [6] used multiquadrics for
the solution of partial differential equations.

Considering N distinct interpolations, and given u(xj),j =
1,2, . . . ,N, we find ai by the solution of a N � N linear system

Aa ¼ u ð4Þ

where A = [/(kx � yik2)]N�N, a = [a1, a2, . . . ,aN]T and u = [u(x1),-
u(x2), . . . ,u(xN)]T. The RBF interpolation matrix A is positive definite
for some RBFs [35], but in general provides ill-conditioned systems.

2.5. Solution of the static problem

The solution of a static problem by radial basis functions con-
siders NI nodes in the domain and NB nodes on the boundary, with
total number of nodes N = NI + NB.

We denote the sampling points by xi 2X,i = 1, . . . ,NI and
xi 2 @X, i = NI + 1, . . . ,N. At the points in the domain we solve the
following system of equationsXN

i¼1

aiL/ kx� yik2ð Þ ¼ fðxjÞ; j ¼ 1;2; . . . ;NI ð5Þ

or

LIa ¼ F ð6Þ

where

LI ¼ L/ kx� yik2ð Þ½ �NI�N ð7Þ

For the boundary conditions we haveXN

i¼1

aiLB/ kx� yik2ð Þ ¼ gðxjÞ; j ¼ NI þ 1; . . . ;N ð8Þ

or

Ba ¼ G ð9Þ

Therefore we can write a finite-dimensional static problem as

LI

B

" #
a ¼

F
G

� �
ð10Þ

where

LI ¼ L/ kxNI � yjk2

� �� �
NI�N

; B ¼ LB/ kxNIþ1 � yjk2

� �� �
NB�N

By inverting the system (10), we obtain the vector of parame-
ters a. We then proceed to the solution by the interpolation Eq. (3).

2.6. Solution of the eigenproblem

We consider NI nodes in the interior of the domain and NB nodes
on the boundary, with N = NI + NB.

We denote interpolation points by xi 2X, i = 1, . . . ,NI and
xi 2 @X, i = NI + 1, . . . ,N. For the points in the domain, the following
problem is defined

XN

i¼1

aiL/ kx� yik2ð Þ ¼ keuðxjÞ; j ¼ 1;2; . . . ;NI ð11Þ

or

LIa ¼ keuI ð12Þ

where

LI ¼ L/ kx� yik2ð Þ½ �NI�N ð13Þ

For the boundary conditions we haveXN

i¼1

aiLB/ kx� yik2ð Þ ¼ 0; j ¼ NI þ 1; . . . ;N ð14Þ
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or

Ba ¼ 0 ð15Þ

Therefore we can write a finite-dimensional problem as a gen-
eralized eigenvalue problem

LI

B

" #
a ¼ k

AI

0

" #
a ð16Þ

where

AI ¼ / kxNI � yjk2

� �� �
NI�N

; B ¼LB/ kxNIþ1 � yjk2

� �� �
NB�N

We seek the generalized eigenvalues and eigenvectors of these
matrices.

3. Free vibration analysis

Based on the first-order shear deformation theory (FSDT), the
transverse displacement w(x, y) and the rotations hx(x, y) and
hy(x, y) about the y� and x � axes are independently interpolated
due to uncoupling between in-plane displacements and bending
displacements for plates. For free vibration analysis we consider
the following equations of motion:

D11
@2hx

@x2 þ D16
@2hy

@x2 þ ðD12 þ D66Þ
@2hy

@x@y
þ 2D16

@2hx

@x@y
þ D66

@2hx

@y2

þ D26
@2hy

@y2 þ�kA45 hy þ
@w
@y

	 

� kA55 hx þ

@w
@x

	 

¼ I2

@2hx

@t2 ð17Þ

Fig. 1. Mode shapes (1–4) for CCCC plate with h/a = 0.1.

Table 2
Natural frequencies of a CCCC square Mindlin/Reissner plate with h/a = 0.01, k = 0.8601, m = 0.3.

Mode no. m n 13 � 13 17 � 17 21 � 21 Rayleygh–Ritz [42] Liew et al. [26]

1 1 1 0.1846 0.1753 0.1754 0.1754 0.1743
2 2 1 0.3787 0.3575 0.3577 0.3576 0.3576
3 1 2 0.3787 0.3575 0.3577 0.3576 0.3576
4 2 2 0.5615 0.5280 0.5250 0.5274 0.5240
5 3 1 0.6525 0.6433 0.6403 0.6402 0.6465
6 1 3 0.6596 0.6463 0.6403 0.6432 0.6505
7 3 2 0.7722 0.8137 0.7997 0.8015
8 2 3 0.7722 0.8138 0.8001 0.8015

Table 1
Natural frequencies of a CCCC square Mindlin/Reissner plate with h/a = 0.1, k = 0.8601, m = 0.3.

Mode no. m n 13 � 13 17 � 17 21 � 21 Rayleygh–Ritz [42] Liew et al. [26]

1 1 1 1.5911 1.5911 1.5911 1.5940 1.5582
2 2 1 3.0393 3.0389 3.0393 3.0390 3.0182
3 1 2 3.0393 3.0389 3.0395 3.0390 3.0182
4 2 2 4.2641 4.2624 4.2607 4.2650 4.1711
5 3 1 5.0290 5.0249 5.0247 5.0350 5.1218
6 1 3 5.0756 5.0724 5.0687 5.0780 5.1594
7 3 2 6.0890 6.0800 6.0784 6.0178
8 2 3 6.0890 6.0801 6.0786 6.0178
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D16
@2hx

@x2 þ D66
@2hy

@x2 þ ðD12 þ D66Þ
@2hx

@x@y
þ 2D26

@2hy

@x@y
þ D26

@2hx

@y2

þ D22
@2hy

@y2 þ�kA44 hy þ
@w
@y

	 

� kA45 hx þ

@w
@x

	 

¼ I2

@2hy

@t2 ð18Þ

@

@x
kA45 hy þ

@w
@y

	 

þ kA55 hx þ

@w
@x

	 
� �
þ @

@y
kA44 hy þ

@w
@y

	 

þ kA45 hx þ

@w
@x

	 
� �
¼ I0

@2w
@t2 ð19Þ

where Dij and Aij are the bending and shear stiffness components, k
is the shear correction factor, and Ii are the mass inertias defined as
[36]

I0 ¼
Z h

2

�h
2

qdz; I2 ¼
Z h

2

�h
2

qz2dz ð20Þ

Here q and h denote the density and the total thickness of the
plate, respectively.

For free vibration problems we set p = 0, and assume harmonic
solution in terms of displacements w, hx, hy in the form

wðx; y; tÞ ¼Wðw; yÞeixt ð21Þ
hxðx; y; tÞ ¼ Wxðw; yÞeixt ð22Þ
hyðx; y; tÞ ¼ Wyðw; yÞeixt ð23Þ

where x is the frequency of natural vibration.

Fig. 2. Mode shapes (5–8) for CCCC plate with h/a = 0.1.

Table 3
Natural frequencies of a SSSS square Mindlin/Reissner plate with h/a = 0.1, k = 0.833, m = 0.3 (* - closed form).

Mode no. m n 13 � 13 17 � 17 21 � 21 3D* [43] Mindlin [43] Liew et al. [26]

1 1 1 0.930 0.930 0.930 0.932 0.930 0.922
2 2 1 2.219 2.219 2.219 2.226 2.219 2.205
3 1 2 2.219 2.219 2.219 2.226 2.219 2.205
4 2 2 3.406 3.406 3.406 3.421 3.406 3.377
5 3 1 4.151 4.149 4.149 4.171 4.149 4.139
6 1 3 4.151 4.149 4.149 4.171 4.149 4.139
7 3 2 5.209 5.206 5.205 5.239 5.206 5.170
8 2 3 5.209 5.206 5.205 5.239 5.206 5.170

Table 4
Natural frequencies of a SSSS square Mindlin/Reissner plate with h/a = 0.01, k = 0.833, m = 0.3.

Mode no. m n 13 � 13 17 � 17 21 � 21 Mindlin [43] Liew et al. [26]

1 1 1 0.0965 0.0963 0.0963 0.0963 0.0961
2 2 1 0.2417 0.2407 0.2401 0.2406 0.2419
3 1 2 0.2417 0.2407 0.2403 0.2406 0.2419
4 2 2 0.3884 0.3851 0.3846 0.3848 0.3860
5 3 1 0.4775 0.4818 0.4802 0.4809 0.4898
6 1 3 0.4788 0.4819 0.4808 0.4809 0.4898
7 3 2 0.6290 0.6267 0.6253 0.6249 0.6315
8 2 3 0.6290 0.6268 0.6255 0.6249 0.6315
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Substituting the harmonic expansion (21)–(23) into the equa-
tions of motion (17)–(19) we obtain the following equations in
terms of the amplitudes W, Wx, Wy

D11
@2Wx

@x2 þ D16
@2Wy

@x2 þ ðD12 þ D66Þ
@2Wy

@x@y
þ 2D16

@2Wx

@x@y
þ D66

@2Wx

@y2

þ D26
@2Wy

@y2 � kA45 Wy þ
@W
@y

	 

� kA55 Wx þ

@W
@x

	 

¼ �I2x2Wx

ð24Þ

D16
@2Wx

@x2 þ D66
@2Wy

@x2 þ ðD12 þ D66Þ
@2Wx

@x@y
þ 2D26

@2Wy

@x@y
þ D26

@2Wx

@y2

þ D22
@2Wy

@y2 � kA44 Wy þ
@W
@y

	 

� kA45 Wx þ

@W
@x

	 

¼ �I2x2Wy

ð25Þ

@

@x
kA45 Wy þ

@W
@y

	 

þ kA55 Wx þ

@W
@x

	 
� �
þ @

@y
kA44 Wy þ

@W
@y

	 

þ kA45 Wx þ

@W
@x

	 
� �
¼ �I0x2W ð26Þ
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Fig. 3. Two grids for circular plates, Grids 1 and 2.

Table 5
The normalized frequency parameters ( �x ¼ xR2 ffiffiffiffiffiffiffiffiffiffiffiffi

qh=D
p

, k = 0.833) for a clamped circular Mindlin/Reissner plate with thickness to radius ratio: h/
R = 0.1, Grid 1.

n s Present (400 nodes) Present (625 nodes) Exact [44] Mesh-free [26]

0 1 9.9410 9.9409 9.941 9.931
2 36.4745 36.4778 36.479 36.665
3 75.6468 75.6600 75.664 76.531
4 123.3820 123.3389 123.32 122.46

1 1 20.1761 20.1765 20.232 20.194
2 53.8346 53.8441 53.890 54.257
3 97.8753 97.8766 97.907 99.207

2 0 32.2005 32.2042 32.406 32.353
1 72.2032 72.2172 72.368 72.669
2 120.5482 120.4776 120.55 121.94

3 0 45.7592 45.7711 46.178 45.827
1 91.4528 91.4367 91.712 92.267

4 0 60.6319 60.6378 61.272 60.6595
1 111.5998 111.3795 111.74 110.68

5 0 76.7997 76.6216 77.454 76.5343
6 0 95.0694 93.6460 94.527 93.285

Table 6
The normalized frequency parameters ( �x ¼ xR2

ffiffiffiffiffiffiffiffiffiffiffiffi
qh=D

p
, k = 0.833) for a clamped circular Mindlin/Reissner plate with thickness to radius ratio: h/

R = 0.01, Grid 1.

n s Present (400 nodes) Present (625 nodes) Finite element [43] Mesh-free [26]

0 1 10.2317 10.2221 10.2158 10.2661
2 39.6223 39.6946 39.771 40.2905

1 1 21.2684 21.2614 21.26 21.4488
2 60.8731 60.7231 60.82 62.1455

2 0 34.9802 34.9171 34.88 35.2556
1 86.8181 84.9762 84.58 86.3649

3 0 52.1268 51.3888 51.04 51.6626
1 121.4737 113.7459 111.01 113.594

4 0 76.3506 71.4766 69.6659 70.4145
1 121.6326 138.1215 140.108 142.119
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The eigenproblem associated to Eqs. (24)–(26) is defined as

L�x2G
� �

X ¼ 0 ð27Þ

where L collects all stiffness terms and G collects all inertial terms.
In (27) X are the vibrational modes associated with the natural fre-
quencies defined as x.

4. Buckling analysis

The buckling analysis considers the following equations of mo-
tion [37–39]:

D11
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@x2 þ D16
@2hy

@x2 þ ðD12 þ D66Þ
@2hy

@x@y
þ 2D16

@2hx

@x@y
þ D66
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@y2

þ D26
@2hy

@y2 þ�kA45 hy þ
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� kA55 hx þ
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¼ 0 ð28Þ

D16
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¼ 0 ð29Þ

@
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kA45 hy þ

@w
@y

	 

þ kA55 hx þ

@w
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@y
kA44 hy þ

@w
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þ kA45 hx þ

@w
@x

	 
� �
þ �Nxx

@2w
@x2 þ 2 �Nxy

@2w
@x@y

þ �Nyy
@2w
@y2 ¼ 0 ð30Þ

In (30), Nxx; �Nxy, and �Nyy are the in-plane applied forces. In order
to determine the critical buckling load of the laminated plate, the
transverse load is set to zero.

The eigenproblem associated with (28)–(30) is defined as

L� kG½ �X ¼ 0 ð31Þ

where L collects all stiffness terms and G collects all terms related
to the in-plane forces. In (31) X are the buckling modes associated
with the buckling loads defined as k.

5. Resultants and boundary conditions

The bending moments and shear forces are expressed as func-
tions of the displacement gradients and the material constitutive
equations by

Mx ¼ D11
@hx

@x
þ D12

@hy

@y
þ D16

@hx

@y
þ @hy

@x

	 

ð32Þ

My ¼ D12
@hx

@x
þ D22

@hy

@y
þ D26

@hx

@y
þ @hy

@x

	 

ð33Þ

Mxy ¼ D16
@hx

@x
þ D26

@hy

@y
þ D66

@hx

@y
þ @hy

@x

	 

ð34Þ

Qx ¼ kA55 hx þ
@w
@x

	 

þ kA45 hy þ

@w
@y

	 

ð35Þ

Qy ¼ kA45 hx þ
@w
@x

	 

þ kA55 hy þ

@w
@y

	 

ð36Þ

The boundary conditions for an arbitrary edge with simply-sup-
ported, clamped and free edge conditions are defined as follows
[40]:

(a) Simply-supported
� SS1, w = 0;Mn = 0;Mns = 0
� SS2, w = 0;Mn = 0;hs = 0

(b) Clamped, w = 0;hn = 0;hs = 0
(c) Free, Qn = 0;Mn = 0;Mns = 0

Table 7
The normalized frequency parameters ( �x ¼ xR2 ffiffiffiffiffiffiffiffiffiffiffiffi

qh=D
p

, k = 0.833) for a clamped circular Mindlin/Reissner plate with thickness to radius ratio: h/
R = 0.1, Grid 2.

n s Present (408 nodes) Present (647 nodes) Exact [44] Mesh-free [26]

0 1 9.9442 9.9444 9.941 9.931
2 36.5086 36.5085 36.479 36.665
3 75.7558 75.7143 75.664 76.531
4 123.4944 123.3491 123.32 122.46

1 1 20.1884 20.1772 20.232 20.194
2 53.9028 53.8757 53.890 54.257
3 97.9955 97.8664 97.907 99.207

2 0 32.2313 32.2314 32.406 32.353
1 72.3012 72.2894 72.368 72.669
2 120.5391 120.5039 120.55 121.94

3 0 45.8353 45.7803 46.178 45.827
1 91.5885 91.3558 91.712 92.267

4 0 60.7466 60.7932 61.272 60.6595
1 111.4686 111.3841 111.74 110.68

5 0 76.7763 76.6476 77.454 76.5343
6 0 93.7642 93.5409 94.527 93.285

Table 8
The normalized frequency parameters ( �x ¼ xR2 ffiffiffiffiffiffiffiffiffiffiffiffi

qh=D
p

, k = 0.833) for a clamped circular Mindlin/Reissner plate with thickness to radius ratio: h/
R = 0.01, Grid 2.

n s Present (408 nodes) Present (647 nodes) Finite element [43] Mesh-free [26]

0 1 10.2283 10.2281 10.2158 10.2661
2 39.7735 39.8084 39.771 40.2905

1 1 21.2825 21.2861 21.26 21.4488
2 60.9426 60.8979 60.82 62.1455

2 0 34.9849 34.9316 34.88 35.2556
1 85.2664 84.6716 84.58 86.3649

3 0 51.8594 51.2085 51.04 51.6626
1 121.3689 111.4787 111.01 113.594

4 0 70.4856 70.0040 69.6659 70.4145
1 143.3500 141.0533 140.108 142.119
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In previous equations, the subscripts n and s refer to the normal
and tangencial directions of the edge, respectively; Mn, Mns and Qn

represent the normal bending moment, twisting moment and
shear force on the plate edge; hn and hs represent the rotations
about the tangencial and normal coordinates at the plate edge.

The stress resultants on an edge whose normal is represented
by n = (nx,ny) can be expressed as

Mn ¼ n2
x Mx þ 2nxnyMxy þ n2

yMy ð37Þ
Mns ¼ ðn2

x � n2
yÞMxy � nxnyðMy�MxÞ ð38Þ

Q n ¼ nxQ x þ nyQy ð39Þ
hn ¼ nxhx þ nyhy ð40Þ
hs ¼ nxhy � nyhx ð41Þ

where nx and ny are the direction cosines of a unit normal vector at a
point at the laminated plate boundary [36,40].

6. Discretization of the equations of motion and boundary
conditions

The radial basis collocation method follows a simple implemen-
tation procedure. Taking Eq. (13), we compute

a ¼ LI

B

" #�1
F
G

� �
ð42Þ

This a vector is then used to obtain solution ~u, by Eq. (7). If
derivatives of ~u are needed, such derivatives are computed as

eig = 9.9410 eig = 20.1761 eig = 20.1761 eig = 32.2005 eig = 32.2005

eig = 36.4745 eig = 45.7592 eig = 45.7592 eig = 53.8346 eig = 53.8346

eig = 60.6319 eig = 60.6319 eig = 72.2032 eig = 72.2032 eig = 75.6468

eig = 76.7977 eig = 76.7977 eig = 91.4528 eig = 91.4528 eig = 95.0694

eig = 95.0694 eig = 97.8753 eig = 97.8753 eig = 111.5998 eig = 111.5998

eig = 119.2815 eig = 119.2816 eig = 120.5482 eig = 120.5482 eig = 123.3820

eig = 133.0890 eig = 133.0891 eig = 143.7581 eig = 143.7581 eig = 148.9179

eig = 148.9179 eig = 157.4830 eig = 157.4830 eig = 159.1696 eig = 159.1696

Fig. 4. First 40 vibration modes of the clamped isotropic plate (h/R = 0.1), using 400 nodes.
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@~u
@x
¼
XN

j¼1

aj
@/j

@x
ð43Þ

@2 ~u
@x2 ¼

XN

j¼1

aj
@2/j

@x2 ; etc: ð44Þ

As an example of discretization by RBF’s, let’s consider the
buckling problem. The equations of motion and the boundary con-
ditions can now be discretized according to the radial basis func-
tion collocation, as

D11

XN

j¼1

aWx
j

@2/j

@x2 þ D16

XN

j¼1

aWy

j

@2/j

@x2 þ ðD12 þ D66Þ
XN

j¼1

aWy

j

@2/j

@x@y

þ 2D16

XN

j¼1

aWx
j

@2/j

@x@y
þ D66

XN

j¼1

aWx
j

@2/j

@y2 þ D26

XN

j¼1

aWy

j

@2/j

@y2

� kA45

XN

j¼1

aWy

j /j þ
XN

j¼1

aW
j

@/j

@y

 !
� kA55

XN

j¼1

aWx
j /j þ

XN

j¼1

aW
j

@/j

@x

 !
¼ 0 ð45Þ

D16

X
j ¼ 1NaWx

j

@2/j

@x2 þ D66

XN

j¼1

aWy

j

@2/j

@x2 þ ðD12 þ D66Þ
XN

j¼1

aWx
j

@2/j

@x@y

þ 2D26

XN

j¼1

aWy

j

@2/j

@x@y
þ D26

XN

j¼1

aWx
j

@2/j

@y2 þ D22

XN

j¼1

aWy

j

@2/j

@y2

� kA44

XN

j¼1

aWy

j /j þ
XN

j¼1

aW
j

@/j

@y

 !

� kA45

XN

j¼1

aWx
j /j þ

XN

j¼1

aW
j

@/j

@x

 !
¼ 0 ð46Þ

eig = 10.2317 eig = 21.2684 eig = 21.2684 eig = 34.9802 eig = 34.9803

eig = 39.6223 eig = 52.1268 eig = 52.1274 eig = 60.8731 eig = 60.8731

eig = 76.3484 eig = 76.3506 eig = 86.8181 eig = 86.8189 eig = 90.2213

eig = 121.4737 eig = 121.4746 eig = 121.6326 eig = 121.6326 eig = 125.2550

eig = 125.2555 eig = 169.8148 eig = 169.8167 eig = 169.8167 eig = 173.6302

eig = 173.6302 eig = 223.6825 eig = 223.6860 eig = 230.3051 eig = 230.3098

eig = 233.3432 eig = 233.3432 eig = 264.0764 eig = 264.0864 eig = 286.1924

eig = 292.0971 eig = 292.0971 eig = 318.4538 eig = 318.4710 eig = 361.6291

Fig. 5. First 40 vibration modes of the clamped isotropic plate (h/R = 0.01), using 400 nodes.
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j /j þ
XN
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 !" #
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@y2 ¼ 0 ð47Þ

where N represents the total number of points of the structure. The
vector aW ;aWx ;aWy corresponds to the vector of unknowns related to
generalized displacements W, Wx, Wy.

Boundary conditions can be discretized as follows. For a simply-
supported plate, along the perimeter we enforce the SS2 conditions as

w ¼ 0!
XN

j¼1

aW
j /j ¼ 0 ð48Þ

Mn ¼ 0! n2
x D11

XN
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aWx
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@/j
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@/j
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y D16
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@/j
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þ D26

XN
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@/j
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þD66

XN

j¼1

aWy

j

@/j

@x
þ aWx

j

@/j

@y

	 
!
¼ 0 ð49Þ

eig = 10.2201 eig = 21.2614 eig = 21.2616 eig = 34.9171 eig = 34.9171

eig = 39.6946 eig = 51.3888 eig = 51.3888 eig = 60.7231 eig = 60.7233

eig = 71.4766 eig = 71.4779 eig = 84.9762 eig = 84.9762 eig = 89.1036

eig = 97.8989 eig = 97.9254 eig = 113.7459 eig = 113.7459 eig = 121.1255

eig = 121.1260 eig = 138.1215 eig = 138.2247 eig = 149.8166 eig = 149.8166

eig = 158.4041 eig = 158.4041 eig = 161.3602 eig = 198.7283 eig = 198.7857

eig = 203.5803 eig = 203.5914 eig = 207.1921 eig = 207.1921 eig = 212.8442

eig = 212.9461 eig = 261.1840 eig = 261.1966 eig = 261.2014 eig = 261.2299

Fig. 6. First 40 vibration modes of the clamped isotropic plate (h/R = 0.01), using 625 nodes.
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hs ¼ 0! nx

XN

j¼1

aWy

j /j þ ny

XN

j¼1

aWx
j /j ¼ 0 ð50Þ

7. Vibration examples

Unless otherwise stated, a Chebyshev grid was used. For all
examples, the following Wendland function was considered:

/ðrÞ ¼ ð1� crÞ8þ 32ðcrÞ3 þ 25ðcrÞ2 þ 8cr þ 1
� �

: ð51Þ

where the shape parameter c is taken as 0.1. This value was previ-
ously obtained by an optimization technique by Ferreira and Fass-
hauer [41].

7.1. Isotropic square plates

We consider a square plate, where the length of the plate is a
and we study the effect of two thickness-to-side ratios h/a = 0.01
and 0.1. The effects of shear deformation are considered and the
shear correction factors are employed accordingly in order to
compare with the corresponding results from other analyses. A
non-dimensional frequency parameter is defined as

�x ¼ xmna

ffiffiffiffi
q
G

r
;

where x is the frequency, q is the mass density per unit volume, G
is the shear modulus – G = E/(2(1 + m)), E the Young’s modulus and m
the Poisson ratio. The subscripts m and n denote the number of half-
waves in the modal shapes in the x and y directions, respectively.

We compute results for an isotropic plate with different
clamped (CCCC-k = 0.8601) and simply-supported (SSSS-k =
0.833) boundary conditions. Firstly, two fully clamped (CCCC)
Mindlin/Reissner square plates with different thickness-to-side ra-
tios are considered. The plates are clamped at all boundary edges.
The first modes of vibration for both plates are computed (shear
correction factor is 0.8601). Two cases of thickness-to-side ratios
h/a = 0.01 and 0.1 are considered. The comparison of frequency
parameters with the Rayleigh-Ritz solutions [42] and results by
Liew et al. [26], using a reproducing kernel particle approximation,
for each plate is listed in Tables 1 and 2. Excellent agreement is ob-

tained even for a small number of nodes. In Figs. 1 and 2 the first
eight modal shapes of the CCCC plate (h/a = 0.1) are presented.

Secondly, fully simply-supported (SSSS) Mindlin/Reissner
square plates with different thickness-to-side ratios are consid-
ered. The first modes of vibration are computed for two cases of
thickness-to-side ratios h/a = 0.01 and 0.1. Results are compared
with 3d-Elasticity and Mindlin closed form solutions [43], and re-
sults by Liew et al. [26]. Results are listed in Tables 3 and 4 and
show excellent agreement with closed form solutions.

y

2

2

1

1

x

Fig. 7. Geometry for L-shaped CCCC plate.
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Fig. 8. First three modes of vibration for the L-shaped CCCC plate, h/a = 0.1.
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7.2. Isotropic circular plates

In this problem we consider isotropic (m = 0.3, k = 0.833)
clamped circular plates. The adimensional frequency parameters
are given by

�x ¼ xR2
ffiffiffiffiffiffiffiffiffiffiffiffi
qh=D

q
where D is the flexural stiffness. Two grids were considered, as illus-
trated in Fig. 3. Grid 1 is regularly spaced in both radial and tangen-
tial directions, while Grid 2 is initially generated as a square plate,
later nodes outside the circle are removed. The boundary nodes
are finally placed on the boundary. Both thick (h/R = 0.1) and thin
(h/R = 0.01) plates are considered.

The results obtained from the present method are compared
with exact solutions by Liew et al. [44], a mesh-free method based
on the reproducing kernel particle technique by Liew et al. [26] and
finite element results by Hinton [43]. Results obtained are shown
in Tables 5–8 for both grids, and are in excellent agreement with
those in [43] and [44]. The first 40 modes of vibration for the thick
plate are illustrated in Fig. 4 while in Figs. 5 and 6 the modes are
illustrated for thinner plate. As can be seen, the modes of vibration
are very smooth. No significant different is visible for the two grids
considered in this example.

7.3. Isotropic L-shaped plate

In order to demonstrate the ability of the present method to
analyse irregular geometries, this example considers the free vibra-
tions of a clamped L-shape plate. The Poisson’s ratio is 0.3 and the
adimensional natural frequency is given by �x ¼ xa

ffiffiffiffiffiffiffiffiffi
q=G

p
. Given

the geometry of the plate (see Fig. 7), there are no analytical solu-
tions available. We compare the present solution with an indepen-
dently computed finite element solution by the authors [45]. We
used a 4 node, Lagrangian Mindlin plate element, based on 3 de-
grees of freedom. The present results are in very good agreement
with the finite element solution. The modes of vibration shapes

are illustrated in Fig. 8, using 441 nodes. As can be seen, the modes
of vibration are again very smooth.

7.4. Composite plates

Unless otherwise stated, all layers of the laminate are assumed
to be of the same thickness, density and made of the same linearly
elastic composite material. The following material parameters of a
layer are used:

E1

E2
¼ 10;20;30 or 40; G12 ¼ G13 ¼ 0:6E2; G3 ¼ 0:5E2;

m12 ¼ 0:25

The subscripts 1 and 2 denote the directions normal and trans-
verse to the fiber direction in a lamina, which may be oriented at
an angle to the plate axes. The ply angle of each layer is measured
from the global x-axis to the fiber direction. The simply-supported
boundary condition is taken to be the hard type SS2 condition. In
all examples we use a shear correction factor k = p2/12, as pro-
posed in [40] (see Table 9).

The example considered is a simply-supported square plate of
the cross-ply lamination [0�/90�/90�/0�]. The thickness and length
of the plate are denoted by h and a, respectively. The thickness-to-
span ratio h/a = 0.2 is employed in the computation. Table 10 lists
the fundamental frequency of the simply-supported laminate
made of various modulus ratios of E1/E2. It is found that the results
are in very close agreement with the values of [36,46] and the
mesh-free results of Liew [40] based on the FSDT. The relative er-
rors between the analytical and present solutions are shown in
brackets. For all E1/E2 ratios errors are below 0.5%. Results for all
E1/E2 ratios converge quite well. In Fig. 9 the first eight modes
are illustrated, for E1/E2 = 20, using 13 � 13 nodes, showing a very
smooth shape.

8. Buckling examples

In all following examples a Chebyshev grid was used. The
Wendland function used was

/ðrÞ ¼ ð1� crÞ8þ 32ðcrÞ3 þ 25ðcrÞ2 þ 8cr þ 1
� �

: ð52Þ

where the shape parameter c is taken as 0.1.

8.1. Effect of orthotropy and number of layers

The following typical dimensionless high-modulus graphite–
epoxy material properties are used:

E1=E2 ¼ 10;20;30;40; G12=E2 ¼ G13=E2 ¼ 0:6; G23=E2 ¼ 0:5; m12

¼ 0:25

The effect of degree of orthotropy of the individual layers and
the number of layers on the critical buckling loads is investigated
for simply-supported square bidirectional composite plates, with

Table 10
The normalized fundamental frequency of the simply-supported cross-ply laminated square plate [0�/90�/90�/0�] ð �w ¼ ðwa2=hÞ

ffiffiffiffiffiffiffiffiffiffiffi
q=E2

p
;h=a ¼ 0:2Þ.

Method Grid E1/E2

10 20 30 40

Liew [40] 8.2924 9.5613 10.320 10.849
Exact (Reddy, Khdeir)[36,46] 8.2982 9.5671 10.326 10.854
Present 13 � 13 8.2670 9.5297 10.2835 10.8077

17 � 17 8.2669 9.5296 10.2833 10.8076
21 � 21 8.2668 9.5296 10.2833 10.8076
Error in % w.r.t.[36,46] (0.38) (0.39) (0.41) (0.43)

Table 9
Natural frequencies of a CCCC L-shaped plate with h/a = 0.1,m = 0.3.

Number of nodes Mode no. Present Finite elements [45]

121 1 2.0909 2.0042
2 2.6245 2.6156
3 2.9775 2.9642
4 3.8161 3.9978

441 1 1.9088 1.8782
2 2.4280 2.4273
3 2.7884 2.7931
4 3.6181 3.6754

961 1 1.8785 1.8557
2 2.4019 2.3952
3 2.7654 2.7637
4 3.5969 3.6210
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a/h = 10, under uni-axial buckling load (N ¼ Nxxa2=ðE2h3Þ;
Nxy ¼ 0;Nyy ¼ 0). All layers are assumed to be of the same thick-
ness and material properties. In Table 11, results are compared
with the 3D elasticity solutions by Noor [47], and a mixed finite
element solution by Reddy and Phan [30]. In Fig. 10 it is illustrated
the buckling modes. It can be seen that the present meshless solu-
tion agrees very well with the elasticity and the finite element
solutions.

8.2. Effect of boundary conditions

Three-layer [0�/90�/0�] and four-layer [0�/90�/90�0�] square
cross-ply laminates are chosen to compute the uni- and bi-axial
buckling loads. The plate has width a and thickness h. The span-

to-thickness ratio a/h is taken to be 10. All layers are assumed to
be of the same thickness and material properties:

E1=E2 ¼ 40; G12=E2 ¼ G13=E2 ¼ 0:6; G23=E2 ¼ 0:5; m12 ¼ 0:25

Table 12 lists the uni-axial buckling loads of the four-layer sim-
ply-supported laminated plate discretized with a regular grid. Ex-
act solutions by Khdeir and Librescu [23] and differential
quadrature results by Liew and Huang [27] based on the FSDT
are also presented for comparison. It is found that the critical buck-
ling load is obtained with a few grid points. The present results are
in excellent correlation with those of Khdeir and Librescu [23], and
those of Liew and Huang [27].

Table 13 tabulates the bi-axial buckling loads of the [0�/90�/0�]
laminated plate. The laminated plate is simply-supported along the
edges parallel to the x-axis while the other two edges may be

Fig. 9. First eight vibration modes of the simply-supported cross-ply laminated square plate [0�/90�/90�/0�], E1/E2 = 20, 13 � 13 nodes.
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Table 11
Effect of degree of orthotropy of the individual layers on the buckling loads of simply-supported square bidirectional composite plates, with a/h = 10, under uni-axial buckling
load ( N ¼ Nxxa2=ðE2h3Þ; Nxy ¼ 0; Nyy ¼ 0).

E1/E2

Source Laminate 3 10 20 30 40

Noor [47] [0�/90�/0�] 5.3044 9.7621 15.0191 19.3040 22.8807
Reddy (HSDT) [30] 5.3933 9.9406 15.2980 19.6740 23.3400
Reddy (FSDT)[30] 5.3931 9.9652 15.3510 19.7560 23.4530
Present 11 � 11 5.3904 9.9036 15.0514 19.1134 22.4138
Present 15 � 15 5.3952 9.8815 15.0052 19.0529 22.3450
Present 19 � 19 5.3960 9.8751 14.9922 19.0362 22.3261
CPT 5.7538 11.4920 19.7120 27.9630 36.160
Noor [47] [0�/90�/0�/90�/0�] 5.3255 9.9603 15.6527 20.4663 24.5929
Reddy (HSDT)[30] 5.4096 10.1500 16.0080 20.9990 25.3080
Reddy (FSDT)[30] 5.4093 10.1360 15.9560 20.9080 25.1850
Present 11 � 11 5.4010 10.1117 15.8143 20.5922 24.6748
Present 15 � 15 5.4059 10.0876 15.7601 20.5173 24.5852
Present 19 � 19 5.4067 10.0805 15.7450 20.4966 24.5608
CPT 5.7538 11.4920 19.7120 27.9630 36.160
Noor [47] [0�/90�/0�/90�/0�/90�/0 �/90 �/0�] 5.3352 10.0417 15.9153 20.9614 25.3436
Reddy (HSDT)[30] 5.4313 10.1970 16.1720 21.3150 25.7900
Reddy (FSDT)[30] 5.4126 10.1890 16.1460 21.2650 25.7150
Present 11 � 11 5.4059 10.2051 16.1513 21.2332 25.6345
Present 15 � 15 5.4108 10.1800 16.0936 21.1523 25.5368
Present 19 � 19 5.4117 10.1729 16.0776 21.1300 25.5110
CPT 5.7538 11.4920 19.7120 27.9630 36.160
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Fig. 10. First 4 buckling modes: Uni-axial buckling load of four-layer [0�/90�/90�/
0�] simply-supported laminated plate ( N ¼ Nxxa2=ðE2h3Þ;Nxy ¼ 0;Nyy ¼ 0), grid
17 � 17 points.

Table 12
Uni-axial buckling load of four-layer [0�/90�/90�/0�] simply-supported laminated
plate ( N ¼ Nxxa2=ðE2h3Þ;Nxy ¼ 0;Nyy ¼ 0).

Grid Present Liew and Huang [27] Khdeir and Librescu [23]

13 � 13 23.4271 23.463 23.453
17 � 17 23.4263
21 � 21 23.4261
25 � 25 23.4261

Table 13
Bi-axial buckling load of three-layer [0�/90�/0�] simply-supported laminated plate
(N ¼ Nxxa2=ðE2h3Þ;Nxy ¼ 0;Nyy ¼ Nxx).

Grid SS SC CC

13 � 13 10.1979 11.5984 13.2884
17 � 17 10.1970 11.5976 13.2877
21 � 21 10.1969 11.5972 13.2919
Liew and Huang [27] 10.178 11.575 13.260
Khdeir and Librescu [23] 10.202 11.602 13.290
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Fig. 11. First four buckling modes: Bi-axial buckling load of three-layer [0�/90�/0�]
simply-supported laminated plate ( N ¼ Nxxa2=ðE2h3Þ;Nxy ¼ 0;Nyy ¼ Nxx), grid
17 � 17 points.
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simply-supported (S), or clamped (C). The notations SS, SC, and CC
refer to the boundary conditions of the two edges parallel to the y-
axis only.

In Fig. 11 it is illustrated the first four buckling modes for bi-ax-
ial buckling load of three-layer [0�/90�/0�] simply-supported lami-
nated plate (N ¼ Nxxa2=ðE2h3Þ;Nxy ¼ 0;Nyy ¼ Nxx), using a grid of
17 � 17 points.

In Fig. 12 it is illustrated the first 4 buckling modes for bi-axial
buckling load of three-layer [0�/90�/0�] SCSC laminated plate

(N ¼ Nxxa2=ðE2h3Þ;Nxy ¼ 0;Nyy ¼ Nxx, using a grid of 17 � 17
points.

In Fig. 13 it is illustrated the first 4 buckling modes for bi-axial
buckling load of three-layer [0�/90�/0�] SSSC laminated plate
(N ¼ Nxxa2=ðE2h3Þ;Nxy ¼ 0;Nyy ¼ Nxx)), using a grid of 17 � 17
points.

It is found that excellent agreement is achieved for all edge con-
ditions considered when comparing the results obtained by the
present radial basis function approach with the FSDT solutions
by Khdeir and Librescu [23], and those of Liew and Huang [27],
who use a MLSDQ approach.

9. Conclusions

In this paper we used the radial basis function collocation meth-
od to analyse buckling loads and free vibrations of isotropic and
laminated plates. The first-order shear deformation theory set of
equations of motion define a eigenproblem where the eigenvalues
are the buckling loads or the natural frequencies, and the eigenvec-
tors are either the buckling modes or the vibrational modes. We
showed how the equations of motion and the boundary conditions
can be discretized by radial basis functions.

We presented free vibration and buckling examples, consider-
ing isotropic and laminated composite plates, of various geome-
tries, boundary conditions, and laminations.

The present results were compared with existing analytical
solutions, or finite element schemes and are in very good agree-
ment with reference solutions. The buckling and vibrational modes
are smooth and illustrate the flexibility of the method to analyse
irregular geometries and boundary conditions.

The present method is a simple yet powerful alternative to
other finite element or meshless methods in the buckling and free
vibration analysis of plates.
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The third-order shear deformation theory of Reddy and collocation with radial basis functions is used to

predict the buckling loads of elastic plates. The theory accounts for parabolic distribution of the

transverse strains through the thickness of the plate. It is shown that the collocation method with radial

basis functions produces highly accurate critical buckling loads and modes.
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1. Introduction

Laminated composite plates have been widely used in various
applications, from military to civilian systems, due to their high
strength-to-weight ratio and flexibility in design. It is well known
that the classical laminated plate theory (CLPT) based on the
Kirchhoff hypothesis yields acceptable results only for thin
laminates [1]. Composite structures designed based on the CLPT
may be unsafe because the CLPT underestimates the deflections
and overestimates buckling loads. Therefore, the first-order shear
deformation theory (FSDT) [1–3] and higher-order [1,4,5] shear
deformation theories (HSDTs) have been developed to account for
the transverse shear strains.

Recently, radial basis functions (RBFs) have enjoyed consider-
able success and research as a technique for interpolating data
and functions. A radial basis function, fðJx�xjJÞ is a spline that
depends on the Euclidian distance between distinct data centers
xj,j¼ 1,2, . . . ,NARn, also called nodal or collocation points.

Although most of the work to date on RBFs relate to scattered
data approximation and in general to interpolation theory, there
has recently been an increased interest in their use for solving
partial differential equations (PDEs). This approach, which
approximates the whole solution of the PDE directly using RBFs,
is very attractive due to the fact that this is truly a mesh-free
technique. Kansa [6] introduced the concept of solving PDEs using

RBFs. Kansa’s method is an unsymmetric RBF collocation method
based upon the multiquadrics (MQ) interpolation functions, in
which the shape parameter is considered to be variable across the
problem domain. The distribution of the shape parameter is
obtained by an optimization approach, in which the value of the
shape parameter is assumed to be proportional to the curvature of
the unknown solution of the original partial differential equation.
In this way, it is possible to reduce the condition number of the
matrix at the expense of implementing an additional iterative
algorithm. In the present work, we will implement the unsym-
metric collocation method in its simpler form, without any
optimization of the interpolation functions and the collocation
points.

The analysis of plates by finite element methods is now fully
established. The use of alternative methods such as the meshless
methods based on radial basis functions is attractive due to the
absence of a mesh and the ease of collocation methods. The use of
radial basis function for the analysis of structures and materials
has been previously studied by numerous authors [7–18]. More
recently the authors have applied RBFs to the static deformations
of composite beams and plates [19–21].

Some relevant works on buckling of thick plates include those
of Wang et al. [22], Kitipornchai et al. [23], Liew et al. [24,25], and
Reddy et al. [26,27]. The objective of this paper is to determine
the elastic buckling loads of thick plates that are subjected to
partial in-plane edge loads by collocation with radial basis
functions, according to the higher-order shear deformation theory
of Reddy [1,5].
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2. The radial basis function method

2.1. The static problem

Radial basis functions’ (RBFs) approximations are grid-free
numerical schemes that can exploit accurate representations of
the boundary, are easy to implement and can be spectrally
accurate [28,29]. In this section the formulation of a global
unsymmetrical collocation RBF-based method to compute eigen-
values of elliptic operators is presented.

Consider a linear elliptic partial differential operator L and a
bounded region O in Rn with some boundary @O. The static
problems aims the computation of displacements (primary vari-
ables) (u) from the global system of equations:

Lu¼ f in O ð1Þ

LBu¼ g on @O ð2Þ

where L, LB are linear operators in the domain and on the
boundary, respectively. The right-hand side of (1) and (2) repre-
sent the external forces applied on the plate and the boundary
conditions applied along the perimeter of the plate, respectively.
The continuum problem defined in (1) and (2) will be replaced by
a discrete problem, defined by an algebraic system of equations,
after the radial basis expansions.

2.2. The eigenproblem

The eigenproblem looks for eigenvalues (l) and eigenvectors
ðuÞ that satisfy

Luþlu¼ 0 in O, ð3Þ

LBu¼ 0 on @O: ð4Þ

As in the static problem, the eigenproblem defined in (3) and
(4) is replaced by a finite-dimensional eigenvalue problem, based
on RBF approximations.

2.3. Radial basis functions

The radial basis function ðfÞ approximation of a function (u) is
given by

~uðxÞ ¼
XN

i ¼ 1

aifðJx�yiJ2Þ, xARn, ð5Þ

where yi,i¼ 1, . . . ,N is a finite set of distinct points (centers) in Rn.
The coefficients ai are chosen so that ~u satisfies some boundary
conditions. The most common RBFs are

fðrÞ ¼ r3, cubic;

fðrÞ ¼ r2logðrÞ, thin plate splines;

fðrÞ ¼ ð1�rÞmþpðrÞ, Wendland functions;

fðrÞ ¼ e�ðcrÞ2 , Gaussian;

fðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2þr2

p
, multiquadrics;

fðrÞ ¼ ðc2þr2Þ
�1=2, inverse multiquadrics;

where the Euclidian distance r is real and non-negative and c is a
shape parameter, a positive constant. In the following, the radial
basis function used was a compact-support Wendland function in
the form:

fðrÞ ¼ ð1�crÞ8þ ð32ðcrÞ3þ25ðcrÞ2þ8crþ1Þ: ð6Þ

2.4. Solution of the interpolation problem

Hardy [30] introduced multiquadrics in the analysis of scat-
tered geographical data. In the 1990s Kansa [6] used multi-
quadrics for the solution of partial differential equations.

Considering N distinct interpolations, and knowing
uðxjÞ,j¼ 1,2, . . . ,N, we find ai by the solution of a N�N linear
system:

Aa ¼ u, ð7Þ

where A¼ ½fðJx�yiJ2Þ�N�N , a ¼ ½a1,a2, . . . ,aN�
T and u¼ ½uðx1Þ,

uðx2Þ, . . . ,uðxNÞ�
T . The RBF interpolation matrix A is positive defi-

nite for some RBFs [31], but in general provides ill-conditioned
systems.

2.5. Solution of the static problem

The solution of a static problem by radial basis functions
considers NI nodes in the domain and NB nodes on the boundary,
with total number of nodes N¼NIþNB. We denote the sampling
points by xiAO,i¼ 1, . . . ,NI and xiA@O,i¼NIþ1, . . . ,N. At the
domain points we solve the following system of equations:

XN

i ¼ 1

aiLfðJx�yiJ2Þ ¼ fðxjÞ, j¼ 1,2, . . . ,NI ð8Þ

or

LIa ¼ F, ð9Þ

where

LI ¼ ½LfðJx�yiJ2Þ�NI�N : ð10Þ

For the boundary conditions we have

XN

i ¼ 1

aiLBfðJx�yiJ2Þ ¼ gðxjÞ, j¼NIþ1, . . . ,N ð11Þ

or

Ba ¼G: ð12Þ

Therefore we can write a finite-dimensional static problem as

LI

B

" #
a ¼ FI

GI

" #
ð13Þ

where

LI
¼ Lf½ðJxNI

�yjJ2Þ�NI�N , B¼ LBf½ðJxNI þ1�yjJ2Þ�NB�N :

By inverting the system (13), we obtain the vector of a. We then
proceed to the solution by the interpolation equation (5).

2.6. Solution of the eigenproblem

We consider NI nodes in the interior of the domain and NB

nodes on the boundary, with N¼NIþNB. We denote interpolation
points by xiAO,i¼ 1, . . . ,NI and xiA@O, i¼NIþ1, . . . ,N. For the
interior points we have that

XN

i ¼ 1

aiLfðJx�yiJ2Þ ¼ l ~uðxjÞ, j¼ 1,2, . . . ,NI ð14Þ

or

LIa ¼ l ~uI , ð15Þ

where

LI ¼ ½LfðJx�yiJ2Þ�NI�N : ð16Þ
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For the boundary conditions we have

XN

i ¼ 1

aiLBfðJx�yiJ2Þ ¼ 0, j¼NIþ1, . . . ,N ð17Þ

or

Ba ¼ 0: ð18Þ

Therefore we can write a finite-dimensional problem as a general-
ized eigenvalue problem:

LI

B

" #
a ¼ l

AI

0

" #
au ð19Þ

where

AI
¼f½ðJxNI

�yjJ2Þ�NI�N , BI
¼ LBf½ðJxNI þ1�yjJ2Þ�NB�N :

We seek the generalized eigenvalues and eigenvectors of these
matrices.

3. Buckling analysis of elastic plates

Consider a rectangular plate of plan-form dimensions a and b

and thickness h. The co-ordinate system is taken such that the x–y

plane coincides with the midplane of the plate, and the origin of
the co-ordinate system is taken at the lower left corner of the
plate. The plate is composed of uniform thickness layers of
orthotropic material.

Following the higher-order theory of Reddy [1,5], the following
displacement field is chosen, which satisfies the stress-free
boundary condition, and gives parabolic distribution of transverse
shear strains through the plate thickness:

u¼ u0þz yx�
4

3

z

h

� �2

yxþ
@w

@x

� �� �
, ð20Þ

v¼ v0þz yy�
4

3

z

h

� �2

yyþ
@w

@y

� �� �
, ð21Þ

w¼w0: ð22Þ

The strains associated with the small-displacement theory of
elasticity become

e1 � e11 ¼ e0
1þzðk0

1þz2k2
1Þ; e2 � e22 ¼ e0

2þzðk0
2þz2k2

2Þ;

e3 � e33 ¼ 0; ð23Þ

e4 � 2e23 ¼ e0
4þz2k2

4; e5 � 2e13 ¼ e0
5þz2k2

5; ð24Þ

e6 � 2e12 ¼ e0
6þzðk0

6þz2k2
6Þ, ð25Þ

where

e0
1 ¼

@u0

@x
; k0

1 ¼
@yx

@x
; k2

1 ¼�
4

3h2

� �
@yx

@x
þ
@2w

@x2

� �
; ð26Þ

e0
2 ¼

@v0

@y
; k0

2 ¼
@yy

@y
; k2

2 ¼�
4

3h2

� �
@yy

@y
þ
@2w

@y2

� �
; ð27Þ

e0
4 ¼ yyþ

@w

@y
; k2

4 ¼�
4

h2

� �
yyþ
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The constitutive equations of an orthotropic layer, in material
axes, are given by
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where Qij are the plane-stress reduced elastic constants (due to
e3 ¼ 0) in the material axes of the plate:

Q11 ¼
E1

1�n12n21
, Q12 ¼ n21

E1

1�n12n21
, Q22 ¼

E2

1�n12n21
, ð33Þ

Q44 ¼ G23, Q55 ¼ G13, Q66 ¼ G12: ð34Þ

It is interesting to note that this theory does not consider
the use of shear-correction factors, as in the FSDT. The
equations of motion for this theory were derived by Reddy
[1,5,27] using Hamilton’s principle. They are repeated here for
convenience:

du0 :
@N1
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þ
@N6
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€yx�
4
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I2 ¼ I2�
4

3h2
I4, I5 ¼ I5�

4

3h2
I7, I3 ¼ I3�

8

3h2
I5þ

16

9h4
I7 ð36Þ

The stress resultants Ni,Mi,Pi,Qi and Ri are defined by

ðNi,Mi,PiÞ ¼

Z h=2

�h=2
sið1,z,z3Þ dz, ði¼ 1,2,6Þ, ð37Þ

ðQ2,R2Þ ¼

Z h=2

�h=2
s4ð1,z2Þ dz, ðQ1,R1Þ ¼

Z h=2

�h=2
s5ð1,z2Þ dz, ð38Þ

and the inertias Iiði¼ 1,2,3,4,5,7Þ by

ðI1,I2,I3,I4,I5,I7Þ ¼

Z h=2

�h=2
rð1,z,z2,z3,z4,z6Þ dz ð39Þ

being r the material density. An interesting feature of this theory
is that it considers the same number of degrees of freedom of the
FSDT. In Eq. (35), Nxx and Nyy denote the in-plane loads perpen-
dicular to the edges x¼0 and y¼0, respectively. For free vibra-
tions, one sets Nxx ¼Nyy ¼ 0, and for buckling analysis one sets all
inertias to zero.
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The resultants defined in Eq. (37) can be related to the total
strains in Eq. (23) by the following equations:
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( )

R2

R1

( )
8>>>>><
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9>>>>>=
>>>>>;
¼

A44 A45

A45 A55

" #
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777775

e0
4

e0
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( )

k2
4
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( )
8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð41Þ

Here Aij, Bij, etc., denote the plate stiffnesses:

ðAij,Bij,Dij,Eij,Fij,HijÞ ¼

Z h=2

�h=2
Q ijð1,z,z2,z3,z4,z6Þ dz ði,j¼ 1,2,6Þ,

ðAij,Dij,FijÞ ¼

Z h=2

�h=2
Q ijð1,z2,z4Þ dz ði,j¼ 4,5Þ, ð42Þ

where Q ij are the transformed elastic stiffness coefficients.
The eigenproblem associated to the equations of motion is

defined as

½L�lG�X¼ 0 ð43Þ

where L collects all stiffness terms and G collects all terms related
to the in-plane forces. In (43) X are the buckling modes associated
with the buckling loads defined as l.

4. Numerical examples

In all following examples a regular grid was used. The multi-
quadric function was considered, with the shape parameter c

taken as 2=
ffiffiffiffi
N
p

, unless otherwise stated.

4.1. Buckling of isotropic plates

In this section, isotropic rectangular plates with three different
aspect ratios a=b¼ 0:4,1:0,1:4 (n¼ 0:3) are chosen to compute the
buckling loads for uniaxially and biaxially loaded plates. Here a and b

denote the plate in-plane dimensions and h denotes the plate
thickness. We consider three side-to-thickness a/h ratios and perform
a convergence study using 11�11, 15�15, and 19�19 points.

Table 1 lists the uniaxial buckling loads N ¼Nxxb2=ðp2DÞ,
Nxy ¼ 0,Nyy ¼ 0) of the simply supported rectangular plate.
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Table 1
Uniaxial buckling load of simply supported isotropic rectangular plates

(N ¼N xxb2=ðp2DÞ,N xy ¼ 0,N yy ¼ 0), CLPT solution in parenthesis.

a/b¼ 0.4 (8.410) 1.0 (4.000) 1.4 (4.470)

a/h¼5

11�11 4.6477 3.2641 3.7982

15�15 4.6479 3.2650 3.8104

19�19 4.6468 3.2654 3.8160

Reddy and Phan [27] (HSDT) 4.6466 3.2653 3.8206

a/h¼10

11�11 6.9808 3.7710 4.1809

15�15 7.0042 3.7811 4.2581

19�19 6.9840 3.7744 4.2737

Reddy and Phan [27] (HSDT) 6.9853 3.7865 4.2876

a/h¼100

11�11 8.1393 3.5707 3.2793

15�15 8.3195 3.8579 4.0637

19�19 8.3666 3.9411 4.2859

Reddy and Phan [27] (HSDT) 8.3928 3.9977 4.4682
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Fig. 1. First 10 buckling modes: uniaxial buckling load of simply supported isotropic plate (N ¼N xxa2=ðE2h3Þ,N xy ¼ 0,N yy ¼ 0), grid 15�15 points.
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In Fig. 1 the first 10 buckling modes are illustrated. The present
radial basis functions’ results are compared with those of Reddy
and Phan [27] and the classical laminate plate (CLPT) solution,
and show excellent correlation with those of Reddy. Clearly, the
CLPT solution is inadequate for thicker plates.

4.2. Buckling of cross-ply laminated plates

The effect of degree of orthotropy of the individual layers and
the number of layers on the critical buckling loads are investi-
gated for simply supported square bidirectional composite plates,

with a=h¼ 10, under uniaxial buckling load (N ¼Nxxa2=ðE2h3Þ,
Nxy ¼ 0,Nyy ¼ 0).

The following dimensionless high-modulus graphite–epoxy
material properties are used:

E1=E2 ¼ 10,20,30,40; G12=E2 ¼G13=E2 ¼ 0:6;G23=E2 ¼ 0:5; n12 ¼ 0:25:

In Table 2, results are compared with the 3D elasticity solutions
by Noor [32], and a mixed finite element solution by Putcha and
Reddy [26]. It can be seen that the present meshless solution
agrees very well with the elasticity and the finite element
solutions.

Table 2
Effect of degree of orthotropy of the individual layers on the buckling loads of simply supported square bidirectional composite plates, with a/h¼10, under uniaxial

buckling load (N ¼N xxa2=ðE2h3Þ,N xy ¼ 0,N yy ¼ 0).

Source Laminate E1=E2

3 10 20 30 40

Noor [32] ½03=903=03� 5.3044 9.7621 15.0191 19.3040 22.8807

Reddy (HSDT) [26] 5.3933 9.9406 15.2980 19.6740 23.3400

Reddy (FSDT)[26] 5.3931 9.9652 15.3510 19.7560 23.4530

Present 11�11 5.3706 9.8241 14.9012 18.9118 22.1793

Present 15�15 5.3830 9.8309 14.8995 18.9013 22.1604

Present 19�19 5.3872 9.8331 14.8975 18.8942 22.1513

CLPT 5.7538 11.4920 19.7120 27.9630 36.160

Noor [32] ½03=903=03=903=03� 5.3255 9.9603 15.6527 20.4663 24.5929

Reddy (HSDT)[26] 5.4096 10.1500 16.0080 20.9990 25.3080

Reddy (FSDT)[26] 5.4093 10.1360 15.9560 20.9080 25.1850

Present 11�11 5.3871 10.0794 15.7956 20.6057 24.7228

Present 15�15 5.3996 10.0861 15.7927 20.5919 24.6988

Present 19�19 5.4041 10.0888 15.7913 20.5914 24.6901

CLPT 5.7538 11.4920 19.7120 27.9630 36.160

Noor [32] ½03=903=03=903=03=903=03=903=03� 5.3352 10.0417 15.9153 20.9614 25.3436

Reddy (HSDT) [26] 5.4313 10.1970 16.1720 21.3150 25.7900

Reddy (FSDT) [26] 5.4126 10.1890 16.1460 21.2650 25.7150

Present 11�11 5.3925 10.1673 16.1093 21.2078 25.6369

Present 15�15 5.4050 10.1737 16.1069 21.1963 25.6169

Present 19�19 5.4092 10.1767 16.1063 21.1918 25.6088

CLPT 5.7538 11.4920 19.7120 27.9630 36.160

Table 3
Uniaxial buckling load of simply supported cross-ply square plates

(N ¼N xxb2=ðE2h3Þ,N xy ¼ 0,N yy ¼ 0,E1=E2 ¼ 40), CLPT solution in parenthesis.

a/h [0/90]

(12.628)

[0/90/0]

(35.831)

[0/90/90/0]

(35.831)

5

11�11 8.8466 11.0794 12.1897

15�15 8.8231 11.0718 12.1976

19�19 8.8128 11.0798 12.2086

Reddy and Phan [27]

(HSDT)

8.628 11.008 12.444

10

11�11 11.5776 22.1793 23.3946

15�15 11.5795 22.1604 23.3703

19�19 11.5762 22.1513 23.2444

Reddy and Phan [27]

(HSDT)

11.305 22.160 23.849

100

11�11 11.5358 34.3982 34.1887

15�15 12.5226 35.4604 35.4194

19�19 12.7724 35.7484 35.9746

Reddy and Phan [27]

(HSDT)

12.614 35.602 35.645

Table 4

Uniaxial loading for ð45=�45Þpp¼ 1,3 : c¼ 2=
ffiffiffiffi
N
p

.

N a/h¼5 a/h¼10 a/h¼20 a/h¼100

p¼1 9 10.9264 18.1412 20.5039 19.2893

11 10.8903 18.1495 20.5988 20.5920

13 10.8762 18.1547 20.6412 21.0916

15 10.8709 18.1573 20.6627 21.3308

17 10.8693 18.1583 20.6742 21.4919

19 10.8691 18.1588 20.6816 21.5562

21 10.8696 18.1583 20.6875 21.6215

25 10.8720 18.1580 20.6893 21.6168

Reddy [33] 10.881 18.154 20.691 21.666

Error (%) 0.08 0.02 0.01 0.23

p¼3 9 12.3087 32.6258 53.1283 58.3766

11 12.2508 32.5067 53.1516 60.3705

13 12.2229 32.4542 53.1676 61.1577

15 12.2076 32.4293 53.1782 61.5510

17 12.1989 32.4169 53.1852 61.7196

19 12.1940 32.4104 53.1962 61.8400

21 12.1915 32.4080 53.1947 61.9253

25 12.1905 32.4036 53.1966 61.9858

Reddy [33] 12.1690 32.4050 53.1980 62.0220

Error(%) 0.177 0.004 0.003 0.058
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The non-dimensional critical buckling loads for cross-ply
laminated plates are presented in Table 3, where the present
solution is compared with analytical results by Reddy and
Phan [27]. Three laminates are considered: ([0/90], [0/90/0], [0/
90/90/0]. The effect of the shear deformation on the buckling
parameters is very significant. Our results compare quite well
with those of Reddy and Phan.

In order to discuss the applicability of the present approach to
other laminate configurations, uniaxial numerical tests were
performed on unsymmetric angle-ply ð45=�45Þp (p¼1 or 3)
laminates. The shape parameter is set as c¼ 2=

ffiffiffiffi
N
p

. For various
side-to-thickness (a/h) ratios, we present in Table 4 the critical
buckling loads. Results are compared with those of Reddy [1], and
show excellent comparison (difference to Reddy’s results are
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Fig. 2. Uniaxial loading (45/�45), a/h¼5, c¼ 2=
ffiffiffiffi
N
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, N¼15.
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Fig. 3. Uniaxial loading (45/�45), a/h¼10, c¼ 2=
ffiffiffiffi
N
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, N¼15.
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Fig. 4. Uniaxial loading ð45=�45Þ3, a/h¼5, c¼ 1=
ffiffiffiffi
N
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, N¼15.
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Fig. 5. Uniaxial loading ð45=�45Þ3, a/h¼10, c¼ 2=
ffiffiffiffi
N
p

, N¼15.
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below 0.25% for all cases). In Figs. 2–5 the first four modes of
buckling are illustrated, for several side-to-thickness ratios, using
N¼15, where N is the number of nodes per side (total number of
nodes is N�N).

Uniaxial and biaxial buckling loadings in symmetric (45/�45/
�45/45) angle-ply laminates are considered next in Table 5, using
c¼ 1=

ffiffiffiffi
N
p

. The results show good convergence with the increasing
number of nodes.

Figs. 6–8 illustrate the mode shapes for uniaxial loading of (45/
�45/�45/45) laminates, using various a/h ratios, and N¼15. It is
clear the difference in mode shapes when compared with those of
previous figures for unsymmetric laminates.

5. Conclusions

In this paper we used the radial basis function collocation
method to analyze buckling loads of isotropic and laminated

plates. The higher-order shear deformation theory of Reddy
defines a set of equations of motion and boundary conditions as
an eigenvalue problem where the eigenvalues are the buckling
loads. The present results were compared with existing analytical
solutions, or finite element schemes and are in very good agree-
ment. The collocation method with radial basis functions accord-
ing to a higher-order shear deformation theory is a simple yet
powerful alternative to other finite element or meshless methods
for buckling analysis of plates.

Table 5

Uniaxial and biaxial loading for ð45=�45=�45=45Þ, c¼ 1=
ffiffiffiffi
N
p

.

N a/h¼5 a/h¼10 a/h¼20 a/h¼100

Biaxial 9 7.0071 14.3164 19.4202 19.2613

11 6.9997 14.3773 19.6510 17.9303

13 6.9968 14.4353 19.8547 18.6447

15 6.9951 14.4818 20.0153 19.6692

17 6.9937 14.5173 20.1403 20.5724

19 6.9924 14.5439 20.2380 21.2881

21 6.9912 14.5638 20.3149 21.8390

25 6.9890 14.5900 20.4246 22.5857

Uniaxial 9 10.5523 26.7978 38.5430 38.2611

11 10.4995 26.6363 39.0618 35.7013

13 10.4775 26.5558 39.5003 37.1731

15 10.4651 26.5092 39.8397 39.2442

17 10.4575 26.4796 40.1009 41.0625

19 10.4525 26.4597 40.3033 42.5005

21 10.4491 26.4454 40.4615 43.6052

25 10.4453 26.4266 40.6858 45.0994

eig = 10.4651

0 0.5 1
0

0.2

0.4

0.6

0.8

1
eig = 10.4826

0 0.5 1
0

0.2

0.4

0.6

0.8

1

eig = 10.9753

0 0.5 1
0

0.2

0.4

0.6

0.8

1
eig = 11.2805

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Fig. 6. Uniaxial loading ð45=�45=�45=45Þ, a/h¼5, c¼ 1=
ffiffiffiffi
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, N¼15.
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Fig. 7. Uniaxial loading ð45=�45=�45=45Þ, a/h¼10, c¼ 1=
ffiffiffiffi
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, N¼15.
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Fig. 8. Uniaxial loading ð45=�45=�45=45Þ, a/h¼20, c¼ 1=
ffiffiffiffi
N
p

, N¼15.
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Abstract. An hybrid technique is used for the solutions of static and time-dependent
problems. The idea is to combine the radial basis function (RBF) collocation method and
the pseudospectal (PS) method getting to the RBF-PS method. The approach presented in this
paper includes a shape parameter optimization and produces highly accurate results.

Different examples of the procedure are presented and different radial basis functions
are used. One and two-dimensional problems are considered with various boundary and
initial conditions. We consider generic problems, but also results on beams and plates. The
displacement and the stress analysis are conducted for static and transient dynamic situations.
Results obtained are in good agreement with exact solutions or references considered.

1. Introduction
Both pseudospectral (PS) method ([1, 2]) and radial basis function (RBF) method ([3] to [7])
are good solvers for PDEs. Combining the two methods we can extend the high accuracy of the
results to complex geometries and keep it simple to implement.

Ferreira and colleagues used the multiquadrics RBF ([8]) to solve time-dependent problems
including structural problems. Fasshauer, Ferreira, and colleagues ([9] to [14]) have already used
with success the RBF-PS method for the solution of some problems. This paper extends the
application of the RBF-PS method to the transient analysis of structural problems including an
optimization of the shape parameter for the radial basis functions, allowing an user-independent
analysis.

2. RBF-PS method for time-dependent problems
Suppose you want to approximate a function that you want to differentiate or to approximate
the solution u(x) or u(x, t) of a given a differential equation with boundary conditions. The
approximation considered is a finite sum of very smooth and global basis functions,

u(x) =
N∑

k=0

λkφk(x), in the case of static problems (1)
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or u(x, t) =

N∑

k=0

λk(t)φk(x), for time-dependent problems (2)

where the basis functions φk(x) can be for example trigonometric functions or polynomials, such
as Chebyshev polynomials. Then, you differentiate these functions exactly ([2]).

When using pseudospectral method, if you are given a set of grid points xi and corresponding
function values ui = u(xi), you can use this data to approximate the derivative of u via
differentiation matrices. Writing u as a column vector, you can find a square matrix D such
that, at xi, you have

u′ = D.u. (3)

Finding the derivative of a vector of data becomes a matrix × vector multiplication. We just
need some manipulations to get to D.

You must evaluate (1) at the grid points xi and get

u(xi) =
N∑

k=0

λkφk(xi), (4)

or in matrix-vector notation
u = Aλ, (5)

where λ is the column vector of the coefficients λk, matrix A has entries Aik = φk(xi), and u is
as before. If you ensure that A is invertible, you get

λ = A−1.u. (6)

Recall that the invertibility of matrix A depends both on the basis function chosen and the
location of the points xi. For univariate polynomials with a set of distinct points invertibility is
ensured.

On the other hand, differentiating both sides of (1), you get

d

dx
u(x) =

N∑

k=1

λk
d

dx
φk(x) (7)

Evaluating at the grid points xi we get in matrix-vector notation

u′ = Mλ, (8)

where λ is the column vector of the coefficients λk, matrix M has entries Mik = d
dxφk(xi), and

u is as before.
So, using (6) in (8), we obtain u′ = M.A−1.u so that the differentiation matrix D we were

looking for in (3) is
D = M.A−1. (9)

Dij is the derivative of the jth curve at xi.
In this paper we use (infinitely smooth) radial basis functions in a spectral framework. The

basis function expansion φk(x) in (1) will take the form φk(x) = g(||x − xk||, ǫ) = g(r, ǫ), chosen
from a list more extense than the following ([14] among others), e.g.:

g(r, ǫ) = e−(ǫr)2 ; gaussian (10)

g(r, ǫ) = 1/
√

(1 + (ǫr)2); inverse multiquadric (11)

g(r, ǫ) = e−ǫr(15 + 15ǫr + 6(ǫr)2 + (ǫr)3); cubic matérn (12)

g(r, ǫ) =
√

1 + (ǫr)2; multiquadric (13)

g(r, ǫ) = max(1 − ǫr, 0)8(32(ǫr)3 + 25(ǫr)2 + 8ǫr + 1) Wendland’s ϕ3,3 (14)
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being r the (Euclidean) distance and ǫ a free parameter.
For the RBF-PS technique, matrix A in (5) and (9) has entries

Aij = g(rj , ǫ)|x=xi
= g(||xi − xj ||, ǫ). (15)

Furthermore, the entries of M in (8) become d
dxg(r, ǫ)|x=xi

.
In all dynamic problems, depending on the nature of the problem, at each time t we can

approximate u(x, t) or u(x, y, t) considering the forward Euler method or the leap frog method,
for example:

∂u

∂t
≈ u(x, tn+1) − u(x, tn)

∆t
(16)

∂u

∂t
≈ u(x, tn+1) − u(x, tn−1)

2∆t
(17)

∂2u

∂t2
=

∂

∂t

(
∂u

∂t

)
≈ u(x, tn+1) − 2u(x, tn) + u(x, tn−1)

(∆t)2
(18)

being ∆t = tn+1 − tn. This allows us to march in time. The key to the solution of the problems
is the approximation of the spatial derivative, both in dynamic or static problems.

To solve a PDE like
∂

∂t
u(x, t) +

∂

∂x
u(x, t) = 0 (19)

using the rbf-spectral differentiation matrix D to express the spatial derivative and (16) leads
to

u(x, tn+1) = u(x, tn) − ∆t.D.u(x, tn) (20)

The procedure just described can be generalized to more complex linear differential operators.
In this paper we are interested in those such as the ones involved in the following PDE’s

∂

∂t
u(x, t) =

∂2

∂x2
u(x, t) (21)

∂2

∂t2
u(x, t) =

∂2

∂x2
u(x, t) (22)

If we use (16) for the time derivative and the second order rbf-spectral differential matrix D2

for the spatial derivative, (21) leads to

u(x, tn+1) = u(x, tn) + ∆t.D2.u(x, tn) (23)

and if we use (18) for the time derivative and the second order rbf-spectral differential matrix
D2 for the spatial derivative, (22) leads to

u(x, tn+1) = 2 ∗ u(x, tn) − u(x, tn−1) + (∆t)2 ∗ D2 ∗ u(x, tn); (24)

where D2 is defined as D2 = M2.A−1 being M2
ik = d2

dx2 g(||xi − xk||, ǫ).
In general, Dp

ij is the pth derivative of curve number j at xi:

Dp = Mp.A−1 (25)

being Mp
ik = dp

dxp g(||xi − xk||, ǫ).
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Table 1. Solution errors (%) for problem 3.1.1 with 11 Chebyshev points, ∆t = 0.001, and
Wendland C6 RBF

time Ex0=1 Ex1 Ex2 Ex3 Ex4 Ex5

0.1 1.169e-1 1.167e-1 1.125e-1 9.735e-2 6.853e-2 3.477e-2
0.2 8.727e-2 8.716e-2 8.505e-2 7.722e-2 6.102e-2 3.898e-2
0.3 6.484e-2 6.478e-2 6.369e-2 5.959e-2 5.102e-2 3.909e-2
0.4 5.170e-2 5.166e-2 5.113e-2 4.914e-2 4.496e-2 3.913e-2
0.5 4.498e-2 4.496e-2 4.472e-2 4.379e-2 4.185e-2 3.917e-2

For the solution of a two-dimensional problem involving ∂
∂xu(x, y, t), ∂

∂yu(x, y, t), ∂2

∂x2 u(x, y, t),
∂2

∂x∂yu(x, y, t), or ∂2

∂y2 u(x, y, t) we can use the same approximation of the time derivative but we

must use different differentiation matrix for the approximation of each spatial derivative. We
consider the following approximations, e.g.:

∂

∂x
u(x, y, t) ≈ Dx.u(x, y, t) Dx =

∂

∂x
g(r, ǫ)|(x,y)=(xi,yi).A

−1 (26)

∂2

∂x2
u(x, y, t) ≈ Dxx.u(x, y, t) Dxx =

∂2

∂x2
g(r, ǫ)|(x,y)=(xi,yi).A

−1 (27)

∂2

∂x∂y
u(x, y, t) ≈ Dxy.u(x, y, t) Dxy =

∂2

∂x∂y
g(r, ǫ)|(x,y)=(xi,yi).A

−1 (28)

(29)

being g(r, ǫ) the chosen RBF and A as in (15).
The question of the invertibility of the matrix A remains unsolved for some cases. Fasshauer

presents detailed information on the subject in his book [14].
The optimization of the RBF shape parameter is the same used in [12, 13, 14] and a fairly

detailed exposition is available in these references.

3. Numerical examples
3.1. One-dimensional problems
3.1.1. Initial-boundary-value problem 1





PDE ∂u
∂t = ∂2u

∂x2 , 0 ≤ x ≤ 1, t ≥ 0

BC ∂u
∂x(0, t) = ∂u

∂x(1, t) = 0, t ≥ 0

IC u(x, 0) = 9 + 3 cos(πx) + 5 cos(4πx), 0 ≤ x ≤ 1

(30)

The PDE was implemented for the RBF-PS method as ut+1 = ut + ∆t.D2.ut.
In tables 1-2 we present the results obtained with present method. We compare with the

exact solution u(x, t) = 9 + 3e−π2t cos(πx) + 5e−16π2t cos(4πx). Results are in good agreement,
the biggest error being approximately 0.2%.

Using 11 Chebyshev points, ∆t = 0.001, and Wendland C6 RBF, the optimized shape
parameter is ǫ = 0.100064. For the same RBF but using 21 Chebyshev points and ∆t = 0.0001,
we get ǫ = 0.160453. If we use 11 Chebyshev points, ∆t = 0.001, and the Matérn Cubic RBF,
we obtain ǫ = 0.276603. Using 21 Chebyshev points, the Matérn Cubic RBF, and ∆t = 0.0001,
we get ǫ = 1.250831.

Using 21 Chebyshev points the error achieves a value smaller than 5 ∗ 10−5%.
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Table 2. Solution errors (%) for problem 3.1.1 with 11 Chebyshev points, ∆t = 0.001, and
Matérn Cubic RBF

time Ex0=1 Ex1 Ex2 Ex3 Ex4 Ex5

0.1 1.175e-1 1.173e-1 1.132e-1 9.823e-2 6.971e-2 3.611e-2
0.2 8.809e-2 8.800e-2 8.594e-2 7.824e-2 6.225e-2 4.038e-2
0.3 6.590e-2 6.584e-2 6.477e-2 6.075e-2 5.229e-2 4.046e-2
0.4 5.286e-2 5.283e-2 5.231e-2 5.036e-2 4.625e-2 4.046e-2
0.5 4.618e-2 4.617e-2 4.593e-2 4.503e-2 4.313e-2 4.046e-2

3.1.2. Initial-boundary-value problem 2




PDE ∂2u
∂t2

= ∂2u
∂x2 , 0 ≤ x ≤ π, t ≥ 0

BC u(0, t) = u(π, t) = 0, t ≥ 0

IC

{
u(x, 0) = πx − x2, 0 ≤ x ≤ π
∂u
∂t (x, 0) = 0, 0 ≤ x ≤ π

(31)

To solve this problem we considered ∆t = 1.5625∗10−5 and 81 Chebyshev points for t ∈ [0, 4].
Results obtained with the RBF-PS method, with an optimized shape parameter, both for
Matérn Cubic and Wendland C6 RBF are in good agreement with the exact solution, which is
u(x, t) = 8

π

∑
odd n n−3 sin(nx) cos(nt). The error is lower than 1% except for the boundary as

the exact solution here is equal to zero for every t and around t = 1.6 which corresponds to
values near zero for the exact solution.

The values for the shape parameter are quite different as we change the RBF: for the Matérn
Cubic RBF the optimal shape parameter obtained was ǫ = 4.142739 and for the Wendland C6
was ǫ = 0.962844.

3.1.3. Transient analysis of a beam For the transient dynamic study of a beam in bending we
are using the first-order shear deformation theory (FSDT) ([15]), with shear correction factor
K = 5/6. When applied to beams, the equations of motion are

KGbh

(
∂2w0

∂x2
+

∂θx
∂x

)
+ bq = bI0

∂2w0

∂t2
(32)

EI
∂2θx
∂x2

− KGbh

(
∂w0

∂x
+ θx

)
= bI2

∂2θx
∂t2

(33)

Here, w = w(x, t) is the transverse displacement, θx = θx(x, t) is the rotation about the x axis,
K = 5/6 is the shear correction coefficient, and q is the total transverse load. The remaining
terms are obtained from given constants that characterize both the material properties and the
structural properties of the beam.

We use the static solution of bending equilibrium as the initial conditions.
For the time-steping procedure we considered equations (32) and (33) divided by bI0 and bI2,

respectively, and used the forward Euler method.
We consider an isotropic beam with both ends simply-supported and material properties

E = 10920; ρ = 1; ν = 0.25. The dimensions of the beam are a = 1, b = 1, h = 0.1, being a
the length, h the thickness, and b ∗ h the cross section dimensions.

We used 11 Chebyshev points along the beam, x ∈ [0, 1], the Cubic Matérn RBF (see (12)),
and ∆t = 5 ∗ 10−5. The optimal RBF shape parameter obtained was ǫ = 0.276603.

In figure 1 we present the transverse displacement of the central point of the beam for t ∈ [0, 1].
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3.2. Transient analysis of a plate
Consider now an isotropic square plate in bending, clamped at all edges. Length of each side is
a = 2 and side-over-thickness ratio is a/h = 10. The material properties are ρ = 1, E = 10920,
and ν = 0.3.

In the present study the First-Order Shear Deformation Theory (FSDT) is used ([15]). When
applied to plates, the equations of motion are

D11
∂2θx
∂x2

+ D16
∂2θy
∂x2

+ (D12 + D66)
∂2θy
∂x∂y

+ 2D16
∂2θx
∂x∂y

+ D66
∂2θx
∂y2

+ D26
∂2θy
∂y2

+

− kA45

(
θy +

∂w

∂y

)
− kA55

(
θx +

∂w

∂x

)
= I2

∂2θx
∂t2

(34)

D16
∂2θx
∂x2

+ D66
∂2θy
∂x2

+ (D12 + D66)
∂2θx
∂x∂y

+ 2D26
∂2θy
∂x∂y

+ D26
∂2θx
∂y2

+ D22
∂2θy
∂y2

+

− kA44

(
θy +

∂w

∂y

)
− kA45

(
θx +

∂w

∂x

)
= I2

∂2θy
∂t2

(35)

∂

∂x

[
kA45

(
θy +

∂w

∂y

)
+ kA55

(
θx +

∂w

∂x

)]
+

∂

∂y

[
kA44

(
θy +

∂w

∂y

)
+ kA45

(
θx +

∂w

∂x

)]
+ q = I0

∂2w

∂t2
, (36)

where w = w(x, y, t) is the transverse displacement, θx = θx(x, y, t) and θy = θy(x, y, t) are the
rotations about the x and y axis, respectively, K = 5/6 is the shear correction coefficient, and
q is the total transverse load.

The initial conditions are the static solution of bending equilibrium. A mesh of 81 points
was used, corresponding to 9 equally spaced points per side, in [-1,1], and ∆t = 10−5. The
RBF used was the Matérn Cubic (see (12)) and the optimal RBF shape parameter obtained was
ǫ = 0.104817.

In figure 2 we present the transverse displacement of the central point of the plate considered
along the time t ∈ [0, 1].
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4. Conclusions
This paper addresses the solution of several PDE problems using a technique that combines the
radial basis function (RBF) collocation technique and the pseudospectal (PS) method with the
optimization of the RBF shape parameter. This allows the extension of the accurate results to
complex geometries, keeping it simple to implement.

Several numerical tests were performed using some radial basis functions, boundary
conditions, and initial conditions, for both one and two-dimensional problems. We extended
previous work to the transient analysis of a beam and a plate.

Results obtained demonstrate that the method produces good results which are in good
agreement with exact solutions or references considered.

Further studies, including the application of the method to composite structures and with
more complex geometries are to be made.
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a b s t r a c t

This paper presents a study of the linear transient response of composite plates using radial basis func-
tions and collocation method in a pseudospectral framework. The first-order shear deformation plate the-
ory is used to define a set of algebraic equations from the equations of motion and boundary conditions.
The transient analysis is performed by a Newmark algorithm. In order to assess the quality of the present
numerical method, an analytical solution was also developed. Numerical tests on square and rectangular
cross-ply laminated plates demonstrate that the present method produces highly accurate displacements
and stresses when compared with the available results.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, radial basis functions (RBFs) have enjoyed consider-
able success as a technique for interpolating data and functions.
A radial basis function, /(kx � xjk) is a spline that depends on the
Euclidian distance between distinct data centers xj; j ¼ 1;2; . . . ;

N 2 Rn, also called nodal or collocation points.
Although most work to date on RBFs relates to scattered data

approximation and in general to interpolation theory, there has re-
cently been an increased interest in their use for solving partial dif-
ferential equations (PDEs). This approach, which approximates the
whole solution of a PDE directly using RBFs is very attractive due to
the fact that this is truly a mesh-free technique. Kansa [1] intro-
duced the concept of solving PDEs using RBFs.

The analysis of plates using the finite element method is now
fully established. The use of alternative methods such as the mesh-
less methods based on radial basis functions is attractive due to the
absence of a mesh (hence element interfaces where the solution
derivatives may be discontinuous) and the ease of using the
collocation method. The use of radial basis function for the analysis
of structures and materials has been previously studied by
numerous authors [2–13]. More recently the authors have applied

RBFs to the static deformations of composite beams, plates and
shells [14–18].

The radial basis function collocation method, proposed by Kan-
sa [1], has one small drawback in transient analysis: for every time
step, an extra computation is needed to obtain the final solution.
To overcome such problem, here we propose the use of radial basis
functions in a pseudospectral framework, as proposed by Ferreira
and Fasshauer [19]. The advantage is that the method produces
the direct solution in every time step by solving a linearized sys-
tem of equations.

For transient analysis, the Newmark time-integration algorithm
is used. The Newmark scheme was used by Reddy with a first-or-
der shear deformation theory to analyze the dynamic response of
anisotropic composite plates [20]. It was also used by Liu et al.
[21] with the radial basis function collocation method to analyze
the dynamic behavior of electroactuated beams and by Kirby and
Yosibash [22] with a pseudospectral method for the dynamic
non-linear analysis of plates.

Because there are few results in tabular form, we independently
developed an analytical solution (see Reddy’s book [23]) to com-
pare with the present meshless method.

As it will be shown in the examples, the present method yields
excellent results when compared with the analytical solutions.
This paper shows for the first time an application of the RBF-PS
method to analyze the transient response of composite plates in
bending.

0045-7949/$ - see front matter � 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.compstruc.2010.08.012
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2. The RBF-pseudospectral method

One way to implement the pseudospectral method is via so-
called differentiation matrices, i.e., one finds a matrix D such that
at the grid points xi we have

u0 ¼ Du: ð1Þ

Here u = [uh(x1), . . . ,uh(xN)]T is the vector of values of uh at the grid
points. Below we will illustrate how to follow this approach for
the RBF collocation method.

As mentioned above, traditional PS methods employ polynomi-
als (such as Chebyshev polynomials) as basis functions. Radial ba-
sis functions are composed with the Euclidean norm to make it a
radial function, i.e., /j(x) = U(kx � xjk). In the theory of radial basis
functions one usually takes (conditionally) positive definite basic
functions U. The inverse multiquadric we will be using below is
of the form

UðrÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðcrÞ2

q : ð2Þ

This function is infinitely smooth and positive definite on Rd. Here
we consider a modified version of the inverse multiquadric, given
by:

/jðxiÞ ¼ UðrÞ ¼ 1þ c2 ðxi � xjÞ2 þ
ðyi � yjÞ

2

ðb=aÞ2

 !" #�1

; ð3Þ

where r is the euclidian norm between grid points of coordinates
(x,y), a, b are the length of the plate along x and y axis respectively
and c is a (positive) shape parameter. It should be mentioned that
the RBF function is modified to accommodate the a/b ratio. This is
not seen elsewhere in the literature and proved to be more accurate
than the usual inverse multiquadric functions, in our computations.

Other popular choices include, e.g., the multiquadrics

UðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðcrÞ2

q
ð4Þ

and Gaussians

UðrÞ ¼ e�ðcrÞ2 : ð5Þ

Both of these functions are also infinitely differentiable. The Gauss-
ian is positive definite, while the multiquadric is conditionally neg-
ative definite. As explained above, we use r to denote the radial
variable, i.e., r = kxk. Moreover, all of our examples contain a sposi-
tive shape parameter c.

The shape parameter c can be used to influence the accuracy of
the numerical method. One approach to finding a good value of the
shape parameter is the use of leave-one-out cross validation (see
Ferreira and Fasshauer [19] and Roque and Ferreira [24] for
details).

The spatial part of the approximate solution uh of a given PDE is
represented by a linear combination of certain basis functions /j,
j = 1, . . . ,N, i.e.,

uhðxÞ ¼
XN

j¼1

cj/jðxÞ; x 2 R: ð6Þ

Let /j, j = 1, . . . , N, be an arbitrary linearly independent set of
smooth functions that will serve as our basis functions. In order
to obtain a formulation for the differentiation matrix D of (1) we
evaluate (6) at the grid points xi, i = 1, . . . , N. This results in

uhðxiÞ ¼
XN

j¼1

cj/jðxiÞ; i ¼ 1; . . . ;N ð7Þ

or in matrix–vector notation

u ¼ Ac; ð8Þ

where c = [c1, . . . ,cN]T is the coefficient vector, the evaluation matrix
Aij = /j(xi), and u is as before.

We compute the derivative of uh by differentiating the basis
functions, i.e.,

d
dx

uhðxÞ ¼
XN

j¼1

cj
d
dx

/jðxÞ: ð9Þ

If we again evaluate at the grid points xi then we get in matrix–vec-
tor notation

u0 ¼ Axc; ð10Þ

where u and c are as above, and the matrix Ax has entries d
dx /jðxiÞ,

or, in the case of radial functions, d
dx Uðkx� xjkÞx¼xi

.
It is now easy to obtain the desired formula for D. We simply

solve Eq. (8) for c and substitute the result into (10). This gives us

u0 ¼ AxA�1u; ð11Þ

so that the differentiation matrix D corresponding to (1) is of the
form

D ¼ AxA�1
: ð12Þ

The procedure described above can be followed for more complex
linear differential operators L operating on functions of several
variables such as the operators in our examples below. This leads
to a discretized differential operator (differentiation matrix)

L ¼ ALA�1; ð13Þ

where the matrix AL has entries AL;ij ¼ L/jðxiÞ. If we use radial basis
functions then these entries are of the form AL;ij ¼ LUðkx� xjkÞx¼xi

.
In order to see how the matrix L changes when we add bound-

ary conditions we consider how the linear elliptic PDE

Lu ¼ f in X; ð14Þ

with boundary condition

LB ¼ g on C ¼ @X ð15Þ

can be solved using pseudospectral methods. In order to satisfy the
boundary conditions we take the differentiation matrix L based on
all grid points xi, and then replace the rows of L corresponding to
collocation at boundary points with unit vectors that have a one
in the position corresponding to the diagonal of L. Thus, the condi-
tion LB ¼ g is explicitly enforced at this point.

3. First-order shear deformation theory

In this section, we briefly present the basic equations for the
first-order shear deformation theory (FSDT) for plates. A more de-
tailed review can be found in Reddy [23]. We seek the equations of
motion and the discretization of such equations, and the boundary
conditions, by the RBF-PS interpolation.

The displacement field for the first-order shear deformation
theory is:

uðx; y; z; tÞ ¼ u0ðx; y; tÞ þ zhxðx; y; tÞ;
vðx; y; z; tÞ ¼ v0ðx; y; tÞ þ zhyðx; y; tÞ;
wðx; y; z; tÞ ¼ w0ðx; y; tÞ; ð16Þ

where u and v are the in-plane displacements at any point (x,y,z), u0

and v0 denote the in-plane displacement of the point (x,y,0) on the
midplane, w is the deflection, hx and hy are the rotations of the nor-
mals to the midplane about the y and x axes, respectively. The thick-
ness of the plate is denoted as h.
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The strain–displacement relationships are given as

�xx

�yy

cxy

cxz

cyz

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
¼

@u
@x
@v
@y

@u
@y þ @v

@x

@u
@z þ @w

@x
@v
@z þ @w

@y

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
ð17Þ

Therefore strains can be expressed as

�xx

�yy

cxy

cxz

cyz

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
¼

�ð0Þxx

�ð0Þyy

cð0Þxy

cð0Þxz

cð0Þyz

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
þ z

�ð1Þxx

�ð1Þyy

cð1Þxy

cð1Þxz

cð1Þyz

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
; ð18Þ

where

�ð0Þxx

�ð0Þyy

cð0Þxy

cð0Þxz

cð0Þyz

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
¼

@u0
@x
@v0
@y

@u0
@y þ

@v0
@x

@w0
@x þ hx

@w0
@y þ hy

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
;

�ð1Þxx

�ð1Þyy

cð1Þxy

cð1Þxz

cð1Þyz

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
¼

@hx
@x
@hy

@y

@hx
@y þ

@hy

@x

0
0

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
: ð19Þ

A laminate can be manufactured from orthotropic layers (or plies)
of unidirectional fibrous composite materials. The plane-stress-re-
duced stress–strain relations in the fiber local coordinate system
can be expressed as

r1

r2

s12

s23

s31

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
¼

Q 11 Q 12 0 0 0
Q 12 Q 22 0 0 0

0 0 Q 33 0 0
0 0 0 Q 44 0
0 0 0 0 Q55

26666664

37777775
e1

e2

c12

c23

c31

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
; ð20Þ

where subscripts 1 and 2 are respectively the fiber and the normal
to fiber in-plane directions, 3 is the direction normal to the plate,
and the reduced stiffness components, Qij are given by

Q 11 ¼ E1
1�m12m21

; Q22 ¼ E2
1�m12m21

; Q 12 ¼ m21Q11;

Q 33 ¼ G12; Q 44 ¼ G23; Q55 ¼ G31; m21 ¼ m12
E2
E1

in which E1, E2, m12, G12, G23 and G31 are material properties of the
lamina [23].

By performing adequate coordinate transformation, the stress–
strain relations in the global xyz-coordinate system can be ob-
tained as

rxx

ryy

sxy

syz

szx

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
¼

Q 11 Q 12 Q 16 0 0
Q 12 Q 22 Q 26 0 0
Q 16 Q 26 Q 66 0 0

0 0 0 Q 44 Q 45

0 0 0 Q 45 Q 55

26666664

37777775
exx

eyy

cxy

cyz

czx

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
; ð21Þ

where Qij are the components of the constitutive matrix in laminate
axes [23].

The equations of motion of the first-order theory are derived
from the principle of virtual displacements [23]. The virtual strain
energy (dU), virtual kinetic energy (dK), and the virtual work done
by applied forces (dV) are given by

dU ¼
Z

X0

Z h=2

�h=2
rxx d�ð0Þxx þ zd�ð1Þxx

� �
þ ryy d�ð0Þyy þ zd�ð1Þyy

� �h(
þ sxy dcð0Þxy þ zdcð1Þxy

� �
þ sxz dcð0Þxz

� �
þ syz dcð0Þyz

� �i
dz
o

dxdy

¼
Z

X0

Nxxd�ð0Þxx þMxxd�ð1Þxx þ Nyyd�ð0Þyy þMyyd�ð1Þyy þ Nxydcð0Þxy

�
þMxydcð1Þxy þ Qxdcð0Þxz þ Q ydcð0Þyz

�
dxdy;

dK ¼
Z

X0

Z h=2

�h=2
q _u0 þ z _hx

� �
d _u0 þ zd _hx

� �h(
þ _v0 þ z _hy

� �
d _v0 þ zd _hy

� �
þ _w0d _w0

i
dzdxdy

¼
Z

X0

�I0 _u0d _u0 þ _v0d _v0 þ _w0d _w0ð Þ½

� I1
_hxd _u0 þ _hyd _v0 þ _hxd _u0 þ _hyd _v0

� �
� I2

_hxd _hx þ _hyd _hy

� �
dxdy

i
ð22Þ

and

dV ¼ �
Z

X0

qdw0dxdy; ð23Þ

where X0 denotes the midplane of the laminate, q is the external
distributed load and

Nab

Mab

� �
¼
Z h=2

�h=2
rab

1
z

� �
dz; fQag ¼ K

Z h=2

�h=2
razdz; ð24Þ

where a, b take the symbols x, y and K is a shear corrector factor
(here taken as 5/6 due to the monolithic laminate configuration).
It is relevant to note that the use of the shear correction factor in
the first-order shear deformation theories is an approximation to
match exact and assumed transverse shear stresses.

Substituting for dU, dV and dK into the virtual work statement,
noting that the virtual strains can be expressed in terms of the gen-
eralized displacements, integrating by parts to relieve from any
derivatives of the generalized displacements and using the funda-
mental lemma of the calculus of variations, we obtain the follow-
ing Euler–Lagrange equations [23]:

@Nxx

@x
þ @Nxy

@y
¼ I0€u0 þ I1

€hx; ð25Þ

@Nxy

@x
þ @Nyy

@y
¼ I0 €v0 þ I1

€hy; ð26Þ

@Q x

@x
þ
@Qy

@y
þ q ¼ I0 €w0; ð27Þ

@Mxx

@x
þ @Mxy

@y
� Q x ¼ I1€u0 þ I2

€hx; ð28Þ

@Mxy

@x
þ @Myy

@y
� Q y ¼ I1 €v0 þ I2

€hy; ð29Þ

with

Ii ¼
Xnc

k¼1

Z zkþ1

zk

qkzi dz: ð30Þ

In this paper, the Newmark method is used [23] for the numerical
time integration. The Euler–Lagrange equations can be written in
terms of the displacements by substituting strains and stress resul-
tants in (25)–(29). The resulting system of equations can be written
in the form:

M€uþ Ku ¼ F: ð31Þ
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Time derivatives in equation (31) are approximated using Taylor’s
series

€utþDt ¼ a3ðutþDt � utÞ � a4 _ut � a5€ut ; ð32Þ
_utþDt ¼ _ut þ a1€ut þ a2€utþDt ; ð33Þ

with a ¼ 3=2; c ¼ 8=5; a1 ¼ ð1� aÞDt; a2 ¼ aDt; a3 ¼ 2
cðDtÞ2

; a4 ¼
a3Dt; a5 ¼ 1�c

c .
Substituting Eqs. (32), (33) in equation (31), the latter can be

written as:

bKu ¼ bF; ð34Þ
withbKtþDt ¼ KtþDt þ a3MtþDt ; ð35ÞbFtþDt ¼ FtþDt þMtþDtða3ut þ a4 _ut þ a5€utÞ: ð36Þ

Initial values for u0 and _u0 are set to zero and ü0 is given by
ü0 = M�1(F � Ku).

4. Analytical solution

Because there are few results in tabular form, we developed an
analytical solution (see Reddy’s book [23]) to compare with the
present meshless method.

Table 1
Cross-ply 0/90 square plate b ¼ a; p ¼ 0; c ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1
p

=50.

t � 10�4 �w �rxx �rxy

RBF-PS Analytical RBF-PS Analytical RBF-PS Analytical

0.5 4.8073 � 10�1 4.8064 � 10�1 3.2357 � 10�2 3.2324 � 10�2 1.9981 � 10�2 2.0212 � 10�2

1.0 1.5466 1.5466 1.0555 � 10�1 1.0548 � 10�1 6.4815 � 10�2 6.5622 � 10�2

1.5 2.3695 2.3711 1.6224 � 10�1 1.6219 � 10�1 9.9505 � 10�2 1.0081 � 10�1

2.0 2.3112 2.3157 1.5783 � 10�1 1.5799 � 10�1 9.6930 � 10�2 9.8314 � 10�2

2.5 1.4182 1.4243 9.6886 � 10�2 9.7239 � 10�2 5.9466 � 10�2 6.0474 � 10�2

3.0 3.8521 � 10�1 3.8963 � 10�1 2.6091 � 10�2 2.6351 � 10�2 1.6058 � 10�2 1.6431 � 10�2

3.5 1.4196 � 10�2 1.3614 � 10�2 4.2258 � 10�4 3.9694 � 10�4 3.8897 � 10�4 3.6027 � 10�4

4.0 5.9191 � 10�1 5.8642 � 10�1 4.0291 � 10�2 3.9892 � 10�2 2.4749 � 10�2 2.4828 � 10�2

4.5 1.6684 1.6628 1.1396 � 10�1 1.1345 � 10�1 6.9972 � 10�2 7.0585 � 10�2

5.0 2.4075 2.4076 1.6454 � 10�1 1.6443 � 10�1 1.0100 � 10�1 1.0227 � 10�1

5.5 2.2358 2.2441 1.5297 � 10�1 1.5339 � 10�1 9.3847 � 10�2 9.5368 � 10�2

6.0 1.2883 1.3007 8.7862 � 10�2 8.8614 � 10�2 5.3982 � 10�2 5.5159 � 10�2

6.5 3.0170 � 10�1 3.0961 � 10�1 2.0261 � 10�2 2.0812 � 10�2 1.2505 � 10�2 1.3006 � 10�2

7.0 4.1666 � 10�2 3.9164 � 10�2 2.5264 � 10�3 2.3449 � 10�3 1.6128 � 10�3 1.5147 � 10�3

7.5 7.0901 � 10�1 6.9775 � 10�1 4.8142 � 10�2 4.7327 � 10�2 2.9625 � 10�2 2.9502 � 10�2

8.0 1.7841 1.7733 1.2192 � 10�1 1.2109 � 10�1 7.4830 � 10�2 7.5310 � 10�2

8.5 2.4318 2.4317 1.6633 � 10�1 1.6615 � 10�1 1.0207 � 10�1 1.0332 � 10�1

9.0 2.1502 2.1633 1.4695 � 10�1 1.4772 � 10�1 9.0208 � 10�2 9.1881 � 10�2

9.5 1.1593 1.1777 7.9103 � 10�2 8.0300 � 10�2 4.8575 � 10�2 4.9962 � 10�2

10 2.2942 � 10�1 2.3989 � 10�1 1.5330 � 10�2 1.6022 � 10�2 9.4878 � 10�3 1.0033 � 10�2

Table 2
Cross-ply 0/90 rectangular plate b = 2a, p ¼ 0; c ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1
p

=50.

t � 10�4 �w �rxx �rxy

RBF-PS Analytical RBF-PS Analytical RBF-PS Analytical

0.5 3.1338 � 10�2 3.1335 � 10�2 8.0283 � 10�3 8.0206 � 10�3 2.8698 � 10�3 2.8981 � 10�3

1.0 1.1271 � 10�1 1.1271 � 10�1 2.9284 � 10�2 2.9261 � 10�2 1.0308 � 10�2 1.0413 � 10�2

1.5 2.1170 � 10�1 2.1174 � 10�1 5.5218 � 10�2 5.5175 � 10�2 1.9359 � 10�2 1.9559 � 10�2

2.0 2.8892 � 10�1 2.8905 � 10�1 7.5266 � 10�2 7.5229 � 10�2 2.6435 � 10�2 2.6714 � 10�2

2.5 3.1367 � 10�1 3.1393 � 10�1 8.1757 � 10�2 8.1754 � 10�2 2.8688 � 10�2 2.9000 � 10�2

3.0 2.7613 � 10�1 2.7652 � 10�1 7.2012 � 10�2 7.2045 � 10�2 2.5236 � 10�2 2.5526 � 10�2

3.5 1.9131 � 10�1 1.9175 � 10�1 4.9798 � 10�2 4.9865 � 10�2 1.7469 � 10�2 1.7686 � 10�2

4.0 9.2967 � 10�2 9.3357 � 10�2 2.4165 � 10�2 2.4252 � 10�2 8.4548 � 10�3 8.5733 � 10�3

4.5 2.0255 � 10�2 2.0464 � 10�2 5.2140 � 10�3 5.2622 � 10�3 1.7904 � 10�3 1.8227 � 10�3

5.0 2.0894 � 10�3 2.0284 � 10�3 4.2097 � 10�4 4.0285 � 10�4 1.2665 � 10�4 1.1694 � 10�4

5.5 4.5635 � 10�2 4.5328 � 10�2 1.1817 � 10�2 1.1735 � 10�2 4.1054 � 10�3 4.1115 � 10�3

6.0 1.3352 � 10�1 1.3311 � 10�1 3.4769 � 10�2 3.4624 � 10�2 1.2147 � 10�2 1.2226 � 10�2

6.5 2.3075 � 10�1 2.3043 � 10�1 6.0110 � 10�2 5.9969 � 10�2 2.1049 � 10�2 2.1228 � 10�2

7.0 2.9864 � 10�1 2.9860 � 10�1 7.7852 � 10�2 7.7780 � 10�2 2.7257 � 10�2 2.7528 � 10�2

7.5 3.1019 � 10�1 3.1055 � 10�1 8.0873 � 10�2 8.0888 � 10�2 2.8309 � 10�2 2.8635 � 10�2

8.0 2.6085 � 10�1 2.6157 � 10�1 6.7970 � 10�2 6.8097 � 10�2 2.3796 � 10�2 2.4110 � 10�2

8.5 1.7031 � 10�1 1.7118 � 10�1 4.4360 � 10�2 4.4553 � 10�2 1.5507 � 10�2 1.5751 � 10�2

9.0 7.4630 � 10�2 7.5352 � 10�2 1.9388 � 10�2 1.9552 � 10�2 6.7517 � 10�3 6.8933 � 10�3

9.5 1.1868 � 10�2 1.2175 � 10�2 2.9876 � 10�3 3.0685 � 10�3 1.0125 � 10�3 1.0564 � 10�3

10 6.9711 � 10�3 6.7393 � 10�3 1.7284 � 10�3 1.6693 � 10�3 5.6894 � 10�4 5.5678 � 10�4

Fig. 1. Composite plate of thickness h, lengths a, b and reference axes xyz.
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The analytical solution is computed by assuming a spatial vari-
ation of the displacements and reducing the differential equations
to a set of differential equations in time (see Reddy’s book [23] for
details).

The solution of Eq. (31) is assumed to be of the form

uðx; y; tÞ ¼
X1
m¼1

X1
n¼1

TmnðtÞUmnðx; yÞ: ð37Þ

The Navier solution procedure is used to determine the spatial var-
iation and the Newmark method is used to solve the resulting or-
dinary differential equations in time.

As an example, for a simply supported (SS1-type) cross-ply rect-
angular plate of length a, b, the boundary conditions are imposed
as:

in x ¼ 0; a : v ¼ w ¼ hy ¼ Nx ¼ Mx ¼ 0; ð38Þ

in y ¼ 0; b : u ¼ w ¼ hx ¼ Ny ¼ My ¼ 0: ð39Þ

The boundary conditions in (38) and (39) are satisfied by the fol-
lowing expansions of the displacements (Eq. (37)) and applied load
[23]:

u0ðx; y; tÞ ¼
X1
n¼1

X1
m¼1

UnmðtÞ cosðaxÞ sinðbyÞ; ð40Þ

v0ðx; y; tÞ ¼
X1
n¼1

X1
m¼1

VnmðtÞ sinðaxÞ cosðbyÞ; ð41Þ

w0ðx; y; tÞ ¼
X1
n¼1

X1
m¼1

WnmðtÞ sinðaxÞ sinðbyÞ; ð42Þ

Table 3
Relative error for cross-ply 0/90 square plate b = a.

t � 10�4 Relative error (%)

�w �rxx �rxy

0.5 0.02 0.10 1.16
1.0 0.00 0.07 1.25
1.5 0.07 0.03 1.31
2.0 0.19 0.11 1.43
2.5 0.43 0.36 1.70
3.0 1.13 0.99 2.32
3.5 4.27 6.46 7.38
4.0 0.94 1.00 0.32
4.5 0.34 0.45 0.88
5.0 0.00 0.07 1.25
5.5 0.37 0.28 1.62
6.0 0.95 0.85 2.18
6.5 2.56 2.65 4.00
7.0 6.39 7.74 6.08
7.5 1.61 1.72 0.42
8.0 0.61 0.69 0.64
8.5 0.01 0.11 1.22
9.0 0.60 0.52 1.86
9.5 1.56 1.49 2.85
10 4.36 4.32 5.75

Table 4
Relative error for cross-ply 0/90 rectangular plate b = 2a.

t � 10�4 Relative error (%)

�w �rxx �rxy

0.5 0.01 0.10 0.97
1.0 0.00 0.08 1.00
1.5 0.02 0.08 1.02
2.0 0.04 0.05 1.04
2.5 0.08 0.00 1.08
3.0 0.14 0.05 1.14
3.5 0.23 0.13 1.23
4.0 0.42 0.36 1.38
4.5 1.02 0.92 1.77
5.0 3.01 4.50 8.30
5.5 0.68 0.70 0.15
6.0 0.31 0.42 0.65
6.5 0.14 0.23 0.84
7.0 0.01 0.09 0.99
7.5 0.12 0.02 1.14
8.0 0.27 0.19 1.30
8.5 0.51 0.43 1.55
9.0 0.96 0.84 2.05
9.5 2.52 2.64 4.16
1.0 3.44 3.54 2.18

0 1 2 3 4 5 6 7 8
x 10−4

−0.5

0

0.5

1

1.5

2

2.5
0/90/90/0 plate

analytical
RBF−PS

Fig. 2. Present and analytical solutions for central deflection �w for cross-ply 0/90/90/0 square plate.
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hxðx; y; tÞ ¼
X1
n¼1

X1
m¼1

HxnmðtÞ cosðaxÞ sinðbyÞ; ð43Þ

hyðx; y; tÞ ¼
X1
n¼1

X1
m¼1

HynmðtÞ sinðaxÞ cosðbyÞ; ð44Þ

qðx; y; tÞ ¼
X1
n¼1

X1
m¼1

Q nmðtÞ sinðaxÞ sinðbyÞ; ð45Þ

with

a ¼ mp
a

; b ¼ np
b
; ð46Þ

QnmðtÞ ¼
4
ab

Z a

0

Z b

0
qðx; y; tÞ sin

mpx
a

sin
npy

b
dxdy: ð47Þ

It should be mentioned that Eqs. (45), (47) represent a Fourier series
expansion of the applied load. Substituting Eqs. (40)–(45) in (31) we
can write

0 1 2 3 4 5 6 7 8
x 10−4

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
0/90/90/0 plate

analytical
RBF−PS

Fig. 3. Present and analytical solutions for in-plane stress �rxx for cross-ply 0/90/90/0 square plate.
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Fig. 4. Present and analytical solutions for in-plane shear stress �rxy for cross-ply 0/90/90/0 square plate.
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M€Dþ KD ¼ F; ð48Þ

where D = (Umn,Vmn,Wmn,Hxmn,Hymn)T.
Eq. (48) can then be solved numerically by the Newmark

method.

5. Numerical examples

Two examples are presented. We consider simply supported
square (b = a) and rectangular (b = 2a) composite plates with thick-

ness h and length a, b under suddenly applied transverse uniform
load (q0 = 1) (see Fig. 1 for basic geometry). A length/thickness ratio
of a/h = 10 is considered for all plates (a = 25).

The material properties for each lamina are given as:

E1 ¼ 25E2; E2 ¼ 2:1� 106; G12 ¼ G13 ¼ 0:5E2;

G23 ¼ 0:2E2; m12 ¼ 0:25; q ¼ 8� 10�6:

For each example, the analytical Navier and numerical RBF-PS solu-
tions are computed and compared. The number of terms used to

0 1 2 3 4 5 6 7 8
x 10−4

−0.05

0

0.05

0.1

0.15

0.2
0/90/90/0 rectangular plate

analytical
RBF−PS

Fig. 5. Present and analytical solutions for central deflection �w for cross-ply 0/90/90/0 rectangular plate.
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0.005

0.01

0.015
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0.025
0/90/90/0 rectangular plate

analytical
RBF−PS

Fig. 6. Present and analytical solutions for in-plane stress �rxx for cross-ply 0/90/90/0 rectangular plate.
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find the Navier solutions (in Eqs. (40)–(45)) is set to 35. For the
Newmark scheme, initial conditions for displacements D and veloc-
ities _D are set to zero, a = 3/2, c = 8/5 and time step Dt = 10�7. The
time step was selected in order to obtain a stable Navier solution,
using the largest possible time step.

The RBF-PS method considers a shape parameter c ¼
ffiffiffiffiffiffi
14
p

=50. A
grid of 13 � 13 uniformly spaced points is used in all examples.

Results for central deflection and stresses are normalized as:

wða=2; b=2Þ ¼ w102E2h3

q0b4 ;

rxxða=2; b=2; h=2Þ ¼ rxxh2

q0b2 ;

rxyða; b;�h=2Þ ¼ rxyh2

q0b2 :

5.1. Composite cross-ply 0/90 plate

The transverse central displacement �w, in-plane stress �rxx and
shear in-plane stress �rxy are listed in Table 1 for a square plate
and in Table 2 for a rectangular plate. Relative errors for �w; �rxx

and �rxy are presented in Tables 3 and 4 and range from 0.01% to
8%. The results are found to be in very good agreement with the
analytical solution. Results are excellent for transverse displace-
ment as well as normal stresses. A reasonable correlation for shear
stresses is also found.

5.2. Composite cross-ply 0/90/90/0 plate

Figs. 2–4 and Figs. 5–7 show the plot of numerical (RBF-PS) and
analytical (Navier) solutions for transverse central displacement �w,
in-plane stress �rxx and shear in plane stress �rxy for cross-ply [0/90/
90/0] square and rectangular plate, respectively.

Numerical results are in excellent agreement with analytical
solutions for central displacement and in-plane stress �rxx. Results
for in-plane shear stresses are in good agreement with the analyt-
ical solutions. One explanation for this small discrepancy can be

due to the in-plane stress being computed at points where degrees
of freedom u0, v0, hx, hy are very close to zero, due to imposed
boundary conditions. This may produce rounding errors, affecting
the final result.

6. Conclusions

For the first time, a combination of radial basis functions and a
pseudospectral method was used to study the transient response
of composite plates. The Newmark time-integration algorithm
was chosen to approximate the ordinary differential equations in
time. The shape parameter in the radial basis function was found
to be a very important factor in maintaining the stability of the
Newmark scheme. Also, the use of a modified radial basis function
allowed us to maintain the same shape parameter in square and
rectangular domains. Overall, the method provides very accurate
solutions for deflections as well as for stresses, and it is simple to
implement.
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Abstract

This article presents a study of the linear transient response of composite plates using

radial basis functions and collocation method. We use the Kansa method and radial basis

functions in a pseudo-spectral framework. The first-order and a third-order shear

deformation plate theories are used. It is shown that the present method produces

highly accurate displacements and stresses when compared with the available results in

the literature.
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Introduction

Recently, radial basis functions (RBFs) have enjoyed considerable success as a
technique for interpolating data and functions. A radial basis function, �(Ix�xjI)
is a spline that depends on the Euclidian distance between distinct data centers xj,
j=1, 2,. . ., N2R

n, also called nodal or collocation points.
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Although most work to date on RBFs relates to scattered data approximation
and, in general, to interpolation theory, there has recently been an increased inter-
est in their use for solving partial differential equations (PDEs). This approach,
which approximates the complete solution of a PDE directly using RBFs is very
attractive due to the fact that this is truly a mesh-free technique. Kansa [1] intro-
duced the concept of solving PDEs using RBFs.

The analysis of plates using the finite element method is now fully established [2].
The use of alternative methods such as the meshless methods based on radial basis
functions is attractive due to the absence of a mesh (hence element interfaces where
the solution derivatives may be discontinuous) and the ease of using the collocation
method. The use of radial basis function for the analysis of structures and materials
has been previously studied by numerous authors [3–14]. More recently, the authors
have applied RBFs to the static deformations of composite beams, plates and shells
[15–19]. A good review on collocation methods using RBFs was given in [20].

The radial basis function collocation method, proposed by Kansa [1], has one
small drawback in transient analysis: for every time step, an extra computation is
needed to obtain the final solution. To overcome such problem, here we propose
the use of radial basis functions in a pseudo-spectral framework, as proposed by
Ferreira and Fasshauer [21]. The advantage is that the method produces the direct
solution in every time step by solving a linearized system of equations.

For transient analysis, the Newmark time-integration algorithm is used. The
Newmark scheme was used by Reddy with a first-order shear deformation theory
(FSDT) to analyze the dynamic response of anisotropic composite plates [22]. It
was also used by Liu et al. [23] with the radial basis function collocation method to
analyze the dynamic behavior of electro-actuated beams and by Kirby and Yosibash
[24] with a pseudo-spectral method for the dynamic nonlinear analysis of plates.
Because there are few results in tabular form, we independently computed an analyt-
ical solution (see Reddy’s book [2]) to compare with the present meshless method.

As it will be shown in the examples, the present method yields excellent results
when compared with the analytical solutions. This article shows for the first time an
application of the RBF-PS method to study the transient response of composite
plates in bending.

The radial basis function method

Consider a linear elliptic partial differential operator L and a bounded region � in
R

n with some boundary q�. The static problems aim the computation of displace-
ments (primary variables) (u) from the global system of equations

Lu ¼ f in � ð1Þ

LBu ¼ g on @� ð2Þ

where L, LB are linear operators in the domain and on the boundary, respectively.
The right-hand side of (1) and (2) represent the external forces applied on the plate
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and the boundary conditions applied along the perimeter of the plate, respectively.
The PDE problem defined in (1) and (2) will be replaced by a finite problem,
defined by an algebraic system of equations, after the radial basis expansions.

The radial basis function (�) approximation of a function (u) is given by

euðxÞ ¼XN
i¼1

�i� kx� yik2ð Þ, x 2 R
n

ð3Þ

where yi, i=1,.., N is a finite set of distinct points (centers) in R
n. The coefficients �i

are chosen so that ũ satisfies some boundary conditions. The most common RBFs
are

�ðrÞ ¼ r3, cubic
�ðrÞ ¼ r2 logðrÞ, thin plate splines
�ðrÞ ¼ ð1� rÞmþpðrÞ, Wendland functions

�ðrÞ ¼ e�ðcrÞ
2

, Gaussian
�ðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ r2
p

, Multiquadrics
�ðrÞ ¼ ðc2 þ r2Þ�1=2, Inverse Multiquadrics

where the Euclidian distance r is real and non-negative and c is a shape parameter,
a positive constant. In the following, the radial basis functions used were both the
multiquadric and the inverse multiquadric functions.

Solution of the interpolation problem

Hardy [25] introduced multiquadrics in the analysis of scattered geographical data.
In the 1990s, Kansa [1] used multiquadrics for the solution of partial differential
equations.

Considering N distinct interpolations, and knowing u(xj), j=1, 2,. . ., N, we find
�i by the solution of a N�N linear system

A� ¼ u ð4Þ

where A=[� (Ix� yiI2)]N�N, �=[�1, �2,. . ., �N]
T and u=[u(x1), u(x2),. . ., u(xN)]

T.
The RBF interpolation matrix A is positive definite for some RBFs [26], but in
general provides ill-conditioned systems.

Solution of the static problem

The solution of a static problem by radial basis functions considers NI nodes in the
domain and NB nodes on the boundary, with total number of nodes N=NI+NB.
We denote the sampling points by xi2�, i=1,. . ., NI and xi2 q�, i=NI+1,. . .,
N. At the domain points, we solve the following system of equations

XN
i¼1

�iL� kx� yik2ð Þ ¼ fðxj Þ, j ¼ 1, 2, . . . , ,NI ð5Þ
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 at Aalborg University Library on December 1, 2011jsm.sagepub.comDownloaded from 



or

L
I� ¼ F ð6Þ

where

L
I
¼ L� kx� yik2ð Þ½ �NI�N

ð7Þ

For the boundary conditions, we have

XN
i¼1

�iLB� kx� yik2ð Þ ¼ gðxj Þ, j ¼ NI þ 1, . . . , ,N ð8Þ

or

B� ¼ G ð9Þ

Therefore, we can write a finite-dimensional static problem as

L
I

B

� �
� ¼

F

G

� �
ð10Þ

where

L
I
¼ L� kxNI

� yj k2
� �� �

NI�N
,B ¼ LB� kxNIþ1 � yj k2

� �� �
NB�N

By inverting the system (10), we obtain the vector of �. We then proceed to the
solution by the interpolation equation (3).

The RBF-pseudospectral method

Pseudo-spectral (PS) methods (see [27] for an introduction to the subject) are
known as highly accurate solvers for PDEs. Generally speaking, one represents
the spatial part of the approximate solution of a given PDE by a linear combina-
tion of certain smooth basis functions (i, j represents the N grid points)

uhðxiÞ ¼
XN
j¼1

�j�j ðxiÞ, i ¼ 1, . . . , ,N ð11Þ

or in matrix–vector notation

u ¼ A� ð12Þ

where A(i, j)=�(i, j). Applying linear operator L to equation (11), we obtain

uL ¼ AL� ð13Þ
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with �=[�1,. . ., �x] and AL=L�j(xi). Solving Equation (12) for � and substituting
in Equation (13), we can write

uL ¼ ALA
�1u � DLu ð14Þ

The derivatives of 14 are easily computed. For example,

u0 ¼ Ax� ¼ Dxu ð15Þ

with Ax ¼
d
dx�j ðxiÞ. In the case of a boundary value problem with linear operator L

applied on the domain and operator LB applied on boundary points, the system of
equations to be solved can be organized as follows:

ðDLÞNk�N

ðDLBÞNb�N

� �
u
� �
¼

fk
qb

� �
ð16Þ

where Nk and Nb are domain and boundary nodes and fk, qb are external conditions
in domain and boundary, respectively (see [21] for more details). In (16), DL, DLB
represent the derivative matrices obtained from (14) and (15).

Traditionally, polynomial basis functions are used. In this article, however, we
will use both multiquadric and inverse multiquadric functions. For rectangular
plates, we change the functions to accommodate the ratio a/b. The inverse multi-
quadric function is then given by:

�j ðxiÞ ¼ �ðrÞ ¼ 1þ c2 ðxi � xj Þ
2
þ
ð yi � yj Þ

2

ðb=aÞ2

	 
� ��1
ð17Þ

where r is the euclidian norm between grid points of coordinates (x, y), a, b the
length of the plate along x and y axis, respectively, and c a (positive) shape param-
eter. The shape parameter is user defined and works as a fine tuner for some radial
basis functions. It should be mentioned that the RBF function is modified to
accommodate the a/b ratio. This is not seen elsewhere in the literature and
proved to be more accurate than the usual inverse multi-quadric functions, in
our computations.

Third-order plate theory of Reddy

Equations of motion and boundary conditions

Consider a rectangular plate of planform dimensions a and b and thickness h
(Figure 1). The coordinate system is taken such that the xy-plane coincides with
the midplane of the plate, and the origin of the coordinate system is taken at the
lower left corner of the plate. The plate is composed of uniform thickness layers of
orthotropic material.
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Following the third-order theory of Reddy [2,28,29], the following displacement
field is chosen, which satisfies the stress-free boundary conditions on the top and
bottom surfaces of the plate and gives parabolic distribution of transverse shear
strains through the plate thickness:

u ¼ u0 þ z �x �
4

3

z

h

� �2
�x þ

@w

@x

	 
� �
ð18Þ

v ¼ v0 þ z �y �
4

3

z

h

� �2
�y þ

@w

@y

	 
� �
ð19Þ

w ¼ w0 ð20Þ

Note that the first-order theory can be fully recovered in the following, just by
setting c1 ¼ �

4
3

z
h

� �2
¼ 0.

The infinitesimal strains associated with the displacement field are

�1 � �11 ¼ �
0
1 þ z k01 þ z2k21

� �
; �2 � �22 ¼ �

0
2 þ z k02 þ z2k22

� �
; �3 � �33 ¼ 0; ð21Þ

�4 � 2�23 ¼ �
0
4 þ z2k24; �5 � 2�13 ¼ �

0
5 þ z2k25; ð22Þ

�6 � 2�12 ¼ �
0
6 þ z k06 þ z2k26

� �
, ð23Þ

where

�01 ¼
@u0
@x

; k01 ¼
@�x
@x

; k21 ¼ �
4

3h2

	 

@�x
@x
þ
@2w

@x2

	 

; ð24Þ

�02 ¼
@v0
@y

; k02 ¼
@�y
@y

; k22 ¼ �
4

3h2

	 

@�y
@y
þ
@2w

@y2

	 

; ð25Þ

Figure 1. Composite plate of thickness h, lengths a, b, and reference axes xyz.
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�04 ¼ �y þ
@w

@y
; k24 ¼ �

4

h2

	 

�y þ

@w

@y

	 

; ð26Þ

�05 ¼ �x þ
@w

@x
; k25 ¼ �

4

h2

	 

�x þ

@w

@x

	 

; ð27Þ

�06 ¼
@u0
@y
þ
@v0
@x

; k06 ¼
@�x
@y
þ
@�y
@x

; ð28Þ

k26 ¼ �
4

3h2

	 

@�x
@y
þ
@�y
@x
þ 2

@2w

@x@y

	 

ð29Þ

The constitutive equations of an orthotropic layer, in material axes, are
given by

�1
�2
�6

8<
:

9=
; ¼

Q11 Q12 0
Q12 Q22 0
0 0 Q66

2
4

3
5 �1

�2
�6

8<
:

9=
;, �4

�5


 �
¼

Q44 0
0 Q55

� �
�4
�5


 �
ð30Þ

where Qij are the plane-stress reduced elastic constants (due to e3=0) in the mate-
rial axes of the plate [2]

Q11 ¼
E1

1� �12�21
, Q12 ¼ �21

E1

1� �12�21
, Q22 ¼

E2

1� �12�21
, ð31Þ

Q44 ¼ KG23, Q55 ¼ KG13, Q66 ¼ G12 ð32Þ

The third-order plate theory does not use shear correction factors (K); therefore,
we set K=1. In the first-order shear theory, we use K=5/6 for isotropic or
monolithic laminates. For sandwich or generic laminates, the FSDT needs a pro-
cedure for the computation of shear correction factors. This will be dealt later in
the paper.

The equations of motion for this theory were derived by Reddy [28–30] using
Hamilton’s principle. They are repeated here for ready reference

�u0 :
@N1

@x
þ
@N6

@y
¼ I1 €u0 þ �I2 €�x �

4

3h2
I4
@ €w0

@x
, ð33Þ

�v0 :
@N6

@x
þ
@N2

@y
¼ I1 €v0 þ �I2 €�y �

4

3h2
I4
@ €w0

@y
, ð34Þ

�w0 :
@Q1

@x
þ
@Q2

@y
þ

@

@x

	 

�Nxx

@w

@x

	 

þ

@

@y

	 

�Nyy
@w

@y
þ 2

@

@x

	 

�Nxy
@w

@y

	 
	 

ð35Þ
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þ q�
4

h2
@R1

@x
þ
@R2

@y

	 

þ

4

3h2
@2P1

@x2
þ 2

@2P6

@x@y
þ
@2P2

@y2

	 

ð36Þ

¼ I1 €w0 �
4

3h2

	 
2

I7
@2 €w0

@x2
þ
@2 €w0

@y2

	 

þ

4

3h2

	 

I4

@ €u0
@x
þ
@ €v0
@y

	 


þ
4

3h2

	 

�I5
@ €�x
@x
þ
@ €�y
@y

	 

,

��x :
@M1

@x
þ
@M6

@y
�Q1 þ

4

h2

	 

R1 �

4

3h2

	 

@P1

@x
þ
@P6

@y

	 


¼ �I2 €u0 þ �I3 €�x �
4

3h2
�I5
@ €w0

@x
, ð37Þ

��y :
@M6

@x
þ
@M2

@y
�Q2 þ

4

h2

	 

R2 �

4

3h2

	 

@P6

@x
þ
@P2

@y

	 


¼ �I2 €v0 þ �I3 €�y �
4

3h2
�I5
@ €w0

@y
ð38Þ

�I2 ¼ I2 �
4

3h2
I4, �I5 ¼ I5 �

4

3h2
I7, �I3 ¼ I3 �

8

3h2
I5 þ

16

9h4
I7 ð39Þ

The stress resultants Ni, Mi, Pi, Qi, and Ri are defined by

Ni,Mi,Pið Þ ¼

Z h=2

�h=2

�i 1, z, z
3

� �
dz, ði ¼ 1, 2, 6Þ, ð40Þ

Q2,R2ð Þ ¼

Z h=2

�h=2

�4 1, z2
� �

dz, Q1,R1ð Þ ¼

Z h=2

�h=2

�5 1, z2
� �

dz, ð41Þ

and the inertias Ii (i=1, 2, 3, 4, 5, 7) by

I1, I2, I3, I4, I5, I7ð Þ ¼

Z h=2

�h=2

	 1, z, z2, z3, z4, z6
� �

dz ð42Þ

r being the material density. An interesting feature of this higher order (HSDT)
theory is that it considers the same number of degrees of freedom as in the FSDT.
In equation (33), �Nxx, �Nyy, and �Nxy denote the in-plane loads perpendicular to the
edges x=0 and y=0, and in-plane shear buckling loads, respectively. For free
vibrations, one sets �Nxx ¼ �Nyy ¼ �Nxy ¼ 0, and for buckling analysis one sets all
inertial terms to zero.

The stress resultants defined in Equation (40) can be related to the total strains
in Equation (21) by the following equations [2]:
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N1

N2

N6

8<
:

9=
;

M1

M2

M6

8<
:

9=
;

P1

P2

P6

8<
:

9=
;

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

¼

A11 A12 A16

A22 A26

symm: A66

2
4

3
5 B11 B12 B16

B22 B26

symm: B66

2
4

3
5 E11 E12 E16

E22 E26

symm: E66

2
4

3
5

D11 D12 D16

D22 D26

symm: D66

2
4

3
5 F11 F12 F16

F22 F26

symm: F66

2
4

3
5

symmetric

H11 H12 H16

H22 H26

symm: H66

2
4

3
5

2
6666666666666664

3
7777777777777775

�01
�02
�06

8><
>:

9>=
>;

k01
k02
k06

8><
>:

9>=
>;

k21
k22
k26

8><
>:

9>=
>;

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;
ð43Þ

Q2

Q1


 �
R2

R1


 �
8>><
>>:

9>>=
>>; ¼

A44 A45

A45 A55

� �
D44 D45

D45 D55

� �

symm:
F45 F45

F45 F55

� �
2
664

3
775

�04
�05


 �
k24
k25


 �
8>><
>>:

9>>=
>>; ð44Þ

Here, Aij, Bij, etc., denote the plate stiffnesses

Aij,Bij,Dij,Eij,Fij,Hij

� �
¼

Z h=2

�h=2

�Qij 1, z, z
2, z3, z4, z6

� �
dz ði, j ¼ 1, 2, 6Þ,

Aij,Dij,Fij

� �
¼

Z h=2

�h=2

�Qij 1, z
2, z4

� �
dz ði, j ¼ 4, 5Þ, ð45Þ

where �Qij are the transformed elastic stiffness coefficients.

Shear correction factors

In case one wishes to use the FSDT, the shear correction factors should be com-
puted for a general laminate. At layer interfaces, continuity of transverse shear
stresses is required, for laminates with distinct materials across the thickness direc-
tion. According to the FSDT assumptions, the transverse shear deformation is
constant through the thickness, which is a coarse approximation to the actual
variation even for a homogeneous cross-section. For homogeneous cross-sections,
the shear deformation is commonly accepted to be a parabolic function of z.
Therefore, a shear correction factor k must be introduced to approximate on an
average basis the transverse deformation energy. Assuming a heterogeneous plate
free of tangential tractions, the equilibrium equation in the x direction can be
expressed as
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@�x
@x
þ
@
xy
@y
þ
@
xz
@z
¼ 0 ð46Þ

Assuming, for simplicity, cylindrical bending, then


xz ¼ �

Z z

�h=2

@�x
@x

dz ¼ �

Z z

�h=2

@Mx

@x

D1ðzÞ

R1
zdz ¼ �

Qx

R1

Z z

�h=2

D1ðzÞzdz ¼
Qx

R1
gðzÞ

ð47Þ

where Qx is the shear force on the xz plane; R1 ¼
R h=2
�h=2 D1ðzÞz

2dz the flexural
plate stiffness in the x direction; z the coordinate through the thickness;
gðzÞ ¼ �

R z
�h=2 D1ðzÞzdz is the shear shape function.

The function g(z) that shapes the shear stress diagram is independent of load-
ings, becoming the well-known parabolic function g(z)= [D1h

2/8][1� 4(z/h)2] for
the case of a homogeneous cross-section. The strain energy component is given as

ws ¼

Z h=2

�h=2


2xz
G13ðzÞ

dz ¼
Q2

x

R2
1

Z h=2

�h=2

g2ðzÞ

G13ðzÞ
dz ð48Þ

where G13(z) is the shear modulus, variable through the thickness, in the xz plane.
The strain energy component, under the assumption of constant shear strain, is
given as

ws ¼

Z h=2

�h=2

�xzG13ðzÞ�xzdz ¼
Q2

x

h2G
2

1

hG1 ¼
Q2

x

hG1

ð49Þ

where

hG1 ¼

Z h=2

�h=2

G13ðzÞdz ð50Þ

and �xz is the mean value of the shear strains. Therefore, it is now possible to
evaluate the correction factor k1 in the xz plane to be

k1 ¼
ws

ws
¼

R2
1

hG1

Z h=2

�h=2

g2ðzÞ=G13ðzÞdz

ð51Þ

For k2, we proceed the same way. This can be applied to symmetric or non-sym-
metric cross-sections. Here, we use the same correction factor (k= k1= k2).
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For numerical implementation, all integrals are replaced by summation over the
layer thicknesses in the case of composite laminated structures with different mate-
rial layers.

Numerical time integration

In this article, the Newmark method is used [2] for the numerical time integration.
The resulting system of equations of motion (33) can be written in the form:

M €uþ Ku ¼ F ð52Þ

Time derivatives in Equation (52) are approximated using Taylor’s series

€utþ�t ¼ a3ðutþ�t � utÞ � a4 _ut � a5 €ut ð53Þ

_utþ�t ¼ _ut þ a1 €ut þ a2 €utþ�t ð54Þ

with a1 ¼ ð1� �Þ�t; a2 ¼ ��t; a3 ¼
2

�ð�tÞ2
; a4 ¼ a3�t; a5 ¼

1��
�

Substituting equations (53), (54) in equation (52), the later can be written as:

K̂u ¼ F̂ ð55Þ

with

K̂tþ�t ¼ Ktþ�t þ a3Mtþ�t ð56Þ

F̂tþ�t ¼ Ftþ�t þMtþ�tða3ut þ a4 _ut þ a5 €utÞ ð57Þ

Initial values for u0 and _u0 are set to zero and ü0 is given by ü0=M�1(F�Ku).

Analytical solution

Because there are few results in tabular form, we implemented an analytical solu-
tion (see Reddy’s book [2]) to compare with the present meshless method.

The analytical solution is computed by assuming a spacial variation of the dis-
placements and reducing the differential equations to a set of differential equations
in time (see Reddy’s book [2] for details).

The solution of Equation (52) is assumed to be of the form

uðx, y, tÞ ¼
X1
m¼1

X1
n¼1

TmnðtÞUmnðx, yÞ ð58Þ
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The Navier solution procedure is used to determine the spatial variation and the
Newmark method is used to solve the resulting ordinary differential equations in
time.

As an example, for a simply supported cross-ply rectangular plate of lengths a
and b, the boundary conditions are imposed as:

in x ¼ 0, a : v ¼ w ¼ �y ¼ Nx ¼Mx ¼ 0 ð59Þ

in y ¼ 0, b : u ¼ w ¼ �x ¼ Ny ¼My ¼ 0 ð60Þ

The boundary conditions in (59) and (60) are satisfied by the following expansions
of the displacements and applied load [2]:

u0ðx, y, tÞ ¼
X1
n¼1

X1
m¼1

UnmðtÞ cosð�xÞ sinð�yÞ ð61Þ

v0ðx, y, tÞ ¼
X1
n¼1

X1
m¼1

VnmðtÞ sinð�xÞ cosð�yÞ ð62Þ

w0ðx, y, tÞ ¼
X1
n¼1

X1
m¼1

WnmðtÞ sinð�xÞ sinð�yÞ ð63Þ

�xðx, y, tÞ ¼
X1
n¼1

X1
m¼1

�xnmðtÞ cosð�xÞ sinð�yÞ ð64Þ

�yðx, y, tÞ ¼
X1
n¼1

X1
m¼1

�ynmðtÞ sinð�xÞ cosð�yÞ ð65Þ

qðx, y, tÞ ¼
X1
n¼1

X1
m¼1

QnmðtÞ sinð�xÞ sinð�yÞ ð66Þ

with

� ¼
m


a
;� ¼

n


b
ð67Þ

QnmðtÞ ¼
4

ab

Z a

0

Z b

0

qðx, y, tÞ sin
m
x

a
sin

n
y

b
dx dy ð68Þ

Substituting Equations (61)–(66) in (52), we can write

M €�þ K� ¼ F ð69Þ
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where �=(Umn, Vmn, Wmn, �xmn, �ymn)
T, and M, K are the mass and stiffness

matrices, respectively. The source vector is denoted by F. Equation (69) can then be
solved numerically by the Newmark method.

Numerical examples

Three examples are presented (cross-ply 0/90, 0/90/90/0 and sandwich plates).
(b=2a) composite plates with thickness h and length a, b under suddenly applied
transverse uniform load (q0=1) for cross-ply plates and uniform and sinusoidal
load for sandwich plates.

The RBF-PS method is used with the inverse multiquadric to model the cross-
ply plates and Kansa’s unsymmetrical version with multiquadrics is used to model
sandwich plates.

For each example, the analytical Navier and numerical RBF-PS solutions are
computed and compared. The number of terms used to find the Navier solutions
(in Equations (61)–(66)) is set to 35. For the Newmark scheme, initial conditions
for displacements � and velocities _� are set to zero, �=3/2, g=8/5 and time step
�t=10�7 for cross-ply plates and �t=10�3 for sandwich plates. The time step
was selected in order to obtain a stable Navier solution, using the largest possible
time step.

For cross-ply plates, a length-to-thickness ratio of a/h=10 is considered
(a=25). Also, the material properties for each lamina are given as:

E1 ¼ 25E2;E2 ¼ 2:1� 106;G12 ¼ G13 ¼ 0:5E2;

G23 ¼ 0:2E2; �12 ¼ 0:25; 	 ¼ 8� 10�6

Composite cross-ply 0/90 plate

The RBF-PS method considers a shape parameter c ¼
ffiffiffiffiffi
14
p

=50. A grid of 13� 13
uniformly spaced points is used in all examples. Results for central deflection and
stresses are normalized as:

wða=2, b=2Þ ¼ w102ðE2h
3Þ=q0b

4;

�xxða=2, b=2, h=2Þ ¼ �xxh
2=ðq0b

2Þ;

�xyða, b,�h=2Þ ¼ �xyh
2=ðq0b

2Þ;

The transverse central displacement w, in-plane stress �xx and shear in-plane stress
�xy are listed in Table 1 for a square plate and in Table 2 for a rectangular plate.
Relative errors for w, �xx and �xy are presented in Tables 3 and 4 and range from
0.01% to 8%. The results are found to be in very good agreement with the ana-
lytical solution. Results are excellent for transverse displacement as well as normal
stresses. A reasonable correlation for shear stresses is also found.

Roque et al. 693

 at Aalborg University Library on December 1, 2011jsm.sagepub.comDownloaded from 



T
a
b

le
1
.

C
ro

ss
-p

ly
0
/9

0
sq

u
ar

e
p
la

te
b

=
a,

p
=

0
,
c
¼

ffiffiffiffiffiffiffiffi
ffiffiffi

n
þ

1
p

=5
0
.

t�
1
0
�

4
w

�
xx

�
xy

R
B

F-
P
S

A
n
al

yt
ic

al
R

B
F-

P
S

A
n
al

yt
ic

al
R

B
F-

P
S

A
n
al

yt
ic

al

0
.5

4
.8

0
7
3
�

1
0
�

1
4
.8

0
6
4
�

1
0
�

1
3
.2

3
5
7
�

1
0
�

2
3
.2

3
2
4
�

1
0
�

2
1
.9

9
8
1
�

1
0
�

2
2
.0

2
1
2
�

1
0
�

2

1
.0

1
.5

4
6
6

1
.5

4
6
6

1
.0

5
5
5
�

1
0
�

1
1
.0

5
4
8
�

1
0
�

1
6
.4

8
1
5
�

1
0
�

2
6
.5

6
2
2
�

1
0
�

2

1
.5

2
.3

6
9
5

2
.3

7
1
1

1
.6

2
2
4
�

1
0
�

1
1
.6

2
1
9
�

1
0
�

1
9
.9

5
0
5
�

1
0
�

2
1
.0

0
8
1
�

1
0
�

1

2
.0

2
.3

1
1
2

2
.3

1
5
7

1
.5

7
8
3
�

1
0
�

1
1
.5

7
9
9
�

1
0
�

1
9
.6

9
3
0
�

1
0
�

2
9
.8

3
1
4
�

1
0
�

2

2
.5

1
.4

1
8
2

1
.4

2
4
3

9
.6

8
8
6
�

1
0
�

2
9
.7

2
3
9
�

1
0
�

2
5
.9

4
6
6
�

1
0
�

2
6
.0

4
7
4
�

1
0
�

2

3
.0

3
.8

5
2
1
�

1
0
�

1
3
.8

9
6
3
�

1
0
�

1
2
.6

0
9
1
�

1
0
�

2
2
.6

3
5
1
�

1
0
�

2
1
.6

0
5
8
�

1
0
�

2
1
.6

4
3
1
�

1
0
�

2

3
.5

1
.4

1
9
6
�

1
0
�

2
1
.3

6
1
4
�

1
0
�

2
4
.2

2
5
8
�

1
0
�

4
3
.9

6
9
4
�

1
0
�

4
3
.8

8
9
7
�

1
0
�

4
3
.6

0
2
7
�

1
0
�

4

4
.0

5
.9

1
9
1
�

1
0
�

1
5
.8

6
4
2
�

1
0
�

1
4
.0

2
9
1
�

1
0
�

2
3
.9

8
9
2
�

1
0
�

2
2
.4

7
4
9
�

1
0
�

2
2
.4

8
2
8
�

1
0
�

2

4
.5

1
.6

6
8
4

1
.6

6
2
8

1
.1

3
9
6
�

1
0
�

1
1
.1

3
4
5
�

1
0
�

1
6
.9

9
7
2
�

1
0
�

2
7
.0

5
8
5
�

1
0
�

2

5
.0

2
.4

0
7
5

2
.4

0
7
6

1
.6

4
5
4
�

1
0
�

1
1
.6

4
4
3
�

1
0
�

1
1
.0

1
0
0
�

1
0
�

1
1
.0

2
2
7
�

1
0
�

1

5
.5

2
.2

3
5
8

2
.2

4
4
1

1
.5

2
9
7
�

1
0
�

1
1
.5

3
3
9
�

1
0
�

1
9
.3

8
4
7
�

1
0
�

2
9
.5

3
6
8
�

1
0
�

2

6
.0

1
.2

8
8
3

1
.3

0
0
7

8
.7

8
6
2
�

1
0
�

2
8
.8

6
1
4
�

1
0
�

2
5
.3

9
8
2
�

1
0
�

2
5
.5

1
5
9
�

1
0
�

2

6
.5

3
.0

1
7
0
�

1
0
�

1
3
.0

9
6
1
�

1
0
�

1
2
.0

2
6
1
�

1
0
�

2
2
.0

8
1
2
�

1
0
�

2
1
.2

5
0
5
�

1
0
�

2
1
.3

0
0
6
�

1
0
�

2

7
.0

4
.1

6
6
6
�

1
0
�

2
3
.9

1
6
4
�

1
0
�

2
2
.5

2
6
4
�

1
0
�

3
2
.3

4
4
9
�

1
0
�

3
1
.6

1
2
8
�

1
0
�

3
1
.5

1
4
7
�

1
0
�

3

7
.5

7
.0

9
0
1
�

1
0
�

1
6
.9

7
7
5
�

1
0
�

1
4
.8

1
4
2
�

1
0
�

2
4
.7

3
2
7
�

1
0
�

2
2
.9

6
2
5
�

1
0
�

2
2
.9

5
0
2
�

1
0
�

2

8
.0

1
.7

8
4
1

1
.7

7
3
3

1
.2

1
9
2
�

1
0
�

1
1
.2

1
0
9
�

1
0
�

1
7
.4

8
3
0
�

1
0
�

2
7
.5

3
1
0
�

1
0
�

2

8
.5

2
.4

3
1
8

2
.4

3
1
7

1
.6

6
3
3
�

1
0
�

1
1
.6

6
1
5
�

1
0
�

1
1
.0

2
0
7
�

1
0
�

1
1
.0

3
3
2
�

1
0
�

1

9
.0

2
.1

5
0
2

2
.1

6
3
3

1
.4

6
9
5
�

1
0
�

1
1
.4

7
7
2
�

1
0
�

1
9
.0

2
0
8
�

1
0
�

2
9
.1

8
8
1
�

1
0
�

2

9
.5

1
.1

5
9
3

1
.1

7
7
7

7
.9

1
0
3
�

1
0
�

2
8
.0

3
0
0
�

1
0
�

2
4
.8

5
7
5
�

1
0
�

2
4
.9

9
6
2
�

1
0
�

2

1
0

2
.2

9
4
2
�

1
0
�

1
2
.3

9
8
9
�

1
0
�

1
1
.5

3
3
0
�

1
0
�

2
1
.6

0
2
2
�

1
0
�

2
9
.4

8
7
8
�

1
0
�

3
1
.0

0
3
3
�

1
0
�

2

694 Journal of Sandwich Structures and Materials 13(6)

 at Aalborg University Library on December 1, 2011jsm.sagepub.comDownloaded from 



T
a
b

le
2
.

C
ro

ss
-p

ly
0
/9

0
re

ct
an

gu
la

r
p
la

te
b

=
2
a

p
=

0
,
c
¼

ffiffiffiffiffiffiffiffi
ffiffiffi

n
þ

1
p

=5
0
.

t�
1
0
�

4
w

�
xx

�
xy

R
B

F-
P
S

A
n
al

yt
ic

al
R

B
F-

P
S

A
n
al

yt
ic

al
R

B
F-

P
S

A
n
al

yt
ic

al

0
.5

3
.1

3
3
8
�

1
0
�

2
3
.1

3
3
5
�

1
0
�

2
8
.0

2
8
3
�

1
0
�

3
8
.0

2
0
6
�

1
0
�

3
2
.8

6
9
8
�

1
0
�

3
2
.8

9
8
1
�

1
0
�

3

1
.0

1
.1

2
7
1
�

1
0
�

1
1
.1

2
7
1
�

1
0
�

1
2
.9

2
8
4
�

1
0
�

2
2
.9

2
6
1
�

1
0
�

2
1
.0

3
0
8
�

1
0
�

2
1
.0

4
1
3
�

1
0
�

2

1
.5

2
.1

1
7
0
�

1
0
�

1
2
.1

1
7
4
�

1
0
�

1
5
.5

2
1
8
�

1
0
�

2
5
.5

1
7
5
�

1
0
�

2
1
.9

3
5
9
�

1
0
�

2
1
.9

5
5
9
�

1
0
�

2

2
.0

2
.8

8
9
2
�

1
0
�

1
2
.8

9
0
5
�

1
0
�

1
7
.5

2
6
6
�

1
0
�

2
7
.5

2
2
9
�

1
0
�

2
2
.6

4
3
5
�

1
0
�

2
2
.6

7
1
4
�

1
0
�

2

2
.5

3
.1

3
6
7
�

1
0
�

1
3
.1

3
9
3
�

1
0
�

1
8
.1

7
5
7
�

1
0
�

2
8
.1

7
5
4
�

1
0
�

2
2
.8

6
8
8
�

1
0
�

2
2
.9

0
0
0
�

1
0
�

2

3
.0

2
.7

6
1
3
�

1
0
�

1
2
.7

6
5
2
�

1
0
�

1
7
.2

0
1
2
�

1
0
�

2
7
.2

0
4
5
�

1
0
�

2
2
.5

2
3
6
�

1
0
�

2
2
.5

5
2
6
�

1
0
�

2

3
.5

1
.9

1
3
1
�

1
0
�

1
1
.9

1
7
5
�

1
0
�

1
4
.9

7
9
8
�

1
0
�

2
4
.9

8
6
5
�

1
0
�

2
1
.7

4
6
9
�

1
0
�

2
1
.7

6
8
6
�

1
0
�

2

4
.0

9
.2

9
6
7
�

1
0
�

2
9
.3

3
5
7
�

1
0
�

2
2
.4

1
6
5
�

1
0
�

2
2
.4

2
5
2
�

1
0
�

2
8
.4

5
4
8
�

1
0
�

3
8
.5

7
3
3
�

1
0
�

3

4
.5

2
.0

2
5
5
�

1
0
�

2
2
.0

4
6
4
�

1
0
�

2
5
.2

1
4
0
�

1
0
�

3
5
.2

6
2
2
�

1
0
�

3
1
.7

9
0
4
�

1
0
�

3
1
.8

2
2
7
�

1
0
�

3

5
.0

2
.0

8
9
4
�

1
0
�

3
2
.0

2
8
4
�

1
0
�

3
4
.2

0
9
7
�

1
0
�

4
4
.0

2
8
5
�

1
0
�

4
1
.2

6
6
5
�

1
0
�

4
1
.1

6
9
4
�

1
0
�

4

5
.5

4
.5

6
3
5
�

1
0
�

2
4
.5

3
2
8
�

1
0
�

2
1
.1

8
1
7
�

1
0
�

2
1
.1

7
3
5
�

1
0
�

2
4
.1

0
5
4
�

1
0
�

3
4
.1

1
1
5
�

1
0
�

3

6
.0

1
.3

3
5
2
�

1
0
�

1
1
.3

3
1
1
�

1
0
�

1
3
.4

7
6
9
�

1
0
�

2
3
.4

6
2
4
�

1
0
�

2
1
.2

1
4
7
�

1
0
�

2
1
.2

2
2
6
�

1
0
�

2

6
.5

2
.3

0
7
5
�

1
0
�

1
2
.3

0
4
3
�

1
0
�

1
6
.0

1
1
0
�

1
0
�

2
5
.9

9
6
9
�

1
0
�

2
2
.1

0
4
9
�

1
0
�

2
2
.1

2
2
8
�

1
0
�

2

7
.0

2
.9

8
6
4
�

1
0
�

1
2
.9

8
6
0
�

1
0
�

1
7
.7

8
5
2
�

1
0
�

2
7
.7

7
8
0
�

1
0
�

2
2
.7

2
5
7
�

1
0
�

2
2
.7

5
2
8
�

1
0
�

2

7
.5

3
.1

0
1
9
�

1
0
�

1
3
.1

0
5
5
�

1
0
�

1
8
.0

8
7
3
�

1
0
�

2
8
.0

8
8
8
�

1
0
�

2
2
.8

3
0
9
�

1
0
�

2
2
.8

6
3
5
�

1
0
�

2

8
.0

2
.6

0
8
5
�

1
0
�

1
2
.6

1
5
7
�

1
0
�

1
6
.7

9
7
0
�

1
0
�

2
6
.8

0
9
7
�

1
0
�

2
2
.3

7
9
6
�

1
0
�

2
2
.4

1
1
0
�

1
0
�

2

8
.5

1
.7

0
3
1
�

1
0
�

1
1
.7

1
1
8
�

1
0
�

1
4
.4

3
6
0
�

1
0
�

2
4
.4

5
5
3
�

1
0
�

2
1
.5

5
0
7
�

1
0
�

2
1
.5

7
5
1
�

1
0
�

2

9
.0

7
.4

6
3
0
�

1
0
�

2
7
.5

3
5
2
�

1
0
�

2
1
.9

3
8
8
�

1
0
�

2
1
.9

5
5
2
�

1
0
�

2
6
.7

5
1
7
�

1
0
�

3
6
.8

9
3
3
�

1
0
�

3

9
.5

1
.1

8
6
8
�

1
0
�

2
1
.2

1
7
5
�

1
0
�

2
2
.9

8
7
6
�

1
0
�

3
3
.0

6
8
5
�

1
0
�

3
1
.0

1
2
5
�

1
0
�

3
1
.0

5
6
4
�

1
0
�

3

1
0

6
.9

7
1
1
�

1
0
�

3
6
.7

3
9
3
�

1
0
�

3
1
.7

2
8
4
�

1
0
�

3
1
.6

6
9
3
�

1
0
�

3
5
.6

8
9
4
�

1
0
�

4
5
.5

6
7
8
�

1
0
�

4

Roque et al. 695

 at Aalborg University Library on December 1, 2011jsm.sagepub.comDownloaded from 



Composite cross-ply 0/90/90/0 plate

The RBF-PS method considers a shape parameter c ¼
ffiffiffiffiffi
14
p

=50. A grid of 13� 13
uniformly spaced points is used in all examples. Results for central deflection and
stresses are normalized as:

wða=2, b=2Þ ¼ w102ðE2h
3Þ=q0b

4;

�xxða=2, b=2, h=2Þ ¼ �xxh
2=ðq0b

2Þ;

�xyða, b,�h=2Þ ¼ �xyh
2=ðq0b

2Þ;

Figures 2–4 and 5–7 show the plot of numerical (RBF-PS) and analytical (Navier)
solutions for transverse central displacement w, in plane stress �xx and shear in
plane stress �xy for cross-ply [0/90/90/0] square and rectangular plate, respectively.

Numerical results are in excellent agreement with analytical solutions for central
displacement and in-plane stress �xx. Results for in-plane shear stresses are in good
agreement with the analytical solutions. One explanation for this small discrepancy

Table 3. Relative error for cross-ply 0/90 square plate b = a.

Relative error (%)

t� 10�4 w �xx �xy

0.5 0.02 0.10 1.16

1.0 0.00 0.07 1.25

1.5 0.07 0.03 1.31

2.0 0.19 0.11 1.43

2.5 0.43 0.36 1.70

3.0 1.13 0.99 2.32

3.5 4.27 6.46 7.38

4.0 0.94 1.00 0.32

4.5 0.34 0.45 0.88

5.0 0.00 0.07 1.25

5.5 0.37 0.28 1.62

6.0 0.95 0.85 2.18

6.5 2.56 2.65 4.00

7.0 6.39 7.74 6.08

7.5 1.61 1.72 0.42

8.0 0.61 0.69 0.64

8.5 0.01 0.11 1.22

9.0 0.60 0.52 1.86

9.5 1.56 1.49 2.85

10 4.36 4.32 5.75
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can be due to the in-plane stress being computed at points, where degrees of free-
dom u0, v0, yx, yy are very close to zero, due to imposed boundary conditions. This
may produce rounding errors, affecting the final result.

Three-layer square sandwich plate

A simply supported sandwich square plate, under uniform and sinusoidal trans-
verse load is considered. The material properties of the sandwich core are expressed
in the stiffness matrix, Qcore as:

Qcore ¼

0:999781 0:231192 0 0 0
0:231192 0:524886 0 0 0

0 0 0:262931 0 0
0 0 0 0:266810 0
0 0 0 0 0:159914

2
66664

3
77775

Table 4. Relative error for cross-ply 0/90 rectangular plate

b = 2a.

Relative error (%)

t� 10�4 w �xx �xy

0.5 0.01 0.10 0.97

1.0 0.00 0.08 1.00

1.5 0.02 0.08 1.02

2.0 0.04 0.05 1.04

2.5 0.08 0.00 1.08

3.0 0.14 0.05 1.14

3.5 0.23 0.13 1.23

4.0 0.42 0.36 1.38

4.5 1.02 0.92 1.77

5.0 3.01 4.50 8.30

5.5 0.68 0.70 0.15

6.0 0.31 0.42 0.65

6.5 0.14 0.23 0.84

7.0 0.01 0.09 0.99

7.5 0.12 0.02 1.14

8.0 0.27 0.19 1.30

8.5 0.51 0.43 1.55

9.0 0.96 0.84 2.05

9.5 2.52 2.64 4.16

1.0 3.44 3.54 2.18
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Figure 2. Present and analytical solutions for central deflection w for cross-ply 0/90/90/0

square plate.
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Figure 3. Present and analytical solutions for in-plane stress �xx for cross-ply 0/90/90/0

square plate.
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Figure 4. Present and analytical solutions for in-plane shear stress �xy for cross-ply 0/90/90/0

square plate.
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Figure 5. Present and analytical solutions for central deflection w for cross-ply 0/90/90/0

rectangular plate.
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Figure 6. Present and analytical solutions for in-plane stress �xx for cross-ply 0/90/90/0 rect-

angular plate.
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rectangular plate.
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Figure 8. Sandwich plate under sinusoidal load.
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Figure 9. Sandwich plate under uniform load.
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and rcore=1. The skins material properties are related with the core properties by
R=15:

Qskin ¼ RQcore; 	skin ¼ R	core

For all sandwich plates, time step for Newmark iteration algorithm is �t=10�3.
Unlike the previous examples, where we used the RBF formulation in a pseudo-
spectral framework, here we use the RBF formulation in Kansa’s unsymmetrical
version, with the multiquadric function with c ¼ 2=

ffiffiffi
n
p

.
First- and third-order shear deformation plate theories are used to study the

transient analysis of sandwich plates. The third-order shear deformation theory
(TSDT) does not need shear correction factors. For FSDT, a shear correction
factor of k=0.2625 is used. Figures 8 and 9 show the evolution of central deflec-
tion, w with time t. RBF and analytical (Navier) solutions are plotted for compar-
ison. It can be seen an excellent correlation between Navier solutions and the
solutions of the present meshless formulation.

Conclusions

In this article, we presented a transient analysis of composite and sandwich plates
using radial basis functions and collocation method. Two collocations techniques
were used: the Kansa’s unsymmetrical collocation and radial basis functions on a
pseudospectral framework. Both approaches provide identical results. However, the
use of RBF-PS method is computationally less expensive, as it does not need the
interpolation of displacements at each time step. The Newmark time-integration
algorithm was chosen to approximate the ordinary differential equations in time.
The first-order and the third-order shear deformation plate theories were used.

The shape parameter in the radial basis function was found to be a very impor-
tant factor in maintaining the stability of the Newmark scheme. Also, the use of a
modified radial basis function allowed us to maintain the same shape parameter in
square and rectangular domains. Overall, both methods provide very accurate
solutions for deflections as well as for stresses, and it is simple to implement.
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Dynamic Analysis of Functionally Graded Plates and Shells
by Radial Basis Functions
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A meshless numerical method with a first-order shear deforma-
tion theory is used to study the linear transient response of func-
tionally graded plates and shells. The present meshless method is
based on the combination of pseudospectral methods and a collo-
cation method with radial basis functions. A Newmark algoritm is
used to advance the analysis in time. Results obtained are compared
with analytical solutions.

Keywords meshless, shear deformation, functionally graded plates,
functionally graded shells, radial basis

1. INTRODUCTION
A first-order shear deformation theory [1] is used to study

the linear transient response of functionally graded plates and
shells. The first order theory generates a system of five partial
differential equations (PDEs) with five boundary conditions. To
solve the system of PDEs, a method that combines radial ba-
sis functions with pseudospectrals is used. Pseudospectral (PS)
methods are known as highly accurate solvers for PDEs [2].
Generally speaking, the spatial part of the approximate solution
of a partial differential equation can be given by a linear com-
bination of radial basis functions, i.e., the inverse multiquadric.
The present method allows the analysis of irregular geometries,
making it a possible alternative to more established methods,
such as finite elements.

For the analysis in time, a Newmark algorithm is used. The
Newmark scheme was used by Reddy with a first order shear de-
formation theory to analyze the dynamic response of anisotropic
composite plates [3]. It was also used by Liu et al. [4] with the
radial basis function collocation method to analyze the dynamic

Address correspondence to Carla Roque, Departmento de Engen-
haria Mecânica faculdade de Engenharia de Universidade do Porto Rua
Dr. Roberto frias, 4200-465, Porto, Portugal. E-mail: croque@fe.up.pt

behavior of electroactuated beams and by Kirby and Yosibash
[5] with a pseudospectral method for the dynamic non-linear
analysis of plates.

A collocation method with radial basis functions was used
by the authors for the analysis of static and free vibration
of composite plates and shells and functionally graded plates
[6–8].

Functionally graded materials (FGM) were first proposed by
Bever and Duwez [9] in 1972. The computational modelling of
functionally graded materials is an important tool to the under-
standing of static and dynamic behavior, and has been the target
of intense research, from micro to macro mechanics [10–13].
In functionally graded materials (FGMs), material properties
vary continuously as opposed to those in laminated composites
where such variation is discontinuous at layer interfaces. In an
FGM the material properties are varied by changing the volume
fractions of the constituents. An example of such materials is an
NFG coating deposited on top of a metallic substrate [14, 15].

The static and dynamic analysis of shallow FGM shells using
a meshless method based in local Petrov-Galerkin weak-form
was performed by Sladek et al. [16].

This paper presents, for the first time, the transient dynamical
analysis of functionally graded plates and shells, using a pseudo-
spectral/radial basis function method.

2. THE RBF-PSEUDOSPECTRAL METHOD
Pseudospectral (PS) methods (see [2] for an introduction to

the subject) are known as highly accurate solvers for PDEs.
Generally speaking, one represents the spatial part of the ap-
proximate solution of a given PDE by a linear combination
of certain smooth basis functions, (i, j represents the N grid
points).

uh(xi)
N∑

j=1

αjφj (xi), i = 1, . . . N (1)
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or in matrix-vector notation

u = Aα (2)

with α = [α1, . . . αx] and Ai,i = φi(xi)
Traditionally, polynomial basis functions are used. In this

paper, however, we will use radial basis functions (RBFs). In
this paper, we use an inverse multiquadric, defined as:

φj (xi) = �(r) = 1/

√
1 + c2

(
(xi − xj )2 + (yi − yj )2

(b/a)2

)
(3)

where r is the euclidian norm between grid points of coordinates
(x, y), a, b are the length of the plate along x and y axis,
respectively and c is a user defined shape parameter.

Note that in Eq. (3) the radial basis function depends on the di-
rection it is being computed and is sometimes called anisotropic
radial basis function [17].

The derivatives are easily computed. For example,

u′ = Axα = Du (4)

with Ax = d
xd

φj (xi) where the matrix is the differentiation
matrix.

The use of PS and RBF combined for the analysis of struc-
tures was first presented by Ferreira and Fasshauer [18]. Its
application for laminated structures was then presented by
Ferreira et al. [19].

3. FIRST ORDER SHEAR DEFORMATION THEORIES
First-order theories are adequate for modeling moderately

thick plates and shells and are of simpler physical interpretation
than higher order shear deformation theories [1]. In this section
the first-order shear deformation theories for plates and shells are
presented. In both theories a small displacement/small rotation
field is assumed. Using strain-displacement relationships and
the principle of virtual displacements the equilibrium equations
can be written [1].

3.1. First-Order Shear Deformation Plate Theory
The displacement field for the first order shear deformation

plate theory is [1]:

u(x, y, z, t) = u0(x, y, t) + zφx(x, y, t)

v(x, y, z, t) = v0(x, y, t) + zφy(x, y, t) (5)

w(x, y, z, t) = w0(x, y, t)

where u and v are the inplane displacements at any point
(x, y, z), u0 and v0 denote the inplane displacement of the point
(x, y, 0) on the midplane, w is the deflection, φx and φy are the
rotations of the normals to the midplane about the y and x axes,
respectively. The thickness of the plate is denoted as h.

The strain-displacement relationships are given as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εxx

εyy

γxy

γxz

γyz

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂x

∂v

∂y

∂u

∂z
+ ∂u

∂x

∂u

∂z
+ ∂w

∂x

∂v

∂z
+ ∂w

∂y

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6)

Therefore strains can be expressed as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εxx

εyy

γxy

γxz

γyz

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε(0)
xx

ε(0)
yy

γ(0)
xy

γ(0)
xz

γ(0)
yz

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+ z

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ε(1)
xx

ε1)
yy

γ(1)
xy

γ(1)
xz

γ(1)
yz

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(7)

where

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε(0)
xx

ε(0)
yy

γ(0)
xy

γ(0)
xz

γ (0)
yz

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂uo

∂x

∂vo

∂y

∂uo

∂y
+ ∂uo

∂x

∂uo

∂x
+ φx

∂uo

∂y
+ φy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ε(1)
xx

ε(1)
yy

γ(1)
xy

γ(1)
xz

γ(1)
yz

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂φx

∂x
∂φy

∂y
∂φx

∂y
+ ∂φy

∂x
0

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(8)

A laminate can be manufactured from orthotropic layers (or
plies) of pre-impregnated unidirectional fibrous composite ma-
terials. Neglecting σz for each layer, the stress-strain relations
in the fiber local coordinate system can be expressed as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ1

σ2

τ12

τ23

τ31

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎣

Q11 Q12 0 0 0
Q12 Q22 0 0 0

0 0 Q33 0 0
0 0 0 Q44 0
0 0 0 0 Q55

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε1

ε2

γ12

γ23
γ31

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(9)

where subscripts 1 and 2 are respectively the fiber and the normal
to fiber inplane directions, 3 is the direction normal to the plate,
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and the reduced stiffness components, Qij are given by

Q11 = E1

1 − v12v21
; Q22 = E2

1 − v12v21
; Q12 = v12Q11;

Q33 = G12; Q44 = G23; Q55 = G31; v21 = v12
E2

E1

in which E1, E2, ν12, G12, G23 and G31 are materials properties
of the lamina.

By performing adequate coordinate transformation, the
stress-strain relations in the global x-y-z coordinate system can
be obtained as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σxx

σyy

τxy

τyz

τzx

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

Q̄11 Q̄12 Q̄16 0 0

Q̄12 Q̄22 Q̄26 0 0

Q̄16 Q̄26 Q̄66 0 0

0 0 0 Q̄44 Q̄45

0 0 0 Q̄45 Q̄55

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εxx

εyy

γxy

γyz

γzx

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(10)

The equations of motion of the first-order theory are derived
from the principle of virtual displacements. The virtual strain
energy (δU ), the virtual inertial terms (δK), the virtual work
done by applied forces (δV ) are given by

δU =
∫

�0

{∫ h/2

−h/2

[
σxx

(
δε(0)

xx + zδε(1)
xx

) + σyy

(
δε(0)

yy + zδε(1)
yy

)
+ τxy

(
δγ(0)

xy + zδγ(1)
xy

) + τxz

(
δγ(0)

xz

) + τyz

(
δγ(0)

yz

)]
dz

}
dx dy

=
∫

�0

(
Nxxδε(0)

xx + Mxxδε(1)
xx + Nyyδε(0)

yy + Myyδε(1)
yy

+Nxyδγ(0)
xy + Mxyδγ(1)

xy + Qxδγ(0)
xz + Qyδγ(0)

yz

)
dx dy

δK =
∫

�0

{ ∫ h/2

−h/2
p
[(

u̇0 + zφ̇x

)(
δu̇0 + zδφ̇x

) + (
v̇0 + zφ̇y

)
× (

δv̇0 + zδφ̇y

) + ẇ0δẇ0
]
dz dx dy

=
∫

�0

[
− I0

(
u̇0δu̇0 + v̇0δv̇0 + ẇ0δẇ0

)
− I1

(
φ̇xδu̇0 + φ̇yδv̇0 + φ̇xδu̇0 + φ̇yδv̇0

)
− I2

(
φ̇xδφ̇x + φ̇yδφ̇y

)
dx dy

]
(11)

and

δV = −
∫

�0

qδw0 dx dy (12)

where (̇) represents derivative w.r.t. time, �0 denotes the mid-

plane of the laminate, q is the external distributed load and

{
Nαβ

Mαβ

}
=

∫ h/2

−h/2
σα3

{
1

z

}
dz; {Qα} = K

∫ h/2

−h/2
σαz dz

(13)
where α,β take the symbols x, y and K is a shear corrector
factor.

Substituting for δU , δV and δK into the virtual work state-
ment, noting that the virtual strains can be expressed in terms
of the generalized displacements, integrating by parts to relieve
from any derivatives of the generalized displacements and using
the fundamental lemma of the calculus of variations, we obtain
the following Euler-Lagrange equations [1]:

∂Nxx

∂x
+ ∂Nxy

∂y
= I0ü0 + I1φ̈x (14)

∂Nxy

∂x
+ ∂Nyy

∂y
= I0v̈0 + I1φ̈y (15)

∂Qx

∂x
+ ∂Qy

∂y
+ q = I0ẅ0 (16)

∂Mxx

∂x
+ ∂Mxy

∂y
− Qx = I0ü0 + I2φ̈x (17)

∂MxY

∂x
+ ∂Myy

∂y
− Qy = I1v̈0 + I2φ̈y (18)

with

Ii =
∫ h/2

−h/2
ρzidz; i = 0, 1, 2 (19)

3.2. First-order Shear Deformation Shell Theory
Let (ξ1, ξ2, ζ ) denote the orthogonal curvilinear coordinates

(or shell coordinates) such that the ξ1-and ξ2-curves are lines
of curvature on the middle surface ζ = 0, and ζ -curves are
straight lines perpendicular to the surface ζ = 0. For cylindrical
and spherical shells the lines of principal curvature coincide
with the coordinate lines. The values of the principal radii of
curvature are denoted by R1 and R2. The displacement field for
the first-order shear deformation shell theory is [1]:

u(x, y, z, t) =
(

1 + ζ

R1

)
u0(x, y, t) + ζφx(x, y, t)

v(x, y, z, t) =
(

1 + ζ

R2

)
v0(x, y, t) + ζφy(x, y, t)

w(x, y, z, t) = w0(x, y, t) (20)

The strain-displacement relations referred to an orthogonal
curvilinear coordinate system leads to the following deformation
field, where xi denote the cartesian coordinates (dx1 = αidξi),
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i = 1, 2.

ε1 = ε
(0)
1 + ζk

(0)
1

ε2 = ε
(0)
2 + ζk

(0)
2

ε4 = ε
(0)
4

ε5 = ε
(0)
5

ε6 = ε
(0)
6 + ζk

(0)
6 (21)

where

ε
(0)
1 = ∂u0

∂x1
+ w

R1

ε
(0)
2 = ∂v0

∂x2
+ w

R2

ε
(0)
4 = ∂w0

∂x2
+ θ2

ε
(0)
5 = ∂w0

∂x1
+ θ1

ε
(0)
6 = ∂u0

∂x2
+ ∂v0

∂x1

k
(0)
1 = ∂θ1

∂x1

k
(0)
2 = ∂θ2

∂x2

k
(0)
6 = ∂θ2

∂x1
+ ∂θ1

∂x2
(22)

Using the same procedure as in the plate theory, the following
equilibrium equations are obtained:

∂Nxx

∂x
+ ∂Nxy

∂y
= I0ü0 + I1φ̈x (23)

∂Nxy

∂x
+ ∂Nyy

∂y
= I0v̈0 + I1φ̈y (24)

∂Qx

∂x
+ ∂Qy

∂y
− Nxx

R1
− Nyy

R2
+ q = I0ẅ0 (25)

∂Mxx

∂x
+ ∂Mxy

∂y
− Qx = I1ü0 + I2φ̈x (26)

∂Mxy

∂x
+ ∂Myy

∂y
− Qy = I0v̈0 + I2φ̈y (27)

where q is the distributed transverse load, Ni , MI , etc. are the
stress resultants, given by

(Ni,Mi) =
∫ ζk

ζk−1

σi(1, ζ) dζ,(i = xx, yy, xy)

(Qx,Qy) =
∫ ζk

ζk−1

(σxz,σyz) dζ;

Ii =
∫ ζk

ζk−1

ρz dζ, (i = 0, 1, 2) (28)

4. NUMERICAL INTEGRATION
For the numerical time integration, the Newmark method is

used [1]. The Euler-Lagrange equations can be written in terms
of the displacements by substituting strains and stress resultants
in Eqs. (14)–(18) (i.e., for the plate theory). The resulting system
of equations can be written as:

Mü + Ku = F (29)

where M represents the matrix of inertial terms, K the stiffness
matrix and F the vector related to external forces.

Time derivatives in Eq. (29) are approximated using Taylor’s
series:

üt+�t = a3(ut+�t − ut ) − a4u̇t − a5üt (30)

üt+�t = u̇t + a1üt + a2üt+�t (31)

with

a1 = (1 − α)�t ; a2 = α�t ; a3 = 2

γ(�t)2 ; a4 = a3�t ;

a5 = 1 − γ

γ

Substituting Eqs. (30, 31) in Eq. (29), the later can be written in
the form:

K̂u = F̂ (32)

with

K̂t+�t = Kt+�t + a3Mt+�t (33)

F̂t+�t = Ft+�t + Mi+�t (a3ut + a4u̇t + a5üt ) (34)

Initial values for displacements u0 and velocities u̇0 are set to
zero, while accelerations ü0 are set as ü0 = M−1(F − Ku).

5. HOMOGENIZATION TECHNIQUE
The FGM equivalent material properties E and ν at a point

are determined by the Mori-Tanaka homogenization technique.
For a random distribution of isotropic particles in an isotropic
matrix, the bulk modulus K , and the shear modulus G, of the
FGM material at a given thickness coordinate, are given by

K − K1

K2 − K1
= V2

1 + (1 − V2) K2−K1

K1+ 4
3 G1

(35)

G − G1

G2 − G1
= V2

1 + (1 − V2) G2−G1
G1+f1

(36)

where f1 = G1(9K1+8G1)
6(K1+2G1) and subscripts 1 and 2 represent the

ceramic and the metal phases respectively. Young’s modulus
and Poisson’s ratio are related to the bulk and the shear moduli
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FIG. 1. Variation of volume fraction of the ceramic phase along the thickness z for various values of p.

by

K = E

3(1 − 2ν)
(37)

G = E

2(1 − ν)
(38)

It is assumed that the volume fraction of the ceramic phase
varies only in the thickness direction according to the relation

V1 =
(

1

2
+ z

h

)p

(39)

where p is an exponent factor, h the plate thickness, and −h/2 ≤
z ≤ h/2.

6. ANALYTICAL SOLUTION
In order to assess the quality of our numerical approach,

an analytical solution was independently computed by as-
suming a spacial variation of the displacements and reducing

the differential equations to a set of differential equations in
time [1].

The solution of Eq. (29) is assumed to be of the form:

u(x, y, t) =
∞∑

m=1

∞∑
n=1

Tmn(t)Umn(x, y) (40)

The Navier procedure is used to determine the spatial varia-
tion and the Newmark method is used to solve the differential
equations in time.

As an example, for a simply supported cross-ply rectangular
plate of length a, b the boundary conditions are imposed as:

in x = 0, a:v = w = φy = Nx = Mx = 0 (41)

in y = 0, b:u = w = φx = Ny = My = 0 (42)

The boundary conditions in Eq. (41) and Eq. (42) are satisfied
by the following expansions of the displacements and applied
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DYNAMIC ANALYSIS OF FUNCTIONALLY GRADED PLATES AND SHELLS 641

FIG. 2. Present and analytical solutions for central deformation w̄ of an FGM square plate, uniform force, c = √
n + 1/2. Legend: — analytical solution (p =

0, 1, 2, 5, ∞); • present, p = 0 (ceramic); � present, p = 1; � present, p=2; � present, p=5; ◦ present, p = ∞ (metal).

load:

u0(x, y, t) =
∞∑

n=1

∞∑
m=1

Unm(t) cos(αx) sin(βy) (43)

v0(x, y, t) =
∞∑

n=1

∞∑
m=1

Vnm(t) sin(αx) cos(βy) (44)

w0(x, y, t) =
∞∑

n=1

∞∑
m=1

Wnm(t) sin(αx) cos(βy) (45)

φx(x, y, t) =
∞∑

n=1

∞∑
m=1

�xnm(t) cos(αx) sin(βy) (46)

φy(x, y, t) =
∞∑

n=1

∞∑
m=1

�ynm(t) sin(αx) cos(βy) (47)

q(x, y, t) =
∞∑

n=1

∞∑
m=1

Qnm(t) sin(αx) sin(βy) (48)

with

α = mπ

a
; β =nπ

b
(49)

Qnm(t) = 4

ab

∫ a

0

∫ b

0
q(x, y, t) sin

mπx

a

× sin
mπy

b
dx dy (50)

Substituting Eqs. (43–48) in Eq. (29) we can write:

M�̈ + K� = F (51)

where � = (Umn, Vmn,Wmn, xmn, ymn)T croque Eq. (51) can
then be solved numerically by the Newmark method.

7. NUMERICAL EXAMPLES
Results for simply supported FGM plates and shells of length

a and b composed of aluminum/ceramic phases are presented.
Square (b = a) and rectangular (b = 2a) simply supported

FGM plates under suddenly applied transverse uniform load
and rectangular (b = 2a) simply supported FGM shells under
suddenly applied transverse uniform and sinusoidal loads are
considered.

A shear correction factor K of 5/6 is used for all examples.
Although this is not the most correct value [13], many authors
use it for the analysis of isotropic, composite and functionally
graded plates [1, 20], so the same value is used here for com-
parison purposes.

The values of both n and m in Eqs. (43–48) is 35. For the
Newmark scheme, initial conditions for displacements � and
velocities � are set to zero, α = 3/2, γ = 8/5 and time step
�t = 10−7.

All plates and shells have the ratio length/thickness a/h = 10
and the grid used has 13×13 uniformly spaced points. A ratio
R/a = 5 for all shells is considered.
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642 C.M.C ROQUE ET AL.

FIG. 3. Present and analytical solutions for in-plane stress σ̄xx of an FGM square plate, uniform force, c = √
n + 1/2. Legend: — analytical solution (p = 0, 1,

2, 5, ∞); • present, p = 0 (ceramic); � present, p = 1; � present, p = 2; � present, p = 5; ◦ present, p = ∞ (metal).

For each example three figures are presented, showing
the evolution in time of the central deformation w, in-plane
stress σ̄xx and in-plane shear stress σ̄xy in points (a/2, b/2),
(a/2, b/2, h/2) and (a, b,−h/2) respectively.

For each figure results for various values of p in Eq. (39) are
presented. Considered values of p are 0 (ceramic plate), 1, 2, 5
and ∞ (metal plate) (see Figure 1). The analytical solutions are
computed and presented in the same plot for all examples.

FIG. 4. Present and analytical solutions for in-plane shear stress σ̄xy of an FGM square plate, uniform force, c = √
n + 1/2. Legend: — analytical solution (p

= 0, 1, 2, 5, ∞); • present, p = 0 (ceramic); � present, p = 1; � present, p = 2; � present, p = 5; ◦ present, p= ∞ (metal).

D
ow

nl
oa

de
d 

by
 [

b-
on

: B
ib

lio
te

ca
 d

o 
co

nh
ec

im
en

to
 o

nl
in

e 
U

P]
 a

t 1
0:

21
 1

7 
D

ec
em

be
r 

20
11

 



DYNAMIC ANALYSIS OF FUNCTIONALLY GRADED PLATES AND SHELLS 643

FIG. 5. Present and analytical solutions for central deformation w̄ of an FGM rectangular plate, uniform force, c = √
n + 1/2. Legend: — analytical solution

(p = 0, 1, 2, 5, ∞); • present, p = 0 (ceramic); � present, p = 1; � present, p = 2; � present, p = 5; ◦ present, p= ∞ (metal).

FIG. 6. Present and analytical solutions for in-plane stress σ̄xx of an FGM rectangular plate, uniform force, c = √
n + 1/2. Legend: — analytical solution (p =

0, 1, 2, 5, ∞); • present, p = 0 (ceramic); � present, p = 1; � present, p = 2; � present, p = 5; ◦ present, p = ∞ (metal).
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644 C.M.C ROQUE ET AL.

FIG. 7. Present and analytical solutions for in-plane shear stress σ̄xy of an FGM rectangular plate, uniform force, c = √
n + 1/2. Legend: — analytical solution

(p = 0, 1, 2, 5, ∞); • present, p = 0 (ceramic); � present, p = 1; � present, p = 2; � present, p = 5; ◦ present, p = ∞ (metal).

The same legend is maintained for all examples (except in
Figure 1). The numerical solutions are plotted in a dashed line
and different markers are added according to the value of p.

Since the analytical solutions are always very close to the re-
spective numerical solutions, they are simply plotted with a full
line.

FIG. 8. Present and analytical solutions for central deformation w̄ of an FGM rectangular shell, sinusoidal force, c = √
n + 1/2. Legend: — analytical solution

(p = 0, 1, 2, 5, ∞); • present, p = 0 (ceramic); � present, p = 1; � present, p = 2; � present, p = 5; ◦ present, p = ∞ (metal).
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DYNAMIC ANALYSIS OF FUNCTIONALLY GRADED PLATES AND SHELLS 645

FIG. 9. Present and analytical solutions for in-plane stress σ̄xx of an FGM rectangular shell, sinusoidal force, c = √
n + 1/2. Legend: — analytical solution (p

= 0, 1, 2, 5, ∞); • present, p = 0 (ceramic); � present, p = 1; � present, p = 2; � present, p = 5; ◦ present, p = ∞ (metal).

FIG. 10. Present and analytical solutions for in-plane stress σ̄xy of an FGM rectangular shell, sinusoidal force, c = √
n + 1/2 Legend: – analytical solution (p

= 0, 1, 2, 5, ∞); • present, p = 0 (ceramic); � present, p = 1; � present, p =2 ; � present, p = 5; ◦ present, p = ∞ (metal).
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646 C.M.C ROQUE ET AL.

FIG. 11. Present and analytical solutions for central deformation w̄xy of an FGM rectangular shell, uniform force, c = √
n + 1/2. Legend: — analytical solution

(p = 0, 1, 2, 5, ∞); • present, p = 0 (ceramic); � present, p = 1; � present, p = 2; � present, p = 5; ◦ present, p = ∞ (metal).

FIG. 12. Present and analytical solutions for in-planeshear stress σ̄xx of an FGM rectangular shell, uniform force, c = √
n + 1/2. Legend: – analytical solution

(p = 0, 1, 2, 5, ∞); • present, p = 0 (ceramic); � present, p = 1; � present, p = 2; � present, p = 5; ◦ present, p = ∞ (metal).
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DYNAMIC ANALYSIS OF FUNCTIONALLY GRADED PLATES AND SHELLS 647

FIG. 13. Present and analytical solutions for in-planeshear stress σ̄xy of an FGM rectangular shell, uniform force, c = √
n + 1/2. Legend: – analytical solution

(p = 0, 1, 2, 5, ∞); • present, p = 0 (ceramic); � present, p = 1; � present, p = 2; � present, p = 5; ◦ present, p = ∞ (metal).

TABLE 1
Present numerical solution for central deformation w̄ of an FGM rectangular shell, sinusoidal force, c = √

n + 1/2

w̄

p = 0 p = 1 p = 2 p = 5 p = ∞

t rbf analytical rbf analytical rbf analytical rbf analytical rbf analytical

0.51 0.0597 0.0597 0.0811 0.0809 0.0920 0.0917 0.1062 0.1059 0.1259 0.1259
1.02 0.2276 0.2276 0.3104 0.3092 0.3515 0.3500 0.4048 0.4035 0.4808 0.4807
1.53 0.4740 0.4736 0.6505 0.6479 0.7345 0.7312 0.8424 0.8393 1.0030 1.0022
2.04 0.7546 0.7534 1.0451 1.0405 1.1754 1.1697 1.3396 1.3342 1.6009 1.5984
2.54 1.0194 1.0163 1.4294 1.4219 1.5987 1.5898 1.8069 1.7980 2.1701 2.1637
3.05 1.2216 1.2153 1.7407 1.7296 1.9328 1.9202 2.1607 2.1475 2.6120 2.5990
3.56 1.3247 1.3141 1.9275 1.9119 2.1203 2.1032 2.3367 2.3183 2.8491 2.8271
4.07 1.3107 1.2952 1.9596 1.9394 2.1297 2.1082 2.3038 2.2802 2.8404 2.8080
4.58 1.1819 1.1619 1.8314 1.8070 1.9591 1.9339 2.0675 2.0398 2.5874 2.5451
5.09 0.9611 0.9382 1.5638 1.5367 1.6373 1.6102 1.6702 1.6407 2.1334 2.0845
5.60 0.6878 0.6646 1.2010 1.1737 1.2195 1.1933 1.1837 1.1556 1.5583 1.5080
6.11 0.4108 0.3903 0.8021 0.7773 0.7767 0.7539 0.6955 0.6719 0.9622 0.9167
6.62 0.1795 0.1647 0.4335 0.4140 0.3851 0.3682 0.2941 0.2779 0.4495 0.4153
7.13 0.0355 0.0287 0.1553 0.1431 0.1112 0.1019 0.0516 0.0447 0.1098 0.0921
7.63 0.0041 0.0065 0.0135 0.0100 0.0020 0.0010 0.0117 0.0146 0.0021 0.0039
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648 C.M.C ROQUE ET AL.

TABLE 2
Present numerical solution for central deformation σ̄xx of an FGM rectangular shell, sinusoidal force, c = √

n + 1/2

σ̄xx

p = 0 p = 1 p = 2 p = 5 p = ∞

t rbf analytical rbf analytical rbf analytical rbf analytical rbf analytical

0.51 0.0085 0.0085 0.0105 0.0107 0.0118 0.0121 0.0139 0.0143 0.0084 0.0084
1.02 0.0299 0.0299 0.0360 0.0359 0.0405 0.0404 0.0481 0.0480 0.0293 0.0293
1.53 0.0619 0.0619 0.0753 0.0750 0.0844 0.0842 0.0999 0.0996 0.0608 0.0608
2.04 0.0990 0.0989 0.1210 0.1206 0.1352 0.1347 0.1590 0.1585 0.0973 0.0972
2.54 0.1326 0.1323 0.1641 0.1631 0.1824 0.1812 0.2127 0.2114 0.1308 0.1305
3.05 0.1596 0.1589 0.2010 0.2000 0.2219 0.2206 0.2559 0.2545 0.1582 0.1576
3.56 0.1727 0.1714 0.2213 0.2194 0.2420 0.2398 0.2753 0.2729 0.1720 0.1708
4.07 0.1706 0.1688 0.2257 0.2235 0.2438 0.2414 0.2721 0.2692 0.1715 0.1697
4.58 0.1546 0.1521 0.2110 0.2081 0.2244 0.2214 0.2446 0.2413 0.1568 0.1543
5.09 0.1250 0.1221 0.1797 0.1765 0.1870 0.1837 0.1967 0.1931 0.1286 0.1258
5.60 0.0901 0.0872 0.1391 0.1362 0.1405 0.1377 0.1409 0.1379 0.0948 0.0918
6.11 0.0539 0.0512 0.0921 0.0892 0.0886 0.0859 0.0820 0.0792 0.0583 0.0555
6.62 0.0234 0.0216 0.0508 0.0489 0.0450 0.0435 0.0357 0.0341 0.0274 0.0254
7.13 0.0055 0.0046 0.0183 0.0170 0.0133 0.0123 0.0070 0.0064 0.0074 0.0063
7.63 0.0006 0.0009 0.0020 0.0017 0.0006 0.0007 0.0016 0.0020 0.0001 0.0002

TABLE 3
Present numerical solution for central deformation σ̄xy of an FGM rectangular shell, sinusoidal force, c = √

n + 1/2

σ̄xy

p = 0 p = 1 p = 2 p = 5 p = ∞

t rbf analytical rbf analytical rbf analytical rbf analytical rbf analytical

0.51 0.0031 0.0031 0.0021 0.0021 0.0024 0.0024 0.0027 0.0027 0.0030 0.0031
1.02 0.0129 0.0129 0.0089 0.0089 0.0101 0.0101 0.0113 0.0113 0.0126 0.0127
1.53 0.0269 0.0270 0.0186 0.0186 0.0211 0.0210 0.0237 0.0237 0.0264 0.0265
2.04 0.0428 0.0429 0.0300 0.0299 0.0338 0.0337 0.0376 0.0376 0.0421 0.0422
2.54 0.0583 0.0582 0.0412 0.0411 0.0462 0.0461 0.0511 0.0510 0.0575 0.0574
3.05 0.0696 0.0693 0.0500 0.0498 0.0557 0.0553 0.0609 0.0606 0.0690 0.0687
3.56 0.0756 0.0751 0.0556 0.0552 0.0613 0.0609 0.0660 0.0657 0.0754 0.0750
4.07 0.0749 0.0741 0.0564 0.0559 0.0614 0.0609 0.0650 0.0645 0.0752 0.0744
4.58 0.0673 0.0663 0.0527 0.0521 0.0565 0.0559 0.0582 0.0576 0.0683 0.0673
5.09 0.0549 0.0537 0.0451 0.0444 0.0472 0.0466 0.0472 0.0465 0.0565 0.0553
5.60 0.0391 0.0378 0.0344 0.0337 0.0350 0.0343 0.0332 0.0325 0.0410 0.0398
6.11 0.0233 0.0222 0.0231 0.0225 0.0224 0.0218 0.0196 0.0190 0.0254 0.0242
6.62 0.0102 0.0094 0.0123 0.0117 0.0109 0.0104 0.0081 0.0077 0.0118 0.0109
7.13 0.0017 0.0013 0.0044 0.0040 0.0031 0.0028 0.0013 0.0011 0.0026 0.0022
7.63 0.0001 0.0003 0.0003 0.0002 −0.0001 −0.0001 0.0002 0.0003 0.0000 0.0001
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TABLE 5
Present numerical solution for central deformation σ̄xx of an FGM rectangular shell, uniform force, c = √

n + 1/2

σ̄xx

p = 0 p = 1 p = 2 p = 5 p = ∞

t rbf analytical rbf analytical rbf analytical rbf analytical rbf analytical

0.51 −0.0023 −0.0032 −0.0029 −0.0036 −0.0029 −0.0034 −0.0030 −0.0036 −0.0024 −0.0033
1.02 0.0289 0.0286 0.0334 0.0340 0.0383 0.0386 0.0467 0.0464 0.0280 0.0280
1.53 0.0701 0.0701 0.0860 0.0854 0.0961 0.0959 0.1131 0.1133 0.0691 0.0690
2.04 0.1250 0.1241 0.1467 0.1464 0.1674 0.1663 0.2029 0.2011 0.1217 0.1211
2.54 0.2072 0.2118 0.2519 0.2545 0.2832 0.2867 0.3332 0.3392 0.2040 0.2083
3.05 0.2393 0.2412 0.3057 0.3126 0.3362 0.3417 0.3846 0.3877 0.2388 0.2412
3.56 0.2743 0.2800 0.3414 0.3422 0.3793 0.3818 0.4386 0.4459 0.2717 0.2772
4.07 0.2590 0.2631 0.3548 0.3612 0.3790 0.3858 0.4103 0.4176 0.2644 0.2689
4.58 0.2130 0.2116 0.2884 0.2863 0.3055 0.3035 0.3374 0.3358 0.2144 0.2139
5.09 0.1765 0.1745 0.2504 0.2471 0.2632 0.2585 0.2776 0.2738 0.1818 0.1778
5.60 0.1196 0.1169 0.1847 0.1829 0.1838 0.1822 0.1879 0.1852 0.1241 0.1222
6.11 0.0783 0.0746 0.1225 0.1192 0.1222 0.1162 0.1214 0.1157 0.0821 0.0772
6.62 0.0340 0.0326 0.0791 0.0761 0.0683 0.0683 0.0493 0.0512 0.0406 0.0401
7.13 −0.0051 −0.0058 0.0168 0.0173 0.0025 −0.0006 −0.0113 −0.0138 −0.0026 −0.0056
7.63 −0.0169 −0.0187 −0.0100 −0.0130 −0.0171 −0.0189 −0.0299 −0.0321 −0.0152 −0.0177
8.14 −0.0188 −0.0179 −0.0237 −0.0219 −0.0285 −0.0284 −0.0247 −0.0246 −0.0201 −0.0208
8.65 0.0384 0.0375 −0.0088 −0.0110 0.0176 0.0153 0.0714 0.0668 0.0244 0.0232
9.16 0.0967 0.1064 0.0755 0.0758 0.1152 0.1202 0.1647 0.1788 0.0905 0.0996
9.67 0.1592 0.1634 0.1385 0.1479 0.1795 0.1846 0.2679 0.2686 0.1429 0.1473
10.18 0.2259 0.2375 0.2247 0.2261 0.2886 0.2917 0.3634 0.3813 0.2181 0.2277

Values of material properties are listed below:

E1 = 70 GPa,ν1 = 0.3; ρ1 = 2702

E2 = 151 GPa,ν2 = 0.3; ρ2 = 5700

q0 = 1 × 106; a = 1;

The time, central deflection and stress are normalized by:

t = t

√
E1

ρ1b
2

w̄(a/2, b/2) = w
E1h

q0b2
;

σ̄xx(a/2, b/2, h/2) = σxx

h2

q0b2
;

σ̄xy(a, b,−h/2) = σxy

h2

q0b2
;

Figures 2, 3, and 4 show the transverse central displacement w̄,
in-plane stress σ̄xx and shear in-plane stress σ̄xy for a square
plate, under suddenly applied uniform load. Results are in good

agreement with analytical solutions. The shape parameter is
c = √

n + 1/2. From the three computed quantities, the in-
plane shear stress σ̄xy is the one that presents a larger difference
to analytical solutions. This occurs in all examples in this paper.

In Figures 5, 6, and 7 the transient analysis of a rectangular
plate under suddenly applied uniform load is presented. The use
of an anisotropic radial basis function allowed to maintain the
same shape parameter regardless of the geometry of the plate.

A rectangular shell (b = 2a) under suddenly applied si-
nusoidal force is considered in Figures 8, 9, and 10. Results
for a rectangular shell under suddenly applied uniform force is
shown in Figures 11, 12, and 13. The same shape parameter
(c = √

n + 1/2) is used for the analysis of rectangular shells.
For all examples, numerical and analytical results are in very

good agreement as shown in Tables 1–6 for an FGM shell.
Given the ability to analyze irregular geometries, the present

method may represent a viable alternative to finite element
methods.

8. CONCLUSIONS
A combination of radial basis functions and a pseudospec-

tral method is used to study the transient response of function-
ally graded plates and shells. A Newmark algorithm is used to
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TABLE 6
Present numerical solution for central deformation σ̄xy of an FGM rectangular shell, uniform force, c = √

n + 1/2

σ̄xy

p = 0 p = 1 p = 2 p = 5 p = ∞

t rbf analytical rbf analytical rbf analytical rbf analytical rbf analytical

0.51 0.0152 0.0181 0.0110 0.0130 0.0122 0.0144 0.0134 0.0158 0.0150 0.0178
1.02 0.0356 0.0394 0.0255 0.0282 0.0285 0.0315 0.0314 0.0346 0.0351 0.0389
1.53 0.0624 0.0671 0.0443 0.0476 0.0497 0.0533 0.0549 0.0588 0.0616 0.0661
2.04 0.0871 0.0927 0.0623 0.0662 0.0694 0.0738 0.0762 0.0810 0.0860 0.0916
2.54 0.1040 0.1087 0.0757 0.0794 0.0836 0.0876 0.0907 0.0949 0.1032 0.1081
3.05 0.1145 0.1186 0.0839 0.0869 0.0924 0.0957 0.1000 0.1034 0.1138 0.1181
3.56 0.1256 0.1293 0.0916 0.0944 0.1015 0.1045 0.1101 0.1134 0.1250 0.1287
4.07 0.1317 0.1364 0.0970 0.1004 0.1068 0.1108 0.1150 0.1193 0.1314 0.1363
4.58 0.1253 0.1297 0.0964 0.0997 0.1042 0.1080 0.1089 0.1131 0.1265 0.1310
5.09 0.1062 0.1100 0.0859 0.0893 0.0906 0.0943 0.0915 0.0952 0.1084 0.1123
5.60 0.0785 0.0810 0.0692 0.0720 0.0704 0.0733 0.0662 0.0692 0.0822 0.0849
6.11 0.0436 0.0448 0.0462 0.0490 0.0435 0.0464 0.0362 0.0378 0.0485 0.0502
6.62 0.0197 0.0200 0.0210 0.0217 0.0188 0.0191 0.0167 0.0171 0.0212 0.0212
7.13 0.0137 0.0166 0.0129 0.0135 0.0133 0.0148 0.0119 0.0151 0.0148 0.0176
7.63 0.0141 0.0175 0.0091 0.0110 0.0099 0.0120 0.0137 0.0160 0.0125 0.0154
8.14 0.0286 0.0330 0.0148 0.0171 0.0199 0.0230 0.0262 0.0297 0.0261 0.0305
8.65 0.0436 0.0498 0.0253 0.0292 0.0318 0.0366 0.0388 0.0441 0.0412 0.0476
9.16 0.0591 0.0642 0.0359 0.0403 0.0431 0.0479 0.0521 0.0560 0.0560 0.0618
9.67 0.0779 0.0836 0.0470 0.0505 0.0562 0.0606 0.0705 0.0743 0.0731 0.0792
10.18 0.1039 0.1100 0.0619 0.0653 0.0756 0.0789 0.0930 0.0976 0.0985 0.1035

advance the analysis in time. The method is very sensitive to the
shape parameter. The use of an anisotropic radial basis function
simplified the task of choosing a shape parameter, contributing
to the stability of the Newmark method.
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4

Conclusions and suggestions for future

work

4.1 Conclusions

This thesis comprehends a numerical study on the analysis (static, free vibration and

buckling) of laminated and functionally graded plates and shells. The numerical study

is based on collocation with radial basis functions. In 1.3 the definition of meshless

methods was introduced and the need of such methods was justified. Classifications

and examples of different meshless methods were given. The global collocation tech-

nique with radial basis functions and its combination with pseudospectral method were

discussed in detail, as these are the numerical methods for the study of plates and shells

used in this thesis.

The global collocation with radial basis functions needs the explicit governing equa-

tions for its conversion to algebraic system of equations. In the present thesis the

governing equations are automatically derived and implemented in a MATLAB code

by the Carrera’s Unified Formulation (CUF). The CUF allows the use of any C0 shear

deformation theory, including the through-the-thickness deformation. In this thesis

several new theories were implemented using CUF, namely polynomial, sinusoidal, hy-

375



376 Conclusions and suggestions for future work

perbolic sine and zig-zag theories. The new deformation theories implemented in the

present thesis asked for a generalization of the original CUF, by introducing different

displacement fields for in-plane and out-of-plane displacements. Carrera’s Unified For-

mulation and its application to the analysis of functionally graded plates and shells

was presented in 1.4 focusing on functionally graded structures because studies on the

combination of carrera’s Unified Formulation and meshless methods were performed

for the first time for such structures in this thesis.

The combination of CUF and meshless methods was already performed for laminated

plates and shells. In the present thesis the combination of CUF and meshless methods

was generalized for FG plates and shells which forces to consider virtual layers. The

combination of CUF and RBFs for FG plates and shells proved to still extremely

accurate and easily implemented. The present approach was able to capture the exact

results that can be found in many literature analytical results.

A novel application of CUF was proposed in this thesis. The explicit governing equa-

tions and boundary conditions in terms of displacements of the static, free vibration

or buckling problems were obtained using symbolic computation. The combination of

CUF and the symbolic calculations performed in MATLAB can be seen as a time-saving

and error reducer and was used for the first time in this thesis with this purpose.

Regarding the influence of the through-the-tickness deformation, the work developed

and presented in this thesis lead us to the following conclusions: irrespective of the

nature of the mechanical problem (bending, free vibration or buckling), there is an

influence on the solutions by considering or neglecting the transverse normal deforma-

tions σzz. These effect is more significative in thicker structures. In the case of shells,

it seems independent of the curvature radius. In the numerical tests performed, the

influence of the warping effects in the mechanical behaviour of FG plates is stronger

than the zig-zag effects.
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4.2 Suggestions for future work

Although the thesis covered a lot of topic we wished to study, some areas were left for

post-doc work.

This thesis deals only with structures with regular geometry. Further studies on struc-

tures with arbitrary geometry are to be done in the future.

The use of layerwise approach in CUF is important for FGM sandwich plates and

shells.

The analysis of FGM sandwich plates and shells using Reissner-Mixed variational the-

ory (RMVT) can also be an interesting topic to obtain directly the transverse shear

stresses at the sandwich interfaces.

The thesis used global collocation only. It would have been interesting to use local

collocation schemes, such as the RBF-FD (Finite differences) or the RBF-DQ (dif-

ferential quadrature) local schemes, wich improves the ill-conditioning of the present

global collocation.

Although we have appplied CUF only to static, free vibration and buckling problems,

the transient dynamic behaviour of FGM plates and shells is an important structural

aspect that can be easily analysed by some step-marching schemes.


