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Abstract

Nowadays, most of numerical methods are based on the well-known finite element
method. However, innovative and alternative formulations have been recently devel-
oped, based on meshless methods, using just a nodal grid, and keeping the quality of

the numerical solution.

In the last decades, structures formed by plates and shells and using composite ma-
terials such as laminated and functionally graded materials, have experienced very
high rates of development. This work intends to apply a meshless method to analyze
the mechanical behavior of those structures. For this purpose, differential governing

equations from several theories of plates and shells are presented.

The global radial basis function collocation method is chosen to interpolate the differ-
ential equations and boundary conditions. The method has an easy implementation
and it has been applied successfully in several areas. It proved to be excellent for solv-
ing differential equations. However, its application in mechanical engineering problems
has been kept limited. In order to demonstrate the performance of the method, the

present work shows some applications related with that area.

The method proved to be excellent to perform the analysis of plates and shells. It is
known that one of the problems of the present method is due to a bad choice of the
shape parameter. For that reason the shape parameter is obtained by an optimization

technique.

New shear deformation plate and shell theories were developed within present the-
sis. The differential governing equations and boundary conditions of the new shear
deformation theories are obtained by a unified formulation by Carrera and further
interpolated via global collocation with radial basis functions. The combination of
Carrera’s Unified formulation and meshless methods proved to be good for modeling

the mechanical behavior of such structures.






Resumo

Actualmente, a maior parte dos métodos numéricos para a resolugdo de problemas
de estruturas baseia-se em formulacoes de elementos finitos. Contudo, tém surgido
recentemente formulagoes inovadoras e alternativas, baseadas em métodos sem malha,

considerando apenas uma rede de noés e mantendo a qualidade da solugao.

Nas ultimas décadas, estruturas formadas por placas e cascas feitas em materiais com-
positos tipo laminados e gradativos funcionais atingiram elevados niveis de desenvol-
vimento. Nesta tese, pretende-se aplicar um método sem malha para analisar o com-
portamento mecanico de tais estruturas. Para tal, apresenta-se equacoes diferenciais

de diversas teorias de placa e casca.

O método de colocagao global com fungoes de base radial é usado para interpolar as
equagoes diferenciais e as condi¢oes de fronteira. Este método é de implementacao sim-
ples e tem sido aplicado com sucesso em diversas areas. O método revelou-se excelente
para a resolucao de equagoes diferenciais. Todavia, a sua aplicagdo em problemas de
engenharia mecanica continua a ser escassa. A presente tese mostra algumas aplicagoes

nesta area, de forma a demonstrar a eficacia do método.

O método revelou-se excelente para a analise de placas e cascas. Um dos problemas
conhecidos deste método tem origem na mé escolha do valor do pardmetro de forma e,

por este motivo, este é escolhido com base numa técnica de optimizacao.

Novas teorias de deformacao de placas e cascas foram desenvolvidas na tese. As equa-
¢oes diferenciais dos problemas e respectivas condig¢oes de fronteira sao obtidas através
da formulacao unificada de Carrera e posteriormente interpoladas através do método
de colocagao global com funcoes de base radial. A combinacao da formulacao unificada
de Carrera com métodos sem malha revelou-se boa na modelagem do comportamento

mecanico das estruturas em estudo.






Résumé

Actuellement, la plupart des méthodes numériques sont basées sur la procédée bien
connu des éléments finis. Toutefois, des formulations alternatives et innovantes ont été
récemment développées, basés sur des méthodes sans maillage, qui utilisent simplement

une grille nodale et conservent la qualité de la solution numérique.

Dans les derniéres décennies, les structures composées par des plaques ou des coques,
usant des matériaux composites ou des matériaux a gradient fonctionnel, ont connu
des développements trés significatifs. LSob jectif principal de ce travail est léapplication
dSune méthode meshless a ISanalyse du comportement mécanique de ces structures. A
cet effet, les équations différentielles régissant plusieurs théories de plaques et coques

sont présentés.

La méthode globale de colocalisation avec des fonctions de base radiales a été choisie
pour interpoler les équations différentielles et les conditions aux frontiéres. La méthode
4 une mise en IJuvre facile et elle a été appliquée avec succes sur plusieurs domaines.
Elle s’est avérée excellente pour résoudre des équations différentielles. Cependant, son
application aux problémes de génie mécanique a été maintenue limitée. De facon de
démontrer la performance de la méthode, ce travail montre certaines applications dans

ce domaine.

La méthode est excellente pour effectuer ’analyse des plaques et coques. Il est connu
que 'un des problémes de la méthode actuelle est dii & un mauvais choix du para-
métre de forme. Pour cette raison, le parameétre de forme est obtenu par une technique

d’optimisation.

Des nouvelles théories de déformation des plaques et des coques ont été développées
dans cette thése. Les équations différentielles a dérivées partielles et les conditions aux

frontiéres qui gouverne ces nouvelles théories de déformation par cisaillement ont été



obtenues, usant une formulation unifiée par Carrera, et encore interpolées par I'intermé-
diaire de colocalisation globale avec des fonctions de base radiales. La combinaison de la
formulation unifiée Carrera avec les méthodes sans maillage, & montrée étre excellente

pour la modélisation du comportement mécanique de ces structures.
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Introduction and objectives

1.1 Short overview of the thesis

This thesis presents a numerical study for the analysis of laminated and functionally
graded plates and shells. The numerical technique is based on global collocation with

radial basis functions, as a strong-form type of meshless methods.

The analysis of plates and shells considers several higher-order shear deformation theo-
ries, in particular polynomial, sinusoidal, and hyperbolic sine theories as well as zig-zag
theories, allowing for thickness-stretching. Given the strong-form meshless technique,
the governing equation and boundary conditions are derived by a Unified Formulation
by Carrera [2, 3] (CUF). The governing equations are then interpolated and a global

system of equations is obtained.

The radial basis functions global collocation technique is presented in 1.3. In 1.4
Carrera’s Unified Formulation and its application to the analysis of functionally graded
plates and shells is presented. This chapter also presents the new theories implemented

using CUF. This part of the thesis emphasizes functionally graded structures because

1



2 Introduction and objectives

studies on the combination of carrera’s Unified Formulation and meshless methods were

performed for the first time for such structures in this thesis.

Several numerical examples for laminated and functionally graded plates and shells are
presented and discussed, in the various journal papers shown in the following chapters.
The first set has the purpose of showing the potential of the chosen meshless method
and the second set to study its combination with CUF.
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1.2

Objectives

The thesis has several objectives, in order to fill the gap of knowledge:

to use the Carrera’s Unified Formulation for the (meshless) analysis of laminated

and functionally graded plates and shells

to implement several higher-order shear deformation theories, namely polynomial,

sinusoidal, hyperbolic sine and zig-zag theories

to investigate the effects of €,, # 0 in the behaviour of such theories

to investigate the accuracy of such theories and its meshless implementation in
the static, free vibration and buckling analysis of laminated and functionally

graded plates and shells

to implement some new oscillatory radial basis functions and strategies for im-

proving the shape parameter issue



4 Introduction and objectives

1.3 Modelling with Radial basis functions

1.3.1 Introduction

Finding the analytical solution of an engineering problem is not always possible. In
most of the cases, solutions can only be obtained numerically and, in practice, a good

approximation is all that we need.

Numerical methods can give approximations to the correct or exact mathematical
solution and have been extensively used in the past several decades due to advances in

computing power.

Computational simulation techniques are often used to analyse the static and dynamic
analysis of structures such as plates and shells. It implies solving a set of partial
differential equations in a domain and boundary conditions on the boundary. Solving

it by finite element method (FEM) is now fully established.

Although this method is robust and widely used in engineering, the complexity of
computacional mechanical problems have shown the limitation of the FEM and other
convencional computational methods as the finite volume (FVM) or finite difference
methods (FDM). While traditional methods are often based on (piecewise) polynomials
and frequently require a fairly simple geometry and a certain amount of regularity of
the associated discretization of the problem, meshless methods share the advantage of
being able to deal with complex geometries and irregular discretizations. Furthermore,
traditional methods such as finite elements and splines are defined on an underlying
computational mesh. Studying problems involving large deformations or simulate crack
growth with arbitrary and complex paths, and adaptive methods that require mesh
actualization [4, 5, 1] are examples of the limitations of finite element method. Many
of these problems are due to the fact that FEM needs a mesh, that is a set of nodes
connected in a predefined manner. Other terminologies as grids (FDM), elements

(FEM), volumes or cells (FVM) can be termed mesh-related according to the above
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definition of mesh.

The use of alternative methods such as the strong-form meshless (or mesh free) methods

is attractive due to the absence of a mesh and the ease of collocation methods.

1.3.2 Meshless methods

As the name implies, the objective of meshless methods is to eliminate the process
of mesh generation in the sense of conventional computational methods such as the
FEM. According to Liu [6], the ideal meshless method does not need a mesh at all
throughout the process of solving the problem of given arbitrary geometry governed by
a partial differential system of equations subject to all kinds of boundary conditions.

Nonetheless, meshless methods developed so far are not really ideal.

First references to meshless numerical methods appear in the 1930’s decade, related
to collocation methods [7, 8]. The first meshless method presented consistently was
the smooth particle hydronamics (SPH) for modeling an astrophysical problems, just
in the 1970’s |9, 10, 11]. Not before 1990’s meshless methods get regular attention,

specially methods based on weak formulations.

Table 1.1 classifies meshless methods based on three criteria: the formulation proce-

dures, the function approximation schemes, and the domain representation [12].

According to the formulation procedures:
strong formulation
weak formulation
weak-strong formulation

According to the function approximation schemes:
moving least squares
integral representation
point interpolation method
other

According to the domain representation:
domain-type
boundary-type

Table 1.1: Meshless methods classification, by Liu [1]
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Meshless methods based on weak formulation of governing equations:

In meshfree weak-forms methods, the governing partial differential equations with
derivative boundary conditions are first transformed to a set of weak-form integral
equations and are then used to derive a set of algebraic system of equations. Exam-
ples of these methods are the diffuse element method (DEM) [13], the element free-
Galerkin (EFG) [14], radial point interpolation method (RPIM) [15, 16], the meshless
local Petrov-Galerkin method (MLPG) [17], and the local radial point interpolation
method (LRPIM) [18], etc.

Meshless methods based on strong formulation of governing equations:

Meshless methods based on collocation techniques is another group of meshless tech-
niques. In these methods, the governing equations and equations for boundary condi-
tions are directly discretized at the field nodes using simple collocation techniques to
obtain a set of discretized system of equations. Strong form equations are for example
those given in the form of PDEs for solid mechanics problems. The general finite dif-
ference method (GFDM) [19], the finite point method (FPM) [20], and the meshless

collocation method [21, 22| are examples of these methods.

Meshless methods based on weak-strong formulation of governing equations:
The key idea of the meshless methods based on the combination of weak-form and col-
location techniques is that in establishing the discretized system of equations, both
the strong-form and the weak-form are used for the same problem, but for different
group of nodes that carries different types of equations/conditions. Examples are the
meshless weak-strong form method (MWS) [23], and the smooth particle hydronamics
(SPH) [11].

Meshless methods based on the moving least squares (MLS) approximation:
The interpolation techniques used in these methods are series representation gener-
ated by a moving least squares method. The meshless local Petrov-Galerkin method
(MLPG) [17], the element free-Galerkin (EFG) [14], and the boundary node method
(BNM) [24] are included in this group.
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Meshless methods based on the integral representation method for the func-
tion approxrimation:

These methods represent the function using its information in a local domain [6] via
an integral form [6, 12]. Examples of methods in this group are the smooth particle

hydronamics (SPH) [11], and the reproducing kernel particle method (RKPM) [25, 26].

Meshless methods using point interpolation method:

These interpolation techniques use nodes distributed locally to formulate weak-form
methods [12]. The aproximation is obtained by letting the interpolation function pass
throught the function values at each scattered node within the support domain [6]. The
basis functions can be polynomials or radial basis functions (RBFs). The radial point
interpolation method (RPIM) [15], and the local radial point interpolation method
(LRPIM) [18], among others examples.

Meshless methods based on other interpolation schemes:

All meshless methods not using point interpolation, neither based on the moving least
squares approximation, nor on the integral representation method for the function ap-
proximation, are in this category. Examples of these methods are the hp-cloud method
[27], the partition of unity method (PU) [28], and the moving kriging interpolation
(MK)[29].

Meshless methods based on the domain:

In these methods, both the problem domain and boundaries are represented by nodes
to discretize the system of equations. Some examples are the element free-Galerkin
(EFQG) [14], the meshless local Petrov-Galerkin method (MLPG) [17], the smooth par-
ticle hydronamics (SPH) [11], the radial point interpolation method (RPIM) [15], and
the local radial point interpolation method (LRPIM) [18].

Meshless methods based on the boundary:
In these methods, only the boundary of the problem domain is represented by a set of
nodes to obtain the discretized system of equations. Examples are the boundary node

method (BNM) [24], the boundary point interpolation method (BPIM) [30], etc.
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Combination of meshless methods and those that need a mesh is also possible, for ex-
ample EFG/FEM |[31], EFG/BEM |[32], MLPG/FEM/BEM |33], moving least squares
approximation augmented with the enriched basis functions/FEM [34].

1.3.3 Radial Basis Functions and collocation

Although most of work to date on radial basis functions relates to scattered data ap-
proximation and in general to interpolation theory, there has recently been as increased

interest in their use for solving partial differential equations.

The solution of a set of ordinary (ODE) or partial differential equations (PDE) can be
approximated in an average form or totally satisfied in a set of chosen points distributed

in the domain. In collocation techniques we seek the last option [12].

When using collocation with radial basis functions (RBFs) this is obtained by a point in-
terpolation method (PIM) using radial basis functions. The approximation is obtained
by a series representation with interpolation function passing through the function

values at each scattered node within the support domain [6].

Collocation methods seem to be first used in the decade of 1930’s [8], with early devel-

opment and applications, for example in [7].

Advantages of collocation methods are a simple algorithm, computational efficiency
and the fact of being truly meshless [12]. Unfortunately, these methods are often
unstable, not robust, and inaccurate, especially for problems with derivative boundary

counditions.

Interest on radial basis functions increased after Franke’s paper [35]. He compares
methods available in the early 1980’s for scattered data interpolation in terms of timing,
storage, accuracy, visual pleasantness of the surface, and ease of implementation, and

concludes that multiquadrics and thin plate splines were the best methods available at
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that time.

A radial function is a real-valued function whose value depends only on the distance
from a point x; so that ¢(x,x;) = ¢(||x — x;||). Point x; is tradicionally called a center
because our basis functions will be radially symmetric about these points [36, 37, 38|.

The distance is usually the Euclidean distance, although others can be used.

Radial basis functions can also depend on a shape parameter ¢, replacing ¢(||x—x;||) by
o(||x —xi]|, ¢). This is a user-defined parameter and has a big influence on the accuracy

of the solution. Finding the optimal shape parameter is still an open discussion.

Radial basis functions (RBF) approximations are grid-free numerical schemes that can
exploit accurate representations of the boundary, are easy to implement and can be
spectrally accurate [39, 40]. It also has the advantage of being insensitive to spatial

dimension [36, 37, 38|.

Recently in literature the unsymmetric global collocation method with radial basis
functions is also called RBF-Direct method [41, 42| to be distinguished from other
methods that derive from or are combined with RBF, such as the RBF-QR (based
on QR decomposition) and the RBF-PS (RBF in a pseudospectral framework). We
will now present the formulation of the global unsymmetrical collocation RBF-based

method used in this thesis.

Radial basis functions

The radial basis function (¢) approximation of a function (u) is given by

u(x) =ZO@¢(||$—%||2),><€R” (1.1)

where y;,i = 1,.., N is a finite set of distinct points (centers) in R™. The coefficients
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a; are chosen so that u satisfies some boundary conditions. Some common RBFs are

or) =VET T,

o(r) = (¢ + )72

cubic

thin plate splines

Wendland functions

Gaussian

Multiquadric

Inverse Multiquadric

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)

where r is the euclidean norm between grid points of coordinates (z, y), a,b are the

length of the plate along x and y axis, respectively and ¢ is a user defined shape

parameter. In the present thesis, three different formulations for the shape parameter

were used:

e Fixed shape parameter: The value of the shape parameter was chosen by trial

and error for the shape parameter. For example in paper presented in 3.1.4 the

value \/2/N (where N is the number of nodes per side of the plate) is used and

in paper 3.2.3 a different fixed value is used. The radial basis function considers

the same shape parameter for all the points.

e Optimized shape parameter: The shape parameter is obtained by an optimiza-

tion procedure as detailed in Ferreira and Fasshauer [43]. All points have the

same shape parameter. This formulation was used in paper presented in 2.4, for

example.

e Adaptive shape parameter: At each iteration, the shape parameter is automati-

cally adapted. The radial basis function may use different shape parameter values
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11

for different points. This adaptive technique was used in paper presented in 3.1.1.

Other RBFs not so typical in literature are

otr) =/ 230er)

o(r) = \/gsin(cr) (_C:)Z cos(cr)

Radial Powers

Generalized Multiquadrics

Thin Plate Splines

Poisson with d = 1

Poisson with d = 3

Poisson with d =5

(1.8)

(1.9)

(1.10)

(1.11)

(1.12)

(1.13)

C.)2
o(r) = 1/\/1 + c? ((xZ — ;)% + M), Anisotropic Inverse Multiquadrics
(1.14)
In (1.9), ¢ =1/2 and ¢ = —1/2 leads to (1.6) and (1.7).

Local functions, such as the Wendland functions (1.4) are denoted as ¢, ;, and a detailed

exposition can be found in [44]|. Some of the most commomly used Wendland functions

in R? are:
pa0(r) = (1 —er)} (1.15)
p31(r) = (1 —er)i(der + 1) (1.16)
p32(r) = (1 —er)% (35(er)® + 18er + 3) (1.17)

@33(r) = (1 —er)% (32(er)® + 25(er)® + 8er + 1) (1.18)



12 Introduction and objectives

Poissons in R with d=1,3,5
0.8 T .

0.6

0.4

0.2

-0.8
-8 -6 -4 -2 0 2 4 6 8

Figure 1.2: Poisson functions in R? with d = 1 on the left and d = 3 on the right

The definition of the Poisson functions family is based on the Bessel function of order
d. Poisson functions (1.11) to (1.13) centered at the origin are displayed in figures 1.1
to 1.3 both in R and R2. A shape parameter ¢ = 10 was used in R2.

In (1.14) the radial basis function depends on the direction it is being computed and

is sometimes called anisotropic radial basis function [45].

Other RBFs also not so typically found in literature are the Laguerre-Gaussians listed
in table 1.2 and displayed in figures 1.4 and 1.5 in R and R? respectively and centered
at the origin. In R? a shape parameter ¢ = 3 was used. The definition of Laguerre-
Gaussians functions family comes from the generalized Laguerre polynomials of degree

n and order s/2.

Another family of radial basis functions are the Matérn functions also known as Sobolev
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0.3

Figure 1.3: Poisson function in R? with d = 5

Laguerre-Gaussian in R with n=1 Laguerre-Gaussian in R with n=2

1b
0.8
0.6
05
04r
0.2r 0
0
—0.2 L L L L L 05 L L L L L
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

Figure 1.4: Laguerre-Gaussians functions in R with n = 1 on the left and n = 2 on the right

Laguerre-Gaussian in R2 with n=1 Laguerre-Gaussian in R2 with n=2

A4

Figure 1.5: Laguerre-Gaussians functions in R? with n = 1 on the left and n = 2 on the
right
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) " 1 2

1 o(r) = (2= (cr)?) e o(r) = (£ — 2(cr)? + L(cr) 67(”)22
2 o(r)=(2—(cr)?e —(er)? 2 o(r) = (3 —3(cr)* + %(cr) ) e (er) 2
3 qb(r (cr)2 e g(r) = (38 = I(cr)* + 3(cr)*) e

splines. Examples are listed in table 1.3.

name matern function

basic o(r) =e

linear o(r)= 1 +cr)e ™
quadratic o(r)=1+cr+ %)e‘”

cubic o(r) = (15 + 15¢r + 6(cr)? + (er)®)e

Table 1.3: Matérn functions for several choices of 8

More recently Gneiting [46] introduced a new family of radial functions 7,,(r). Some

of them with s = 2 are listed bellow:

() = (1= e

7'275(7°)

72,15 (r) =

7’2,12(7“) =

135

15
14 —er — 22

1+ —er — ?(67‘)2)
(1 —er) (1+ 5er — 27(er)?)

15 391
- (

o)

(1 —er)l? (14 12er — 104(er)?)

(1.19)

(1.20)

(1.21)

(1.22)

The radial basis functions used in the present thesis are the Gaussian (1.5) in paper

here presented in 3.1.2, the Multiquadric (1.6) in 3.2.3, the Inverse Multiquadric (1.7)

in 3.2.2, the Gaussian-Laguerre (see table 1.2) in 3.1.2, the Matérn cubic (see table
1.3) in 3.2.1, and the Wendland (1.18) in 2.1.

An overview of some properties of radial basis functions and some important results

are now presented.

positive semi-definite matrix:
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A real symmetric matrix A is called positive semi-definite if its associated quadratic

form is non-negative [38], i.e.,

N N
Z Z CjCkAjk Z 0 (123)

7j=1 k=1
for c= [c1,...,cn]" € RV,
positive definite matric:

A real symmetric matrix A is called positive definite if its associated quadratic (1.23)

form is zero only for c= 0 [38], i.e

N N
Z Z cickAjr=0&5c¢c=0 (1.24)

7j=1 k=1
T
for c=[c1,...,en]” € RV,

These terminologies for matrices are connected with the following for functions, as

we define a matrix A with entries Aj; = ¢(x; — x;,) from a function ®(r).

positive definite functions:

A complex-valued continuos function ¢: R* — C is called positive definite on R? if [38]

Y cad(x; —xi) >0 (1.25)

7j=1 k=1
for any N pairwise different points xi,...,xy € R*, and c= [¢y, ..., cN]T e CV,
strictly positive definite functions:

A complex-valued continuos function ¢: R®* — C is called strictly positive definite on

R® if the associated quadratic form (1.25) is zero only for ¢= 0 [38], i.e.,

N N
D) cadx—x)=0sc=0 (1.26)

7j=1 k=1
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Examples of strictly positive definite radial functions are the Gaussian (1.5), the In-
verse Multiquadric (1.7), the Generalized Multiquadrics (1.9) with ¢ = 1 or ¢ = 2, and
the Matérn in table 1.3. The Wendlands ¢, (1.4) and (1.15)-(1.18), the Laguerre-
Gaussians listed in table 1.2, and the Poissons (1.11)-(1.12) are strictly positive definite
radial functions in R®. The Gneiting functions 7,,(r) (1.19)-(1.22) are strictly positive
definite radial functions in R® provided [ > %5

completely monotonic or completely monotone:

A function ¢ with domain (0, 00) is said to be completely monotonic [37, 47| or com-
pletely monotone [38] if it possesses derivatives ¢ (r) for all n = 0,1,2,3,... and if

(—=1)"¢™ (r) > 0 for all 7 > 0.
The Gaussian is an example of a completely monotonic radial basis function.

A first remark is that if ¢ = ®(||-||) is (strictly) positive definite and radial on R™ then

¢ is also (strictly) positive and definite and radial on R™ for any m < n.

Next results connect the concepts described so far and are due to Schoenberg [48]:

Theorem 1.3.1: A function ¢ is completely monotone on [0,00) if and only if

¢ = ®(||-||*) is positive definite and radial on R” for all n.

Theorem 1.3.2: A function ® : [0,00) — R is completely monotone but not con-

stant if and only if ®(||-||*) is strictly positive definite and radial on R” for any n.

These results are important in the context of interpolation problems, related to the
nonsingularity and invertibility of interpolation matrices. A discussion on the subject

can be found in [38], and proofs in [37, 49].

The next two definitios are the generalized version to complex-valued functions [38]
from Michelli’s [50] definitions for real-valued. Buhmann [37] uses the real-valued def-

inition.
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Conditionally positive definite functions:
A complex-valued continuos function ¢ is called conditionally positive definite of or-
der m on R™ if (1.25) holds for any N pairwise different points xy,...,xy € R", and

c=[c1,...,cn]" € CN satisfying

> eplx;) =0, (1.27)

for any complex-valued polynomial p of degree at most m — 1.

Strictly conditionally positive definite functions:
Analogous to previous definitions, a complex-valued continuos function ¢ is called con-
ditionally positive definite of order m on R™ if (1.25) holds for any N pairwise different

T

points X, ...,xy € R?, and c= [}, ...,cy]’ € C¥ satisfying

Z ij<xj) = 0, (128)

for any complex-valued polynomial p of degree at most m — 1 and if the quadratic form

(1.25) is zero only for c= 0.

Examples of strictly conditionally positive definite radial functions of order 1 are the
Multiquadric (1.6) and the Radial Power (1.8) with ¢ = 1. Examples of strictly con-
ditionally positive definite radial functions of order 2 are the Cubic (1.2) which corre-
sponds to the Radial Power (1.8) with ¢ = 3 and the Thin Plate Splines (1.3). The
Radial Power (1.8) with ¢ = 5 and the Thin Plate Spline (1.10) with ¢ = 2 are examples

of strictly conditionally positive definite radial functions of order 3.

As observation to be made is that a function which is (strictly) conditionally posi-
tive definite of order m on R™ is also (strictly) conditionally positive definite of any
higher order. In particular, a (strictly) positive definite function is always (strictly)

conditionally positive definite of any order [3§].

As before, we now present results connecting strictly conditionally positive definite
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radial functions to completely monotone functions.

Theorem 1.3.3: Let ® € C[0,00) N C*(0,00). Then the function ¢ = &(|-|*) is
conditionally positive definite of order m and radial on R™ for all n if and only if

(—=1)™®™ is completely monotone on (0, c0).

For m = 0 this is Schoenberg’s theorem 1.3.1. Micchelli in 1986 [50] proves that com-
plete monotonicity implies conditional positive definiteness and Guo et al. [51] prove

the remaining.

Theorem 1.3.4: If & € C[0,00) N C*(0,00) is not a polynomial of degree at most m
then the function ¢ = ®(||-||?) is strictly conditionally positive definite of order m and

radial on R" for all n.
A proof of this theorem can be found in [49].

For the interpolation problem, we have the following result:

Theorem 1.3.5: Let ¢ be a strictly conditionally positive definite of order one with
»(0) = 0. Then for any distinct points xi,...,xy € R" the matrix A with entries
Aji, = ¢(x; — x5) has N — 1 positive eigenvalues and one negative, and is therefore

non-singular.

This was first proved in 1986 [50] motivated by Hardy’s earlier work [52] and Franke’s

conjecture [35].

Compactly supported functions:

The support of the function ¢ with domain 2 is the closure of the set of points x € ()
for which ¢(x) # 0. A function of compact support in € is a function defined on
such that its support is a closed bounded set located at a distance from the boundary

of the domain by a number greater than o > 0.

This means that the function has compact support if it takes the value zero outside a
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compact set.

Compactly supported radial functions were introduced by Schaback [53]. Examples
are the Wendland’s functions (1.4), consisting of a univariate polynomial within their
support. They can be scaled so that the size of local support changes from § = 1
presented in (1.4) and (1.15)-(1.18) to another § [37, 12]. Another example of functions
with compact support are those of Gneiting (1.19)-(1.22).

Buhmann [36] and Wu [54] constructed other radial functions with compact support.

Such functions have the advantage of leading to a sparse interpolation matrix.

Unlike these functions, most of radial functions have global support, such as the Gaus-
sian (1.5), the Multiquadric (1.6), the Cubic (1.2), the Thin Plate Splines (1.3), and

the family of Laguerre-Gaussians, some listed in table 1.2.

Infinitely smooth radial functions are, for example, the Gaussian (1.5), the Multiquadric

(1.6), and the Inverse Multiquadric (1.7).

Examples of piecewise smooth radial functions are the family of Wendland functions

(1.4) and the Thin Plate Splines (1.3).

Examples of oscillating radial functions, also called in the literature oscillatory radial
functions, are the Laguerre-Gaussians, some of them listed in table 1.2, the family of
Poisson functions, including 1.11 to 1.13, and the Gneiting functions family (1.19)-
(1.22).

Solution of the interpolation problem

Hardy [52] introduced multiquadrics in the analysis of scattered geographical data.
In the 1990’s Kansa [21] used multiquadrics for the solution of partial differential

equations.

Considering N distinct interpolations, and knowing u(z;),j = 1,2, ..., N, we find o; by
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the solution of a N x N linear system

Aa=u (1.29)

where A = [0 (||l — vill2)] yun> @ = 1, Q2, ..., an]’ and u = [u(zy), u(xa), ..., u(zy)]".

The RBF interpolation matrix A is positive definite for some RBFs [36], but in general

provides ill-conditioned systems.

The static problem

Consider a linear elliptic partial differential operator £ acting in a bounded region )
in R™ and another operator Lz acting on a boundary 9. We seek the computation of

displacements (u) from the global system of equations

Lu = {fin Lpu =g on 0 (1.30)

The external forces applied on the plate and the boundary conditions applied along
the perimeter of the plate, respectively, are at the right-hand side of (1.30). The PDE
problem defined in (1.30) will be replaced by a finite problem, defined by an algebraic

system of equations, after the radial basis expansions.

Solution of the static problem

The solution of a static problem by radial basis functions considers N; nodes in the
domain and Np nodes on the boundary, with a total number of nodes N = N; + Np.

In the present thesis three different grids of points are used:
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Figure 1.6: R? grids with 112 points: equally spaced (left) and Chebyshev (right).
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Figure 1.7: Adaptive R? grids: initial (left) and final (right).
e Fqually spaced points The points are equally spaced. Such grid was used in paper
in 3.2.4 for example. An illustration of a 2D grid with 112 points is in figure 1.6.

e Chebyshev points For a given number of nodes per side (N+1) they are generated
by MATLAB code as:

x = cos(pix(0:N)/N)’; y=x;

One advantage of such mesh is the concentration of points near the boundary.

This grid was used for example in paper presented in 2.3.

e Adaptive points Nodes can be added to or removed from the set of centers based
on a residual. Figure 1.7 shows an example of an initial and a final grid. It
refers to a square simply-suppported isotropic plate, with side to thickness ratio

a/h = 100. This example was taken from 3.1.1.
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We denote the sampling points by z; € Q,i =1,..., Ny and z; € 0€2,i = N+ 1,...,N.

At the points in the domain (z; € Q,7 = 1,..., N;) we solve the following system of

equations
N
> il (o= yill2) = £(z)), j = 1,2,..., N; (1.31)
=1
or
L'a=F (1.32)
where
L= [£¢ (Hx - yiHZ)]leN (1.33)

At the points on the boundary (z; € 0Q,i = Ny + 1,..., N), we impose boundary

conditions as

N

> ilpe (o —yill2) = gz;),5 = Nr+1,.., N (1.34)
=1
or

Ba =G (1.35)
where

B=Lgo[(||zn,41 — yjH2>]NB><N

Therefore, we can write a finite-dimensional static problem as

cl! F
o (1.36)
B G
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By inverting the system (1.36), we obtain the vector a. We then obtain the solution

u using the interpolation equation (1.1).

The eigenproblem

The eigenproblem looks for eigenvalues (A) and eigenvectors (u) that satisfy

Lu+ Au=0in Lpu = 0 on oS (1.37)

As in the static problem, the eigenproblem defined in (1.37) is replaced by a finite-

dimensional eigenvalue problem, based on RBF approximations.

Solution of the eigenproblem

We consider N; nodes in the interior of the domain and N nodes on the boundary,
with N = N; + Ng. We denote interpolation points by z; € €Q,i = 1,..., N; and
x; € 00,1 = Nr+1,...,N. At the points in the domain, we define the eigenproblem as

N

> il (|lv = yill2) = M(xy),j = 1,2, ..., Ny (1.38)
=1
or

Lla = xu' (1.39)
where

L' = [Le (2 = yill2)]y, (1.40)
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At the points on the boundary, we enforce the boundary conditions as

N
> ailpd (o —yill2) =0,j =N +1,...N (1.41)
=1
or
Ba =0 (1.42)

Equations (1.39) and (1.42) can now be solved as a generalized eigenvalue problem

ol Al
a=\ " (1.43)
B 0
where

Al = ¢ [(|lzn, — Yill2) ;o

Discretization of the governing equations and boundary conditions

The radial basis collocation method follows a simple implementation procedure. Taking

equation (1.36), we compute

a= (1.44)

This a vector is then used to obtain solution , by using (1.1). If derivatives of u are

needed, such derivatives are computed as

o 96, &,
e X 115



1.3. Modelling with Radial basis functions 25

In the present collocation approach, we need to impose essential and natural boundary
conditions. Consider, for example, the condition wy = 0, on a simply supported or

clamped edge. We enforce the conditions by interpolating as
N

wo =0 a0p; =0 (1.46)
j=1

Other boundary conditions are interpolated in a similar way.

Free vibrations problems

For free vibration problems we set the external force to zero, and assume harmonic

solution in terms of displacements u; as
u; = Uj(w,y)e™; (1.47)

and analogous for v; and w;, where j may be j = 0,1,2,3, Z depending on the defor-
mation theory, and w is the frequency of natural vibration. Substituting the harmonic
expansion into equations (1.43) in terms of the amplitudes U;, V;, W, we may ob-
tain the natural frequencies and vibration modes for the plate problem, by solving the

eigenproblem

L —w’G]X =0 (1.48)

where L collects all stiffness terms and G collects all terms related to the inertial terms.
In (1.48) X are the modes of vibration associated with the natural frequencies defined

as W.
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Buckling problems

The eigenproblem associated to the governing equations is defined as

£ -G X =0 (1.49)

where L collects all stiffness terms and G collects all terms related to the in-plane
forces. In (1.49) X are the buckling modes associated with the buckling loads defined

as \.

1.3.4 Combining collocation with Radial Basis Functions and

Pseudospectral methods

Polynomial pseudospectral (PS) methods (also called spectral methods) are known
as highly accurate solvers for PDEs [55, 56]. Generally speaking, one represents the
spatial part of the approximate solution of a given PDE by a linear combination of

certain smooth basis functions, (i, j represents the N grid points).

N
Uh(l‘z) = Zajqu(xi),i = 1, ,N (150)
j=1

or in matrix-vector notation

u=Aax (1.51)
with a = [aq, ..., ;] and A;; = ¢i(x;)

Traditionally, polynomial basis functions are used. When we are using the radial basis
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functions collocation technique in a pseudospectral framework, however, we use any of

the radial basis functions (RBFs) in 1.2 to 1.14.
The derivatives of are easily computed. For example,

u' = Aya=Du (1.52)
with A, = £ ¢;(z;) where matrix is the differentiation matrix.

The use of PS and RBF combined for the analysis of structures was first presented by
Ferreira and Fasshauer [57|. Its application for laminated structures was then presented

by Ferreira et al. [58].

One advantage in using RBF-PS is that it provides an faster framework for dynamic
analysis due to the fact that we obtain directly solutions at points and not just some
parameters for interpolation of solution. Although this advantage is not noticeable in
free vibration analysis when compared to regular RBFs, it is quite relevant in transient
dynamics where interpolation with RBFs would have to be established in each time

step.
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1.4 The Carrera’s Unified Formulation for the analy-

sis of functionally graded plates and shells

1.4.1 Carrera’s Unified Formulation

The Unified Formulation proposed by Carrera (further denoted as CUF) method |2, 3]
is employed to obtain the algebraic equations of motion and boundary conditions. Such
equations of motion and corresponding boundary conditions are then interpolated by

radial basis functions to obtain an algebraic system of equations.

The CUF method has been applied in several finite element analysis, either using
the Principle of Virtual Displacements, or by using the Reissner’s Mixed Variational
theorem. The stiffness matrix components, the external force terms or the inertia
terms can be obtained directly with this unified formulation, irrespective of the shear

deformation theory being considered.

Carrera’s Unified Formulation (CUF) was proposed in [59, 3, 60] for laminated plates
and shells and extended to FGM plates in |61, 62, 63]. It is possible to implement any
C? theory under CUF, using layer-wise as well as equivalent single-layer descriptions,
and the Principle of Virtual Displacements, as is the case in present thesis, or the
Reissner mixed variational theorem. CUF allows a systematic assessment of a large

number of plate models.

The combination of CUF and meshless methods has been performed in |64, 65, 66, 67|
for laminated plates and in [68, 69] for laminated shells. In the present thesis the

combination of CUF and meshless methods is generalized for FG plates and shells.

Furthermore, the deformation theories used in the present thesis demand for a gener-
alization of the original CUF, by introducing different displacement fields for in-plane

and out-of-plane displacements.
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Moreover, a novel application of CUF is proposed in this thesis. The explicit govern-
ing equations and boundary conditions in terms of displacements of the static, free
vibration or buckling problems are obtained using symbolic computation. The combi-
nation of CUF and the symbolic calculations performed in MATLAB can be seen as a

time-saving and error reducer.

1.4.2 Shear deformation theories

The classical plate theory (CLPT) yields acceptable results only for the analysis of thin
plates. The accuracy of the first-order shear deformation theory (FSDT) depends on
the shear correction factor which may be difficult to compute. Higher-order shear defor-
mation theories (HSDT) provide better accuracy for transverse shear stresses without

the need of a shear correction factor.

Examples of HSDT were proposed by Reddy [70|, Kant |71, 72, 73, 74, 75, 76| and
Batra |77, 78].

The use of a sinusoidal shear deformation theory for composite laminated plates and
shells was first presented by Touratier |79, 80] [81] in the early 1990’s. Later Vidal and
Polit [82] used a sinusoidal shear deformation theory for composite laminated beams.
The use of sinusoidal plate theories for functionally graded plates was first presented

by Zenkour [83], where a €,, = 0 approach was used.

To the best of authors’ knowledge, plate theories involving hyperbolic functions are
quite rare in literature. Soldatos [84] used a displacement field involving the hyperbolic

function

f(2) = hsinh (%) ~ zcosh (%) . (1.53)
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In [85, 86] two displacement fields are presented both considering a hyperbolic function:

f(z) = 377sz‘cexr1h <%> — 3772 sech? (%) (1.54)
and
f(2) = z sech (%) — z sech (%) [1 - gtanh (%)] : (1.55)

These hyperbolic functions were used in the study of laminated composite plates.

Noureddine et al. [87] consider the hyperbolic function

i (5) - -
(z) = cosh (g) -1

(1.56)

in the study of functionally graded plates. In all cases the hyperbolic functions are used
for the in-plane expansions only, while the transverse displacement is kept constant

(w = wy).

The zig-zag effect is produced by the strong difference of mechanical properties between
faces and core in sandwich structures. A discontinuity of the deformed core-faces planes
at the interfaces is introduced and makes difficult the use of classical theories such as
Kirchhoff [88] or Reissner-Mindlin [89, 90| type theories. This thesis focus on equivalent
single layer models and in this framework Murakami [91] proposed a zig-zag function

that is able to reproduce the slope discontinuity.

Two major topics arise from the literature revision: the warping and the zig-zag effects
on the analyis of the structures behaviour. Most of studies on functionally graded plates
are performed with theories not accounting for transverse extensibility by neglecting the
0., effects, considering the transverse displacement to be independent of the thickness

coordinates.

In this thesis several novel higher-order shear deformation theories are implemented
using the Principle of Virtual Displacements under Carrera’s Unified Formulation, all
based on an assumed displacement field. They are here categorized based on the

expansion of the displacement in the x— direction:
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e Higher-order (polynomial) shear deformation theories
e Sinusoidal shear deformation theories

e Hyperbolic sine shear deformation theories

Higher-order (polynomial) shear deformation theories:

In-plane displacements are considered to be cubic across the thickness coordinate. The
transverse displacement may be defined as constant if warping is not allowed, or as

parabolic in the thickness direction if warping is allowed.

(
U= up + 2uq + 2ug

v =g+ 2v; + 2303 (1.57)

w = wy + 2wy + 22w,

\

Here and in the following u = u(z,y, 2,t), v = v(z,y, 2,t), and w = w(x,y, z,t) are
the displacements in the z—, y—, and z— directions, respectively. u; = u(x,y,t) and
v; = vi(x,y,t), with ¢ = 0,1, 3, and w; = w;(z,y,t), with i = 0,1, 2, are functions to be

determined.

(
U= up + 2uq + 2ug

v =g+ 2v; + 2303 (1.58)

w = Wy
\
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Sinusoidal shear deformation theories:

The use of trigonometric shear deformation theories accounting for thickness-stretching

or the zig-zag effects for the analysis of plates has not been performed before. In

this thesis quasi-3D sinusoidal shear deformation theories are introduced. In-plane

displacements are considered to be of sinusoidal type across the thickness coordinate

and may include or not the terms to account for the zig-zag effect. The transverse

displacement may be defined as constant if warping is not allowed, or as parabolic in

the thickness direction if warping is allowed.

(

\

(

(

\

U = Ug + 2u; + sin (%) Ug
v = Vg + 201 + sin (%) Vs

w = wy + 2wy + 22w,

U = Ug + 2up + sin (%) Uy
v = vy + 21 + sin (%) Vg

w = Wy

w = ug + 2uy +sin (52) us + (=1)F

v =g+ 201 +sin (%F) v, + (—1)’“%

w = wy + 2wy + 22w,

(1.59)

(1.60)

(2= 5 (2 + 2611)) vz (1.61)
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)
U = Ug + 2uq + sin (%) Uy + (—l)kh—zk (z — % (zr + zk+1)) Uy

v =y + zv; +sin () vy + (—1)kh—2k (2 — 5 (21 + 2141)) vz (1.62)

w = Wy
\

Hyperbolic sine shear deformation theories:

In all previous investigations with hyperbolic functions, the transverse displacement is
considered as constant resulting in shear deformation theories that neglect the thickness
stretching (e, = 0) and the zig-zag effect is not taken in account. In the present thesis
new hyperbolic sine theories accounting for thickness stretching and zig-zag effects are

introduced for the analysis of functionally graded plates.

(
U = ug + zup + sinh (%) Uy

v = Vg + 2v; + sinh (%Z) Vg (1.63)

w = wy + 2wy + 22w,
\

p
U = Uy + 2u; + sinh (%) Uy

v = vy + zv; + sinh (%2) vy (1.64)

w = Wy

\

(
u = ug + 2wy + sinh (32) uz + (—1)’“% (2 — 3 (21 + 2011)) uz

v =g+ 21+ sinh () v + (=12 (2 — 5 (2 + 241)) vz (1.65)

w = wy + 2wy + 22w,

\
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Figure 1.8: Scheme of the expansions involved in the displacement fields.
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Figure 1.9: Zig-zag effect for two different sandwich configurations.

(
u = ug + 2wy + sinh (32) uz + (—1)’“% (2 — 3 (21 + 2011)) uz

v =g+ 21 + sinh (Z2) vs + (—1)’“% (2 — 5 (21 + 2141)) vz (1.66)

w = Wy

\

In (1.57) to (1.66) the unknowns are u;, v;, and w; (where i can take the values i =
0,1,2,3, Z depending on the shear deformation theory). The expansion of the degrees
of freedom wg, uy, us, vy, v1, v3, Wo, Wy, and wy are functions of the thickness coordinate
only as well as the uy and vz that comes with the sinusoidal or the hyperbolic sine
expansion. These are layer-independent, unlike those of uz and vz associated to the
(—1)* expansion, as illustrated in figures 1.8 and 1.9. These last terms introduce the
zig-zag effect and can be seen in this context as a generalization of the Murakami’s
original work [91]. Figure 1.8 shows the meaning of the unknows in the in-plane
displacements expansion in present theories: ug, vy are translations; uy, vy, uz, and v3
are rotations. In figure 1.9 one can visualize that this zig-zag function corresponds to

a rotation per layer.
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theory considers allows requires
zig-zag effect | thichness-stretching | shear correction factor
2% (1.57) no yes no
230 (1.58) no no no
sinus (1.59) no yes no
sinus0 (1.60) 1no no no
sinusZZ (1.61) yes yes no
sinusZZ0 (1.62) yes no no
sinh (1.63) 1no yes no
sinh0 (1.64) no no no
sinhZZ (1.65) yes yes no
sinhZZ0 (1.66) yes 1no 1no

Table 1.4: Overview on the present theories.

Table 1.4 presents an overview on the characteristics of the new theories implemented
in present thesis. They all require no shear correction factors and the higher-order
terms are odd functions. Some theories allow thickness-stretching by considering a
parabolic expansion for the out-of-plane displacement, and some consider the zig-zag
effect. Studies on the influence of the warping effect in the thickness direction and the

zig-zag effects were carried out with this theories.

1.4.3 Functionally graded materials

Functionally graded (FG) materials (FGM) are a class of composite materials that
were first proposed in 1972 by Bever and colleagues [92, 93| but investigation on such
materials started only in the 1980s. In a typical FGM plate the material properties
continuously vary over the thickness direction by mixing two different materials [94].
The computational modelling of FGM is an important tool to the understanding of the
structures behavior, and has been the target of intense research [94, 95, 96, 97, 98, 99,
100].

The concept of functionally graded materials (FGM) was introduced to satisfy the de-
mand of ultra-high-temperature environment and to eliminate the stress singularities
[101]. Due to the continuous change in material properties of an FGM, the interfaces
between two materials disappear but the characteristics of two or more different ma-

terials of the composite are preserved. Interested readers on FGM application fields
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Figure 1.10: Isotropic FGM plate.

can refer to [100] or [94]. A review of the main developments in FGM can be found in

Birman and Byrd [99].

In a conventional FGM plate a continuous variation of material properties over the
thickness direction is obtained by mixing two different materials [94]. The material
properties of the FGM plate are assumed to change continuously throughout the thick-

ness of the plate, according to the volume fraction of the constituent materials.

Functionally graded materials (FGM) are a class of composites in which the properties
of the material gradually change over one or more cartesian direction. A typical FGM
plate considers a continuous variation of material properties over the thickness direction
by mixing two different materials [94]. The gradual variation of properties avoids the
delamination failure that are common in laminated composites. The FGM concept has

applications in several fields such as aerospace and civil [94].

Three different types of functionally graded plates are studied in this thesis:

e isotropic FGM plates and shells;

e sandwich plates with FGM core;

e sandwich plates with FGM skins.

The isotropic FGM plate or shell is graded from metal (bottom) to ceramic (top) (see
figure 1.10).
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Figure 1.11: Sandwich plate with FGM core and isotropic skins.
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Figure 1.12: Sandwich plate with isotropic core and FGM skins.

In a sandwich plate with FGM core, the bottom skin is isotropic (fully metal) and the
top skin is isotropic (fully ceramic). The core layer is graded from metal to ceramic so

that there are no interfaces between core and skins, as illustrated in figure 1.11.

In sandwich plates with FGM skins, the core is isotropic (fully ceramic) and skins are
composed of a functionally graded material across the thickness direction. The bottom
skin varies from a metal-rich surface (z = —h/2) to a ceramic-rich surface while the
top skin face varies from a ceramic-rich surface to a metal-rich surface (z = h/2), as

illustrated in figure 1.12. There are no interfaces between core and skins.

A conventional FG plate considers a continuous variation of material properties over
the thickness direction by mixing two different materials [94]. The material properties
of the FG plate are assumed to change continuously throughout the thickness of the
plate, according to the volume fraction of the constituent materials. Although one
can use CUF for one-layer, isotropic plate, we consider a multi-layered plate. In fact,

the sandwiches in study present 3 physical layers, kp = 1,2, 3, and depending on the
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considered theory may have different displacement fields. Nevertheless, we are dealing
with functionally graded materials and becomes mandatory to model the continuos
variation of properties across the thickness direction. A considerable number of layers
is needed for both isotropic FG and FG sandwich plates or shells to ensure correct
computation of material properties at each thickness position, and for that reason we
consider N; = 91 virtual (mathematical) layers of constant thickness. In the following,

kp refers to physical layers and k& =1, ..., 91 refers to virtual layers.

The CUF procedure applied to FG materials starts by evaluating the volume fraction
of the two constituents for each layer. To describe the volume fractions an exponential
function can be used as in [102], or the sigmoid function as proposed in [103]. In the
present work a power-law function is used as most researchers do [104] [105, 106, 83].
In the typical FG plate the power-law function defines the volume fraction of the

constituints as:

V.= (05+ %)p; for the ceramic phase (167)

Vpo=1-V, for the metal phase

where z € [—h/2,h/2], h is the thickness of the plate, and p is a scalar parameter that
allows the user to define gradation of material properties across the thickness direction.

The volume fraction of the constituints are computed for each layer

VE=(05+%)"; for the ceramic phase
(1.68)

VE=1-Vk for the metal phase

m Cc

where Z is the thickness coordinate of a point of each (virtual) layer. In the sandwich
plate with functionally graded core or skins, the volume fraction of the ceramic phase
of the FG layers are obtained by adapting the typical power-law. Furthermore, for

both FG sandwich plates, one needs to compute the volume fraction for each layer. In
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the case of the sandwich plate with FG skins one has:

( - p
vE=(F) 2ol

< ‘/ck = 1, z € [hhhg] (169>

Ve ()" se bt

where Z is the thickness coordinate of a point of each (virtual) skin layer, hg, hy, hs,
and hg are the z-coordinates of the interfaces of the layers as visualized in figure 1.12,
and p > 0 is a scalar parameter that allows the user to define gradation of material

properties across the thickness direction of the skins.

Once having the volume fraction of each constituent, a homogenization procedure is
employed to find the values of the modulus of elasticity, E*, and Poisson’s ratio, v/*,
of each layer. A possible homogenization technique is the Mori-Tanaka one [107, 108|,

and other possibility is the law-of-mixtures.
The law-of-mixtures states that:

E*(2) = B VE+ EVF V) = v,V 40 VE (1.70)

The Mori-Tanaka homogenization procedure [107, 108] starts by finding the bulk mod-

ulus, K, and the effective shear modulus, GG, of the composite equivalent layer as

= Ky - Go—Gm :
K.— K, 1+Vme+4f§)Gm G.—Gn 1+ Vg
where
Gm(9K,, + 8Gp)
4 6(K + 2G,p) (1.72)

k

The effective values of Young’s modulus, E*, and Poisson’s ratio, v*, are then found
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from

9KG 3K — 2G
ko Lk 1.
3K+ G T 23K +G) (1.73)

1.4.4 Displacements

According to the Unified Formulation by Carrera, the three displacement components

Uy, Uy(=v) and u,(=w) and their relative variations are modeled as:

(u:m Uy, uz) = FT (u:r:‘ra Uyr, uZT) (5/“:(:7 5uya 5uz) = Fs (61618, (5uysa 5uzs) (174>

The vectors are chosen by resorting to the displacement field. For example, when

considering the displacement field in (1.59), the thickness functions are as follows

Fow = Foyy = Fryp = Fryy = [1 z sin (%)]

(1.75)
Fsuz - FTuz - [1 z 22]

and for displacement field in (1.66) are

(1.76)

Combining CUF and global collocation with RBFs allowed to implement a new theory

just by changing this vectors. We then automatically obtained the governing equations
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and boundary conditions in terms of displacements of the chosen theory and the analysis

of the plate or shell behaviour based on that theory.

1.4.5 Plates

Strains

Strains are separated into in-plane and normal components, denoted respectively by

the subscripts p and n.

The geometrical relations (G) between the mechanical strains in the kth layer and the
displacement field u* = {uf,u}, uf} depend on the option of considering or not the

warping in thickness direction.

If warping is allowed (i.e., €,, # 0), G can be stated as follows:
(—:’;G = [€a, €yy, %y]kT = D/I;(”l)u]C , (1.77)
e = Yoz gz €22 = (D}, + D) u* |

wherein the differential operator arrays are defined as follows:

9, 0 022 00 0, 9. 0 0
D™ =110 9, /2|, Diy=|008, |, Di=|0 a0 0],
0, 9, 0,0, 00 0 0 0 0.

(1.78)

Although one needs to account for the nonliner contributions for the buckling analysis,
we can use the linear version of CUF as the non-linear terms will only influence the

equation refering to dwg. In fact, the compressive in-plane forces and distributed shear
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forces only actuate on the mid-plane (z = 0) and the nonlinear terms are reduced to

2
1 (Owo 2 1 ( dwg Owg Owg
2(8r)’2(6y ’and ox Oy

Irrespective of the nature of the problem (static, free vibration or buckling) when

warping is allowed we use

9, 0 0
Dy=10 9, 0 (1.79)
9, 0, 0

instead of D’;("Z) and just add the terms in referred equation.

When warping is not allowed (i.e. €,, = 0), EI;G and the differential operator array D’;

remain as before, but the other strains are reduced to

EZG = [736277@/2}]671 = (D]:Lp + D”ZZ) uk ’ (18[))
wherein the differential operator arrays are defined as:

. 00 2 . 9. 0 0
Dk = Dk, = , (1.81)

np ) nz

00 9, 0 8. 0

Elastic stress-strain relations

To define the constitutive equations (C'), stresses are separated into in-plane and normal
components as well. The elastic stress-strain relations depend on which assumption of

€,, we consider.
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For the €., # 0 case, the 3D constitutive equations are used:

O-SC = [0-1%’ Oyys Ul’y] C];p pG + Cpn nG
(1.82)
O-ﬁC' = [0-127 Oyzs UZZ] szp pG + Cnn nG
with
ck Cor, 0 0 0 Ck
k k
Cpp = CfQ Ofl 0 Cpn =100 sz
0 0 C’f4 00 O
(1.83)
0 0 O Cff4 0 0
Ci,=| 0 0 0 Ci.=| 0o cCk o
ck, CF 0 0 0 Cf
and the ij are the three-dimensional elastic constants
Ek 1— k\2 Ek: k k\2 Ek
oL B e B s

[ 3(h)? —20hp 2T T 3R — (ke 21+ k)

where the modulus of elasticity and Poisson’s ratio were defined in (1.70) or (1.73).

For the ¢,, = 0 case, the plane-stress case is used:

O-ngC = [O'xxa Oyy; O.fty] C;Dp G
(1.85)
UZC - [sz7 Uyz] Cnn nG
with Ck and epG as before, € = [Vs2,72]"" and
cko0
o | o (1.86)

0 C
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and ij are the plane-stress reduced elastic constants:

k _ k _ k —
Cll - 1— (l/k>27 C'12 v 1— (Vk)Q’ C’44 2(1 + l/k> (187>

Principle of virtual displacements

In the framework of the Unified Formulation, the Principle of Virtual Displacements

(PVD) for the pure-mechanical case is written as:

Nl Nl
3 / / {&;GTago + 562(;%50} dydz =y 6Lk (1.88)
k=1

k=1Q, A,

where € and A are the integration domains in plane (z,y) and z direction, respec-
tively. As stated before, G means geometrical relations and C' constitutive equations,
and k indicates the virtual layer. T is the transpose operator and JL* is the external

work for the kth layer.

Substituting the geometrical relations (G), the constitutive equations (C'), and the

modeled displacement field (F, and Fj), all for the kth layer, (1.88) becomes:

/ / [(D’; F,6ub)"(C* D¥ Fouk + CE (DE, + DF ) Ful)

bp——p
Qi Ag

np—p

+ ((DFq + DE)F,6ub)T(CE DF Fuk + CF (DF, + DZZ)FTuf_)] dydz = §LF

(1.89)

At this point, the formula of integration by parts is applied:

/ ((Dg)sa*)" akdsy, = — / sa*" ((DE)a*) dy, + / sa*" ((1g)a*) dry, (1.90)

Q Q Tk



1.4. The Carrera’s Unified Formulation for the analysis of functionally graded plates and
shells 45

where I matrix is obtained applying the Gradient theorem:

LT o

Q r

being n; the components of the normal n to the boundary along the direction i. After
integration by parts, the governing equations and boundary conditions for the plate in

the mechanical case are obtained:

//( 5u§)T[<<_D’;)T(C1;p(D1;) +Ck (DkQ+D )

Qi A

+ (- D%+D)(CMD%+de%+D)»FFu}M@M
(1.92)
‘/:/ ( 6uh) ﬁf (Ci,(DF) +Cp (DE, + D))
Qp Ag
4&%@%@@+cgm%+D@UFFu]mwm_/}@ﬁmmm.

Qp

where I’; and Iflp depend on the boundary geometry:

n, 0 0 0 0 n,
=10 n, 0, I,=100 n, |- (1.93)
ny ng 0 00 O

The normal to the boundary of domain (2 is:

n= = * (1.94)

where ¢, and ¢, are the angles between the normal 7 and the direction x and y

respectively.
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Governing equations and boundary conditions

The governing equations for a multi-layered plate subjected to mechanical loadings are:

kT,
S

Su KFsub = pr (1.95)

where the fundamental nucleus K7 is obtained as:

Kl =[( - D})" (L (D}) +Ch, (Dl + D)

(1.96)
+ (= Dig + Dh.)" (Ch, (D) + CL, (DX + DL)) | F.F,
and the corresponding Neumann-type boundary conditions on I'y, are:
IEmu® = Ik a” | (1.97)
where:
I = |17 (Ch,(Df) + Cf, (Dl + Dh)) +
(1.98)

L7 (CL,(D}) +Ck, (kg + D)) |F.F,

and P*_ are variationally consistent loads with applied pressure.
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Fundamental nuclei

For FG materials, the fundamental nuclei in explicit form becomes:

K7, =(=0;0;Cn + 010:Cs5 — 0;0;Ce6) F F

uuwl1l

KIS, =(~070:Cha — 0705 Ci) F, F,

uul12

KEms —(—070:Cys + 070 Ci3) F, Fy

uu13

KIs =(=0703Cha — OL0:Cl) F, F,

uu21

KETs = (—0795Chs + 070Cay — 0705 Cs) F, F, (1.99)

uu22

KT =(—870:Chs + 870:Cus) . F,

uu23

KEms —(079°Chy — 070 Ci5) F, F,

uu3l

KT (070 Cog — 0703 Cua) . Py

uu32

KL7e =(070:Cs3 — 07 05Cuy — 0503Cs5) F,

uu3s3
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3T =(n,05C11 + ny0;Cog) Fr Fy

I137° =(n,05Ch2 + ny03Ce6) Fr Fy

Hlfgs =(n,0;C13) - Fs

57 =(n,05Ch2 + ne0; Cog) Fr Fy

I157° =(n,0:Cas + ny05Ces) Fr F (1.100)
Hggs =(ny0:Cs3) F; F

ngfs =(n,0;Cs5) - Fs

1157° =(n, 0;Cuy) F F,

157 =(n, 03 Ca + 1,05Cs5) F, F,

Dynamic governing equations

In the framework of the Unified Formulation, the PVD for the dynamic case reads:

N; N N
Z // {56’;GTOJ;C - 5GQGTUZC} dQydz = Z //pkéukTildede + Z SLF
k=1

k=1 QA k=1 Qp Ay

(1.101)

where p” is the mass density of the k-th layer and double dots denote acceleration. The

remainings are as in (1.88).
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As for the static case, we obtain the following governing equations:

kT .

Su KFsub = MM ak + PE (1.102)

where M*™® is the fundamental nucleus for the inertial term with explicit form as:

Mi’}” = pFF.F, fori=j
(1.103)

kts __ ; ;
M= 0 fori#j

The geometrical and mechanical boundary conditions are the same of the static case.

Governing equations and boundary conditions in terms of displacements

In order to discretize the governing equations by radial basis functions, we need the
explicit terms of that equations and the corresponding boundary conditions as well
in terms of the generalized displacements. The explicit governing equations and cor-
responding boundary conditions in terms of generalized displacements for the static,
free vibration and buckling analysis of functionally graded plates of some theories can
be found in papers presented in this thesis in 2.2, 2.3, 2.4, and 2.5. For the sake of
completeness we present here the equation of the buckling problem of sinus theory

(1.59) that corresponds to the wy variable for the buckling problems.
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K-top/ ‘
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Figure 1.13: Geometry and notations for a multilayered shell (doubly curved).

Ouy Ouy oy vy 9%wy 0wy
owg :Ai3— + 2B13—— + Ays— + 2B —A —A
Wo A3 5 + 2513 p + A3 oy + 2523 oy 5552 W50
0w, 0*w, 0wy *wy
- BSE’W - 448—y2 TPy a T 448—y2 (1.104)
— 8221}0 — 82100 — 8211}()
+ 0x? + Y 0xoy Ny 0y?
The stiffness components of this equation can be computed as follows:
N, R R
Aij =Y ez —2); By = 3 Y (s —2); Dy = 3 > el (i — 20
k=1 k=1 k=1
(1.105)

where N, is the number of mathematical layers across the thickness direction, Ay is the
thickness of each layer, and zj, 2,1 are the lower and upper z coordinate for each layer

k. Nyz, Ny, and N,, denote the in-plane applied loads.

1.4.6 Shells

The geometry and the reference system are indicated in Fig. (1.13).
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The functionally graded shell is divided into a number (N;) of uniform thickness (vir-
tual) layers. The square of an infinitesimal linear segment in the k-th layer, the asso-

ciated infinitesimal area and volume are given by:

ds} = HF do® + HE dp? + HF d2*
Ay = HiHf dodf (1.106)

dVi = HE HY HY dodf dz

where the metric coeflicients are:
HE = AF(1+2/RY), HE=DB*(1+2/RY), HF=1. (1.107)

k denotes the k-layer of the multilayered shell; R* and Rg are the principal radii of
curvature along the coordinates a and f3 respectively. A¥ and B* are the coefficients of
the first fundamental form of Q (T is the Qf boundary). In this work, the attention
has been restricted to shells with constant radii of curvature (cylindrical, spherical,

toroidal geometries) for which A* = B* = 1.

Strains

As for the plates, strains are separated into in-plane and normal components, denoted

respectively by the subscripts p and n.

When considering stretching in the thickness direction the mechanical strains in the
kth layer can be related to the displacement field u* = {wf, uf, u¥} via the geometrical

relations:

6pG = [Ek 6267 €§B]T - (D]; + AI;) uk ) eﬁG - [61227 e,lg’za elzz]T - (D]:LQ + DZZ - A’:L) uk

(1.108)
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The explicit form of the introduced arrays follows:

#0000 00 &% 9. 0 0

D=1 0 %Z 0|, Dfy,=1]0 0 ff—% ., Df.=10 o, 0o, (1.109)
Z—% 2 0 00 0 0 0 o,
00 mr w00

k __ 1 k __ 1

Ap=100 g | AL=| 0 g 0 (1.110)
00 0 0 0 0

Elastic stress-strain relations

As before, strains are separated into in-plane (p) and normal (n) components. The

constitutive equations still

Kk _ ok _k ko k
0,0 =C,, 6,6+ Cp €6

(1.111)

k _ ok _k k _k
Onc = Cnp EpG + Cnn €nG

and depending on the assumption on considering or not thickness-stretch effects, 3D or

reduced plane-tress constitutive equations are chosen as for the plates. The matrices

Ck  Ck

pn? np’

Ck

pp’
each layer, considers the same steps:

and Cj, are as before and the computation of elastic constants C}; for

1. 1% Computation of volume fraction of the ceramic V¥ and metal V¥ phases, in

the present thesis by the power-law formulation (1.67);

2. 2" Computation of elastic properties E¥ and v*, either by the Mori-Tanaka

homogeneization technique (1.73) or the law-of-mistures (1.70).

3. 3" Computation of elastic constants C}; as in (1.83) or (1.86) depending on the

assumption of €.
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Principle of virtual displacements

The Principle of Virtual Displacements (PVD) remains as in (1.88) and the steps to

obtain the governing equations are as for the plates:
e Substitution of the geometrical relations (subscript G);
e Substitution of the appropriate constitutive equations (subscript C);

e Modeling of the displacement field by defining Fiyz, Fiuy, Fruz, Fruy, Fsuz, and
FT’LLZ'

Substituting the geometrical relations, the constitutive equations and the displacement
field modeled by the unified formulation into the variational statement PVD (1.88), for
the kth layer, one obtains for the shell:

Zl{/ /{((Dp + Ap>5uk)T<C];p(Dp + Ap)uk + C};n(DnQ + D, — An)uk)+

k=1 Qi Ag

(Do + D, — An)auk)T(Cgp(DP + A))u" + Ck (Do + D,. — A,)u")}dQudz}
N,

= oL
k=1

(1.112)

As for the plates, after integration by parts (see (1.90) and (1.91)) and the substi-

tution of CUF, the governing equations and boundary conditions for the shell in the
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mechanical case are obtained:

N
Z{/ /{5UET[(_DP + Ap)TFS(CZp(Dp + Ap>FTu£ + Clzjn(DnQ + D, — An)FTu]:)]+

k=1q, A,

SuT[(=Dyq + D, — An)TFS(ijp(Dp + A)Fuf + CF (Do + D,. — A,)F,ub)]}dQudz}

N
+) { / / {out" (I F,(Ck (D, + A,)Frul + C}, (Dyuq + D, — A,)Frul)+

k=1 p, A,

sul"[IL F(Ch (D), — A Frut + C% (Dyg + D, — Ay) Frul)| bl pdz,}

N,

=3t suttrty

k=1 Qe

(1.113)
where I';;' and Iflp depend on the boundary geometry:
= 0 0 00
Z—‘; 7 0 00 O
The normal to the boundary of domain €2 is:
Ng cos(pa
fi— _ | st (1.115)
ng cos(pg)

where ¢, and ¢z are the angles between the normal 7 and the direction o and

respectively.
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Governing equations and boundary conditions

The governing equations for a multilayered shell subjected to mechanical loadings are:

kT .
S

su KFsuh = PF (1.116)

where the fundamental nucleus K% is obtained as:

quiz:s = / {[_Dp + AP]T Cl;p[Dp + Ap] + [_Dp + Ap]T Cl;n[DnQ + Dnz - An]“‘
Ag

F,F,HH d= .

(1.117)
and the corresponding Neumann-type boundary conditions on I'y are:
Ik u® = 1t ak (1.118)
where:
I = / [Ig C[D,+ Ajl+ I, Ck [Dno+ D,. — A7)+
A (1.119)

17.C* D, + A7)+ I%, C¥ [Dyo + D,. — A;]] F,F,H:HY d= .

and P*_ are variationally consistent loads with applied pressure.
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Fundamental nuclei

The fundamental nuclei K*7* is reported for functionally graded doubly curved shells

(radii of curvature in both a and § directions (see Fig.1.13)):

Tsk o k TkTs Qs a1 k TkTs Qs QT
(Kii')y, = —CnJj — CiaJaj30505

/a¥a

1
Ra,

1
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1
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k kTS
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(Kﬁbz—qym@%—qu@%

1 1
Tsk k kTs T k
(Kuu )13 = _CllR_ak B/aYa 012 Rﬂk
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k k7.5 Qs 1 kTs s
g
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1 kTs as k 1 kTs Qs k T1kT.59s
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(1.121)

The application of boundary conditions makes use of the fundamental nuclei Il; in the

form:

TS kTs s k TS 08
(Huuk)ll = naCfla]B + nﬁ044<]§//385

Ja¥a

(TI3F) 1y = 1aCloJ 05 + nsC J 70,
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1
Tsk _ kTs kTs kTs,
(IT7:6) 13 = 10 —Ch T3] R ——Ch M 4 o Oy T
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/a¥a

Note that all the equations written for the shell degenerate in those for the plate when
1 1
Rak B Rﬁk
with the present formulation.

= 0. In practice, the radii of curvature are set to 10° for analysis of plates

Dynamic governing equations

The PVD for the shell dynamic case is expressed as for the plate dynamic case as
n (1.101). Substituting the geometrical relations and the constitutive equations, one

obtains the following governing equations:

kT .
S

su KFsub = MM 4 PE (1.123)

In the case of free vibrations one has:

kT .
S

Su KFsub = MMk (1.124)
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where M*™* is the fundamental nucleus for the inertial term, given by

ijTs _ pkjkgs’ i :]

[}

(1.125)
M =0, i

The meaning of the integral Jé‘jgs has been illustrated in eq. (1.121). The geometrical

and mechanical boundary conditions are the same of the static case.

1.5 Organization of the thesis

After a short introduction, we present the papers published in international journals.

In the end of the thesis we formulate some conclusions.
The list of papers presented are as follows:

Title: Dynamic Analysis of Functionally Graded Plates and Shells by Radial Basis

Functions

On Carrera’s Unified Formulation

Title: Bending of FGM plates by a sinusoidal plate formulation and collocation with

radial basis functions

Title: A quasi-3D sinusoidal shear deformation theory for the static and free vibration

analysis of functionally graded plates

Title: A quasi-3D hyperbolic shear deformation theory for the static and free vibration

analysis of functionally graded plates
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Title: Static, free vibration and buckling analysis of isotropic and sandwich func-
tionally graded plates using a quasi-3D higher-order shear deformation theory and a

meshless technique

Title: Buckling analysis of sandwich plates with functionally graded skins using a
new quasi-3D hyperbolic sine shear deformation theory and collocation with radial

basis functions

Title: Static analysis of functionally graded sandwich plates according to a hyperbolic

theory considering Zig-Zag and warping effects

Title: Influence of Zig-Zag and warping effects on buckling of functionally graded

sandwich plates according to sinusoidal shear deformation theories

Title: Free vibration analysis of functionally graded shells by a higher-order shear
deformation theory and radial basis functions collocation, accounting for through-the-

thickness deformations

Title: Buckling behavior of cross-ply laminated plates by a higher-order shear defor-

mation theory

On the radial basis function collocation technique

On the RBF-Direct method

Title: Adaptive Methods for analysis of Composite Plates with Radial Basis Functions

Title: Vibration and buckling of composite structures using oscillatory radial basis

functions

Title: Analysis of plates on Pasternak foundations by radial basis functions
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Title: Buckling and vibration analysis of isotropic and laminated plates by radial basis

functions

Title: Buckling analysis of isotropic and laminated plates by radial basis functions

according to a higher-order shear deformation theory

On the RBF-PS method

Title: Solving time-dependent problems by an RBF-PS method with an optimal shape

parameter

Title: Transient analysis of composite plates by radial basis functions in a pseudospec-

tral framework

Title: Transient analysis of composite and sandwich plates by radial basis functions
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1. Introduction

Functionally graded plates (FGP) are obtained from gradual and
continuous variation of material properties across the thickness
direction. One advantage of FGP compared to laminated plates is
that the material properties continuously vary in the thickness
direction, as opposed to being discontinuous across adjoining lay-
ers as they are in laminated plates. This gradual variation avoids
the delamination issues in laminated plates.

Typically FGP have been analysed neglecting the thickness
stretching €,,, being the transverse displacement considered inde-
pendent by thickness coordinates. Some recent work on the
analysis of functionally graded plates was presented (Zenkour,
2006; Cheng and Batra, 2000; Loy et al., 1999; Reddy, 2000; Ferreira
et al., 2005, 2006, 2007; Viola and Tornabene, 2009).

The effect of thickness stretching in FG plates has been investi-
gated by Carrera et al. (2011), using finite elements.

The present paper addresses for the first time, the thickness
stretching issue on FG plates, by a meshless technique based on
collocation with radial basis functions. The technique is combined
with the Carrera’s Unified Formulation (CUF) (Carrera, 1996, 2001),
in order to obtain the relevant equations of motion and natural
boundary condition in strong form.

In recent years, radial basis functions (RBFs) proved to be
an accurate technique for interpolating data and functions. A
radial basis function, ¢(||x — x;||) depends on the Euclidian distance
between distinct data centers xj,j =1,2,...,NeR" also called

* Corresponding author. Tel.: +35 1225081705.
E-mail address: ferreira@fe.up.pt (A.J.M. Ferreira).

0093-6413/$ - see front matter © 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.mechrescom.2011.04.011

collocation points. Kansa (1990) introduced the concept of solving
PDEs by an unsymmetric RBF collocation method based upon the
MQ interpolation functions. The use of alternative methods to the
Finite Element Methods for the analysis of plates, such as the mesh-
less methods based on radial basis functions is attractive due to the
absence of a mesh and the ease of collocation methods. The authors
have recently applied the RBF collocation to the static deformations
of composite beams and plates (Ferreira, 2003a,b; Ferreira et al.,
2003).

The use of sinusoidal shear deformation plate theory was first
presented by Touratier (1992, 1991, 1992), and later by Vidal and
Polit (2008). The use of sinusoidal plate theories for functionally
graded plates was presented by Zenkour (2006), where a €,;=0
approach was used. The use of trigonometric shear deformation
theory accounting for €,; # 0 for the analysis of plates has not
been used before. In this paper we consider an hybrid quasi-3D
sinusoidal shear deformation theory. The expansion of both inplane
displacements is defined as:

. [Tz . [Tz
U =ug+zuq + sin (T) Uz; UV=1vg+2zrq +sin <F) vz (1)
while the transverse displacement is defined as:

W =Wg +zZW; + 22wy (2)

It is relevant to notice that the application of applied loads is
now possible at the top (or bottom) surfaces.

2. Numerical examples

In this example, an isotropic FGM square plate with a polynomial
material law, as given by Zenkour (2006) is considered. The plate is
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Table 1
FGM isotropic plate with polynomial material law (Zenkour, 2006). Effect of transverse normal strain €, for a bending problem.
k a/h €z 6-xx(h/3) ﬁz(ov 0)
4 10 100 4 10 100
1 Carrera et al. (2008) +0 0.6221 1.5064 14.969 0.7171 0.5875 0.5625
CLT 0 0.8060 2.0150 20.150 0.5623 0.5623 0.5623
FSDT (k=5/6) 0 0.8060 2.0150 20.150 0.7291 0.5889 0.5625
GSDT (Zenkour, 2006) 0 1.4894 0.5889
Carrera (N=4) (Carrera et al., 2011) 0 0.7856 2.0068 20.149 0.7289 0.5890 0.5625
Carrera (N=4) (Carrera et al., 2011) +0 0.6221 1.5064 14.969 0.7171 0.5875 0.5625
Present 13 x 13 grid +0 0.5925 1.4939 14.901 0.6997 0.5844 0.5596
Present 17 x 17 grid +0 0.5925 1.4945 14.957 0.6998 0.5845 0.5622
Present 21 x 21 grid +0 0.5925 1.4945 14.969 0.6997 0.5845 0.5624
4 Carrera et al. (2008) +0 0.4877 1.1971 11.923 1.1585 0.8821 0.8286
CLT 0 0.6420 1.6049 16.049 0.8281 0.8281 0.8281
FSDT (k=5/6) 0 0.6420 1.6049 16.049 1.1125 0.8736 0.828
GSDT (Zenkour, 2006) 0 1.1783 0.8651
Carrera (N=4) (Carrera et al., 2011) 0 0.5986 1.5874 16.047 1.1673 0.8828 0.8286
Carrera (N=4) (Carrera et al., 2011) +0 0.4877 1.1971 11.923 1.1585 0.8821 0.8286
Present 13 x 13 grid +0 0.4404 1.1780 11.894 1.1178 0.8749 0.8251
Present 17 x 17 grid +0 0.4404 1.1783 11.923 1.1178 0.8750 0.8284
Present 21 x 21 grid +0 0.4404 1.1783 11.932 1.1178 0.8750 0.8286
10 Carrera et al. (2008) +0 0.3695 0.8965 8.9077 1.3745 1.0072 0.9361
CLT 0 0.4796 1.1990 11.990 0.9354 0.9354 0.9354
FSDT (k=5/6) 0 0.4796 1.1990 11.990 1.3178 0.9966 0.9360
GSDT (Zenkour, 2006) 0 0.8775 1.0089
Carrera (N=4) (Carrera et al., 2011) 0 0.4345 1.1807 11.989 1.3925 1.0090 0.9361
Carrera (N=4) (Carrera et al., 2011) +0 0.1478 0.8965 8.9077 1.3745 1.0072 0.9361
Present 13 x 13 grid +0 0.3227 1.1780 11.894 1.3490 0.8749 0.8251
Present 17 x 17 grid +0 0.3227 1.1783 11.923 1.3490 0.8750 0.8284
Present 21 x 21 grid +0 0.3227 1.1783 11.932 1.3490 0.8750 0.8286
simply supported with a bi-sinusoidal transverse mechanical load, 0.25
of amplitude load p, = p, sin(«x/a) sin(ry/a) applied at the top of 02} 1
the plate,z = h/2,p, = 1. 0.15 | ]
The considered thickness ratios a/h are 4, 10 and 100, which © 04} i
means thickness h equals 0.25, 0.1 and 0.01, respectively. The plate o 005 | |
is graded from aluminum (bottom) to alumina (top). The following ',g ' 0
functional relationship is considered for Young’s modulus E(z) in 3
the thickness direction z (Zenkour, 2006): 5 70057 1
-01 | 1
k -0.15} 1
2z+h
E@) = En -+ (Ec ~ En) (255 3) oz ]
-0.25

where Ep, =70 GPa and E. =380 GPa are the corresponding prop-
erties of the metal and ceramic, respectively; k is the (positive
number) volume fraction exponent. The Poisson ratio is considered
constant (v=0.3).

The in-plane displacements, the transverse displacements, the
normal stresses and the in-plane and transverse shear stresses are

0.25 T T T T T T T

015 F ! -
0.1 | : b
005 = 3 E

z—coordinate

-0.05} _
01t 1
-0.15} .
02}/ 1

—0.25 s s s s L s s
0.7 0.8 0.9 1.2 1.3

e
-
e

Fig. 1. FGM square plate subjected to sinusoidal load at the top, with a/h=4. Dis-
placement through the thickness direction for different values of k.

Fig. 2. FGM square plate subjected to sinusoidal load at the top, with a/h=4. oy
through the thickness direction for different values of k.
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Fig. 3. FGM square plate subjected to sinusoidal load at the top, with a/h=4. oy
through the thickness direction for different values of k.
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0.25
02|
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-0.05
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-0.15
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-0.25

z—coordinate

Fig. 4. FGM square plate subjected to sinusoidal load at the top, with a/h=4. oy,
through the thickness direction for different values of k.

0.25
02
0.15
0.1
0.05
0 -
-0.05F
-0.1p
-0.15}|
-0.2
-0.25
0

z—coordinate

0.5 1 1.5 2 25 3 3.5
-8
x 10

Fig. 5. FGM square plate subjected to sinusoidal load at the top, with a/h=4. oy,
through the thickness direction for different values of k.

presented in normalized form as:

10h3E, -
—= Uz, Oxx = —=—0Oxx,

a4f’z ap, Ozz =0z (4)

Uz = Oxz = TI&UXZ’
In Table 1 we analyse a FGM plate. We consider 90 mathemati-
cal layers, in order to model the continuous variation of properties
across the thickness direction. We consider a Wendland C6 radial
function, and a Chebyshev grid (see Ferreira and Fasshauer, 2006,
for details). It is important to note that the load is applied at
the top surface (z=h/2), which is not only physically correct as it
makes all the difference in terms of the displacement and stresses
evolution.

0.25
0.2
0.15
0.1 |
0.05

-0.05f
-0.1 ¢
-0.15¢
-02
-0.25

z—coordinate

Fig. 6. FGM square plate subjected to sinusoidal load at the top, with a/h=4. o,
through the thickness direction for different values of k.

In Figs. 1-6 we present the evolution of the displacement and
stresses across the thickness direction for various values of the
exponent k, using a 21 x 21 grid.

It should be noted that the present numerical method presents
very close results to those of Carrera et al. (2011) for a N=4
expansion. The consideration of a non-zero €., strain produces a
significant change in the transverse displacement as well as in the
normal stress. This becomes evident when we compare the present
approach with that of Zenkour (2006) who neglected the €, strain
in the formulation.

3. Conclusions

In this paper we presented a study using the radial basis function
collocation method to analyse static deformations of functionally
graded plates using a sinusoidal shear deformation plate formu-
lation, allowing for through-the-thickness deformations. This has
not been done before and serves to fill the gap of knowledge in this
area.

The Unified Formulation by Carrera was used to generate the
algebraic equations of equilibrium, later collocated with radial
basis.

We analysed a square functionally graded plate in bending. The
present results were compared with existing analytical solutions
or competitive finite element solutions and excellent agreement
was observed in all cases. It is relevant to notice the strong effect
of considering the non-zero transverse normal deformations €.
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In this paper we present a new application for Carrera’s unified Formulation (CUF) to analyse functionally

In this paper the authors present explicit governing equations of a sinusoidal shear deformation theory
for functionally graded plates. It addresses the bending and free vibration analysis and accounts for
through-the-thickness deformations.

The equations of motion are interpolated by collocation with radial basis functions. Numerical exam-
ples demonstrate the efficiency of the present approach.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Functionally graded materials (FGM) are a class of composites
in which the properties of the material gradually change over
one or more cartesian direction. A typical FGM plate considers a
continuous variation of material properties over the thickness
direction by mixing two different materials [1]. The gradual varia-
tion of properties avoids the delamination failure that are common
in laminated composites. The FGM concept has applications in sev-
eral fields such as aerospace and civil [1]. The increase of FGM
applications requires accurate plate theories. Typically, the analy-
sis of FGM plates is performed using the first-order shear deforma-
tion theory (FSDT) [2-5] or higher-order shear deformation
theories (HSDT) [3,5-8]. The FSDT gives acceptable results but de-
pends on the shear correction factor which is hard to find as it de-
pends on many parameters. There is no need of a shear correction
factor when using a HSDT but equations of motion are more com-
plicated than those of the FSDT. Carrera’s Unified Formulation
(CUF) made the implementation of such theories easier.

Typically functionally graded plates have been analysed with
shear deformation theories that neglect the thickness stretching
€., being the transverse displacement considered to be indepen-
dent of thickness coordinates. The effect of thickness stretching
in FGM plates has been recently investigated by Carrera et al. [9],
using finite element approximations.

* Corresponding author.
E-mail address: ferreira@fe.up.pt (A.J.M. Ferreira).

1359-8368/$ - see front matter © 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.compositesb.2011.08.009

The use of alternative methods to the finite element methods
for the analysis of plates, such as the meshless methods based on
collocation with radial basis functions is atractive due to the ab-
sence of a mesh and the ease of collocation methods. In recent
years, radial basis functions (RBFs) showed excellent accuracy in
the interpolation of data and functions. Kansa [10] introduced
the concept of solving partial differential equations by an unsym-
metric RBF collocation method based upon the multiquadric inter-
polation functions. The authors have recently applied the RBF
collocation to the static deformations and free vibrations of com-
posite beams and plates [11-18].

The present paper addresses the thickness stretching issue on
the static and free vibration analysis of FGM plates, by a meshless
technique based on collocation with radial basis functions. The CUF
method [19,20] is employed to obtain the algebraic equations of
motion and boundary conditions. Such equations of motion and
corresponding boundary conditions are then interpolated by radial
basis functions to obtain an algebraic system of equations.

2. Governing equations and boundary conditions in the
framework of unified formulation

The unified formulation proposed by Carrera [19,20] (further
denoted as CUF) has been applied in several finite element analysis,
either using the Principle of Virtual Displacements, or by using the
Reissner’s Mixed Variational theorem. The stiffness matrix compo-
nents, the external force terms or the inertia terms can be obtained
directly with this unified formulation, irrespective of the shear
deformation theory being considered.
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For the sake of completeness, the meshless version of Carrera’s
unified formulation [19,20] is briefly reviewed. It is shown how to
obtain the fundamental nuclei, which allows the derivation of the
equations of motion and boundary conditions, for the present col-
location with RBFs.

The use of sinusoidal shear deformation plate theory was first
presented by Touratier [21-23], later by Vidal and Polit [24], and
recently by Neves et al. [25]. The use of sinusoidal plate theories
for functionally graded plates was presented by Zenkour [2], where
a €,, = 0 approach was used. The use of trigonometric shear defor-
mation theory accounting for €,, # 0 for the analysis of plates has
not been used before. In this paper we consider an hybrid quasi-
3D sinusoidal shear deformation theory, with different expansion
for the in-plane displacements (u, ) and the out-of-plane displace-
ment (w).

Consider a rectangular plate of plan-form dimensions a and b
and uniform thickness h. The co-ordinate system is taken such that
the x-y plane coincides with the midplane of the plate. The plate is
composed of a functionally graded material across the thickness
direction.

2.1. Displacement field

A generalization of the CUF concepts is introduced here by con-
sidering different expansions for every displacement component as
function of the thickness variable. In-plane displacements are con-
sidered to be of sinusoidal type across the thickness coordinate,

. (TZ
U = Uy + zuq + sin (T>uz (1)
. (TZ
V= Up+Zv1 +SIn (W) vz (2)

while the transverse displacement is defined as quadratic in the
thickness direction

W = Wwg + Zw; + 22wy (3)

It turns out that the present formulation can be seen as a general-
ization of the original CUF, by introducing different displacement
fields for in-plane and out-of-plane displacements.

2.2. Strains

Stresses and strains are separated into in-plane and normal
components, denoted respectively by the subscripts p and n. The
mechanical strains in the kth layer can be related to the displace-

ment field u* = {u" uk u"} via the geometrical relations:

o Uy, Uz
GSG = [€xx, €yy, ny]kT = Dl;;uk 4
€he = [Vzs Vyzs EZZ]kT = <Dﬁp + Dﬁz) ut @
wherein the differential operator arrays are defined as follows:

& 0 0 0 0 9 9, 0 0
Di=|0 o 0| Df,=|0 0 9| Di,=|0 9, 0

0y 0k 0 00 O 0 0 9,

()

2.3. Elastic stress—strain relations

The 3D constitutive equations in each layer k are given as:

k _rk k k
CppepG Cpn nG (6)
I< _k k
anC Cnp pG cnn nG

with

_C11 C12 0 O O C13
C,=|C2 Co 0| Cp=]0 0 Cx
0 0 Ce 00 O
- (7
0 0 O Css 0 0
C,=|0 0 0| C,=|[0 Cu O
_C13 C23 O 0 0 C33

The functionally graded plate is divided into a number of uniform
thickness layers. For every layer, we define the volume fraction of
the ceramic phase as:

V.= (o.5+%)p 8)

where z € [-h/2,h/2], and p is a scalar parameter that allows the
user to define gradation of material properties across the thickness
direction. The volume fraction for the metal phase is given as
Vm=1-V.

The computation of the elastic constants C,j depends on which
assumption of €,, we consider. If €,,=0, then C" are the plane-
stress reduced elastic constants:

E* E* E¢
Ck - Ck _ Vlc ; Ck _ 9
R O T (1 S POk ®
Cfm = Gkv C§5 = Gk~, C’és = Gk~, C§3 =0 (10)

where E¥ is the modulus of elast1c1ty, vk is the Poisson’s ratio, and G
is the shear modulus G* = z<1+\k for each layer.

It is interesting to note that the present theory does not con-
sider the use of shear-correction factors, as would be the case of
the first-order shear deformation theory (FSDT).

If €,, # 0 (thickness stretching), then Cg- are the three-dimen-
sional elastic constants, given by

= BUSO) g, B0
11 3(\/") (V") 12 — 1_ 3(\)")2 - 2(\)")3 ’ 22
E‘(1 - (%))
T1- 3007 2 (11)
k _ K\ 2
=G, = ¢ =0 gy

1—3(vk)2 = 2(vk)?

In the CUF formulation we consider virtual (mathematical) layers of
constant thickness, each containing a homogeneized modulus of
elasticity, EX, and a homogeneized Poisson’s ratio, v¥.

For each virtual layer, the elastic properties E¥ and v* can be
computed in two ways. First, we may consider the the law-of-
mistures:

E¥(2) = EnVim + EcV,

Second, and perhaps more interesting, we may consider the
Mori-Tanaka homogenization procedure. In this homogenization
method, we find the bulk modulus, K, and the effective shear mod-
ulus, G, of the composite equivalent layer as

V(Z) = Vi + VeVe (13)

K—-K; V, G-G Vs,
K;-Ki 1401 —Vz)% G-G 1+(1 _VZ)Gczljjll
(14)
where
G1(9K, + 8G
fi= 19K, 1) (15)

T 6(K; +2Gy)
The effective values of Young’s modulus, EX, and Poisson’s ratio, v¥,
are found from

_9KG
T3K+G

3K - 2G

k _
E “2(3K+G)

(16)
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2.4. Governing equations

The three displacement components uy, u, and u, (given in (1)-
(3)) and their relative variations can be modelled as:

(U, Uy, Uz) = Fr(Uxe, Uy, Uze) (Ol OUy, OU;)

= F;(0OUys, Ollys, Ollz) (17)
In the present formulation the thickness functions are
. (TZ
Fsux: suy:Frux:Fruy: [1 Z Ssin (W)] (18)

for inplane displacements u, v and
For =Fryz = [1 z Zz] (19)

for transverse displacement w. We then obtain all terms of the
equations of motion by integrating through the thickness direction.

It is interesting to note that under this combination of the uni-
fied formulation and RBF collocation, the collocation code depends
only on the choice of F;, F, in order to solve this type of problems.
We designed a MATLAB code that just by changing F;, Fs; can ana-
lyse static deformations and free vibrations for any type of C? shear
deformation theory.

A multi-layered functionally graded plate with N, layers is con-
sidered. The Principle of Virtual Displacements (PVD) for the
mechanical case is defined as:

N N
3 / / {56’;GT0’I§C + 5e’;GTo’,;C}ko dz=" oL (20)
k=1 Y JA k=1

where Q) and Ay are the integration domains in plane (x,y) and z
direction, respectively. Here, k indicates the layer and T the trans-
pose of a vector, and 5L’; is the external work for the kth layer. G
means geometrical relations and C constitutive equations.

Substituting the geometrical relations, the constitutive equa-
tions and the unified formulation into the variational statement
PVD, for the kth layer, one has:

o ke s\ ok kg ik L ok (T K k
/Q k /A k [(Dstbus) (G DEF-u + €&, (DK, + D, )Fout)
+((Df§9 + D’;Z) F@ug)T (cﬁngFfu’; +ck (DﬁQ + Dﬁz) FTu’g)] dQ, dz = 5L
(21)
At this point, the formula of integration by parts is applied:
/ ((Dg)oa*)"a* dey = — / 02"’ (D)a")dy + / sa*" ((1p)a")dr,
Lol & Iy
(22)

where I, matrix is obtained applying the Gradient theorem:

Lg—idu - ﬁniwds (23)

being n; the components of the normal 71 to the boundary along the
direction i. After integration by parts, the governing equations and
boundary conditions for the plate in the mechanical case are
obtained:

N X T K K " . L
/Qk /A k (6ut) K(—Dp) (€5, (D5) + €, (Dh + D))
T
+(~Djg + DY) (Ch,(Df) + €, Dk + Df;z)))Fstu’;} dxdydz
. T kT ( ¢k k K 3 K
+l§; (Cﬁp (Dg) +Coa(Dig + Dﬁz)) ) FrFsll’;] dxdydz

= / ouTFp* dQy (24)
J

where If and I}, depend on the boundary geometry:

n, 0 O 0 0 ny
IK'=|0 n, Of I,=|0 0 n, (25)
n, ne 0 00O

The normal to the boundary of domain €2 is:

i [n} _ {COS(%)} (26)

n, cos(¢,)

where ¢, and ¢, are the angles between the normal n and the
direction x and y respectively.

The governing equations for a multi-layered plate subjected to
mechanical loadings are:

sut’  Kouk = P (27)
kts
uu

where the fundamental nucleus K* is obtained as:

T
kS = [(-08)" (€} D)) + 4y (0f, + D)
k KTk mk kK mk k
+(_Dn.(2 + Dnz> (Cnp (Dp) + Cnn(DnQ + Dnz)>j| F‘EFS (28)

and the corresponding Neumann-type boundary conditions on I'j
are:

méeut = kst (29)
where
e = 17 (<t (D) + €&y D, + D)) 4157 (cty (D)

k. (Dgg " D’,jz>)]FTF3 (30)

and P¥_ are variationally consistent loads with applied pressure.

2.5. Dynamic governing equations

The PVD for the dynamic case is expressed as:

Ny

kT T
> / / {06’;6 O + O€k¢ aﬁc}kodz
k=1 S JA

N, N
-3 / proutTitdQ, dz + 3 oLk (31)
k=1 49 JA k=1

where p* is the mass density of the k-th layer and double dots de-
note acceleration.

By substituting the geometrical relations, the constitutive equa-
tions and the unified formulation, we obtain the following govern-
ing equations:

o T ..
out Kivuk = Mt + Py (32)
In the case of free vibrations one has:

sul’ KT uk = Mk (33)

where M*™ is the fundamental nucleus for the inertial term. The ex-
plicit form of the inertial terms is

Ny Zie1
Mg.fszz/ pFFodz, i=j=1,2,3
k=1 Y%k

M{® =0, i

(34)

The geometrical and mechanical boundary conditions are the same
of the static case.
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2.6. Equations of motion and boundary conditions in terms of
resultants

The following stress layer-resultants are defined:
ks pks\ _ k k
(RERE) = /A (RoFiay)e (35)

where Ry’ = {Ry;, Ry, Ris b and R = {R, Ry, RS }.

Substituting in (31), that includes the inertial term, and per-
forming the integration by parts, one obtains:

Ny

Z(/gk oul (DR + (~Dg + D) R ) de*

k=1

+ / oul (ITR"5+1§pRﬁ5)dr’<>
_ Z /Q 0w (pMEiit + pt)dg (36)

where E; = [« F:Fsdz and I is the identity matrix.

By imposing the definition of virtual variations for the unknown
displacements, the differential system of governing equations and
related boundary conditions are derived in terms of the introduced
stress resultants. For the k-layer, the equilibrium equations on Q¥
are:

~D'RE + (~Dj, + D) RS = E il + p* (37)
while the boundary conditions on I'* are:
uf =u* geometrical (38)
IR’ + I RS =[RS +IT R mechanical (39)

We rename the resultants as follows:

R, = /Al 6w =N R, =Ny: R =N,

v (40)
Rgz = sz Rgz = Qyz; Rgz = sz (fOl‘ §= O)
R, =M.; R, =M,: R, =M, )
Rlz = MXZ? R;Z = Myz? R;z = Mzz (fOl' S = 1)

The name of resultants does not change for s = Z.
Substituting in the equilibrium Eqgs. (37) and performing the
products, one obtains the following equations of motion:

oUg : —OxNyx — OyNyy + 0,Q,,
Ny

P (ito + zily + sin(z)iiz)dz + (p, + 2zp, + sin(2)p,)
k=1 A

50 : —0Nyy — N,y + 0,Q,,
Z ¥ + 20 + sin(z) z)dz + (p, + zp, + sin(2)p,)
: =0y sz - 8yQy, +09,Q,
= Z p (Wo + 2wy + 22Wz)dz + (p, + zp, + 2°p,)

Sy : 78XMXX — My + 9:My,
1
= Z / p*z(ilp + zily + sin(2)ilz)dz + (py + 2Dy + SIN(Z)D,)
1 —0xMyy

—Z

— OyMyy + 0 My,

p “2(o + zin + sin(z) ¥z7)dz + (p, + zp, + sin(z)p, )

: —8XMXZ

—Z

u: —afox — R, + 0K,

- ayIVIyZ + azMzz
p Z(Wo + 2w, +22W;)dz + (p, + zp, + 2°Dp,)
XZ
N
=Y [ p*sin(z)(iio + ziiy + sin(2)ilz)dz + (py + zp, + sin(2)p,)
k=1 YAk
v, -—8XRZ — R, +0.R,,

owy : —(?XRZ — R, + 0.k,

p" sin(z)(# + zi + sin(z) i7)dz + (p, + zp, + sin(z)p,)

= Z ka (Wo + 2W; + 22W;)dz + (p, +zp, + 2°p,)

(42)
and the mechanical boundary conditions:

g : NNy + MyNyy = NNy + 1y Ny,

3o : NNy + MyNyy, = Ny, + 1y Ny

oWg : 1Qy, + 1yQy, = NyQyz + 1yQ,;

oy : MMy + nyMyy, = My + 1yMyy

oy : My + nyM,y, = nyMyy + nyM,, (43)

owy : My, + nyM,, = n,M,, + n,M,,
ouz - R, +nyRS, = n,RE, + R,
Svy nXRfy + nyRZ =nRZ, +n,RE,
ow; : R, + nyRZ, = n,RZ, + n,RZ,

2.7. Equations of motion and boundary conditions in terms of
displacements

In order to discretize the equations of motion by radial basis
functions, we present in the following the explicit terms of the
equations of motion and the boundary conditions in terms of the
generalized displacements.

U() 0 Upg 8 Uy 82u1 0 Uz
oUo : —A11 5 A —Ass -~ a2 —Bu— A —Bgs > 72 + G4 v
9*uy vy 2%y
+ Ges o (Ar2 +AGG)M (B12 + Bes) 5 oxay
vz aw, ow;
+ (G12 + Gss) OXOy +A55W+H55 o IoUo + I]Lh +I5le
(44)
50 —(Ar + Ass) T (B, 1 Bag) T4 (Gry + Geg) L2
) 12+ A66) 55y 12+ Bes) 55y 12+ Goo) 55y
& v vy P v, v, vy
—Ap—— a2 —Ase—5 BT —Byn—— 72 —Bes—- e + G2 72
>’v ow ow
+GGG ox ZZ+A4487yl+H44 8y —107/0 JFI]?/] +[51/Z (45)
oy du v v wo
5W0 : A13 X + 2313 (972 + A23 Ty] + 2323 ayz A55 e
02W0 6 w1 82W1 82WZ
~Aua o — Bos Gt~ Bt~ Dss
Pw,
— Dy + qo = Iowo + hwy + Lwy (46)
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Uy Uy o’y oy NL
—Bi1 —- A — Bes - ay? —Dy1— e + Assuy — D668—y2 Ay = 2 C;(Z]H,‘] —Z)
ouy o*uy 8% vy 1M
—Nii—— n %+ Hssuz + Nos — 2 — (B12 + Bes) o= axf)y Bj = 5 ZC ,(ZiH —Zﬁ)
pa
) v, owg NL
—_— 1
— (D12 + De6) === o f)y — (N12 +N66)a xoy " ox D = 3 ZC .(ziH z;)
ow owy pas
+ (=B13 4+ Bss) ——+ (Gss + Oss + Gy3) —— 1M
o a.?‘ o By =2 > c(z,, —2)
= hilg + Lty + I7Uz (47) 4 k=1
1M ;
Uy 0*u, Fj =5 Y a@a-2)
—(B12 +Bes) === — (D12 + Des) 7o pa
0x0oy OXJy NL
ouy >’v v v Gj = C’»‘-ﬂ [cos (nzk“> —cos <ﬁ>}
0 () 1 i = i
— (N12 +N66)8X8y By —— 2 — Bss ——- B — Dy —— ay? k;; ‘n hy hy
v vy v, Hy =3 c!sin nzm) — sin (nzkﬂ
+Asa1 — Dgs E)x] Nay —— 2 +Haavz — Nes E)xz ’ k; "[ < hy hy
Owg ow, owy k[hk [ . <2nzk+1> . (27‘52,{)} (53)
— Ay —— B B + (G (¢ G i =) G sin —sin [ ——
2y + (=Bas + Bag) —— oy + (Gag + Os4 + Go3) == oy Ji 2|4z h I
=hvo+hLin+ 10z (48) 1 3 Zk)}
5 (@ —
ou ouy ou NL 2
oWy : —Ass — >+ (=Bss + Bi3) -+ (~Dss + 2D13) -~ Ny =S ck M\ (gin (F2e1) i (M2
X X o0X ij i |\ 7 h h
0vo oV, ovy k=1 k k
Ayt (BB o (D 2D (awreos () ~aeos (52 )
——=( z,1 cOS —z,cos [ ==
h
Pwo W wy w n k k
—Bss — By — Dss + AWy — Dgg—— N p
o oy? e ay? 05 =Y ck|zisin (n';"“) —zsin (7;17'")}
*wy 9wy = L k K
—Ess ——- 5 T B3sw; — Egs——- = 1wg + Lwy + I3w; (49) N T
o u? Py = ck|zt,,sin Tt _ 2 gjn (T2
y - ij | “k+1 hk k hk
pa
& uo oy &y N ¢
oz : Gn +Ges ay2 — Ny — BT + Hsst; — Neg ——- 72 L4 Rsstiz Ry — C:»j- % {Sin (27'Chzk+1> — sin (2;:21« }
2 2 321/ k=1 Ltk k k
o) G+ (Gr o+ ) = (o o) () -
5\ ) @t =2
vy awg owy k
+ (12 +Jes) 7o oxdy —2Bi3—— % + (=2D13 + Dss5) —— % nd
owy
+ (P55 — 2Ns5 — 2Nq3) —— x = Isilg + I7ily + I6il (50) NL )
x Io =Y pMz — )
=1
o*u o*u T o 2
0vz : (Gi2 + Ges) 8)(8; — (N12 +Nee)ﬁ+ (12 ]66)6x6y L = 3 ;P (Zka1 —2i)
& vy 0’ vy > vy v, 1M
+ Gy ——- (9_)/2 + Gog——- 2 — Ny — 8_}’2 + Hy4v1 — Ngg —— B + Rasvz L, = § ;pk (ziﬂ _ Zi)
> vy vz ow, ow N
gy g~ By (20 D) b =33 okt -2
ow k=1
+ (Pag — 2Ngq — 2N23)Ty—lsflo + ;01 + 160z (51) 1M s ;
ls =% ;P (@ - Z)
Oy ouq ouy :L
—Hss— % —(Gss +0s5 +G13)—— B — (Ps5 — 2N55*2N13)W Iy = Zpk hy [cos (TCZIHl) _ cos <%>}
Jdvy ok 2} av, = k
—H44a—y—(c44+044+623) ay — (Pgg —2N4s — 2N»3) Byz NL" 1 ) A , ,
Pwo 9 Pw & Is =) p {f (21 — k) — 4= {sin < nz"“) —sin (ﬂﬂ]
-D 0_p, 2% _E !4 2Byswy — Egg 21 o 12 4n h hy
55 o2 gz B Wi —Ea 5

Pw;y Pw;y ot (@)2 (sin (nzk”> —sin <@)>

X2 +4D33WZ F44 8y2 s hk hk
. . , hy TZyi1 nZy
Nothing N; as the number of mathematical layers across the thick- o \ Bk €OS he )~ Zk COS N

ness direction, the stiffness components can be computed as
follows.

I
g

—F55——=~ +q2 =LWo+ Wy +14W; (52) =

(54)
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where h is the thickness of each layer and z;,z+; are the lower and
upper z coordinate for each layer k.

2.8. Natural boundary conditions

This meshless method based on collocation with radial basis
functions needs the imposition of essential (e.g. w=0) and
mechanical (e.g. My, = 0) boundary conditions. Assuming a rectan-
gular plate (for the sake of simplicity) Eqgs. (30) are expressed as
follows.

Given the number of degrees of freedom, at each boundary
point at edges x = min or x = max we impose:

au ou ou v ov ov
M1 :Ana—xo-l-Bn 8X] Gna—XZ-FAlza—yo-FBlz 8y] G2 8;
(35)
Oug ou ouy vy ov
Mz = Bi1 —_ X +D117;+N11 ox +312 ay +D12 8y1
v
+N128—yZ+A13WO + Biswy — Giswg (56)
dug Vg oy
M3 = —Gi1 = B +N11 ]11 8X - Gi—— oy 0 4 Npp =t ay
—]12—+ 2B13Wo + 2D13w1 + 2Nq3w; (57)
ou, ouy ov ov
Mxx4*A66 ay +Bss ay — Gos —— ay +A66 +366 8X1 Ges 6XZ
(58)
Oy ouy ouy o2 V4 ovy
Mixs = Bes —— 2y % | Des c‘TijNG oy 2 4 Bs 6W+D66W+NGG B
(39)
oug oV, ov.
Miyxs = —Ges —— ay +N66 ]56 8y 6668—;4-1\’66 —Jes 8XZ
(60)
oWy ow owz
Mxx7—A55 +355 ox +D55 x (61)
owg ow ow,
Mixg = Asstlg 4 Bssuy + Dssttz + Bss —— + Dss —— +Ess z (62)
(224 X 0x
8W0
Mixg = Hsslp 4 (Gss + Oss)u; + (Pss — 2Nss)uz +D55W
ow owy
E F
+ L55 —/— ox + 55— x (63)

Similarly, given the number of degrees of freedom, at each bound-
ary point at edges y = min or y = max we impose:

ouq ouy 0vVg ok 22} vy
My, = Aee 6y +Bes ay GGGW‘FAGGW‘FBGG ox — Ges —— ox
(64)
Oug ou ouy oV vy ov.
M,y = Bes —— ay +D6687y1+N66 ay 2} Bes 80+D66 B L+ Nes 8xz
(65)
Oug oo ovq ov
Myys = —Ges —— oy +Nes ]66 6‘y — Gos — B +Nee —Jes 8;
(66)

ouq ouz oV ov ov.
Myy4*A12 +312 ox - Gi— ox +A226_y0+822 Byl G Oyz
(67)
Myys = 312 +D12 E) +N12 8 +Bzz 8y +D22 ay +N22 Oy
(68)
oy ou oV, ov ov.
Myys = =Gz X +N12 —Ji2 8xz 6227;+N22 8y1 —Jn 8yz
(69)
ow ow,
Myy; = A44 ay +B446—y1+D44 8yz (70)
ow oW, ow,
Myyg = Asa¥o + Baa¥1 + Dagvz + By —— ay 0 4 Dyy -t ay + Esy 8yz
(71)
OWg
Myyo = Hya 0o + (Gag + Osa) V1 + (Pas — 2Nas) vz + D44W
ow 8WZ
E F. 72
+ Lag —— ay + 44— ay (72)

with Ay, By, Dyj, E, Fij, Gij, Hyj, Jij, Nij» Oy, Py, Ryj already given in (53).

3. The radial basis function method

For the sake of completeness we present here the basics of col-
location with radial basis functions for static and vibrations
problems.

3.1. The static problem

In this section the formulation of a global unsymmetrical collo-
cation RBF-based method to compute elliptic operators is pre-
sented. Consider a linear elliptic partial differential operator L
and a bounded region Q in R" with some boundary 8. In the static
problems we seek the computation of displacements (u) from the
global system of equations

Lu=fin Q; Lzu=gonoQ (73)

where £, Lz are linear operators in the domain and on the boundary,
respectively. The right-hand sides in (73) represent the external
forces applied on the plate and the boundary conditions applied
along the perimeter of the plate, respectively. The PDE problem de-
fined in (73) will be replaced by a finite problem, defined by an
algebraic system of equations, after the radial basis expansions.

3.2. The eigenproblem

The eigenproblem looks for eigenvalues (1) and eigenvectors (u)
that satisfy
Lu+/u=0inQ; Lzu=0o0noQ (74)

As in the static problem, the eigenproblem defined in (74) is re-
placed by a finite-dimensional eigenvalue problem, based on RBF
approximations.

3.3. Radial basis functions approximations

The radial basis function (¢) approximation of a function (u) is
given by
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N
ux) =Y oip(lx—yill,), xeR" (75)
i-1
where y;, i=1, ..., N is a finite set of distinct points (centers) in R".
Although we can use many RBFs, in this paper we restrict to the
Wendland function, defined as

o(r)=(1—-cn3(32(cr)’+25(cr)’ +8cr+1) (76)

where the Euclidian distance r is real and non-negative and c is a
positive shape parameter. The shape parameter (c) was obtained
by an optimization procedure, as detailed in Ferreira and Fasshauer
[26].

Considering N distinct interpolations, and knowing u(x;),j =1, 2,
..., N, we find «o; by the solution of a N x N linear system

Ax=u (77)

where A =[x = yill2)Inxn,
u = [u(xq),u(xz),. .., u(xy)]"

o= [0tg,0,...,0n]" and

3.4. Solution of the static problem

The solution of a static problem by radial basis functions con-
siders N; nodes in the domain and Np nodes on the boundary, with
a total number of nodes N = N; + N3. We denote the sampling points
by x;e Q,i=1,...,N;and x; € 02, i=N;+ 1, ..., N. At the points in
the domain we solve the following system of equations

N
> wlo(lx—yill) =f(x), j=1,2,...,N (78)
i1
or
Lla=F (79)
where
L= [LOUIX = Yill )]y, v (80)
At the points on the boundary, we impose boundary conditions as
N
> oilsd(llx —yill,) = g(x;), j=N+1,...,N (81)
i1
or
Ba =G (82)
where

B = Lep[([IXn+1 = Yjll2)Ingxn

Therefore, we can write a finite-dimensional static problem as

£ F
o= 83
HaH ®
By inverting the system (83), we obtain the vector «. We then ob-
tain the solution u using the interpolation Eq. (75).

3.5. Solution of the eigenproblem
We consider N; nodes in the interior of the domain and Nz nodes
on the boundary, with N = N; + Ng. We denote interpolation points

by x;€ Q,i=1, ..., Nyand x; € 0Q,i=N;+ 1, ..., N. At the points in
the domain, we define the eigenproblem as

N
Zal£¢(||x_yl||2) :)Vﬁ(xj)7 ]: 172’7Nl (84)
i=1

or

Ll = (85)
where
L= 1Lo(11X = Yill2)ny e (86)

At the points on the boundary, we enforce the boundary conditions
as

N
> olad([X=Yila) =0, j=Ni+1,....N 87)
i=1
or
Bx=0 (88)

Egs. (85) and (88) can now be solved as a generalized eigenvalue
problem

[g a—i[Al}a (89)

0
where

Al = ALUxN, — Yill2) v v

3.6. Discretization of the equations of motion and boundary conditions

The radial basis collocation method follows a simple implemen-
tation procedure. Taking Eq. (83), we compute

111 F
o= {L } [ } (90)
B G
This a vector is then used to obtain solution u, by using (75). If
derivatives of u are needed, such derivatives are computed as

on L ap tu . ¢
w2l e 2w o .
J= =

In the present collocation approach, we need to impose essential
and natural boundary conditions. Consider, for example, the condi-
tion wyp = 0, on a simply supported or clamped edge. We enforce the
conditions by interpolating as

N

Wozoﬁza]‘.”oqajzo (92)
=

Other boundary conditions are interpolated in a similar way.

3.7. Free vibrations problems

For free vibration problems we set the external force to zero,
and assume harmonic solution in terms of displacements ug, uy,
Uz, Vo, N, Uz, Wo, W1, Wz as

Uy = UO (W,y)ei‘”t; U = U] (W7y)eiwt; Uy = UZ(W,y)ei‘”t;

vo=Vo(w,y)e; v =Vi(w,y)e”; vz =Vz(w,y)e;

wo = Wo(w,y)e™;s  wy = Wi(w,y)e™;  wz = Wz(w,y)e

(93)
where o is the frequency of natural vibration. Substituting the har-
monic expansion into Egs. (89) in terms of the amplitudes Uy, Uy, Uz,
Vo, V1, Vz, Wy, Wy, Wz, we may obtain the natural frequencies and
vibration modes for the plate problem, by solving the eigenproblem
[£-—w?GX=0 (94)

where £ collects all stiffness terms and G collects all terms related
to the inertial terms. In (94) X are the modes of vibration associated
with the natural frequencies defined as w.
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Table 1
FGM isotropic plate with polynomial material law [2]. Effect of transverse normal strain €, for a bending problem.
p €2 ax(h/3) u(0,0)
alh=4 alh=10 alh =100 alh=4 alh=10 alh =100
1 Ref. [27] #0 0.6221 1.5064 14.969 0.7171 0.5875 0.5625
CLT 0 0.8060 2.0150 20.150 0.5623 0.5623 0.5623
FSDT (k = 5/6) 0 0.8060 2.0150 20.150 0.7291 0.5889 0.5625
GSDT [2] 0 1.4894 0.5889
Ref. [9] N=4 0 0.7856 2.0068 20.149 0.7289 0.5890 0.5625
Ref. [9] N=4 #0 0.6221 1.5064 14.969 0.7171 0.5875 0.5625
Present 132 grid #0 0.5925 1.4939 14.901 0.6997 0.5844 0.5596
Present 172 grid #0 0.5925 1.4945 14.957 0.6998 0.5845 0.5622
Present 212 grid #0 0.5925 1.4945 14.969 0.6997 0.5845 0.5624
4 Ref. [27] #0 0.4877 1.1971 11.923 1.1585 0.8821 0.8286
CLT 0 0.6420 1.6049 16.049 0.8281 0.8281 0.8281
FSDT (k =5/6) 0 0.6420 1.6049 16.049 1.1125 0.8736 0.828
GSDT [2] 0 1.1783 0.8651
Ref. [9] N=4 0 0.5986 1.5874 16.047 1.1673 0.8828 0.8286
Ref. [9] N=4 #0 0.4877 1.1971 11.923 1.1585 0.8821 0.8286
Present 132 grid #0 0.4404 1.1780 11.894 1.1178 0.8749 0.8251
Present 172 grid #0 0.4404 1.1783 11.923 1.1178 0.8750 0.8284
Present 212 grid #0 0.4404 1.1783 11.932 1.1178 0.8750 0.8286
10 Ref. [27] #0 0.3695 0.8965 8.9077 1.3745 1.0072 0.9361
CLT 0 0.4796 1.1990 11.990 0.9354 0.9354 0.9354
FSDT (k=5/6) 0 0.4796 1.1990 11.990 1.3178 0.9966 0.9360
GSDT [2] 0 0.8775 1.0089
Ref. [9] N=4 0 0.4345 1.1807 11.989 1.3925 1.0090 0.9361
Ref. [9] N=4 #0 0.1478 0.8965 8.9077 1.3745 1.0072 0.9361
Present 132 grid #0 0.3227 1.1780 11.894 1.3490 0.8749 0.8251
Present 172 grid #0 0.3227 1.1783 11.923 1.3490 0.8750 0.8284
Present 212 grid #0 0.3227 1.1783 11.932 1.3490 0.8750 0.8286
T T T | T T
0.2} i
0.15f | i
0.1F | i
2 - p=t !
£ 0051 e : |
-g or p=10 ! ]
o) !
¢ -0.05 i B
N K
-01F ; B
-0.15} .
-0.2f , R
-0.25 L L L I |
0.8 0.9 1.1 1.2 1.3 1.4 1.5
w

4. Numerical examples
4.1. Bending problems

In the next examples we use the sinusoidal plate theory to ana-
lyse simply supported square (side lengths a = b) plates subjected
to a bi-sinusoidal transverse mechanical load, of amplitude load
p, = pzsin(Z)sin(}) applied at the top plate surface, z=h/2,
p; = 1. Three side-to-thickness ratios (a/h) are considered 4, 10
and 100.

We consider 91 mathematical layers, in order to model the con-
tinuous variation of properties across the thickness direction.! We

1 Assignificant number of mathematical layers is needed to ensure correct material
properties at each thickness position.

consider a Wendland C6 radial function as in (76), and a Chebyshev
grid (see [26] for details).

4.1.1. Isotropic functionally graded plate

In this example, an isotropic FGM square plate with a polyno-
mial material law, as given by Zenkour [2] is considered. The plate
is graded from aluminum (bottom surface) to alumina (top surface)
materials. The following functional relationship is considered for
modulus of elasticity E(z) in the thickness direction (z) [2]:

2z +h\?
E@) = En -+ (B~ En) (5 (95)
where E,, = 70 GPa and E. = 380 GPa are the corresponding modulus
of elasticity of the metal and ceramic phases, respectively; p is the
(positive number) volume fraction exponent. The Poisson’s ratio is
considered constant (v =0.3).
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The in-plane displacements, the transverse displacements, the
normal stresses and the in-plane and transverse shear stresses
are respectively presented in normalized form as

_ 10K’E. _
z = a4pz Zy XX

The present approach with €, # 0 is compared with analytical

h _ h
= _—ZO-XX7 Oxz = a_f)zo-xz-, (96)
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the first-order shear deformation theory (FSDT), a generalized shear
deformation theory by Zenkour [2] (who considered €,, = 0), and fi-
nite element solutions by Carrera et al. [9]. We consider Chebyschev
grids with 132172 and 212 points. Three FGM configurations are
considered by using different p exponents (p =1,4,10). Thick (a/
h=4) down to thin (a/h =100) plates are analysed. Normalized
transverse displacements (i1;) and normal stresses (Gx) at selected

solutions by Carrera et al. [27], the classical plate theory (CLT), ~ Points are shown in Table 1. Our approach presents very close re-

0.25
0.2
0.15F
0.1F
0.05F

-0.05

z—-coordinate
o
T

|
o
.
T

-0.15f
-0.2F

-0.25

0.2
0.151

o
o
T

0.051

-0.05F

z—-coordinate

|
o
=
T

-0.15F
-0.2

-0.25
-1.4

-1.2 -1

0.2
0.15F

o
o
T

0.05F

-0.05F

z—-coordinate

I
o
a

T

-0.151
-0.21-

0.25 0.3 0.35

-0.25 e
-0.05 0

0.2 0.4

Fig. 4. FGM square plate subjected to sinusoidal load at the top, with a/h = 4. o, through the thickness direction at the center of the plate (0,2) for different values of p.
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sults to those theories that consider thickness stretching, and
clearly deviates from those theories that neglect €,,, in particular
for thicker plates. The present approach presents very close results
to Carrera’s analytical solution [27].

In Figs. 1-6 we present the evolution of the displacement and
stresses across the thickness direction for various values of the
exponent p, using a 212 grid. As can be seen in Fig. 6, the transverse
normal component o, cannot be neglected for the present problem.
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4.1.2. Sandwich square plate with FGM core

In this example we consider a sandwich plate with total thick-
ness h, by using a polynomial material law for the core, as given by
Zenkour [2]. The bottom skin is aluminium (E, =70 GPa) with
thickness h, = 0.1h and the top skin is alumina (E. = 380 GPa) with
thickness h; = 0.1h. The core is a FGM with the following functional
relationship for modulus of elasticity E(z) in the thickness direction
z[2]:

0.2f
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-0.25 L
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Fig. 5. FGM square plate subjected to sinusoidal load at the top, with a/h = 4. g, through the thickness direction at the point (£, 0) for different values of p.
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Fig. 6. FGM square plate subjected to sinusoidal load at the top, with a/h = 4. 0., through the thickness direction for different values of p at the center of the plate (¢ ,g)

Table 2

Sandwich simply supported square plate with FGM core with polynomial material law [2] using a 19? grid. Effect of transverse normal strain €, on oy, and transverse

displacement for a bending problem.

p €2z (?XZ(O,%,%) w(0,0,0)
alh=4 alh=10 a/h=100 alh=4 a/lh=10 a/h =100
1 Ref. [9] N=4 0 0.2604 0.2594 0.2593 0.7628 0.6324 0.6072
Ref. [9] N=4 #0 0.2596 0.2593 0.2593 0.7735 0.6337 0.6072
Present 0 0.2703 0.2718 0.2720 0.7744 0.6356 0.6092
Present #0 0.2742 0.2788 0.2793 0.7416 0.6305 0.6092
4 Ref. [9] N=4 0 0.2400 0.2398 0.2398 1.0930 0.8307 0.7797
Ref. [9] N=4 #0 0.2400 0.2398 0.2398 1.0977 0.8308 0.7797
Present 0 0.2699 0.2726 0.2728 1.0847 0.8276 0.7785
Present #0 0.2723 0.2778 0.2785 1.0391 0.8202 0.7784
10 Ref. [9] N=4 0 0.1932 0.1944 0.1946 1.2172 0.8740 0.8077
Ref. [9] N=4 #0 0.1935 0.1944 0.1946 1.2240 0.8743 0.8077
Present 0 0.1998 0.2021 0.2022 1.2212 0.8718 0.8050
Present #0 0.2016 0.2059 0.2064 1.1780 0.8650 0.8050
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2Z+h>p . 10W’E. faby . _h _(ab

E(z) =Em+ (Ec — En) | —=1— 97 =— "y (== =— e

@ ( )( 2h O =g, (2 ’2> 7= ap, 7 <2’2) (98)
i iti ; _ h a b\ _ ab

where p is the (positive number) volume fraction exponent. The Gy = 7, Oy <§7§> Gy = Op (55)

Poisson’s ratio is considered constant v = 0.3.
The transverse displacement and the normal stresses are com-

puted in normalized form as The shear stresses are normalized according to

Table 3
Sandwich simply supported square plate with FGM core with polynomial material law [2] using a 192 grid. Effect of transverse normal strain €,, on gy, and g, for a bending

problem. 6,, = 0, %

p €z 0(0,0.5) 02(3.5.0)
alh=4 alh =100 alh=4 alh =100
1 Ref. LD4 [28] 0 03007 8.4968 0.0922 0.0038
Ref. LM4 [28] #0 03007 8.4968 0.0922 0.0038
Present 0 03303 8.4882 0.1276 3.1987
Present =0 03167 8.4911 0.0827 0.0034
5 Ref. LD4 [28] 0 0.1999 6.4942 0.0911 0.0037
Ref. LM4 [28] =0 0.1996 6.4942 0.0924 0.0037
Present 0 02317 6.4454 0.0777 1.9535
Present #0 0.2248 6.4441 0.0522 0.0022
10 Ref. LD4 [28] 0 0.1412 5.1402 0.1064 0.0043
Ref. LM4 [28] #0 0.1403 5.1401 0.1067 0.0042
Present 0 0.1745 5.0745 0.0685 1.6978
Present =0 0.1687 5.0754 0.0443 0.0018
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Fig. 7. Sandwich square plate with FGM core subjected to sinusoidal load at the top, with a/h = 10. Displacement through the thickness direction at the center of the plate

(4,2) for different values of p.
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5 —La 0,0 & _LO_ 0 by . In Table 2 we present the normalized transverse displacement (W)
¥ Tap, N T T ap, P\ T2) and the normalized transverse shear stress (dy,) at selected loca-
~ h a tions. In Table 3 we present the normalized in-plane shear stress
Oy, = a—ﬁzo'yz (j ) 0) (99) (0x) and the normalized transverse normal stress (G,,) at selected
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Fig. 9. Sandwich square plate with FGM core subjected to sinusoidal load at the top, with a/h = 10. o,, through the thickness direction at the center of the plate (gg) for
different values of p.
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Fig. 10. Sandwich square plate with FGM core subjected to sinusoidal load at the top, with a/h = 10. 0., through the thickness direction at the center of the plate (¢,2) for
different values of p.
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locations. In both tables we consider three a/h ratios (4, 10 and 100),
and three power-law exponents (p=1, 4 and 10). We use a 192
Chebyshev grid and consider both €,,=0 and €,, # 0 approaches.
Our meshless results are compared in Table 2 with finite element
results by Carrera et al. [9], and compare quite well for all cases.
In Table 3 we compare the present approach with FEM results by
Brischetto [28] and again the comparison is quite good.

n Figs. 7-13 we present the evolution of the displacement and
stresses across the thickness direction for various values of the expo-
nent p of a plate with side to thickness ratio a/h = 10, using a 192 grid.

The present numerical method presents very close results to
those of Carrera et al. [9] for a N = 4 expansion.

The consideration of a non-zero €, strain produces a significant
change in the transverse displacement as well as in the normal
stress. This becomes evident when we compare the present
approch with that of Zenkour [2] who neglected the €., strain in
the formulation.
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by Qian et al. [8]. In order to compare results, we use the Mori-Ta-
naka scheme for obtaing equivalent material properties.

In Table 4 we consider thin and thick plates, with p =1, and
using 132 Chebishev points. The ¢, effect is significant. In fact,
the exact solution by Vel and Batra [29] is achieved for all cases,
by allowing €,, # 0. In Table 5 we compare with the same sources,
varying the p exponent, for a/h =5 and using 132 points. Our pres-
ent formulation with €,, # 0 matches the exact solution.

In Fig. 14 the first four frequencies are presented for p=1 and
using 172 points. In Table 6 we present the first ten frequencies
for the same exponent p and compare results with those from [8]
for different side-to-thickness ratios and different number of
Chebishev points.

Table 4
Fundamental frequency @ = wh,/p,,/Ex of a SSSS isotropic functionally graded plate
(Al/Zr0,), p = 1, using 132 points.

. . Source alh
4.2. Free vibration problems
20 10 5
In this example, we study the free vibration behavior of simply- Ref. [8] 0.0149 0.0584 02152
ted isotropic FGM plates. We consider both the €,,=0 and Exact [29] 00153 00596 02192
suppor p plates. L z=U Present, Sinus (¢, = 0) 0.0153 0.0595 02184
the €, # 0 cases. We compare results with an exact (analytical) Present, Sinus (¢, = 0) 0.0153 0.0596 02193
solution by Vel and Batra [29], and another meshless technique
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Fig. 12. Sandwich square plate with FGM core subjected to sinusoidal load at the top,
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Table 5
Fundamental frequency @ = wh/p,,/En of a SSSS isotropic functionally graded plate
(Al/Zr0,), a/h = 5, and using 132 points.

Source p=2 p=3 p=5

Ref. [8] 0.2153 0.2172 0.2194
Exact [29] 0.2197 0.2211 0.2225
Present, Sinus (€, =0) 0.2189 0.2202 0.2215
Present, Sinus (€,, # 0) 0.2198 0.2212 0.2225

eig = 0.015260572737 eig = 0.037687560260

0.5 05

0 0

-0.5 -0.5

-1 -1
-1 0 1 -1 0 1

eig = 0.037687568934 eig = 0.059591339312

-1 -1
-1 0 1 -1 0 1

-

(9]

[$,]

Fig. 14. First 4 frequencies & = wh,/p,,/En of a SSSS isotropic functionally graded
plate (Al/ZrO,), with a/h =20, p =1, and using 172 points.

Table 6
First 10 frequencies @ = wh/p,,/En of a SSSS isotropic functionally graded plate (Al/
Zr0y), p=1.

alh=20 alh=10

Present 172 212 Ref. 132 172 212 Ref.
132 [8] [8]
0.0153 0.0153 0.0153 0.0149 0.0596 0.0596 0.0596 0.0584
0.0377 0.0377 0.0377 0.0377 0.1426 0.1426 0.1426 0.1410
0.0377 0.0377 0.0377 0.0377 0.1426 0.1426 0.1426 0.1410
0.0596 0.0596 0.0596 0.0593 0.2058 0.2058 0.2058 0.2058
0.0741 0.0739 0.0739 0.0747 0.2058 0.2058 0.2058 0.2058
0.0741 0.0739 0.0739 0.0747 0.2193 0.2193 0.2193 0.2164
0.0953 0.0950 0.0950 0.0769 0.2677 0.2676 0.2676 0.2646
0.0953 0.0950 0.0950 0.0912 0.2677 0.2676 0.2676 0.2677
0.1029 0.1029 0.1029 0.0913 0.2911 0.2910 0.2910 0.2913
0.1029 0.1029 0.1029 0.1029 0.3366 0.3363 0.3363 0.3264

5. Conclusions

A novel application of a unified formulation by a meshless dis-
cretization is proposed. A thickness-stretching sinusoidal shear
deformation theory was implemented for the static and free vibra-
tion analysis of functionally graded plates.

The present formulation was compared with analytical, mesh-
less or finite element methods and proved very accurate in both
static and vibration problems. The effect of €,, # 0 showed signifi-
cance in thicker plates. Even for a thinner functionally graded
plate, the ¢, shoud always be considered in the formulation.

For the first time, the complete equations of motion and bound-
ary conditions are present to help readers to implement it success-
fully with this or other strong-form techniques.

Appendix A. Fundamental nuclei

The stress—strain relations for functionally graded materials as-
sume isotropic behavior at each layer k. Therefore, many terms are
cancelled due to absence of membrane-bending coupling, etc. For a
functionally graded plate the fundamental nuclei in explicit form
are then obtained as:

Kis, = (~050Cn + 003Css — 9503 Ces ) FF

K, = (~0505Ciz — 9,03Cos ) FoFs

Ky, = (—0305C13 + 03 03Css ) FF

<ﬁﬁ; = ( 9,0,C12 — 3;3;C56>F1F3

K, = (~0503Con + 0505Caa — 030,Cos ) FiF (A1)
KL, = (~0502Cas + 050} Cas  FiF

KA — (9703C13 — 0503Css) FoFs

Kig:, = (0505Cs — 0303Caa ) FoF,

Kke (a;a;c33 — 0503 Cas — a;aicss)aa

krs 0% Cll + HYQSC%)FTFS
Hl]c;s = (”xaycn + ny@iCea)FTFs
I3 = n,&C3FeFs
Hg? = (“ya;scclz + nxa}s,Cf;s)FTFs
5 = (nyB;sz + nxaic%)Fst (A2)
TI55 = n,03CsF . Fs
IT7 = n,d5CssF-Fs
sz - nyasc44Fth
Hlé? = (ny8;C44 + nx8f<C55)F F
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1. Introduction

Functionally graded materials (FGM) are a class of composites
in which the properties change gradually over one or more
directions. A typical FGM plate presents a continuous variation
of material properties over the thickness direction by mixing
two different materials [1]. The gradual variation of properties
avoids the delamination failure that is common in laminated
composites.

Typically, the analysis of FGM plates is performed using the
first-order shear deformation theory (FSDT) [2-5] or higher-order
shear deformation theories (HSDT) [3,5-8]. The FSDT gives
acceptable results but depends on a shear correction factor which
is difficult to find as it depends on many parameters. There is no
need of a shear correction factor when using a HSDT but equa-
tions of motion are more complicated to obtain than those of
the FSDT.

Typically functionally graded plates have been analysed with
shear deformation theories that neglect the thickness stretching
€., considering the transverse displacement independent of the
thickness coordinate. The effect of thickness stretching in FGM
plates has been recently investigated by Carrera et al. [9], using fi-
nite element approximations.

The use of alternative methods to the Finite Element Methods
for the analysis of plates, such as the meshless methods based on
collocation with radial basis functions (RBFs) is atractive due to

* Corresponding author.
E-mail address: ferreira@fe.up.pt (A.J.M. Ferreira).

0263-8223/$ - see front matter © 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.compstruct.2011.12.005

the absence of a mesh and the ease of collocation methods. In re-
cent years, radial basis functions showed excellent accuracy in
the interpolation of data and functions. Kansa [10] introduced
the concept of solving partial differential equations by an unsym-
metric RBF collocation method based upon the multiquadric inter-
polation functions. The authors have recently applied the RBF
collocation to the static deformations and free vibrations of com-
posite beams and plates [11-18].

The present paper addresses the thickness stretching effect on
the static and free vibration analysis of FGM plates, by a meshless
technique based on collocation with radial basis functions. The
Unified Formulation proposed by Carrera (further denoted as
CUF) method [19,20] is employed to obtain the algebraic equations
of motion and boundary conditions. Such equations of motion and
corresponding boundary conditions are then interpolated by radial
basis functions to obtain an algebraic system of equations. The CUF
method has been applied in several finite element analysis, either
using the Principle of Virtual Displacements, or by using the Reiss-
ner’s Mixed Variational theorem. The stiffness matrix components,
the external force terms or the inertia terms can be obtained di-
rectly with this unified formulation, irrespective of the shear defor-
mation theory being considered.

To the best of authors’ knowledge, plate theories involv-
ing hyperbolic functions are quite rare in literature. Soldatos
[21] used a displacement field involving the hyperbolic
function

f(z) = hsinh (%) —zcosh (%) (1)
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In [22,23] two displacement fields are presented both considering a
hyperbolic function:

f(z) = 37nh tanh (%) - 37nz sech’ G) (2)
and
f(z) =z sech (nh_z;> —z sech <g> [1 - g tanh (g)] 3)

In [24] the considered hyperbolic function is
b sinh (%) —z

O T I (@)

In all cases the hyperbolic functions are used for the in-plane

expansions only, while the transverse displacement is kept constant

(w = wp).

The use of hyperbolic shear deformation theory accounting for
€., # 0 for the static and free vibration analysis of plates has not
been done yet. In this paper an hybrid quasi-3D hyperbolic shear
deformation theory, with different expansion for the in-plane
and the out-of-plane displacement is proposed. In-plane displace-
ments are considered to be of hyperbolic sine type across the thick-
ness coordinate and the out-of-plane displacement is defined as
quadratic in the thickness direction. The present formulation can
be seen as a enhancement of the original CUF in the sense that dif-
ferent displacement fields for in-plane and out-of-plane displace-
ments are introduced.

2. Governing equations and boundary conditions

A rectangular plate of in-plane dimensions a and b and uniform
thickness h is considered. The co-ordinate system is such that the
x-y plane coincides with the midplane of the plate. The plate is
made of a material graded across the thickness direction.

2.1. Displacement field

The following displacement field is assumed:

UWxLU=w@yiﬂiw@%0+ﬁm(%)M&%0 5)
P,Y,2,0) = vo(x.y,0) + 2016y, ) +sinh () vy ) (6)
W(X,y,Z,t) = Wo(X, Y, t) +ZW1 (X, Y, t) + ZWa (X, Y, t) (7)

where u, v, and w are the displacements in the x-, y-, and z-direc-
tions, respectively. ug, uq, Uz, vy, V1, Uz Wo, Wy, and w, are functions
to be determined.

2.2. Strains

The strain-displacement relationships are:

ou u | ow
Exx ox Vxz 0z + ox
_ o _Jov ow
Cy o= ay ) Vyz ¢ =9 22T (8)
ny ay + X €z 0z

By substitution of the displacement field in (8), the strains are ob-
tained in terms of the proposed model unknowns:

farny ouy oz

Exx X ox 123

_ a0y o o (T2 avz

Cy o = ay +2z ay + sinh (T oy
Py ay T o T 9y +

9

awg
Yz | [ U TZ\ T [ Uz x
{Vyz}{vl}+COSh( )h{vz}+{”ﬂ}

h ay
owy owy
u{£}+£{%} (10)
By By
€ = Wy + 2ZW5 (11)

2.3. Elastic stress—strain relations

The elastic stress—strain relations depends on which assump-
tion of €,, we consider. If €,, # 0, i.e., thickness stretching is al-
lowed, then the 3D model is used and the constitutive equations
can be written as:

Oxx Chn Cp O 0 0 GCis Exx
Oyy C12 sz 0 0 0 C23 €yy
X 0 0 C 0o 0 O
Txy _ 66 Vxy (12)
Ty 0 0 0 Gs 0 O Vsz
Tyz 0 0 0 0 Cu O Vyz
Oz Gz Gz 0 0 0 Gs €2
The Cj; are the three-dimensional elastic constants, given by
Coi E(1-1?) Cor— E(v+v?) Cor E(1-v?)
NI o213 TP T 1312213 P 1312203
_ E(v+v?) _ Ev+v?)
Co=13p g BT sp_2p (14)
_ _ _ _ EQ-v)
Cu=G C5=G Cs=GC Cn=g—g5,-55 (15)

where E is the modulus of elasticity, v is Poisson’s ratio, and G is the
shear modulus G = £

2(1+v)°

If €,,=0, then the Blane—stress case is used

Oxx Ch C2 0O 0 O Exx

Oyy G2 Gz 0 0 O Eyy

Ty p=4 0 0 G 0 O Yy (16)

Txz 0 0 0 Css 0 Txz

Tyz 0 0 0 0 Cu Vyz
The Cj; are the plane-stress reduced elastic constants:

E E E

Ci1 :m-, C12:Vﬁ7 szzma (17)
Cuy=G, GCs5=G, Ce=6G (18)

It is interesting to note that the use of shear-correction factors is not
considered, as would be the case of the first-order shear deforma-
tion theory.

We consider virtual (mathematical) layers of constant thick-
ness, each containing a homogeneized modulus of elasticity, E¥,
and a homogeneized Poisson’s ratio, v*. The functionally graded
plate is divided into a NL layers of equal thickness. For each layer
the volume fraction of the ceramic phase is defined as:

k z\"
Ve= (0.5 +H> (19)
where Z is the thickness coordinate of a point of each layer, and p is
the polynomial gradation law exponent. The volume fraction for the
metal phase is given as ij1 =1- V‘t‘.

For each virtual layer, the elastic properties E¥ and v* can be
computed in two ways. First, we consider the law-of-mistures:

E“(2) = EqVim + EVe; V@) = vV + v Ve (20)
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Second, we consider the Mori-Tanaka homogenization procedure
[25,26]. In this homogenization method, we find the bulk modulus,
K, and the effective shear modulus, G, of the composite equivalent
layer as

K—Kn Ve GGy Ve
Ke=Kn 1+ (1-Vorigly Co—Gn 1+(1-Vogp
(21)
where
Gn(9Km + 8Gm
fn= ( ) (22)

6(Km +2Gp)
The effective values of Young's modulus, E¥, and Poisson’s ratio, v¥,
are found from
v 9KGY e 3K* - 26"
3K* 4+ GF 2(3K* + GY

(23)

After using the law-of-mixtures or the Mori-Tanaka homogeniza—
tion procedure, the computation of the elastic constants C is per-
formed for each layer based on v and E¥. For example,

v B0+ 00
2 3wk —2(vk)?

Other Cg terms follow a similar procedure.

(24)

2.4. Governing equations

The equations of motion of the hyperbolic sine theory are de-
rived from the Principle of Virtual Displacements (PVD). In analyt-
ical form, it can be stated as:

/Q{ae;aeraegan}dQ:/Q{pauTa+5qu}dQ (25)

where (p) indicates in-plane components (xx), (yy) and (xy), and (n)
the transverse components (xz), (yz) and (zz). Q is the volume of the
plate, § denotes a virtual variation and T indicates the transpose
operator. p is the density of the material and double dots denote
acceleration. p = {p,,py,p;} is the external load applied to the struc-
ture. For the considered functionally graded plate, the PVD can be
written as:

NL
Z/Q | (5656’;+56£6ﬁ>d2d9k
k k 3
NL
:Z/ /(p"o‘uTﬁ+(5qu)ddek (26)
k=1 7 A

where €y is the in-plane integration domain (x,y) and Ay is the inte-
gration domains in z direction of the k-th layer. Integrating through
the thickness and summing on the index k, integrating by parts with
respect to x and y and collecting the coefficients of dug, 6vo, dWg, du1,
vy, oWy, duz, dvz and ow,, the following equations of motion are
obtained:

NL k k
ON ON,,

ol : E ( X y>
e~ ox oy

_ kﬁ: /Ak { 0% (iio + ziis + sinh (%)uz) +pyJdz
NL k k
oV : ’Z:l: ( ala\ty—agj})

= 3 A {p"('z'/o + 2z + sinh (%) 'z')z) +py}dz
k=1 7k

NL 9 k an
oW : Z ( (%( > ;z

k=1
—Z {p Wo +2W; +2%W,) +p, }dz

NL n'k Fa nqk
. 0 XX 0 Xy k
ouy kE:1 <— o —W-&-sz

= i //;k {pkz(ilo +zily + sinh (%)uﬁ +sz}dz

k=1

Mo OMy, oMy
S : y y k
oV : Z < X - 6_; + Qyz

k=1
- ,i /Ak {pkl<'7'/o +2¥; +sinh (%) bz) +Zpy}dz

NL k k
. asz aMyZ k
5W1 : kz:; < X — ay +sz

NL
= Z / {p*z(Wo + 2V +2%V,) +2p, }dz
k=

NL kZ kZ

IR ORy kz)

ou 7 < —_ +R
T

:i/ p"sinh E u0+zu1+smh<h)uz)+smh(h)px}d

61/2:2( sz aszJr yz>
:kz:/ {p smh( )(voJrz%'/]+sinh<7;)vz)+smh(h)py}d

k2
S <_£’I§_%+2M§z>

ox oy
_Z/ {p*2 (Vo + 200y +22W) +2%p, }dz (27)

(5W2 :
k=1

The following stress resultants for each fictitious layer are
considered:

k k k k
Nxx . Oxx QXZ . 3%
k| _ k K\ _ k
NG Y= [ ok baz (b= / o, Ldz (28)
Nk A ‘Ck k Ag O_k
Xy Xy sz zz
k K k
M g M., %
k _ k k k
My, 7/ z4 0y, »dz, My, 7/ z$ 1y, pdz (29)
MK A | gk X A f
Xy Xy Mzz z
kZ k
RXX nz O-XX
RZ 4 = / sinh (T) oy, sdz
RY A *
Xy Xy

R¥ i 7z [ T
2 L == cosh(==)< ¥ Ydz 30
(G- [ emf 30
‘[,'k
f/ zz{ f}dz (31)
Ay Tyz

The corresponding mechanical boundary conditions are defined as:
dug : Ny, + nyN§, = n N, + n,NE,
v = Ny, + nyNy, = nNE, + nyN"

W : nxsz + nyQyz nxsz + ny yz
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duy : nMy, + nyMy, = n,M¥ + ny,M¥,

dvr - mMy, + n,My, = n,M¥, + n,M¥,

owy : My, + My, = n M, + n,M¥,

duz : R +nyRy = nRY + n,RY

vz : R + n,RY = n, R + n,RZ

ow, : R + nyR? = n,RZ + n,RE2 (32)

where (n,,ny) denotes the unit normal-to-boundary vector and
over-lined terms are the imposed resultants.

2.5. Equations of motion and boundary conditions in terms of
displacements

In order to discretize the equations of motion by radial basis
functions, we present in the following the explicit terms of the
equations of motion and the boundary conditions in terms of the
generalized displacements. The following equations are derived
considering that the plate is subjected to a transverse external load
D, applied at the top of the plate z = h/2.

ou o*u >’v
olg : — (Gn Z 2 Geg Z> — (G12 + Ges) 4

ox? ay? oxay

2

Up o*uy 0" Vo
<A11 p%) + As a2 > (Ar2 +A66)8Xay
By Cl g T g g PO 2B
- ”62+ 5 oy2 — (Biz + 66)88y 13 6X_ 13 BX
= Ly + Iptip + Istz (33)
Pu &1
oy Dn +A55U1 Des ——
dy?
>u >u > vy
+ <H55U2+N11 e % 1 Nes 8y22> (N12 +N66)8X6y
& uo &g & vo
- (Bn B + Bss 0y2> (B2 +BGG)8x0y
& v oW,
— (D12 + Des) 7 ox E)y + (Bss — BB)W
ow 8W0
+ (Dss — 2D13) ——~ B 2 1 Ass 0 B
:I7u2+11u5+12u1 (34)
2 ow,
ouz : Gn e L Gsa Byz + (055 — Gss — G13) ——~ %
& u &y > v
<H55u1 + N11 BXZ "+ Nes a2 |~ (G12 + Ges) E)x@;
2 2 (9W
_I]] Y +R55Uz .]66 E)y2 + (Pss + 2Ns5 + 2Nq3) ——= E
& vy P vy owo
+ (N12 + Nes) - oxdy = Uiz +Je6) 5 axay Hss =
:I7Li'1 +16uZ+15U0 (35)

0% vy 0% v, P uo

82
— (G2 + GGG)(’)xi)y <Gzz 7 + Ges e ) (Ar2 +A66)0x0y

& vo & vo & uy
- (Azz E)y2 + Ass e ) (312+BGG)8xoy

) v ow ow
— (Bzz + BGG 1) A23 ! 2323 =

ay? Ox? oy ay
=1 1).1 +101jo +15?;z (36)
svy: | -D i) L+ Ay Day1
1 22 a0 8y2 44 V1 — V66 a
v vy > uy
+ <H44Z)z + Nyp ——= 8}/2 +N66 p%) > (le +N66)ax8y

0*uy >y 0" & vy
— (B12 + Bgs) =—— oxdy — (D12 +D66)8x8y — <3228y2+366 B )

ow ow: ow
+ (Bag — By3) Tyl + (Dag — 2D33) —— E)y +Au—— Z)y
=1L0; + 110y + L v, (37)
) ou ow
ovz : —(G]z + Ges) Oxa; + (044 — Gag — G23)a—yl
> v > v & vy & vy
<H44l/1 +Noza——- ay? +N66W - G22Ty2+GGGW
Pu v, ow
]22 Byz ?  Raavz —Jogror e + (Pag + 2N4g 4+ 2Np3) —= 8y
uy o uz o
+ (N12 + Nes) - oxdy — (12 ]GG)axay +H44a—y
=10, +1s0; + 57 (38)
N (92W0 82W0 82W1 aZW]
oWp : — <A55(9X2+A448y2 - 355W4‘B44Ty2
82W2 (92W2 ouz vz oy
- <D55 e + Dag ya *Hssa*HMW Ass —— X
—-A LS
44 ay D
= LWy + Lw, + [Wy (39)
swn [ Es T2 9B wn B DY) (L0t G 1 Gry) 22
1 55 02 33Wy — L4a——— y? 55 55 13) 5y

v, *wy ’w
+ (=044 + Gag + Gza)fZJr (Dss L+ AWy — Dyy ]>

dy X2 9y?
+ (B3 — Bss) % + (B2s — Bua) 8(’))/ (BSS 8;;:! + Bag aayv‘;‘))
+ A13 + Az 801;,0
= ;W + Izwl + I3, (40)
oW; : (—Ess 8; 5+ 2Bsswy — Egy 882}/‘/\;])
+ <—F55 8; 5 +4D33wy — Fag 88;/V2>
— (Ps5 + 2Ns5 + 2Nq3) % — (Pag + 2N4q + 2N>3) %Z;Z
+ (2D13 — Dss) %xl +(2Dy3 — D44)87;
- <D55 % +Day Oa;v ) +2B13 88 +2Ba3 % + (g) sz

= IzW() + 3wy + I4W2 (41)
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The laminate stiffness components can be computed as
NL

i =z —z);
k=1

1 o k(53 3
Dy :§’z;cij(zk+l —-Z);
k=

l] 2 ZCIJ ZkH Zk
Ej= i ZCE‘(Z;:H -7)
k=1

Fy flic’-‘-(zs -z)
y _5 i ij \Fk+1 k

(hﬁk)zm - z@} (42)

The mass moments of inertia are defined by
M 1 ,
Iy :;P (Zks1 —z); N :igp((zkﬂ - zj)

1 o k(3 3 1 - k
L :§Zp (Zkﬂ_zk)"r 13:_210 (Z;:H_Zz)
k=1

I

1 - k(55 5
Iy :gzp (Zk+lfzk);
k7

Mo h nz 7z
Z k Tk k+1 k
S [C05h< hy )_C05h<hk H

—~—

G
\
|
-
L —
/_\
?
v
/_\
2.
D"
ey
S
35
N———
|
o)
=
=
/3
=|8
N——
N————

k=1
hy NZj41 nzy
- (zkﬂ cosh ( , > — z,.cosh ( I ))} (43)

where hy is the thickness of each layer, zy,zx+; are the bottom and
top z coordinate for each layer k, and p* is the material density of
the k-th layer.

2.5.1. Boundary conditions in terms of displacements

This meshless method based on collocation with radial basis
functions needs the imposition of essential (e.g. w=0) and
mechanical (e.g. My, = 0) boundary conditions. Assuming a rectan-
gular plate (for the sake of simplicity), Eq. (32) are expressed as fol-
lows: given the number of degrees of freedom, at each boundary
point at edges x = min or x = max we impose

dup ou ov
Mo =2B13wWy + Aiswy + A1 — % +A12 ay +Bna—X]+Blz 8y]
ouy vz
+ G — X L4 G—2 ay (44)
ouz ovz ou
M1 = =Ny = ox +2D13W2 +Biswy —Nip = ay +B11 8)(0
oy vy oy
+ D ox +312 ay +D12 ay (45)
oy ov
Mz = —2Ni3w; — N11 N12 +]11 BX +J12 8;
(91/0
+Gizwy + Gn + Gio—— ay (46)
Oug Oy ouq o1 ov
Miwo = Ass —— ay +A66 ox +366 oy +Bss ox +Gss ay +Gss 8XZ
(47)
oug vy Oug ouq vy ov
Myxy1 = —Ngs —— ay — Nes == B % 4 Beg—— ay 0 4 Dgg—— oy L | Beg—— % % 4 Deg 6}(]
(48)
ouy v
Mixv2 = —Ngs —— ay NGG ]ss 8y ]55 o +Gss ay +GGG (?xo
(49)
ow oW, ow
Muawo = Hsstiz + Asstly + Ass —— ox +Bss X + Dss ——= 8X (50)
OWg ow ow
Miwt = Bssuy + (Oss — Gss)uz + Bss —— ox + Dss —— ox +Ess sz
(531
oW, ow ow
Miw2 = Dssuy + (Pss + 2Nss5)uz + Dss B_XO + Ess —— % Lt Fss 8)(2
(32)

Similarly, given the number of degrees of freedom, at each bound-
ary point at edges y = min or y = max we impose:

Oug oV ou ov ou ov.

Myyuo = Ags —— ay +A668—0+3668—y1+3668—xl+c668—yz+c66 8)(2
(33)
ouy vz Oug ouy vy ov
Myyu1 = —Ngs —— ay — Nos —— x +366 ay +D66 ay +366 x +D6687x1
(54)

ouy oV oV

Myyuiz = —Nes —— ay Nee +]ss 8y +]ss X +Gee ay +G667X0
(35)

Oy oV, oy oy ouz ov.

Myywo = A1z —— ox +A22 y0+312 ox +By— ay +G12 ox +Gzza—yz
(36)
ouy ovz Oug ouy 0y ov
Myy1 = =Nz X — Ny — ay +B12 ox +D12 x +Bzz ay +D22 8y1
(57)

ouy o1 ou oV

My = —Nip — B —sz +]12 ax +]22 oy +G128—X0+Gzz Oyo

(58)
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8W (9W2

oW,
Myywo = Haa V7 + Asa¥1 + Asa—— ay O 4 By ay +Dyg—— ay (59)
owg ow ow
Myywi = Bagv1 + (044 — Gas) Uz + Bas —— ay + Dgg—— y L Esy 8y2
(60)
ow, ow ow
Myywr = Dagv1 + (Pag + 2Nag) V7 + Dag —— ay O 4 Eag—— ay L 6y2
(61)

with Aij, B,‘j, D,‘j, E,‘j, Fij, G,‘j, H,‘j, j,‘j, N,‘j, O,‘j, P,'j, Rij already described in
(42).

3. The radial basis function method

For the sake of completeness we present here the basics of col-
location with radial basis functions for static and vibrations
problems.

3.1. The static problem

In this section the formulation of a global unsymmetrical collo-
cation RBF-based method to compute elliptic operators is pre-
sented. Consider a linear elliptic partial differential operator L
and a bounded region 2 in R" with boundary 9Q. In the static
problems we seek the computation of displacements (u) from the
global system of equations

Lu=finQ; [Lzu=gonoQ (62)

where £, Lp are linear operators in the domain and on the bound-
ary, respectively. The right-hand sides in (62) represent the external
forces applied on the plate and the boundary conditions applied
along the perimeter of the plate, respectively. The PDE problem de-
fined in (62) will be replaced by a finite problem, defined by an
algebraic system of equations, after the radial basis expansions.

3.2. The eigenproblem

The eigenproblem looks for eigenvalues (/) and eigenvectors (u)
that satisfy
Lu+/u=0in Q; Lzu=0on IR (63)

As in the static problem, the eigenproblem defined in (63) is re-
placed by a finite-dimensional eigenvalue problem, based on RBF
approximations.

3.3. Radial basis functions approximations

The radial basis function (¢) approximation of a function (u) is
given by

N
ux) = ad(|x - yil,), xeR" (64)
i=1

where y;, i=1, ..., N is a finite set of distinct points (centers) in R".
Although we can use many RBFs, in this paper we restrict to the
Wendland function, defined as

o) =(1—c r)i(32(c ) +25(cr)?+8cr+ 1) (65)

where the Euclidian distance r is real and non-negative and c is a
positive shape parameter. The shape parameter (c) was obtained
by an optimization procedure, as detailed in Ferreira and Fasshauer
[27].

Considering N distinct interpolations, and knowing u(x;),j =1, 2,
., N, we find «; by the solution of a N x N linear system

Ad=u (66)

where A = [¢(]IX — Yill2)Insxn,
u(xz),.. ., u(xn)"

o =[01,0,...,0v]7 and u=[u(xy),

3.4. Solution of the static problem

The solution of a static problem by radial basis functions con-
siders N; nodes in the domain and N nodes on the boundary,
with a total number of nodes N=N;+ Np. We denote the sam-
pling points by x;€ Q, i=1, ..., Ny and x;€0Q, i=N;+1, ..., N.
At the points in the domain we solve the following system of
equations

N
i=1
or
Lla=F (68)
where
L= [Lo(11x = Yill) ]y en (69)

At the points on the boundary, we impose boundary conditions as

N

> oilpp(|X - yill,) =8(), j=Ni+1,....N (70)
i=1

or

Ba =G (71)
where

B = Lpp[([|xn,1 *J/sz)]NBxN

Therefore, we can write a finite-dimensional static problem as

Vo F
o= 72
[ o=l (72)
By inverting the system (72), we obtain the vector . We then ob-
tain the solution u using the interpolation Eq. (64).

3.5. Solution of the eigenproblem

As in the solution of the static problem, we consider N; nodes in
the interior of the domain and Nz nodes on the boundary. For

x€Q,i=1,..., N, we define the eigenproblem as

S Lo - i) = ). 1.2 N 73

or

Lloa = (74)

where

L= (L% = Yill2)]nyen (75)

For x; € 0Q, i=N;+1, ..., N, we enforce the boundary conditions as
N

Z%EB¢(HX*Y{||2)=07 J=N+1,...,N (76)
i

or

Ba =0 (77)



1820 A.M.A. Neves et al./Composite Structures 94 (2012) 1814-1825

Egs. (74) and (77) can now be solved as a generalized eigenvalue
problem

{g]azz{f:}a (78)

where

A' = ¢[(||xn, *%Hz)]N,xN

3.6. Discretization of the equations of motion and boundary conditions

The radial basis collocation method follows a simple implemen-
tation procedure. Taking Eq. (72), we compute

-1
F

- {L } f] (79)
B G

This a vector is then used to obtain solution u, by using (64). If

derivatives of u are needed, such derivatives are computed as

8ﬁ N 6¢] 82ﬁ N 82¢j

522%5; ﬁ:ZMIW, etc. (80)
= =

In the present collocation approach, we need to impose essential
and natural boundary conditions. Consider, for example, the condi-
tion wg = 0, on a simply supported or clamped edge. We enforce the
conditions by interpolating as

N

wo=0—> o"¢ =0 (81)
j=1

Other boundary conditions are interpolated in a similar way.

3.7. Free vibrations problems

For free vibration problems we set the external force to zero,
and assume harmonic solution in terms of displacements ug, uy,
Uz, Vo, V1, Uz, Wo, W1, W2 as

o = Uo(w, )ty = Ur(w,y)e;  uz = Uz(w,y)e™;

Vo = VO (W7y)eiwt; U = V1 (va)eiwt; Uz = VZ (W7y)eiwt;

wy = Wh(w,y)e
(82)

where w is the frequency of natural vibration. Substituting the
harmonic expansion into Eq. (78) in terms of the amplitudes Uy,
Ui, Uz, Vo, V4, Vz, Wy, Wy, W5, we may obtain the natural frequen-
cies and vibration modes for the plate problem, by solving the
eigenproblem

[£-@?G]X=0 (83)

Wo = WO(W7y)eiw[:, Wi = W1 (va)eiw[:,

where £ collects all stiffness terms and G collects all terms related
to the inertial terms. In (83) X are the modes of vibration associated
with the natural frequencies defined as w.

4. Numerical examples
4.1. Bending problems

In the next examples we use the hyperbolic sine plate theory to
analyse simply supported (SSSS) square (side lengths a = b) plates
subjected to a bi-sinusoidal transverse mechanical load, of bi-sinu-
soidal load p, = p,sin(Z)sin(3) applied at the top plate surface,
z="h/2, p, = 1. Three side-to-thickness ratios (a/h) are considered
4,10 and 100.

We consider 91 mathematical layers, in order to model the con-
tinuous variation of properties across the thickness direction.! We
consider a Wendland C6 radial function as in (65), and a Chebyshev
grid (see [27] for details).

4.1.1. Isotropic functionally graded plate

In this example, an isotropic FGM square plate with a polyno-
mial material law, as given by Zenkour [2] is considered. The plate
is graded from aluminum (bottom surface) to alumina (top surface)
materials. The following functional relationship is considered for
modulus of elasticity E(z) in the thickness direction (z) [2]:
2z + h) P

(84)

E(z) =En + (Ec —Em) <T

where E,, = 70 GPa and E. = 380 GPa are the corresponding modulus
of elasticity of the metal and ceramic phases, respectively; p is the
(positive number) volume fraction exponent. The Poisson’s ratio is
considered constant (v =0.3).

The transverse displacement and the normal stresses are com-
puted in normalized form as

u 710h3ECu EE g 710 EE
z = a4ﬁz z 2°2 xx—aﬁz XX )

_ h ab _ ab
Oy = a_f;zoyy <§v§> Oz =0z <§~§> (85)

The shear stresses are normalized according to

_ h _ h b _ h a
Oxy :a_ﬁza"y(o"o):’ Oxz :a_ﬁzo—’a<0’§>:’ Oy, :a_;ZJYZ(f’O)
(86)

(4,%) is the center of the plate, (0,2) and (4, 0) are the midpoints of
the sides, and (0,0) is the corner of the plate.

The present approach with €., # 0 is compared with analytical
solutions by Carrera et al. [28], the classical plate theory (CLT),
the first-order shear deformation theory (FSDT), a generalized
shear deformation theory by Zenkour [2] (who considered
€,,=0), and finite element solutions by Carrera et al. [9]. We con-
sider Chebyschev grids with 132, 172 and 212 points. Three FGM
configurations are considered by using different p exponents
(p =1,4,10). Thick (a/h = 4) down to thin (a/h = 100) plates are ana-
lysed. Normalized transverse displacements (ti;) and normal stres-
ses (Ox) at the central point of the plate and selected thickness
coordinate are shown in Table 1. Our approach presents very close
results to those theories that consider thickness stretching, and
clearly deviates from those theories that neglect €,,, in particular
for thicker plates. The present approach presents very close results
to Carrera’s analytical solution [28].

In Figs. 1-6 we present the evolution of the displacement and
stresses across the thickness direction for various values of the
exponent p, using a 212 grid. As can be seen in Fig. 6, the transverse
normal component o, cannot be neglected for the present
problem.

4.1.2. Sandwich square plate with FGM core

In this example we consider a sandwich plate with total
thickness h, by using a polynomial material law for the core, as de-
scribed in Zenkour [2]. The bottom skin is aluminium (E,;, = 70 GPa)
with thickness h, = 0.1h and the top skin is alumina (E. = 380 GPa)
with thickness h, = 0.1h. The core is a FGM layer with the following
functional relationship for modulus of elasticity E(z) in the thick-
ness direction z as in (84). The Poisson’s ratio is considered con-
stant v=0.3.

1A significant number of mathematical layers is needed to ensure correct
computation of material properties at each thickness position.
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Table 1
FGM isotropic plate with polynomial material law [2]. Effect of transverse normal strain €,, for a bending problem.
alh Gxx(h/3) u(0)
p €2 4 10 100 4 10 100
Ref. [28] #0 0.6221 1.5064 14.969 0.7171 0.5875 0.5625
CLT 0 0.8060 2.0150 20.150 0.5623 0.5623 0.5623
FSDT (k = 5/6) 0 0.8060 2.0150 20.150 0.7291 0.5889 0.5625
GSDT [2] 0 1.4894 0.5889
Ref. [9] N=4 0 0.7856 2.0068 20.149 0.7289 0.5890 0.5625
Ref. [9] N=4 #0 0.6221 1.5064 14.969 0.7171 0.5875 0.5625
Ref. [29] #0 0.5925 1.4945 14.969 0.6997 0.5845 0.5624
Present 132 grid #0 0.5910 1.4911 14.873 0.7020 0.5868 0.5620
Present 172 grid #0 0.5910 1.4916 14.930 0.7020 0.5868 0.5646
Present 212 grid #0 0.5910 1.4917 14.944 0.7020 0.5868 0.5648
4 Ref. [28] #0 0.4877 1.1971 11.923 1.1585 0.8821 0.8286
CLT 0 0.6420 1.6049 16.049 0.8281 0.8281 0.8281
FSDT (k =5/6) 0 0.6420 1.6049 16.049 1.1125 0.8736 0.828
GSDT [2] 0 1.1783 0.8651
Ref. [9] N=4 0 0.5986 1.5874 16.047 1.1673 0.8828 0.8286
Ref. [9] N=4 #0 0.4877 1.1971 11.923 1.1585 0.8821 0.8286
Ref. [29] #0 0.4404 1.1783 11.932 1.1178 0.8750 0.8286
Present 132 grid #0 0.4341 1.1590 11.698 1.1094 0.8697 0.8205
Present 172 grid #0 0.4340 1.1593 11.727 1.1095 0.8698 0.8238
Present 212 grid #0 0.4340 1.1593 11.738 1.1095 0.8698 0.8241
10 Ref. [28] #0 0.3695 0.8965 8.9077 1.3745 1.0072 0.9361
CLT 0 0.4796 1.1990 11.990 0.9354 0.9354 0.9354
FSDT (k = 5/6) 0 0.4796 1.1990 11.990 1.3178 0.9966 0.9360
GSDT [2] 0 0.8775 1.0089
Ref. [9] N=4 0 0.4345 1.1807 11.989 1.3925 1.0090 0.9361
Ref. [9] N=4 #0 0.1478 0.8965 8.9077 1.3745 1.0072 0.9361
Ref. [29] #0 03227 1.1783 11.932 1.3490 0.8750 0.8286
Present 132 grid #0 0.3108 0.8465 8.5844 1.3327 0.9886 0.9194
Present 172 grid #0 0.3108 0.8467 8.5948 1.3327 0.9886 0.9225
Present 212 grid #0 0.3108 0.8467 8.6013 1.3327 0.9886 0.9228
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Fig. 1. FGM square plate subjected to sinusoidal load at the top, with a/h=4.
Displacement through the thickness direction for different values of p at the center Fig. 3. FGM square plate subjected to sinusoidal load at the top, with a/h=4. G,
of the plate (§,5) according to the hyperbolic sine theory. through the thickness direction at the corner of the plate (0,0) for different values of

p according to the hyperbolic sine theory.
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Fig. 2. FGM square plate subjected to sinusoidal load at the top, with a/h =4. G Fig. 4. FGM square plate subjected to sinusoidal load at the top, with a/h =4. &,
through the thickness direction for different values of p at the center of the plate through the thickness direction at the center of the plate (0,5) for different values of

(4,2) according to the hyperbolic sine theory. p according to the hyperbolic sine theory.
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Fig. 5. FGM square plate subjected to sinusoidal load at the top, with a/h =4. G,
through the thickness direction at the point (§,0) for different values of p according
to the hyperbolic sine theory.
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Fig. 6. FGM square plate subjected to sinusoidal load at the top, with a/h=4. g,
through the thickness direction for different values of p at the center of the plate
(4,2) according to the hyperbolic sine theory.

The same dimensionless forms as in (85) and (86) are used.

In Table 2 we present the normalized transverse displacement
(w) and the normalized transverse shear stress (Gx,) at selected
locations. In Table 3 we present the normalized in-plane shear
stress (0y) and the normalized transverse normal stress (6,,) at
selected locations. In both tables we consider three a/h ratios (4,

Table 2

10 and 100), and three power-law exponents (p=1, 4 and 10).
We use a 212 Chebyshev grid and consider both €,,=0 and ¢, # 0
approaches. Our meshless results are compared in Table 2 with fi-
nite element results by Carrera et al. [9], and compare quite well
for all cases. In Table 3 we compare the present approach with
FEM results by Brischetto [30] and again the comparison is quite
good.

In Figs. 7-13 we present the evolution of the displacement and
stresses across the thickness direction for various values of the
exponent p of a plate with side to thickness ratio a/h = 10, using
a 212 grid.

The present numerical method presents very close results to
those of Carrera et al. [9] for a N =4 expansion.

The consideration of a non-zero €,, strain produces a significant
change in the transverse displacement as well as in the normal
stress. This becomes evident when we compare the present app-
roch with that of Zenkour [2] who neglected the €,, strain in the
formulation.

4.2. Free vibration problems

In this example, we study the free vibration behavior of simply-
supported (SSSS) isotropic FGM Al/ZrO, plates. The modulus of
elasticity are E,, = 70 GPa and E. = 380 GPa, the mass densities are
Pm=2702 kg/m> and p.=5700 kg/m>, and the Poisson’s ratio is
v = 0.3. We consider both the €,, = 0 and the €,, # 0 cases. We com-
pare results with an exact (analytical) solution by Vel and Batra
[31], and another meshless technique by Qian et al. [8]. In order
to compare results, we use the Mori-Tanaka scheme for obtaining
equivalent material properties.

In Table 4 we consider thin and thick plates, with p=1, and
using 212 Chebishev points. The €, effect is significant. In fact,
the exact solution by Vel and Batra [31] is achieved for all cases,
by allowing €,, # 0. In Table 5 we compare with the same sources,
varying the p exponent, for a/h =5 and using 212 points. Our pres-
ent formulation with €,, # 0 matches the exact solution.

In Fig. 14 the first four frequencies are presented for p=1 and
using 212 points. In Tables 6 and 7 we present the first ten
frequencies for the same exponent p and compare results with
those from Qian et al. [8] for different side-to-thickness ratios
and different number of Chebishev points.

Sandwich simply supported square plate with FGM core with polynomial material law [2] using a 212 grid. Effect of transverse normal strain €,, on oy, and transverse

displacement for a bending problem using the hyperbolic sine theory.

alh 0 (0.5.4) (00,0

p €2 4 10 100 4 10 100
Ref. [9] N=4 0 0.2604 0.2594 0.2593 0.7628 0.6324 0.6072
Ref. [9] N=4 #0 0.2596 0.2593 0.2593 0.7735 0.6337 0.6072
Ref. [29] 0 0.2703 0.2718 0.2720 0.7744 0.6356 0.6092
Ref. [29] #0 0.2742 0.2788 0.2793 0.7416 0.6305 0.6092
Present 0 0.2028 0.2017 0.2015 0.7744 0.6356 0.6093
Present #0 0.2233 0.2271 0.2274 0.7417 0.6305 0.6093

4 Ref. [9] N=4 0 0.2400 0.2398 0.2398 1.0930 0.8307 0.7797
Ref. [9] N=4 #0 0.2400 0.2398 0.2398 1.0977 0.8308 0.7797
Ref. [29] 0 0.2699 0.2726 0.2728 1.0847 0.8276 0.7785
Ref. [29] #0 0.2723 0.2778 0.2785 1.0391 0.8202 0.7784
Present 0 0.2813 0.2808 0.2806 1.0847 0.8276 0.7786
Present #0 0.3154 03219 0.3230 1.0349 0.8195 0.7785

10 Ref. [9] N=4 0 0.1932 0.1944 0.1946 1.2172 0.8740 0.8077
Ref. [9] N=4 #0 0.1935 0.1944 0.1946 1.2240 0.8743 0.8077
Ref. [29] 0 0.1998 0.2021 0.2022 1.2212 0.8718 0.8050
Ref. [29] #0 0.2016 0.2059 0.2064 1.1780 0.8650 0.8050
Present 0 0.2623 0.2624 0.2623 1.2212 0.8718 0.8051
Present #0 0.2945 0.3000 0.3004 1.1720 0.8639 0.8050
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Table 3

Sandwich simply supported square plate with FGM core with polynomial material law [2] using a 192 grid. Effect of transverse normal strain €, on 0y and 0, for a bending

problem 0, = 0, ;.

alh x(0,0.9) 2(3,4.0)
p €2 4 100 4 100
Ref. LD4 [30] 0 0.3007 8.4968 0.0922 0.0038
Ref. LM4 [30] #0 0.3007 8.4968 0.0922 0.0038
Ref. [29] 0 0.3303 8.4882 0.1276 3.1987
Ref. [29] #0 0.3167 8.4911 0.0827 0.0034
Present 0 0.3303 8.4903 0.1276 3.1983
Present #0 0.3165 8.5056 0.0828 0.0034
5 Ref. LD4 [30] 0 0.1999 6.4942 0.0911 0.0037
Ref. LM4 [30] #0 0.1996 6.4942 0.0924 0.0037
Ref. [29] 0 0.2317 6.4454 0.0777 1.9535
Ref. [29] #0 0.2248 6.4441 0.0522 0.0022
Present 0 0.2317 6.4463 0.0777 1.9532
Present #0 0.2247 6.4458 0.0522 0.0022
10 Ref. LD4 [30] 0 0.1412 5.1402 0.1064 0.0043
Ref. LM4 [30] #0 0.1403 5.1401 0.1067 0.0042
Ref. [29] 0 0.1745 5.0745 0.0685 1.6978
Ref. [29] #0 0.1687 5.0754 0.0443 0.0018
Present 0 0.1745 5.0752 0.0685 1.6975
Present #0 0.1708 5.0784 0.0444 0.0018
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Fig. 7. Sandwich square plate with FGM core subjected to sinusoidal load at the top,
with a/h =10. Displacement through the thickness direction at the center of the
plate (4,) for different values of p according to the hyperbolic sine theory.

z-coordinate

Fig. 8. Sandwich square plate with FGM core subjected to sinusoidal load at the top,
with a/h = 10. &, through the thickness direction at the center of the plate (4,5) for
different values of p according to the hyperbolic sine theory.

5. Conclusions

In this paper a new hyperbolic sine shear deformation theory
accounting for through-the-thickness deformations was presented.

Fig. 9. Sandwich square plate with FGM core subjected to sinusoidal load at the top,
with a/h = 10. 6,y through the thickness direction at the center of the plate (¢,2) for
different values of p according to the hyperbolic sine theory.
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Fig. 10. Sandwich square plate with FGM core subjected to sinusoidal load at the
top, with a/h = 10. o, through the thickness direction at the center of the plate (4, g)
for different values of p according to the hyperbolic sine theory.

Bending deformations and free vibrations of functionally graded
plates were analysed. The equations of motion in terms of resul-
tants and generalized displacements are obtained by the Carrera’s
Unified Formulation (CUF).
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0.1 Table 5
008l i Fundamental frequency @ = wh./p,,/En of a SSSS isotropic functionally graded plate
0'06 (Al/ZrO,), a/h = 5, using 212 points and the hyperbolic sine theory.
o 0.04f i Source p=2 p=3 p=5
T 02} ] Ref. [8] 0.2153 0.2172 0.2194
° ok | Exact [31] 0.2197 0.2211 0.2225
8 Ref. [29] (€., = 0) 0.2189 0.2202 0.2215
E -0.02f 1 Ref. [29] (e, # 0) 0.2198 0.2212 0.2225
-0.04} 4 Present (€,,=0) 0.2191 0.2205 0.2220
_0.06- | Present (€,, # 0) 0.2201 0.2216 0.2230
-0.08f .\ 7
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Fig. 11. Sandwich square plate with FGM core subjected to sinusoidal load at the 05 05

top, with a/h = 10. &,, through the thickness direction at the point (0,0) for different

values of p according to the hyperbolic sine theory. o 0
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Fig. 12. Sandwich square plate with FGM core subjected to sinusoidal load at the Fig. 14. First 4 frequencies @ = wh,/p,,/En of a SSSS isotropic functionally graded
top, with a/h = 10. 6, through the thickness direction at the point (O,g) for different plate (Al/ZrO,), with a/h = 20, p = 1, using 212 points and the hyperbolic sine theory.
values of p according to the hyperbolic sine theory.

01 ' Table 6
0.08 1 First 10 frequencies @ = wh./p,,/En of a SSSS isotropic functionally graded plate (Al/
0.06 i Zr05), p =1, a/h = 20, with the hyperbolic sine theory.
o 004y 1 Present 132 172 212 Ref. [8] Ref. [29]
g ooz T 0.0153 0.0153 00153 0.0149 00153
S or b 0.0377 0.0377 0.0377 0.0377 0.0377
S -0.02} - 0.0377 0.0377 0.0377 0.0377 0.0377
N _o.0af | 0.0596 0.0596 0.0596 0.0593 0.0596
’ 0.0741 0.0739 0.0739 0.0747 0.0739
-0.06 b 0.0741 0.0739 0.0739 0.0747 0.0739
—0.08k - 0.0953 0.0950 0.0950 0.0769 0.0950
iy X 0.0953 0.0950 0.0950 0.0912 0.0950
: -0.2 0.1030 0.1030 0.1030 0.0913 0.1029
0.1030 0.1030 0.1030 0.1029 0.1029
Fig. 13. Sandwich square plate with FGM core subjected to sinusoidal load at the
top, with a/h=10. G,, through the thickness direction at the point (§,0) for
different values of p according to the hyperbolic sine theory. Table 7

First 10 frequencies @ = wh/p,,/Ex of a SSSS isotropic functionally graded plate (Al/
Zr0,), p=1, a/h = 10, with the hyperbolic sine theory.

Table 4
Fundamental frequency @ = wh./p,,/En of a SSSS isotropic functionally graded plate Present 132 172 212 Ref. [8] Ref. [29]
(Al/Zr0,), p = 1, using 212 points.
0.0596 0.0596 0.0596 0.0584 0.0596
Source alh 0.1426 0.1426 0.1426 0.1410 0.1426
20 10 5 0.1426 0.1426 0.1426 0.1410 0.1426
0.2059 0.2059 0.2059 0.2058 0.2058
Ref. [8] 0.0149 0.0584 0.2152 0.2059 0.2059 0.2059 0.2058 0.2058
Exact [31] 0.0153 0.0596 0.2192 0.2194 0.2193 0.2193 0.2164 0.2193
Ref. [29] (€,,=0) 0.0153 0.0595 0.2184 0.2678 0.2676 0.2676 0.2646 0.2676
Ref. [29] (€., # 0) 0.0153 0.0596 02193 0.2678 0.2676 0.2676 0.2677 0.2676
Present (€,, = 0) 0.0153 0.0595 0.2184 0.2912 0.2912 0.2912 0.2913 0.2910

Present (€, # 0) 0.0153 0.0596 0.2193 0.3367 0.3364 0.3364 0.3264 0.3363
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Examples include an isotropic functionally graded plate and a
sandwich plate with functionally graded core. Equations were
interpolated by collocation with radial basis functions.

The present formulation produces highly accurate solutions for
both bending deformations and free vibrations. The use of this
hyperbolic sine theory and its meshless implementation are novel
and serves to fill the gap of knowledge in this area.
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In this paper the authors derive a higher-order shear deformation theory for modeling functionally
graded plates accounting for extensibility in the thickness direction.

The explicit governing equations and boundary conditions are obtained using the principle of virtual
displacements under Carrera’s Unified Formulation. The static and eigenproblems are solved by colloca-

tion with radial basis functions.
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The efficiency of the present approach is assessed with numerical results including deflection, stresses,
free vibration, and buckling of functionally graded isotropic plates and functionally graded sandwich
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1. Introduction

Functionally graded materials (FGM) are a class of composite
materials that were first proposed by Bever and Duwez [1] in
1972. In a typical FGM plate the material properties continuously
vary over the thickness direction by mixing two different materials
[2]. The computational modeling of FGM is an important tool to the
understanding of the structures behavior, and has been the target
of intense research [2-8].

When compared to isotropic and laminated plates, the litera-
ture on FGM plates is relatively scarce. Because of FGM applica-
tions in high temperature environments most of the studies on
the behavior of FGM plates focus on the thermo-mechanical re-
sponse of FGM plates: Reddy and Chin [9], Reddy [10], Vel and Ba-
tra [11,12], Cheng and Batra [13], and Javaheri and Eslami [14].
Studies on the mechanical behavior of FGM plates include the sta-
tic analysis of FGM plates performed by Kashtalyan [15], Kashtaly-
an and Menshykova [16], Qian et al. [17], Zenkour [18,19], Ramirez
et al. [20], Ferreira et al. [21,22], Chi and Chung [23,24], and Cheng
and Batra [25]. Vibrations problems of FGM plates can be found in
Batra and Jin [26], Ferreira et al. [27], Vel and Batra [28], Zenkour
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E-mail address: ferreira@fe.up.pt (A.J.M. Ferreira).
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doi:10.1016/j.compositesb.2012.01.089

[29], Roque et al. [30], and Cheng and Batra [31]. Mechanical buck-
ling of FGM plates can be found in Najafizadeh and Eslami [32],
Zenkour [29], Cheng and Batra [31], Birman [33], and Javaheri
and Eslami [34].

The Classical Plate Theory (CLPT) yields acceptable results only
for the analysis of thin plates. The accuracy of the first-order shear
deformation theory (FSDT) depends on the shear correction factor
which may be difficult to compute. Higher-order shear deforma-
tion theories (HSDT) provide better accuracy for transverse shear
stresses without the need of a shear correction factor. Examples
of HSDT were proposed by Reddy [10], Kant and co-workers [35-
40] and Batra and co-workers [17,41-52]. Most of these theories
do not account for transverse extensibility by neglecting the o, ef-
fects. This paper proposes a higher-order theory that accounts for
such transverse effects, by using the Unified Formulation proposed
by Carrera. The effect of thickness stretching in FGM plates was re-
cently investigated by Carrera et al. [53] using Carrera’s Unified
Formulation and finite element approximations.

Carrera’s Unified Formulation (CUF) was proposed in [54-56]
for laminated plates and shells and extended to FGM plates in
[57-59]. It is possible to implement any Cg theory under CUF, using
layer-wise as well as equivalent single-layer descriptions, and the
Principle of Virtual Displacements, as is the case in present formu-
lation, or the Reissner mixed variational theorem. CUF allows a
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systematic assessment of a large number of plate models. The pres-
ent formulation can be seen as a generalization of the original CUF,
by introducing different displacement fields for in-plane and out-
of-plane displacements. Another form of Generalized Unified For-
mulation (GUF) was proposed by Demasi [60] and Luciano and
Demasi [61] based on CUF. GUF has been applied in the study of
laminated plates using the finite element method and has been ex-
tended to Layerwise, zig-zag and mixed theories [62-66]. It allows
to independently choose the expansions of each displacement (as
in present formulation) but it also allows to independently choose
the expansion of each stress gy, 0y, and o,

Another higher-order concept for quasi-3D FGM plates prob-
lems was proposed by Batra and Vidoli [41] and Batra et al. [42]
who also consider thickness-stretching effects in FGM plates. The
plate theory is derived using three-dimensional mixed variational
principle. CUF has been applied either using the Principle of Virtual
Displacements or by using the Reissner’s Mixed Variational theo-
rem. The stiffness matrix components, the external force terms
or the inertia terms can be obtained directly with CUF irrespective
of the shear deformation theory being considered. In Batra and
Vidoli’s approach the transverse shear and normal stresses are ex-
panded as polynomials in z of degree 2 higher than the displace-
ments. CUF has the advantage of being not restricted to
polynomials (see [67-69], for example, where a sinusoidal and a
hyperbolic expansion has been considered). On the other hand,
the constitutive relations in Batra and Vidoli’s approach explicitly
present the tractions and the charge density applied on the top
and the bottom surfaces of the plate which is not the case in
CUF. Such loads may be considered at any point of the plate, not
restricted to the top or bottom surfaces, but CUF does not present
them explicitly.

Williams and co-workers [70-75] also proposed another unified
formulation. Williams’ unified plate theory is a displacement based
theory and uses a generalized two length scale displacement field
by superposition of global and local arbitrary displacement fields.
The global field spans the thickness of the plate; the set of local
fields must be consistent with the layering thickness and may be
activated only in chosen regions. Williams’ unified plate theory
may address the non-linear analysis of laminated plates in the
presence of delaminations.

The use of alternative methods to the Finite Element Methods
for the analysis of plates, such as the meshless methods based on
collocation with radial basis functions is atractive due to the ab-
sence of a mesh and the ease of collocation methods. In recent
years, radial basis functions (RBFs) showed excellent accuracy in
the interpolation of data and functions. The authors have applied
the RBF collocation to the static deformations and free vibrations
of composite beams and plates [76-83]. The combination of CUF
and meshless methods has been performed in [84-87] for lami-
nated plates and in [67,68] for FGM plates. Furthermore, a general-
ized form of the CUF method is here applied for the first time to the
static, free vibration and buckling analysis of FGM plates, owing to
collocation with radial basis functions.

This paper presents explicit governing equations and boundary
conditions of the HSDT and focus on the thickness stretching issue
on the static, free vibration, and buckling analysis of FGM plates by
a meshless technique. The CUF method is employed to obtain the
algebraic governing equations and boundary conditions which
are then interpolated by radial basis functions to obtain an alge-
braic system of equations.

2. Problem formulation

Consider a rectangular plate of plan-form dimensions a and b
and uniform thickness h. The co-ordinate system is taken such that

the x-y plane (z=0) coincides with the midplane of the plate
(z € [—h/2,h/2]).

For static bending analysis, the plate may be subjected to a
transverse mechanical load applied at the top of the plate.

For buckling analysis, the plate may be subjected to compres-
sive in-plane forces acting on the mid-plane of the plate and dis-
tributed shear force (see Fig. 1). Ny and N,, denote the in-plane
loads perpendicular to the edges x =0 and y = 0 respectively, and
N,, denote the distributed shear force parallel to the edges x =0
and y = 0 respectively.

Three different types of functionally graded plates are studied:
(A) isotropic FGM plates; (B) sandwich plates with FGM core; (C)
sandwich plates with FGM skins.

2.1. Plate A: isotropic FGM plate

The plate of type A is graded from metal (bottom) to ceramic
(top) (see Fig. 2). The volume fraction of the ceramic phase is de-
fined as in [19]:

Z\P
Ve = (0.5 *E) 1)
where z € [—h/2,h/2], h is the thickness of the plate, and p is a scalar
parameter that allows the user to define gradation of material prop-
erties across the thickness direction.

2.2. Plate B: sandwich plate with FGM core

In this type of sandwich plates the bottom skin is isotropic (fully
metal) and the top skin is isotropic (fully ceramic). The core layer is
graded from metal to ceramic so that there are no interfaces be-
tween core and skins, as illustrated in Fig. 3.

The volume fraction of the ceramic phase in the core is obtained
by adapting the polynomial material law in [19]:

- Ze — h] P
e (572)
where z. € [hy,hy], he = hy — hy is the thickness of the core, and p is

the power-law exponent that defines the gradation of material
properties across the thickness direction.

2.3. Plate C: sandwich plate with FGM skins

In C-type plates the sandwich core is isotropic (fully ceramic)
and skins are composed of a functionally graded material across
the thickness direction. The bottom skin varies from a metal-rich
surface (z = —h/2) to a ceramic-rich surface while the top skin face
varies from a ceramic-rich surface to a metal-rich surface (z = h/2),

VULV
— Sl
CETTTT ittt

Fig. 1. Rectangular plate subjected to compressive in-plane forces and distributed
shear forces.
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Fig. 2. Plate A: isotropic FGM plate.

V4
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ho=-hi2 —— METAL —-—

Fig. 3. Plate B: sandwich plate with FGM core and isotropic skins.

z

hy — — CERAMIC — —
CERAMIC

hy — — CERAMIC — —

hy=-h2 —— METAL ——

Fig. 4. Plate C: sandwich with isotropic core and FGM skins.

as illustrated in Fig. 4. There are no interfaces between core and
skins. The volume fraction of the ceramic phase is obtained as:

Ve = <hzl_fﬁ0>p7 z€[-h/2,hi], bottom skin

Ve=1, zelhy,hy], core 3)
V.= (hzz’f’,ja)p, z e [hy,h/2], top skin

where z € [—h/2,h/2], and p is a scalar parameter that allows the
user to define gradation of material properties across the thickness
direction of the skins.

The sandwich plate C-type may be symmetric or non-symmet-
ric about the mid-plane as we may vary the thickness of each face.

h/2

z-coordinate

-h/2

V,

C

Fig. 5. A 2-1-1 C-type plate for several exponents of the power law in (3).

Fig. 5 shows a non-symmetric sandwich with volume fraction de-
fined by the power-law (3) for various exponents p, in which top
skin thickness is the same as the core thickness and the bottom
skin thickness is twice the core thickness. Such thickness relation
is denoted as 2-1-1. A bottom-core-top notation is being used. 1-
1-1 means that skins and core have the same thickness.

For the three types of plates, A, B, and C, the volume fraction for
the metal phase is given as V,; =1 — V.. The isotropic fully ceramic
plate can be seen as a particular case of plates A, B, and C, by setting
to zero the exponent p of the power law in (1)-(3).

3. A quasi-3D higher-order plate theory
3.1. Displacement field

The present theory is based on the following displacement field:

u(X,y,z,6) = uo(x,y,t) + 21 (X,,t) + Zus(x,y, 1) (4)
”(XJ’% t) = ”O(XJ» t) + 2zt (X,y, t) +23 U3(X7Y» t) (5)
W(x’.V7Z7 t) = WO(X7y7 t) + 2w, (X7.V7 t) +ZZW2(xa.V7 t) (6)

where u, 7, and w are the displacements in the x-, y-, and z-direc-
tions, respectively. ug, Uy, Us, v, 1, V3, Wo, Wy, and w, are functions
to be determined.

3.2. Strains

The strain-displacement relationships are given as:

u y 1 (0wg)?
Exx 0x+2(0x) Vxz %Jr%(v
2 p .
_ ov 1 [ow — ) w ow
Cy o= (B_y +3 (ZJ_yO) ) Yz ¢ =9 oz + ay (7)
Yy wg €z %‘g

u 4 dv 4 o
By+9x+8x ay

By substitution of the displacement field in (7), the strains are
obtained:

€xx e € € €

Gy p =30 bl ezl ) V42 eld) (8)
Ty 7y 75 Yy S

Ve A @ Ve

T (=AW HEN (T2 e 9)
o) le) o) e

being the strain components obtained as

wy (= w2
& =% 1 e =1 1(m)’ (10)
7 B+ v oy 3y
@y (% @) (%
LR I i
DR TR B O D A T
e u+20) [y B il 3us +52
e L O e
& wi e’ 2wy ) (€ 0

(12)

where eg}}” contains the non-linear terms that will originate the lin-
earized buckling equation.
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3.3. Elastic stress—strain relations

The elastic stress—strain relations depends on which assump-
tion of €,, we consider.

If €,, # 0, i.e., thickness stretching is allowed, then the 3D model
is used. In the case of functionally graded materials, the constitu-
tive equations can be written as:

Oxx Ci C O 0 0 Cn €xx
Oyy C]z C]] 0 0 0 C]z €yy
Txy _ 0 0 C44 0 0 0 ny (13)
Txz 0 0 0 Cyqg O O Yxz
Tyz 0 0 O 0 Cua O Vyz
Oz ClZ C12 0 0 0 C33 €z
where the Cj are the three-dimensional elastic constants, given by
_E1 - _ E(v+v?)
S e - v AR g Yo e (14)
B ~ EQ-v¥)
Ca=C G=13p 35 (15)

where E is the modulus of elasticity, v is Poisson’s ratio, and G is the
shear modulus G = £

If €,, =0, then thzeagi’)ane—stress case is used

Oxx Ch G 0 0 O Exx

Oy Chr C4 O 0 0 €yy

Ty p=4¢ 0 0 Cyu 0 O Yy (16)
T 0 0 0 Cyu O Vxz

Tyz 0 0 0 0 Cu Vyz

where G are the plane-stress reduced elastic constants:

Cn = C=v

E
m; 1—\)2; Cu=G (17)

It is interesting to note that the use of shear-correction factors is not
considered, as would be the case of the first-order shear deforma-
tion theory.

3.4. Governing equations and boundary conditions

The governing equations of present theory are derived from the
dynamic version of the Principle of Virtual Displacements. The
internal virtual work is initially defined as

-h/2
oU = {/ [0 (06 +20€})) + 22 5€))
Q | J-n2

+ 0y <56§,‘;,) +20€()) + Z20€) + 0y (5));‘;) +287) + z%yﬁ))
+ 0 (69 + 28y + 22692 + 0y, (672},? +2z8)) +72° 5w/ﬁ)>
+ 02 (06 +z5€l)))|dz}dx dy (18)

By performing the integrals in the thickness direction, the internal
virtual work becomes

oU = (NxxaeQ + Mud€ld) + Rod€Q) + Nyyo€ld) + Myyd€l))

Q
+ Ryy‘se;(;) + NXyéyi?/) + MXyé”/g') + ny53),(03,) + QoYY
+ Mol + Ry + Q07 + My:oyyy) + Ry0)3%)
+Q,0€Y + M€l dx dy (19)

where € is the integration domain in plane (x,y) and the resultants
are computed as

NXX UXX QXZ O-XZ
h/2 h/2

N, b= / oy bdz. 1, b= / G Sz (20)
~h/2 —~h/2

N,y Oxy Qz Oz

MXX -11/2 GXX MXZ h/z O-XZ

M, :/ Z$ 0y pdz, M,, =/ Z8 ay, pdz  (21)
J-n2 J—h/2

Mxy ny Mzz Oz

RXX GXX

~h/2 R ~h/2 1%

R, :/ 2{ o, bdz, {}z/ ZZ{ “}dz. (22)
—h2 Ry, Jonpz L0y

ny Oxy

The external virtual work due to an external load (p,) applied to the
plate is given as:

Q Qo

The external virtual work due to in-plane forces and shear forces
applied to the plate is given as:

V= _ / {Nxx% SOWo | = OWp 00Wy  — OWo 5OWo
Q

ox X Yoy ox Y ox oy
_ owp 00
+Nyy8£y° 8‘;V°}dx dy (24)

being Ny, and N, the in-plane loads perpendicular to the edges x = 0
and y = 0 respectively, and N, and Ny, the distributed shear forces
parallel to the edges x = 0 and y = 0 respectively.

The virtual kinetic energy is given as:

h/2
oK = { p(uon + vov + v'vév’v)dz}dx dy
Q | J-hp2

_ / { / " {(uoauo D000 + WodWo) -+ Z(ilodils -+ i iy
Q | J-np2
4 D080 + 1600 + WodWy + Wi 0Wo) + 22 (il 0ty + i Sin
+ WodWy + W1dW; 4+ WydWy) + 23 (Llgdils + U3dlly + Dod s
+ U300 + W1 dWy + WodWy) + 24 (1 8lis + U3ty + D361,
+ 11003 + Wy dW,) + 28 (1130113 + 7)351'/3)} dz}dx dy (25)

By performing the integrals in the thickness direction, the virtual ki-
netic energy is now obtained as

5K = / o (ilodtlo + D080 + WodWo) + Iy (iloSils + ity dilo + o5
Qo
+ 91600 + WodWy + W10Wp) + I (U1 01y + 91091 + WodW,
+ W10W; + Wa0Wy) + I3(Ulgdlls + Usdlly + Yod¥3 + U310
+ W15W2 + Wz&W]) + 14(1:11 5“3 + l:l35u1 + i/35i)1 + Z.)lél./3
+ Wz(SWz) + Ie(il3(3il3 + 1)3(32/3)](1)( dy (26)

where the dots denote the derivative with respect to time t and the
inertia terms are computed as
hj2
I = pzdz i=1,2,3,4,6 (27)
~h/2

Substituting 6U, 6V, and 6K in the virtual work statement, integrat-
ing through the thickness, integrating by parts with respect to x and
y, and collecting the coefficients of éug, duq, dus, dvg, 6vyi, Vs, SWo,
ows, owo, the following governing equations are obtained:
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. Ny 0Ny, M2
olg : — - = d

U p oy /711/2 p(ilo + zily + 2ii3)dz
0Ny 0N, qh2o
S — N TW d

Vo o 2y /sz(vo +zin +2215)dz
S . anz 8Qyz N 62 Wo 82W0 ~ (92W0
oWp : — ox ay + Nxx By + ny ayox + Nyx oxdy

— 82W0 hy/2 . . 2.
+ Ny ——=-= {p(Wo + 2V, +2°W,) +p, }dz
ay —h/2

_ OMy  OMy I
oy : == oy +Qy = /7’1/2 pz(ilo + zily + Z’il3)dz

. OMy OM,, I S
oV = 3y +Qy, = [’1/2 pz(io + zin +2°3)dz
. OMy OMy, I L
owy o 3y +Q, = /41/2 pz(Wo + 2W1 + Z%W»)dz

~ ORx  ORy I S
dus : — x oy +3szf/7h/2pz (ilo + zily + Z°il3)dz

. Ry ORyy 2o I
L= — R =
0v3 i = oy + 3Ry, /41/2 pZ> (Do + zin + 2 ¥3)dz

~ ORz ORy I L
oWy : % ay +2M,, = /szz (Wo + 21 + 2°Ws) dz

(&Y. 28)

The mechanical boundary conditions are defined as:
S : NNy + NyNyy = NNy + 1Ny
500 : NxNyy + Ny Ny = 1Ny + ny Ny,

oW : nxsz + nyQyz = nxéxz + nyQyz

Suy : NyMy, + nyMyy = 1My + n,M,,
ov1 : M,y + nyMyy, = nMyy + n,M,, (29)

ow; : My, + nyM,, = n,M,, + n,M,,
U3 : MRy + NyRyy = xRy + MyRyy
dv3 : MRy + MyRyy = MRy + MRy
OW; : xRy, + NyRy, = NyRyy + yRy,

where (ny,n,) denotes the unit normal-to-boundary vector and the
bar (7) denotes the prescribed values of the resultants.

4. Governing equations and boundary conditions in the
framework of Unified Formulation

The Unified Formulation proposed by Carrera [88,55] (further
denoted as CUF) has been applied, using the Principle of Virtual
Displacements, to obtain the equations of the present theory (see
Eq. (28)). The stiffness matrix components, the external force terms
or the inertia terms can be obtained directly with this unified for-
mulation, irrespective of the shear deformation theory being
considered.

The three displacement components uy, u, and u, (given in (4)-
(6)) and their variations can be modeled as:

(ux7 uy7 uz) = Fr (uxn uyn uzr) (511,(, 5uya 5“2)

=F; (Ouys, Ollys, Ollys) (30)
In the present formulation the thickness functions are
Fsux:Fsuy:Frux:Fruy:[l 4 23} (31)

for in-plane displacements u, v and

For=Fu,=[1 z 7% (32)

for transverse displacement w.

The CUF formulation applied to FGM plates considers virtual
(mathematical) layers of constant thickness, each containing a
homogeneized modulus of elasticity, EX, and a homogeneized Pois-
son’s ratio, v*. The functionally graded plate is divided into a num-
ber (NL) of uniform thickness layers and for each layer the volume
fraction of the ceramic phase is defined according to (1), (2) or (3).
The volume fraction for the metal phase is given as V;;,=1 — V..

For each virtual layer, the elastic properties E¥ and v* can be
computed by the law-of-mixtures or by the Mori-Tanaka homoge-
neization method. According to the law-of-mixtures, the Young's
modulus and Poisson’s ratio are defined as

E“(2) = EnVim + EVe;  V¥(2) = YmVim + VeVe (33)

When considering the Mori-Tanaka homogenization procedure
[89,90], we start by finding the bulk modulus, K, and the effective
shear modulus, G, of the composite equivalent layer as

K—Kn Ve G —Gp Ve

= : = 34
KoK T4V o Ge—Gn 14V, 65 (34)
where
£ Gn(9Kin + 8G) 35

6(Km +2Gp)

The effective values of Young's modulus, E¥, and Poisson’s ratio, v¥,
are then found from

g 9KG . 3K-2G

- Y T2BK 0

“3KAC (36)

After using the law-of-mixtures or the Mori-Tanaka homogeniza-
tion procedure, the computation of the elastic constants Cg- is per-
formed for each layer based on the values of v* and E¥. For example,

v B0+ 09

2o 3(0k? 200k G7)

The procedure for the other Cg is analogous.
Under CUF formulation the PVD is expressed considering a sum-
atoria over the layers:

NL
,z; /g /A (565"]5 + 5€§6ﬁ>dz dQ,
k= k k

NL
-y /Q /A (p* ou"it)dz + swop, + owap,dQ (38)
k=1 k k

Here, k indicates the layer and €2, and A, are the integration do-
mains in plane (x,y) and z direction, respectively, and p* is the mass
density of the kth layer. Subscript p indicates in-plane components
(xx,yy,xy) and subscript n the transverse components (xz, yz, and
2z). p = {Px Py, P~} is the external load applied to the structure. T de-
notes the transpose of a vector, § denotes the variational symbol,
and double dots acceleration.

Eq. (38) considers the 9 variationals éug, évg, dWg, duq, 6vq, Wy,
duz, 6Vz and éw, disregarding the the in-plane loads and the shear
forces. These external forces just imply addicional terms on the
variational éwy:

) NwWQMSWQ/;d.QO (39)
78
where Qg is the integration domain in plane (x,y) and « and f take
the symbols x, y.

Considering that the mechanical external load is a transverse
p ={0,0,p.} load applied at the top (coordinate z = h/2), equations
n (28) become:
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NL
olg : z
k=1
NL

8N" aNk NL
( ) P (io + zily + 2%ii3) dz
Ox :1 A

ONy, aN" NL
( 5 ) / p* (B0 + 200 + 22 13)dz
k= X k=1 YAk

NL k
N aQ aQ = 8 Wo 8 Wg
W : X2 Z N, 2N
Wo s ( ox oy T TNy 8x8y

ovg :

M

—_

~ 82 Wo
yy ayz

NL "
=Z/ p*(Wo + 2wy +Z2W,)dz + p,

—1 YA
NL 8M NL
St Z( ax"" Q,’jz) :Z/ pz(ilo + zily + 2il3)dz
k=1
. aM’;y
Suy :Z Z p 2(0o + 20y +2%13)dz
k=1
NL k 6Mk
Swy : < M, +Q ) Z z(Wo + 24 + 22V, ) dz

ME ™

JR I;x aRk k
Sus : 3 ( o +3RY, Z 3 (ilo + zily +2%il3)dz
L R k Rk . 3 s
ovs: it 3R< d
V3 3 ( T + ) Z p 23 (Do + 201 +2213)dz
L Rk k .
+2M;;
SWs : k:] ( - ) Z 2 (Wo + 2wy + 22w, )dz
h
+ (j b, (40)
where N¥ = Ja, 0%z, R = Ja, 7°0},dz and analogous procedure for

other resultants.

In (40), for static problems, the p* and the N,; terms are set to
zero; for the free vibration problems, the N,; and the p, terms are
set to zero; and for buckling problems the p, and the p* terms are
set to zero.

4.1. Governing equations and boundary conditions in terms of
displacements

In order to discretize the governing equations by radial basis
functions, we present in the following the explicit terms of the gov-
erning equations and the boundary conditions in terms of the gen-
eralized displacements.

82 Vo

&ug &ug
olg: — <A11 e 0 Ags 8y2> (Ar2 +A66)8 X0y

821.!1 82111 02113 (9 us
—(BHW-FBGGa—yZ - EnW-&-Esaa—yz

2 2

o v
—(Er2 +Ess)8 X3y

E)zuo {92”1 (() Us
=h=2
x o o o

Pus ou
ouy : (F]] +3D55U3 F563>

v
— (B12 +366)8 xay

ow ow
4\13(9 _2B;; 22 (41)

Ox? ay?
Ou ou ou ou
+ (Dn 2 "+ Asstly — Des 8y1> - <3118XZO+3668y20
vy v >y
— (B2 + BGG)BX@y (D12 + D66)8X6y (F12 + Fes) 8)(8)3/

ow, aw. awg , dug
+ (=Bi3 + Bss) — B + (=2D13 + Dss) —— % 2 4 Ass—— B 711?
o*u o*u
+128—t21+148—t23 (42)

O o u
ous : <F11 B +3D55U1 Fse 8}/2)

o*u o*u
+ (Gn W; + 9Fssu3 — Ggs (f)y;)

2

821,10 (92110 0 vy
- (En - T Ess 55 | — (E2 +E66)8X—ay — (Fi2

62 (41 82 U3 ow,
——— (G2 + Gsﬁ)m + (—Eiz + 3E55)W

oW, oWy
W2 | 3p.. 20
ax 305
(9211() 62u1 82113
—t+ly—+Ig—
o o % o

+ (=2F13 + 3Fss)

-

v v v
BN TN
ot ot

P s »’v
vy : (—Fzz a2 > 4 3Dy05 — FGGT;)

& vy >v
+ (Dzz a7 '+ Awvr — Dgs X]> — (B12 + Bes) 75

&uy ou
— (D12 + Des) 5= x Oy S

9’ vy 9’ v ow
<322 72 + Bgs e 0) (—Bas +B44)a—yl+( 2Dy3

+ A owp
ay oy
8 Vo 8 (4] 8 U3
—_— I
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+ D44)

=1L (45)

vy v
ovs (Fzz ay2 ! 4+ 3Dy vy — Fes o 2])

2

07U
72 e ) (E12 +Eg6) 5

’v3 ’vs
e 9F. G
+ < 2 Q5 + 44V3 — Lgp axdy

2 2

o°u
— (G12 + Geg) 7= >
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& vy v ow
- <Ezz %+ Egs 0) + (—Exn+ 31544)675/1 + (=2Fp
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-
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owp : — (Ass 8;‘/5 +Ags 80;\/0> - (355 % + Bag Eg;?)
- <D55 8(;2 + Dyg 88;‘2/2> Ass 8)( —A44 %y — 3Dss
x % ~ 3Da4 68’;3 + N aa:‘z’“ + 2N, gi 5y N f’a;go
=1 88\;/0 +1 08242/1 +1 86242)2 +D, (47)
Swy : (—555 8; 5 +2B33swy — Egy %)
+ (Dss 8; 5 +As3wi — Daa i);;v ) (B3 — Bss) 85;1
+ (B3 — 3555)88 + (B3 — Bua) %y (Ez3 — 3E44) %,3
- (Bss 8;;,0 + By 86;/N0> + A13 E) 91 A 881;0
1, aago +h 8@:& 7 2 (48)
w, : (—555 8; o+ 2B3swy — Eag 8;;?)
+ <F55 0; 5> +4D33w; — Fay a;;‘f) +(2D13 — Dss)
X % + (2F13 — 3Fss) [j‘)x + (2D23 — Daa) 88y (2F23
—3F4) a@y (Dss aa)\(/\zfo + Dys 0;;\2/0> +2By3 %
+2By3 %7;/0
—1, a;:‘z’ +1s 8@‘;/1 +I4a ‘gz + (Z) D, (49)

Being NL the number of mathematical layers across the thickness
direction, the stiffness components can be computed as follows.

NL
K
Aj = Z Cij'(zkﬂ - Zy);

Z Ci(z2,, - (50)
k=
lJ 3 ch Zk+1 U 4 ZCU Zk+1 - (51)
] NL ks 5
Fy= 5 Z Cij (ZkH - Zk); Gy = 7 ZCU Zk+1 (32)
k=1
The inertia terms are defined by
1 M W ) .
L i+ i+
Ii= i1 ;P (@5 -4 (33)

where p® is the material density, hy is the thickness, and z, z.; are
the lower and upper z coordinate for each layer k.

4.2. Natural boundary conditions

This meshless method based on collocation with radial basis
functions needs the imposition of essential (e.g. w=0) and
mechanical (e.g. My, = 0) boundary conditions. Assuming a rectan-
gular plate (for the sake of simplicity) Eq. (29) are expressed as
follows.

7

Given the number of degrees of freedom, at each boundary

point at edges x = min or x = max we impose:

dug oV ou
Mo = 2Bi3wy + Aiswy + A —— e +A128—y0+3118—1+511
ous 04 ovs
X W“!‘B]z ay +E12 By
Oup au au
M1 = Biswy + 2D13w; + By —— % +D118—X]+F116—x3+312
61/0 ok 22} ovs
8}/ —+ Dy — ay +F12 ay
Oug ouy
Mz = E13wy + 2F13Ws + E11 — % 0 4 Frrt % +Gn +E12
dVg ok 22} ovs
W””W*Gu a
ouq ous vy
Mo = AGGW"‘A% ox +BGG ay +Ees ay +366 ox +Ess
ox
dug ou ou v ov
Mixy1 = Bes —— ay +D668—;+F666—;+3668—;+D66 Bxl
ovs
Fee 223
+ I's6 ox
Oug oy oV oy
Mix3 = Es6 —— ay +F66 ay +Gea ay +Ess ox +F66 ox +GGG
0X
ow ow,
Myowo = 3Dss3 +A55U1+A556—+355 ox +D55 ox
ow ow ow,
Mixwi = Bssuy + 3Essus + Bss —— ox +D55 X +Ess X
ow ow, ow:
Miawz = Dssuy + 3Fssus + Dss —— ox +Ess ox +Fss 8x2

(55)

(56)

(57)

(59)
(60)
(61)

(62)

Similarly, given the number of degrees of freedom, at each bound-

ary point at edges y = min or y = max we impose:

duy ouq ous oy
Myyuo = Ass — ay +A66 % +366 ay Lt Feg—— ay > 4 Bgg—— e L1 Egs
ox
Juy oy ous dVg ok 22}
Myyu1 = Bes — ay +D666_y+F666_y+BG6W+D66 o
81/3
Juy ouy ous Vg k2
Myyu3 = Eg6 —— ay 9 4 Fog— ay | Geg— ay > 4 Egg—2 e 9 4 Fog—r % ! 4 Geg
ovs
ox
Oug oV ou ous o
My = Arp—— % +A228—y0+3126—x1+512 e 2 4 Byt ay L
ov,
oy
Oy oy ous 0o o,
My —3128—+D12 ox +F12 X +322 ay +D22 8y
ovs
F,, 223
+ra ay
duy au ou oV ov v
Myyy3 =E1—— ox +F126—X1+Glza—x3+fzza—;+l:zza—y1+czz a;

(63)

(65)

(66)

(67)

(68)
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ow, ow ow.

Myywo = 3Daav3 + Asa 4 +A448_y0+8448_y]+D448_y2 (69)
ow, ow ow.

Myywi = Baav1 + 3E44v3 4 Baa a—yo + Dy 8_}/] +Esy a_yz (70)
ow, ow ow

Myywz = Dagv1 + 3F 4403 +D448—}/0+E448_y1+1:448_y2 (71)

with A,‘j, Bij, D,‘j, Eij, Fij, Gl_, as in (52)

5. The radial basis function method

The governing equations are interpolated by radial basis func-
tion method. This meshless method was first used by Hardy [91]
in the early 1970s for the interpolation of geographical data. Kansa
[92,93] introduced in 1990 the concept of solving partial differen-
tial equations (PDE) by an unsymmetric RBF collocation method
based upon the multiquadric interpolation functions. Nowadays
this technique is well known for solving systems of partial differ-
ential equations with excellent accuracy [94-97]. For the sake of
completeness we present in the following the basics of collocation
with radial basis functions for static, vibrations, and buckling
problems.

5.1. Radial basis functions approximations

The radial basis function (¢) approximation of a function (u) is
given by

N
u(x) =Y og(llx - yill,), x € R" (72)
i=1
where y;, i=1, ..., Nis a finite set of distinct points (centers) in R".
Examples of the many RBFs that can be used are
$(r) =13, cubic (73)
¢(r) = e’ Gaussian (74)
¢(r) = /2 +r2, Multiquadric (75)

where the Euclidean distance r is real and non-negative and c is a
positive user defined shape parameter.

Considering N distinct interpolations, and knowing
u(x;)j=1,2,...,N, we find o; by the solution of a N x N linear
system

Ax=u (76)

where A=[¢(||Xx — yill2)lnxns & =[001,00,...,an]" and w=[u(x;),u
(x2),....u(x)]".

5.2. The static problem

Consider a linear elliptic partial differential operator £ acting in
a bounded region @ in R" and another operator £z acting on a
boundary d802. We seek the computation of displacements (u) from
the global system of equations

Lu=fin Q; Lpu = gonoQ (77)
The external forces applied on the plate and the boundary condi-
tions applied along the perimeter of the plate, respectively, are at
the right-hand side of (77). The PDE problem defined in (77) will
be replaced by a finite problem, defined by an algebraic system of
equations, after the radial basis expansions.

5.3. Solution of the static problem

The solution of a static problem by radial basis functions con-
siders N; nodes in the domain and Nz nodes on the boundary, with
a total number of nodes N = N; + Ng. We denote the sampling points
by x;€ Q,i=1, ..., Nyand x; € 0Q,i=N;+ 1, ..., N. At the points in
the domain we solve the following system of equations

N
> ouLe(Ix = yilly) = f(xy),

j=1.2,...N, (78)
i1

or

L'a=F (79)

where

L= [Le(||x = Yill2)Iny<n (80)

At the points on the boundary, we impose boundary conditions as
N

ZOCIB(P(”X*MHz):g(xj)vf:Nle-,----,N (81)
i1

or

Ba =G (82)

where

B = Lpd[(||Xn,41 _.yjHZ)}NExN

Therefore, we can write a finite-dimensional static problem as

rl
B

By inverting the system (83), we obtain the vector . We then ob-
tain the solution u using the interpolation Eq. (72).

o=

o) (83)

5.4. The eigenproblem

The eigenproblem looks for eigenvalues (/) and eigenvectors (u)
that satisfy

Lu+/u=0in Lzu =0 on 0Q (84)

As in the static problem, the eigenproblem defined in (84) is re-
placed by a finite-dimensional eigenvalue problem, based on RBF
approximations.

5.5. Solution of the eigenproblem

We consider N, nodes in the interior of the domain and N nodes
on the boundary, with N = N; + N3. We denote interpolation points
by xie Q,i=1,...,N;and x; € 022, i=N;+ 1, ..., N. At the points in
the domain, we define the eigenproblem as

ZN:ociw(HX—yillz) =), j=12,... N (85)
or

Llo = (86)
where

L= 1L (I1X = Yill2)ly (87)

At the points on the boundary, we enforce the boundary conditions
as

N
> %ilsp(IXx = yill) =0, j=Ni+1,....N (88)
i-1

or
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Fig. 6. Chebyshev grid with N=17.

Ba=0 (89)

Eqgs. (86) and (89) can now be solved as a generalized eigenvalue
problem

AR
B 0

where

Al = BlU1%N, = Yjll2)]n, v

5.6. Discretization of the governing equations and boundary conditions

The radial basis collocation method follows a simple implemen-
tation procedure. Taking Eq. (83), we compute

I -1
_|L [W (91)
B G
This « vector is then used to obtain solution u, by using (72). If
derivatives of u are needed, such derivatives are computed as

~ N a¢ 82~ qt)
Z 55 —. o Zu] axzj,etc (92)

In the present collocation approach, we need to impose essential
and natural boundary conditions. Consider, for example, the condi-
tion wp = 0, on a simply supported or clamped edge. We enforce the
conditions by interpolating as

N

Wwo=0—> o'¢ =0 (93)
j=1

Other boundary conditions are interpolated in a similar way.

Table 1

w convergence study for the bending analysis of plate A using higher-order plate
theory, p=1, and a/h = 10.

Grid 132 172 212
0.5868 0.5868

w 0.5868

Table 2
axx convergence study for the bending analysis of plate A using higher-order plate
theory, p=1, and a/h = 10.

Grid 132 172 212
Oxx 1.4911 1.4917 1.4917

5.7. Free vibrations problems

For free vibration problems we set the external force to zero,
and assume harmonic solution in terms of displacements ug, uy,
us, v, 1, U3, Wo, Wy, W5 as

= Ui (w,y)e;

= Vi(w,y)e;
= Wi (w,y)e;

= Us(w,y)e";
= Vs(w,y)e;
=W, (W"y)eiwt

uo = Uo(w,y)e"";

= Vo(w,y)e";
wo = Wo(w,y)eit;
(94)

where o is the frequency of natural vibration. Substituting the har-
monic expansion into Eq. (90) in terms of the amplitudes Uy, Uy, Us,
Vo, V1, V3, Wy, Wy, W5, we may obtain the natural frequencies and
vibration modes for the plate problem, by solving the eigenproblem

[£-0’G]X=0 (95)

where £ collects all stiffness terms and g collects all terms related
to the inertial terms. In (95) X are the modes of vibration associated
with the natural frequencies defined as w.

5.8. Buckling problems

The eigenproblem associated to the governing equations is de-
fined as

[£—GX=0 (96)

where £ collects all stiffness terms and G collects all terms related
to the in-plane forces. In (96) X are the buckling modes associated
with the buckling loads defined as /.

6. Numerical examples

In the next examples the higher-order plate theory presented
before and collocation with RBFs are used for the analysis of simply
supported functionally graded square plates. It should be noted
that for the €,, =0 case, we consider w = wy instead of (6).

All examples use the Wendland RBF function [98] defined as

()= (1 —cr)?

The shape parameter (c) is obtained by an optimization procedure
as detailed in Ferreira and Fasshauer [99]. The interpolation points
are Chebyshev R? points. For a given number of nodes per side (N)
they are generated by MATLAB code as:

+ (32(cr)® + 25(cr)* + 8cr + 1) (97)

x = cos(pi* (0:N)/N); y=x;

A 172 points Chebyshev grid is illustrated in Fig. 6.

91 mathematical layers were considered in order to model the
continuous variation of properties across the thickness direction.
A significant number of mathematical layers is needed to ensure
correct computation of material properties at each thickness posi-
tion. The Young’s modulus of each layer, E¥(z), are computed con-
sidering a simple law-of-mixtures (33) or the Mori-Tanaka
procedure (36). Poisson’s ratio is considered constant for both
materials v, = v.=v=0.3.
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Table 3
A-type plate in bending. Effect of transverse normal strain €,, on ¢, and deflection under present higher-order theory and using 172 points.

p [ Ox(h/3) u;(0)
alh 4 10 100 4 10 100

0 Present 0 0.5151 1.3124 13.161 0.3786 0.2961 0.2803
Present #0 0.5278 1.3176 13.161 0.3665 0.2942 0.2803

0.5 Present 0 0.5736 1.4629 14.672 0.5699 0.4579 0.4365
Present #0 0.5860 1.4680 14.673 0.5493 0.4548 0.4365

1 Ref. [59] #0 0.6221 1.5064 14.969 0.7171 0.5875 0.5625
CLPT 0 0.8060 2.0150 20.150 0.5623 0.5623 0.5623
FSDT (k=5/6) 0 0.8060 2.0150 20.150 0.7291 0.5889 0.5625
GSDT [19] 0 1.4894 0.5889
Ref. [53] N=4 0 0.7856 2.0068 20.149 0.7289 0.5890 0.5625
Ref. [53] N=4 #0 0.6221 1.5064 14.969 0.7171 0.5875 0.5625
Ref. [68] #0 0.5925 1.4945 14.969 0.6997 0.5845 0.5624
Present 0 0.5806 1.4874 14.944 0.7308 0.5913 0.5648
Present #0 0.5911 1.4917 14.945 0.7020 0.5868 0.5647

4 Ref. [59] #0 0.4877 1.1971 11.923 1.1585 0.8821 0.8286
CLPT 0 0.6420 1.6049 16.049 0.8281 0.8281 0.8281
FSDT (k=5/6) 0 0.6420 1.6049 16.049 1.1125 0.8736 0.828
GSDT [19] 0 1.1783 0.8651
Ref. [53] N=4 0 0.5986 1.5874 16.047 1.1673 0.8828 0.8286
Ref. [53] N=4 #0 0.4877 1.1971 11.923 1.1585 0.8821 0.8286
Ref. [68] #0 0.4404 1.1783 11.932 1.1178 0.8750 0.8286
Present 0 0.4338 1.1592 11.737 1.1552 0.8770 0.8241
Present #0 0.4330 1.1588 11.737 1.1108 0.8700 0.8240

10 Ref. [59] #0 0.3695 0.8965 8.9077 1.3745 1.0072 0.9361
CLPT 0 0.4796 1.1990 11.990 0.9354 0.9354 0.9354
FSDT (k=5/6) 0 0.4796 1.1990 11.990 1.3178 0.9966 0.9360
GSDT [19] 0 0.8775 1.0089
Ref. [53] N=4 0 0.4345 1.1807 11.989 1.3925 1.0090 0.9361
Ref. [53] N=4 #0 0.1478 0.8965 8.9077 1.3745 1.0072 0.9361
Ref. [68] #0 0.3227 1.1783 11.932 1.3490 0.8750 0.8286
Present 0 03112 0.8468 8.6011 1.3760 0.9952 0.9228
Present #0 0.3097 0.8462 8.6010 1.3334 0.9888 0.9227

6.1. Plates in bending

In the following static examples, we consider that the plate is
subjected to a bi-sinusoidal transverse mechanical load of ampli-
tude load p, = p,sin(Z)sin (%) applied at the top of the plate with
p. = 1. It should be noted that the load is applied at the top surface
(z=h/2).

6.1.1. Isotropic FGM square plate

In this example, an isotropic FGM square plate of type A is con-
sidered. The plate is graded from aluminum E,, = 70 GPa at the bot-
tom to alumina E. = 380 GPa at the top. The law-of-mixtures was
used for computing the Young’s modulus at each layer.

The transverse displacement, the normal stresses and the in-
plane and transverse shear stresses are presented in normalized
form as

3
T 1011_55  Oae i n Gu=ton 6,222 (98)
a*p; ap. ap. P

, =

An initial convergence study was performed for oy, (%) and trans-
verse displacement w(0) at the center of the plate, considering
p=1, a/h=10, and Chebyshev grids of 132, 172, and 212 points. Re-
sults are presented in Tables 1 and 2. As seen in these tables, it is
sufficient to use 172 grid.

In Table 3 we present results for g, and transverse displace-
ment for various exponents p of the power-law (1) considering a
172 points grid. The considered side-to-thickness ratios (a/h) are
4, 10 and 100, which means thickness h equals 0.25, 0.1 and 0.01,
respectively. Results are compared with the Classical Plate Theory
(CLPT), the first-order shear deformation theory (FSDT) with a cor-
rection factor k = 5/6, and those from Zenkour’s generalized shear

deformation theory [19], considering €,, = 0, and those from Carrera
et al. [59,53], and Neves et al. [68], accounting for €,,.

The results from present higher-order plate theory considering
€,, # 0 are in good agreement with those from Refs. [59,53,68] who
also considers €,, # 0. The present theory allows to conclude that
the values of g, and transverse displacement considering €,, = 0
are higher than those considering €., # 0. These differences de-
crease as the thickness of the plate decreases which is not surpris-
ing as thicker plates can stretch more in the thickness direction.

In Figs. 7 and 8 we present the evolution of the displacement
and stresses across the thickness direction according to present
shear deformation theory for various values of the exponent p,
and side to thickness ratio a/h = 4, using a 192 grid.

It can be concluded that the present higher-order (€., # 0) the-
ory with radial basis function collocation provides excellent solu-
tion for FGM plates.

6.1.2. Sandwich with FGM core

In this example we analyze the bending of a square sandwich B-
type plate with thickness h. The bottom skin is aluminum (E;;, = 70
GPa) with thickness h, = 0.1h and the top skin is alumina (E. = 380
GPa) with thickness h; = 0.1h. The core is in FGM with volume frac-
tion of the ceramic according to (2). The functional relationship for
Young’s modulus E¥(z) in the thickness direction z is obtained by
the rule of mixtures as in (33).

The transverse displacement and the normal stresses are pre-
sented in normalized form as

p_MOWE. (aby __h _ (ab
z — (14[72 z 272 ’ XX — = XX

_ h ab _ 0, (ab
ny:a_playy<§5>a O'zz:E<§~,§> (99)
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Fig. 7. A-type square plate subjected to sinusoidal load at the top, with a/h = 4. Dimensionless stresses () through the thickness direction according to present higher-order

theory for different values of p.

The transverse shear stresses are normalized according to
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Fig. 8. A-type square plate subjected to sinusoidal load at the top, with a/h=4.

Dimensionless displacement (w) through the thickness direction according to
present higher-order theory for different values of p.

An initial convergence study was performed for o, () and trans-
verse displacement w(0) considering p =4, a/h =100, and Cheby-
shev grids of 132, 172, 192, and 212 points. Results are presented
in Tables 4 and 5. We consider that a 19? grid should be used inthe
following computation.

In Table 6 we present the values of g, and out-of-plane dis-

placement for various values of exponent p of the material

Table 4
w convergence study for the bending analysis of B-type plate using higher-order plate
theory, p =4, and a/h = 100.

Grid 132 172 192 212
w 0.7749 0.7782 0.7784 0.7785
Table 5

ax, convergence study for the bending analysis of B-type plate using higher-order
plate theory, p =4, and a/h = 100.

Grid 132 172 192 212
Oxz 0.2696 0.2749

0.2753 0.2753
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Table 6
Square B-type plate in bending. Effect of transverse normal strain €., on o,, and w according to present higher-order plate theory, using 19% points.
p €z Gxz(h/6) u(0)
alh 4 10 100 4 10 100
0 Present 0 0.2193 0.2202 0.2202 0.4612 0.3736 0.3568
Present #0 0.2208 0.2227 0.2228 0.4447 0.3711 0.3568
0.5 Present 0 0.2511 0.2522 0.2522 0.6422 0.5277 0.5058
Present #0 0.2546 0.2581 0.2585 0.6168 0.5238 0.5058
1 Ref. [58] #0 0.2613 0.2605 0.2603 0.7628 0.6324 0.6072
CLPT 0 0.0000 0.0000 0.0000 0.6070 0.6070 0.6070
FSDT (k =5/6) 0 0.2458 0.2458 0.2458 0.7738 0.6337 0.6073
Ref. [53] N=4 0 0.2596 0.2593 0.2593 0.7735 0.6337 0.6072
Ref. [53] N=4 #0 0.2604 0.2594 0.2593 0.7628 0.6324 0.6072
Ref. [68] 0 0.2703 0.2718 0.2720 0.7744 0.6356 0.6092
Ref. [68] #0 0.2742 0.2788 0.2793 0.7416 0.6305 0.6092
Present 0 0.2706 0.2720 0.2721 0.7746 0.6357 0.6092
Present #0 0.2745 0.2789 0.2795 0.7417 0.6305 0.6092
4 Ref. [58] #0 0.2429 0.2431 0.2432 1.0934 0.8321 0.7797
CLPT 0 0.0000 0.0000 0.0000 0.7792 0.7792 0.7792
FSDT (k =5/6) 0 0.1877 0.1877 0.1877 1.0285 0.8191 0.7796
Ref. [53] N=4 0 0.2400 0.2398 0.2398 1.0977 0.8308 0.7797
Ref. [53] N=4 #0 0.2400 0.2398 0.2398 1.0930 0.8307 0.7797
Ref. [68] 0 0.2699 0.2726 0.2728 1.0847 0.8276 0.7785
Ref. [68] #0 0.2723 0.2778 0.2785 1.0391 0.8202 0.7784
Present 0 0.2671 0.2695 0.2696 1.0826 0.8272 0.7785
Present #0 0.2696 0.2747 0.2753 1.0371 0.8199 0.7784
10 Ref. [58] #0 0.2150 02174 0.2179 1.2232 0.8753 0.8077
CLPT 0 0.0000 0.0000 0.0000 0.8070 0.8070 0.8070
FSDT (k =5/6) 0 0.1234 0.1234 0.1234 1.1109 0.8556 0.8075
Ref. [53] N=4 0 0.1935 0.1944 0.1946 1.2240 0.8743 0.8077
Ref. [53] N=4 #0 0.1932 0.1944 0.1946 1.2172 0.8740 0.8077
Ref. [68] 0 0.1998 0.2021 0.2022 1.2212 0.8718 0.8050
Ref. [68] #0 0.2016 0.2059 0.2064 1.1780 0.8650 0.8050
Present 0 0.1996 0.2018 0.2019 1.2183 0.8712 0.8050
Present #0 0.1995 0.2034 0.2039 1.1752 0.8645 0.8050

power-law (p =0, 0.5, 1, 4, 10) and various thickness to side ratios
(alh = 4,10, 100) according to the present higher-order theory con-
sidering zero and non-zero ¢, strain using 192 points. Results are
tabulated and compared with available references.

In Figs. 9 and 10 we present the evolution of the displacement
and stresses across the thickness direction according to present
shear deformation theory for various values of the exponent p of
a plate with side to thickness ratio a/h = 100, using a 192 grid.

It can be concluded that the present approach is in very good
agreement with similar theories in the literature.

6.2. Free vibration of plates

In this example we study the free vibration of a simply sup-
ported isotropic FGM square plate (a=b = 1) of type A. The plate
is graded from aluminum (bottom) to zirconia (top). E;, = 70 GPa,
Pm=2702 kg/m>, E.=200 GPa, and p.= 5700 kg/m> are the corre-
sponding properties of the metal and zirconia, respectively.

We consider the Mori-Tanaka homogeneization scheme (36), as
in Vel and Batra [28] (here considered to be the exact solution), and
as in Qian et al. [17] and Neves et al. [68].

The frequency w has been non-dimensionalized as follows:

W =why/p,,/En (101)

In Table 7 we present the results obtained with the theories consid-
ered and different values of p for a side to thickness ratio a/h = 5.
The first 10 natural frequencies obtained with present higher-
order shear deformation theory are listed in Table 8 (a/h =20)
and Table 9 (a/h =10) for p=1.
In Fig. 11 the first 4 frequencies of a simply supported isotropic
functionally graded (Al/ZrO2) square plate, with p=1, a 212 grid,

using present higher-order shear deformation theory and a side
to thickness ratio a/h = 20 are presented.

Excellent correlation is obtained with exact theories when
€,, # 0 is considered. Convergence solutions are obtained for all
cases.

6.3. Buckling loads of plates

In the next examples the higher-order plate theory and colloca-
tion with RBFs are used for the buckling analysis of simply sup-
ported functionally graded sandwich square plates (a = b) of type
C with side-to-thickness ratio a/h = 10. The uni-and bi-axial critical
buckling loads are analised.

The material properties are E,;, = 70Eq (aluminum) for the metal
and E. = 380E, (alumina) for the ceramic being Eq = 1GPa. The law-
of-mixtures (33) was used for the computation of Young’s modulus
for each layer. The non-dimensional parameter used is

Pa?

LR
100h°Eq

An initial convergence study with the higher-order theory was con-
ducted for each buckling load type considerind grids of 132,172, and
212 points. The uni-axial case is presented in Table 10 for the 2-2-1
sandwich with p =5 and the bi-axial case is presented in Table 11
for the 1-2-1 sandwich with p = 1. Further results are obtained by
considering a grid of 172 points, which seems acceptable by the
convergence study.

The critical buckling loads obtained from the present approach
with €,, # 0 and €,, = 0 are tabulated in Tables 12 and 13 for various
power-law exponents p and thickness ratios. Both tables include re-
sults obtained from classical plate theory (CLPT), first-order shear
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Fig. 10. Square B-type plate subjected to sinusoidal load at the top, with a/h = 100.

Dimensionless displacement (w) through the thickness direction according to
present higher-order theory for different values of p.

deformation plate theory (FSDPT, K = 5/6 as shear correction factor),
Reddy’s higher-order shear deformation plate theory (TSDPT) [10],
and Zenkour’s sinusoidal shear deformation plate theory (SSDPT)

[29]. Table 12 refers to the uni-axial buckling load and Table 13 re-
fers to the bi-axial buckling load.

A good agreement between the present solution and references
considered, specially [10,29] is obtained. This allow us to conclude
that the present higher-order plate theory is good for the modeling
of simply supported sandwich FGM plates and that collocation
with RBFs is a good formulation. Present results with €, =0
approximates better Refs. [10,29] than €,, # 0 as the authors use
the €,, =0 approach. This study also lead us to conclude that the
thickness stretching effect has a strong influence on the buckling
analysis of sandwich FGM plates as €, = 0 gives higher fundamen-
tal buckling loads than €, # 0.

The isotropic fully ceramic plate (first line on Tables 12 and 13)
has the higher fundamental buckling loads. As the core thickness to
the total thickness of the plate ratio ((h, — hy)/h) increases the
buckling loads increase as well. Considering each column of both
tables we may conclude that the critical buckling loads decrease
as the power-law exponent p increases. By comparing Tables 12
and 13 we also conclude that the bi-axial buckling load of simply
supported sandwich square plate with FGM skins is half the uni-
axial one for the same plate.
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Table 7

Fundamental frequency of a SSSS A-type square plate (Al/ZrO,) with a/h = 5, using a 212 grid and present higher-order theory.
Source p=0 p=0.5 p=1 p=2 p=3 p=5 p=10
Exact [28] 0.2192 0.2197 0.2211 0.2225
Ref. [17] 0.2152 0.2153 0.2172 0.2194
Ref. [68] (€,,=0) 0.2184 0.2189 0.2202 0.2215
Ref. [68] (€., # 0) 0.2193 0.2198 0.2212 0.2225
Present (€,,=0) 0.2459 0.2219 0.2184 0.2191 0.2206 0.2220 0.2219
Present (€5, # 0) 0.2469 0.2228 0.2193 0.2200 0.2215 0.2230 0.2229

Table 8

First 10 frequencies of a SSSS A-type square plate (Al/ZrO,) with p = 1 with a/h = 20 and using the higher-order theory.
Source 1 2 3 4 5 6 7 8 9 10
Ref. [17] 0.0149 0.0377 0.0377 0.0593 0.0747 0.0747 0.0769 0.0912 0.0913 0.1029
Ref. [68] 0.0153 0.0377 0.0377 0.0596 0.0739 0.0739 0.0950 0.0950 0.1029 0.1029
€,=0132 0.0153 0.0377 0.0377 0.0596 0.0740 0.0740 0.0951 0.0951 0.1030 0.1030
€, #013? 0.0153 0.0377 0.0377 0.0596 0.0741 0.0741 0.0953 0.0953 0.1030 0.1030
€,=017% 0.0153 0.0377 0.0377 0.0595 0.0738 0.0738 0.0949 0.0949 0.1030 0.1030
€, #0172 0.0153 0.0377 0.0377 0.0596 0.0739 0.0739 0.0950 0.0950 0.1030 0.1030
€,=0212 0.0153 0.0377 0.0377 0.0595 0.0738 0.0738 0.0948 0.0948 0.1030 0.1030
€, #0212 0.0153 0.0377 0.0377 0.0596 0.0739 0.0739 0.0950 0.0950 0.1030 0.1030

Table 9

First 10 frequencies of a SSSS A-type square plate (Al/ZrO;) with p =1 and a/h = 10 and using present higher-order theory.
Source 1 2 3 4 5 6 7 8 9 10
Ref. [17] 0.0584 0.1410 0.1410 0.2058 0.2058 0.2164 0.2646 0.2677 0.2913 0.3264
Ref. [68] 0.0596 0.1426 0.1426 0.2058 0.2058 0.2193 0.2676 0.2676 0.2910 0.3363
€,=0132 0.0595 0.1422 0.1422 0.2059 0.2059 0.2185 0.2664 0.2664 0.2912 0.3347
€, #0132 0.0596 0.1426 0.1426 0.2059 0.2059 0.2194 0.2678 0.2678 0.2912 0.3367
€,=017% 0.0595 0.1422 0.1422 0.2059 0.2059 0.2184 0.2663 0.2663 0.2912 0.3344
€, #017? 0.0596 0.1426 0.1426 0.2059 0.2059 0.2193 0.2676 0.2676 0.2912 0.3364
€,=0212 0.0595 0.1422 0.1422 0.2059 0.2059 0.2184 0.2663 0.2663 0.2912 0.3344
€, #0212 0.0596 0.1426 0.1426 0.2059 0.2059 0.2193 0.2676 0.2676 0.2912 0.3364

] eig = 0.015262903308

eig = 0.037693090095

°z 190
= 1?;@()@1

Fig. 11. First 4 frequencies of a SSSS square plate of type A (Al/ZrO2), withp=1, a
212 grid, present higher-order shear deformation theory and a/h = 20.

In Fig. 12 the first four buckling modes of a simply supported 2-
1-2 sandwich square plate with FGM skins, p = 0.5, subjected to a
uni-axial in-plane compressive load, using the higher-order plate
theory and 172 grid is presented. Fig. 13 presents the first four buck-
ling modes of a simply supported 2-1-1 sandwich square plate with
FGM skins, p = 10, subjected to a bi-axial in-plane compressive load.

Table 10
Convergence study for the uni-axial buckling load of a simply supported 2-2-1
sandwich square plate with FGM skins and p = 5 case using the higher-order theory.

Grid 132 172 212
P 4.05112 4.05070 4.05065
Table 11

Convergence study for the bi-axial buckling load of a simply supported 1-2-1
sandwich square plate with FGM skins and p = 1 case using the higher-order theory.

Grid 132 172 212
P 3.66028 3.65998 3.65994

7. Conclusions

A Unified formulation coupled with collocation with radial basis
functions was proposed. A thickness-stretching higher-order shear
deformation theory was successfuly implemented for the static,
free vibration, and linearized buckling analysis of functionally
graded plates.

The present formulation was compared with analytical, mesh-
less or finite element methods and proved very accurate in both
static, vibration and buckling problems. The effect of €,,# 0
showed significance in thicker plates. Even for a thinner function-
ally graded plate, the ¢,, should always be considered in the
formulation.

For the first time, the complete governing equations and bound-
ary conditions of the higher-order plate theory are presented to
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Table 12
Uni-axial buckling load of simply supported plate of C-type using the higher-order theory and a grid with 172 points.
p Theory P
1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1
0 CLPT 13.73791 13.73791 13.73791 13.73791 13.73791 13.73791
FSDPT 13.00449 13.00449 13.00449 13.00449 13.00449 13.00449
TSDPT [10] 13.00495 13.00495 13.00495 13.00495 13.00495 13.00495
SSDPT [29] 13.00606 13.00606 13.00606 13.00606 13.00606 13.00606
present €,, # 0 12.95287 12.95287 12.95287 12.95287 12.95287 12.95287
present €,,=0 13.00508 13.00508 13.00508 13.00508 13.00508 13.00508
0.5 CLPT 7.65398 8.25597 8.56223 8.78063 9.18254 9.61525
FSDPT 7.33732 7.91320 8.20015 8.41034 8.78673 9.19517
TSDPT [10] 7.36437 7.94084 8.22470 8.43645 8.80997 9.21681
SSDPT [29] 7.36568 7.94195 8.22538 8.43712 8.81037 9.21670
present €,, # 0 7.16207 7.71627 7.98956 8.19278 8.55172 8.94190
present €,,=0 7.18728 7.74326 8.01701 8.22133 8.58129 8.97310
1 CLPT 5.33248 6.02733 6.40391 6.68150 7.19663 7.78406
FSDPT 5.14236 5.81379 6.17020 6.43892 6.92571 7.48365
TSDPT [10] 5.16713 5.84006 6.19394 6.46474 6.94944 7.50656
SSDPT [29] 5.16846 5.84119 6.19461 6.46539 6.94980 7.50629
present €,, # 0 5.06137 5.71135 6.05467 6.31500 6.78405 7.31995
present €,,=0 5.07848 5.73022 6.07358 6.33556 6.80547 7.34367
5 CLPT 2.73080 3.10704 3.48418 3.65732 4.21238 4.85717
FSDPT 2.63842 3.02252 3.38538 3.55958 4.09285 4.71475
TSDPT [10] 2.65821 3.04257 3.40351 3.57956 4.11209 4.73469
SSDPT [29] 2.66006 3.04406 3.40449 3.58063 411288 4.73488
present €,, # 0 2.63652 3.00791 3.36255 3.53005 4.05070 4.64701
present €,,=0 2.64681 3.01865 3.37196 3.54148 4.06163 4.66059
10 CLPT 2.56985 2.80340 3.16427 3.25924 3.79238 4.38221
FSDPT 2.46904 2.72626 3.07428 3.17521 3.68890 4.26040
TSDPT [10] 2.48727 2.74632 3.09190 3.19471 3.70752 4.27991
SSDPT [29] 2.48928 2.74844 3.13443 3.19456 3.14574 4.38175
present €,, # 0 2.47216 2.72046 3.06067 3.15761 3.66166 4.20550
present €,,=0 2.48219 2.73080 3.06943 3.16837 3.67153 4.21792
Table 13
Bi-axial buckling load of simply supported plate of C-type using the higher-order theory and a grid with 172 points.
p Theory P
1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1
0 CLPT 6.86896 6.86896 6.86896 6.86896 6.86896 6.86896
FSDPT 6.50224 6.50224 6.50224 6.50224 6.50224 6.50224
TSDPT [10] 6.50248 6.50248 6.50248 6.50248 6.50248 6.50248
SSDPT [29] 6.50303 6.50303 6.50303 6.50303 6.50303 6.50303
present €,, # 0 6.47643 6.47643 6.47643 6.47643 6.47643 6.47643
present €,,=0 6.50254 6.50254 6.50254 6.50254 6.50254 6.50254
0.5 CLPT 3.82699 412798 428112 4.39032 4.59127 4.80762
FSDPT 3.66866 3.95660 4.10007 4.20517 4.39336 4.59758
TSDPT [10] 3.68219 3.97042 4.11235 421823 4.40499 4.60841
SSDPT [29] 3.68284 3.97097 411269 4.21856 440519 460835
present €,, # 0 3.58104 3.85813 3.99478 4.09639 4.27586 4.47095
present €,,=0 3.59364 3.87163 4.00851 4.11067 4.29064 4.48655
1 CLPT 2.66624 3.01366 3.20195 3.34075 3.59831 3.89203
FSDPT 2.57118 2.90690 3.08510 3.21946 3.46286 3.74182
TSDPT [10] 2.58357 2.92003 3.09697 3.23237 3.47472 3.75328
SSDPT [29] 2.58423 2.92060 3.09731 3.23270 3.47490 3.75314
present €,, # 0 2.53069 2.85568 3.02733 3.15750 3.39202 3.65998
present €,,=0 2.53924 2.86511 3.03679 3.16778 3.40274 3.67183
5 CLPT 1.36540 1.55352 1.74209 1.82866 2.10619 2.42859
FSDPT 1.31921 1.51126 1.69269 1.77979 2.04642 2.35737
TSDPT [10] 1.32910 1.52129 1.70176 1.78978 2.05605 2.36734
SSDPT [29] 1.33003 1.52203 1.70224 1.79032 2.05644 2.36744
present €,, # 0 1.31826 1.50395 1.68128 1.76502 2.02535 2.32351
present €,,=0 1.32340 1.50933 1.68598 1.77074 2.03081 2.33029
10 CLPT 1.28493 1.40170 1.58214 1.62962 1.89619 2.19111
FSDPT 1.23452 1.36313 1.53714 1.58760 1.84445 2.13020
TSDPT [10] 1.24363 1.37316 1.54595 1.59736 1.85376 2.13995
SSDPT [29] 1.24475 1.37422 1.56721 1.59728 1.57287 2.19087
present €,, # 0 1.23608 1.36023 1.53034 1.57880 1.83083 2.10275
present €,,=0 1.24109 1.36540 1.53472 1.58419 1.83576 2.10896
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Fig. 12. First four buckling modes. Uni-axial buckling load of a simply supported 2-
1-2 plate C-type, p= 0.5, a 172 points grid, and using the higher-order theory.
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Fig. 13. First four buckling modes. Bi-axial buckling load of a simply supported 2-1-
1 plate C-type, p = 10, a 172 points grid, and using the higher-order theory.

help readers to implement it successfully with the present or other
strong-form techniques.
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A hyperbolic sine shear deformation theory is used for the linear buckling analysis of functionally graded plates. The
theory accounts for through-the-thickness deformations.

The buckling governing equations and boundary conditions are derived using Carrera’s Unified Formulation and further
interpolated by collocation with radial basis functions. The collocation method is truly meshless, allowing a fast and simple
discretization of equations in the domain and on the boundary.
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