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A drawback to the material composition of thick functionally graded materials (FGM) beams is checked out in
this research in conjunction with a novel hyperbolic‐polynomial higher‐order elasticity beam theory (HPET).
The proposed beam model consists of a novel shape function for the distribution of shear stress deformation
in the transverse coordinate. The beam theory also incorporates the stretching effect to present an indirect
effect of thickness variations. As a result of compounding the proposed beam model in linear Lagrangian strains
and variational of energy, the system of equations is obtained. The Galerkin method is here expanded for sev-
eral edge conditions to obtain elastic critical buckling values. First, the importance of the higher‐order beam
theory, as well as stretching effect, is assessed in assorted tabulated comparisons. Next, with validations based
on the existing and open literature, the proposed shape function is evaluated to consider the desired accuracy.
Some comparative graphs by means of well‐known shape functions are plotted. These comparisons reveal a
very good compliance. In the final section of the paper, based on an inappropriate mixture of the SUS304
and Si3C4 as the first type of FGM beam (Beam‐I) and, Al and Al2O3 as the second type (Beam‐II), the results
are pictured while the beam is kept in four states, clamped–clamped (C–C), pinned–pinned (S–S), clamped‐
pinned (C–S) and in particular cantilever (C–F). We found that the defect impresses markedly an FGM beam
with boundary conditions with lower degrees of freedom.
1. Introduction

1.1. FGMs

Functionally graded materials (FGMs) are those whose mechanical
properties change gently and continuously from one surface to another
according to a given function. These materials are built up by compos-
ing of ceramic and metal or aluminum and alumina powders, etc. The
common sort of these materials may be a mixture of ceramics and met-
als attachments. The main merit of using such the material is that it
can withstand severe situations such as environments with very high
temperature and high temperature’s difference. For example, thermal
coating on blades of gas turbines and heat shields of spacecraft can
be some great promises of their applications. Besides, this kind of com-
posite structure is resistant to corrosion and wear, and has high resis-
tance to fracture. In relation to this, some instances can be brought up
such as the chemical tanks and high abrasion environments due to its
specificity [1–5].

1.2. Beams

Beams, as one of the most vital engineering components, have
always been of interest to researchers. The instability of beams results
in buckling under a static in‐plane load which due to the large defor-
mation of the structure in this case, the efficiency of the beam will be
vastly diminished. Assorted methods for analyzing beams have been
presented so far. The method of analyzing the behavior of a beam
using the theory of three‐dimensional elasticity, although a basic
and precise method, is complicated and difficult because of the
three‐dimensional analysis of the beam. To reduce these complexities,
and assuming that the thickness of the beams is small to a great extent
compared to other dimensions like length, assumptions called beam
theories are presented. The simplest theory in beam analysis is
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Nomenclature

z Thickness coordinate
ν zð Þ FGM Poisson’s ratio
E zð Þ FGM Young’s modulus
wz Thickness stretching
ΠW Work performed by external loads
ν1 Ceramic or Alumina Poisson’s ratio
ν2 Metal or Aluminium Poisson’s ratio
h Thickness of the beam
L Length of the beam
ɛxx Axial strain
γxz Shear strain in x‐z plane
ɛzz Transverse strain
σxx Axial stress
τxz Shear stress
σzz Transverse stress
Πb Strain energy
m mode number
u1 Axial displacement of the beam’ nodes
u3 Transverse displacement of the beam’ nodes
u In‐plane displacement of the beam’ nodes along x

E1 Ceramic or Alumina Young’s modulus
E2 Metal or Aluminium Young’s modulus
wb Transverse deflection of the beam’ nodes
ws Shear deflection of the beam’ nodes
f zð Þ Shape function of shear deformation
g zð Þ Shape function of stretching effect
k Volume fraction, Power‐law index
G zð Þ Shear modulus of the beam material
Mxx Moment stress resultant around × axis
Nxx Axial in‐plane stress resultant
Qxz Shear stress resultants in x‐z plane
Xm Weight function to satisfy boundary conditions
a To define the imperfection in Ceramic section
b To define the imperfection in Metal section
N0

xx In‐plane static compression applied at the both ends of the
beam

Rxx, Rzz Higher‐order and thickness stretching stress resultants
Um,Wbm,Wsm Unknown variables for axial, transverse, and shear

deflections
Wzm Stretching effect
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Euler‐Bernoulli (EB) beam theory. The EB hypothesis corresponds to
the thin beams and does not consider the effect of shear and transverse
deformation along the thickness. In order to lessen the error in the
analysis of relatively thick beams, another theory known as shear
deformation theory was introduced [6]. In this theory, the effect of
shear deformation on the thickness is considered, however it confronts
with an error for which there is need to a shear correction factor. The
most common higher‐order shear deformation theory can be the third‐
order shear deformation theory raised by Reddy [7]. Although beam
shear deformation theories have yielded good results in analysis of
comparatively thick beams, they are far from accurate answers yet
because of the neglect of transverse strains and stretching effects
across the thickness. To fix this problem and maximize the accuracy,
quasi‐3D elasticity came [8–12]. However, these theories work well
only for isotropic thick materials and cannot be a general quasi‐3d
elasticity model appropriate for all materials such as laminated com-
posites. This theory complements previous theories and considers both
the effects of shear and transverse deformation along the thickness in
the form of a higher‐order beam theory.

1.3. Literature review

Due to the outstanding and overriding applications of FGM struc-
tures, it is important to study the conditions of their failure and defec-
tive. In the past, due to being unknown the buckling phenomenon,
yield resistance was considered as a key indicator in most designs.
However, as the studies have begun to recognize this important crite-
rion, the buckling phenomenon has been considered as the main crite-
rion in design considerations. The buckling phenomenon occurs when
most of the strain energy stored in the membrane is capable of convert-
ing the bending energy necessary for large deformations, which can
lead to catastrophic damage. Buckling in a member depends on factors
such as loading, geometry and material. The theoretical works perti-
nent to the buckling of FGM beams are dependent on a variety of
researchers. Kiani and Eslami [13] performed analysis of FGM beams
subject to thermal stability on the basis of EB beam approach as well
as power‐law distribution. They estimated three types of distribution
for temperature, namely linear, nonlinear and uniform temperature
rise. Different edge conditions also were considered as pinned–pinned
and clamped‐pinned ones. Ultimately, the governed equations were
solved based on an exact solution. Wattanasakulpong et al. [14] based
2

on the power‐law, inspected natural frequencies and thermal critical
stability loads for an FGM beam using a refined third‐order shear
deformation theory (TSDT). The eigen‐frequency analysis was adopted
by Ritz method. Fallah and Aghdam [15] attended the nonlinear
response for a EB‐FGM beam in an instability and vibrating limit to
study thermo‐elasticity problem. The beam was installed on a nonlin-
ear elastic matrix, and several end conditions as well. Ma and Lee [16]
through a first‐order shear deformation theory (FSDT), investigated
nonlinearity into behavior of a pivot‐pivot FGM beam involving shear
deformations under in‐plane thermal loading based on the exact solu-
tion technique. Rahimi et al. [17] studied natural frequencies and post‐
critical stability for an FGM beam containing shear deformations on
the basis of FSDT. The beam was implemented at both ends by pin-
ned–pinned, fixed–fixed, and fixed‐pinned conditions. Esfahani et al.
[18] discussed a temperature‐dependent composite beam subjected
to nonlinear thermal buckling loads. FSDT was employed while the
system included a nonlinear elastic substrate. The outcomes were
given in fixed and hinged edge conditions utilizing generalized differ-
ential quadrature method (GDQM). Viola et al. [19] formulated and
computed the free vibration conditions of doubly‐curved composite
panels and shells in the framework of a higher‐order elasticity theory.
Their problem was solved with respect to the GDQ method and vali-
dated by FSDT and commercial computer programs e.g. ABAQUS as
well. In another work, Viola et al. [20] on the basis of a higher‐
order elasticity theory and GDQ technique surveyed static response
of a perfect doubly‐curved composite panels and shells. They investi-
gated six groups of panels and shells such as spherical and cylindrical
panels, rectangular and annular plates, in particular an elliptic parabo-
loid and a catenoidal shell. Tornabene et al. [21] proposed an equiva-
lent single‐layer model for laminated composite structures in order to
study free vibrations of the modeled single‐layer shell/panel. Their
consideration also covered the zig‐zag and stretching effects for the
material. The GDQ and generalized integral quadrature (GIQ)
approach gave solutions for the problem. Results of commercial codes
and other literature approved their formulation. Vo et al. [22]
addressed stability and vibration of a composite sandwich beam
regarding a modified higher‐order shear deformation theory (HSDT)
by finite element technique. Tornabene et al. [23] applied a radial
basis function (RBF) technique in order to compute natural frequencies
of a composite doubly‐curved shell/panel in the framework of an
equivalent single‐layer model. The reliability and stability of the
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methodology were confirmed by comparison the results with FEM and
GDQ. Shen and Wang [24] nonlinearly considered large deflections,
post‐stability situation and vibration amplitude for an FGM beam
incorporating shear deformations whilst the beam was embedded into
an environment with temperature differential and also a polymer foun-
dation. Tornabene et al. [25] presented a general higher‐order
approach in order to study natural frequencies of doubly‐curved com-
posite structures such as laminated shells. To calculate the tabular and
pictorial results, they employed an advanced version of GDQ, namely
local GDQ (LGDQ). The merit of this method in comparison with the
previous one, however, was the necessity to lower number of grid
points by keeping the accuracy. Nguyen et al. [26] focused on a new
HSDT to analyze a sandwich composite beam exposed in stability
and eigen‐frequency conditions. The numerical outputs were captured
on the basis of the method of Lagrange multiplier for boundary condi-
tions of fixed–fixed, pinned–pinned and their mixture. Tufeksi et al.
[27] examined circular cross‐sectional FGM beams with FSDT under
in‐plane stability condition by the help of exact solution technique.
Chen et al. [28] evaluated porosity into an FGM beam and devoted sta-
tic analysis based on buckling and bending of FSDT beam and solved
the harvested characteristic relation by employing Ritz method for
some cases of end conditions, namely hinged, fixed, free and their
combinations. Simsek [29] presented functionality into two directions
for a FSDT‐FGM beam comprising several boundary conditions on the
basis of Ritz method. Huang et al. [30] based on the FSDT, analyzed
axial stability of a FSDT‐FGM beam by assuming inhomogeneity into
direction of length. By the basis on numerical solutions, a variety of
end supports were estimated as free, fixed, hinged and particularly
guided ones. She et al. [31] inspected a HSDT to study post‐critical
and thermal stability of an FGM beam. They captured the results using
a two‐step perturbation technique. Kahya and Turan [32] acquired a
finite element model for a composite beam under buckling and vibra-
tion states. The FSDT and Lagrange equation aided to achieve the con-
stitutive equations. A study on stability and vibrations of a double
system of composite beam based on FSDT bridged on Winkler‐
Pasternak medium has been performed by Deng et al. [33]. To shorten
the review of the broad number of published works, further significant
research can be seen by [34–66], and elsewhere.

1.4. Imperfection

As assessments by the published researches make clear, all the lit-
erature about FGM were often done on the basis of theoretical assump-
tions of a perfect structure for mechanical properties of FGMs.
Undoubtedly, it is arduous to explore the exact gradation in the FGMs
as it needs an experimental control. However, controlling of almost all
the produced parts made of FGMs may be not cost‐effective, which
leads to some imperfect products. On the other side, todays, several
strong techniques have been being employed to manufacture FGMs,
but a few of them may produce constituents of these prestigious mate-
rials excellently without defects [67]. Thus, devoid of a defect for
attaining a fluently and continuity varying gradation and a perfect
structure may be impossible. Although in this paper we assume a the-
oretical model for FGMs as well, it is based on the imperfect FGMs.
Taking a look at literature, one can find the [68] in which the material
properties of FGMs were assayed with an imperfection. However, the
research was based on the converting FGMs into laminated composites
to make a path to study the imperfection. Contrary to this reference, in
the present research, we try to put the drawback to the material com-
position on the basis of the functionality gradation of power‐law
distribution.

1.5. Briefly review of present paper

In the present study, a new shear deformation function is presented
for the stability analysis of thick and very thick rectangular beams
3

made of functionally graded materials. Taking the change in thickness
as a function of the x dimension, we transform the problem into a
higher‐order elasticity problem. The material properties are consid-
ered unaltered in accordance with the thickness axis. In the perfect
form of functionally graded materials, the properties of the material
change continuously and gradually according to the various patterns
such as exponential, power and sigmoid law [55]. In this paper, we
attempt to bring the perfect form of functionally graded materials into
some imperfections in the material composition. Indeed, it is unlikely
that a calibrated material to comply with exactly the pattern law. Since
there can be potential errors in the blending process, so in this study
we have considered two functional cases of imperfect calibration
based on the power‐law in order to find out what the difference in
their results will be if they do not exactly comply with the power‐
law. Also, due to the importance of the Poisson’s ratio of graded mate-
rials, its value along the thickness of the member is considered as a
function of both materials. In the first step, in order to investigate
the stability behavior of the member, the governing equation for buck-
ling of the rectangular beam is obtained using a combination of the
principle of minimum potential energy and the higher‐order elasticity
theory. As a result, the approximate form of the deformation of the
beam is obtained as an ordinary differential equation and by imposing
the edge conditions of the beam, and by use of the eigenvalue solver
method, the critical buckling loads are attained. At the validation,
numerical results of stability analysis are compared with prestigious
references and finite element (FE) solution software. An overview is
performed on the most well‐known shear deformation functions pro-
vided hitherto by other researchers. Numerical results are presented
for members made of functionally graded materials and the influences
of cross‐sectional area, material power‐law, and type of edge support
on critical buckling load are investigated part by part. In all compar-
ison tables, the efficiency, accuracy and reliability of the presented
function have been approved.

The novelty of the current work can be written as

• A new shape function based on the hyperbolic‐polynomial terms is
guessed to present a new higher‐order elasticity analysis.

• An imperfection in the material composition is here considered on
the basis of two patterns.

• Four disparate boundary conditions are investigated by an analyti-
cal solution method, presenting and developing a new admissible
function for free edges.

Eventually, this research can make a bridge for researchers to com-
mence considering other forms of defect in the material composition of
FGMs.

2. Mathematical model

An axially compressed rectangular FGM beam is taken into consid-
eration with length L, thickness h and width t in a rectangular coordi-
nate system (Fig. 1).

As far as each mathematic function has its own specific behavior, in
our work, the aim is to find a new mathematic function for shear defor-
mation across the thickness of the thick FGM beam. The combination
of a hyperbolic function with a polynomial one was derived as a new
framework in the analysis of thick beams/plates. Here, the transverse
displacement contains three parts, namely bending wbð Þ, shear wsð Þ
and an extra one g zð Þwz xð Þð Þ. The effect of stretching in the thickness
is evaluated according to the extra part which itself is function of the x
and z‐axes. Thus, the present higher‐order elasticity theory is here
adopted as

u1 x; zð Þ ¼ u xð Þ � z
dwb xð Þ
dx

� f zð Þ dws xð Þ
dx

u3 x; zð Þ
¼ wb xð Þ þ ws xð Þ þ g zð Þwz xð Þ ð1a-bÞ



Fig. 1. An FGM beam illustrated schematically.

M. Malikan, V.A. Eremeyev Composite Structures 249 (2020) 112486
in which

f zð Þ ¼ tanh z=h� z=hð Þ3 � r z=hð Þ5
� �

; r ¼ 0:8½ �

g zð Þ ¼ 1� f 0 zð Þ� �
where the shape function follows a comma which means differentiation
of the variable. To introduce the taken imperfect, first, the power‐law
material gradation can be presented as below [69–71]

E zð Þ ¼ E2 þ E1 � E2ð Þ 1
2
þ z
h

� �k

ð2aÞ

ν zð Þ ¼ ν2 þ ν1 � ν2ð Þ 1
2
þ z
h

� �k

ð2bÞ

The distribution of elasticity modulus respecting Eq. (2a) would
give the Fig. 2 in a perfect structure of FGMs.

The imperfection in the material composition of FGMs can, how-
ever, be observed in dissimilar cases, this research is concerned with
the cases drawn by Figs. 3a and 3b. Conforming to this figures we
can reveal the Table 1 in which two cases are totally shown. In the first
case, we assume that the pure ceramic section consists of a part of
thickness and after the range the gent composition will start. As a mat-
ter of fact, in the imperfect cases, we have a layer of a pure ceramic or
metal and thereafter the power‐law composition will appear. This
taken range here is displayed for the first case by a and the latter case
by b for which we assume a notable section of thickness is graded with
Fig. 2. Variation of the Young’s modulus based on the power-law for a perfect
FGM beam-I.

4

pure metal only. These are just topmost and bottommost layer in a per-
fect FGM for pure ceramic and metal zones.

As we are studying a linear stability problem, one can get the linear
Lagrangian strain as

ɛij ¼ 1
2

@ui
@xj

þ @uj
@xi

� �
ð3Þ

Imposing Eq. (3) on Eq. (1), one can obtain the strain–displacement
relations as

ɛxx ¼ du
dx

� z
d2wb

dx2 � f zð Þ d
2ws

dx2 ð4aÞ

ɛxz ¼ g zð Þ dws

dx
þ dwz

dx

� �
ð4bÞ

ɛzz ¼ g0 zð Þwz ð4cÞ
If we assume the Lagrangian in a variated state, thus

δ Πb þ ΠWð Þ ¼ 0 ð5Þ
The strain energy can be demonstrated as

Πb ¼
Z
V

σxxɛxx þ τxzγxz þ σzzɛzzð ÞdV ð6Þ

in which

σxx

σzz

τxz

2
64

3
75 ¼

C11 C12 0
C12 C22 0
0 0 C33

2
64

3
75

ɛxx
ɛzz
γxz

2
64

3
75 ð7Þ

where the stiffness elasticity matrix can be defined as
C11 ¼ 1�ν zð Þð ÞE zð Þ

1�2ν zð Þð Þ 1þν zð Þð Þ, C22 ¼ C11,

C12 ¼ ν zð ÞE zð Þ
1�2ν zð Þð Þ 1þν zð Þð Þ, C33 ¼ G zð Þ ¼ E zð Þ

2 1þν zð Þð Þ
Eq. (6) based on Eq. (7) can be expanded as

δΠb ¼
Z L

0
Nxx

dδu
dx

�Mxx
d2δwb

dx2 � Rxx
d2δws

dx2 þ Qxz
dδws

dx
þ dδwz

dx

� ��

þRzzδwz�dx ð8Þ
in which

Nxx;Mxx;Rxx ¼
R h=2
�h=2 σxx 1; z; f zð Þð Þdz (9a‐c)

Qxz ¼
Z h=2

�h=2
σxzg zð Þdz ð9dÞ

Rzz ¼
Z h=2

�h=2
σzzg0 zð Þdz ð9eÞ
Fig. 3a. Variation of the Young’s modulus for an imperfect FGM beam-I (Case
I, a ¼ 0:1h).



Fig. 3b. Variation of the Young’s modulus for an imperfect FGM beam-I (Case
II, b ¼ 0:1h).
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where the expressed stress resultants can be extended as below

Nxx ¼ A11
du
dx

� A12
d2wb

dx2 � A33
d2ws

dx2 þ D33wz ð10aÞ

Mxx ¼ A12
du
dx

� D11
d2wb

dx2 � D12
d2ws

dx2 þ D44wz ð10bÞ

Rxx ¼ A33
du
dx

� D12
d2wb

dx2 � D22
d2ws

dx2 þ D55wz ð10cÞ

Qxz ¼ A44
dws

dx
þ dwz

dx

� �
ð10dÞ

Rzz ¼ A66
du
dx

� A77
d2wb

dx2 � A88
d2ws

dx2 þ A55wz ð10eÞ

in which we define

A11;A12;A33;D11;D12;D22 ¼
Z h=2

�h=2
C11 1; z; f zð Þ; z2; zf zð Þ; f 2 zð Þ� �

dz
Table 1
Patterns of the FGM beam-I considered here, Perfect (a), Imperfect (Case I (b), Case

Ceramic Metal

5

D33;D44;D55 ¼
Z h=2

�h=2
C12 g 0 zð Þ; zg0 zð Þ; f zð Þg 0 zð Þð Þdz

A44 ¼ R h=2
�h=2 C33g2 zð Þdz; A55 ¼

R h=2
�h=2 C22g 02 zð Þdz,

A66;A77;A88 ¼
R h=2
�h=2 C12 1; z; f zð Þð Þdz

Consider an in‐plane axially compressive load gradually applied at
both ends of the beam does a work as

ΠW ¼ 1
2

Z L

0
N0

xx
dwb

dx
þ dws

dx

� �2

dx ð11Þ

By variation the above relation, one can explore

δΠW ¼
Z L

0
N0

xx
dδwb

dx
dwb

dx
þ dδws

dx
dws

dx
þ δ

dwb

dx
dws

dx

� �� 	
dx ð12Þ

Gaining the equations which govern a static response of the FGM
beam requires to unpack Eq. (5) as below

δu ¼ 0 :
dNxx

dx
¼ 0 ð13aÞ

δwb ¼ 0 :
d2Mxx

dx2 þ N0
xx

d2wb

dx2 þ d2ws

dx2

� �
¼ 0 ð13bÞ

δws ¼ 0 :
dQxz

dx
þ d2Rxx

dx2 þ N0
xx

d2wb

dx2 þ d2ws

dx2

� �
¼ 0 ð13cÞ

δwz ¼ 0 :
dQxz

dx
� Rzz ¼ 0 ð13dÞ

Thereby, in terms of displacements, by means of Eq. (10), one can
re‐write the above equations as

A11
d2u
dx2 � A12

d3wb

dx3 � A33
d3ws

dx3 þ D33
dwz

dx
¼ 0 ð14aÞ

A12
d3u
dx3 � D11

d4wb

dx4 � D12
d4ws

dx4 þ D44
d2wz

dx2 þ N0
xx

d2wb

dx2 þ d2ws

dx2

� �
¼ 0

ð14bÞ
II (c)).

Perfect FGMs

E zð Þ ¼ E2 þ E1 � E2ð Þ 1
2 þ z

h

� �k
;

�0:5h ⩽ z ⩽ 0:5h

Imperfect FGMs (Case-I):

E1 zð Þ ¼ E2 þ E1 � E2ð Þ 1
2 þ z

h

� �k
; �0:5h ⩽ z ⩽ 0

E2 zð Þ ¼ E2 þ E1 � E2ð Þ 1
2 þ z

h

� �k ; 0 ⩽ z ⩽ a
E3 zð Þ ¼ E1 ; a ⩽ z ⩽ 0:5h; 0 ⩽ a

h ⩽ 0:5

Imperfect FGMs (Case-II):

E1 zð Þ ¼ E2 þ E1 � E2ð Þ 1
2 þ z

h

� �k; 0 ⩽ z ⩽ 0:5h
E2 zð Þ ¼ E2 þ E1 � E2ð Þ 1

2 þ z
h

� �k
; �b ⩽ z ⩽ 0

E3 zð Þ ¼ E2 ; �0:5h ⩽ z ⩽ �b; �0:5 ⩽ b
h ⩽ 0
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A33
d3u
dx3 � D12

d4wb
dx4 � D22

d4ws
dx4 þ N0

xx
d2wb
dx2 þ A44 þ N0

xx

� � d2ws
dx2

þ A44 þ D55ð Þ d2wz
dx2 ¼ 0

ð14cÞ

�A66
du
dx

þ A77
d2wb

dx2 þ A44
d2wz

dx2 þ A44 þ A88ð Þ d
2ws

dx2 � A55wz ¼ 0 ð14dÞ
Table 2
Shape functions for shear stress distribution in literature.

Reference f(z) Mathematical
view

Zenkour [72] hsinh z
h � 4

3
z3

h2
cosh 1

2

� � HT

Touratier [73] h
π sin

π
h z
� �

T

Shahsavari et al. [11] � r1 z
h

� �þ r2sinh z
h

� �
 �
h* HT

Zohra Zaoui et al.
[12]

πh
π4þh4

π2sin πz
h

� �þ h2cos πz
h

� �� �
exp hz

π

� �� h2

 �

T/Ex-2

Akavci and Tanrikulu
[8]

3:7z 1:27sech0:65 z
h

� �� 1
� �

HT

Reddy [7] z 1� 4
3
z2

h2

� �
Pol

Mantari et al. [74] tan rzð Þ � zrsec2 rh
2

� �
; r ¼ 0:2½ � T

Joshan et al. [75] r
π csch

�1 rh
z

� �� z 2r
h2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2þ1ð Þ

p ; r ¼ 0:32½ � HT

Neves et al. [76] sin π
h z
� �

T
Neves et al. [77] sinh π

h z
� �

HT

Sarangan and Singh
[78]

tanh rz
h

� �� z r
h sech

2 r
2

� �
; r ¼ 2:5½ � HT

Aydogdu [79]
1� 4 z2

h2

� �
r

�2z2

h2 ln rð Þ

� �
; r ¼ 3½ �

Ex-1/Log

Soldatos [80] hsinh z
h

� �� zcosh 1
2

� �
HT

Karama et al. [81] zexp �2 z
h

� �2� �
Ex-2

Thai and Choi [82] � z
4 þ 5z3

3h2
Pol

Hebali et al. [83] h
πsinh

π
hzð Þ�z

cosh π
2ð Þ�1

HT

Present tanh z
h � z3

h3
� r z5

h5

� �
; r ¼ 0:8½ � HT/Pol

HT = Hyperbolic Trigonometric.
Ex-1 = Exponential function form A.
Ex-2 = Exponential function form B.
Pol = Polynomial.
Log = Logarithmic.
T = Trigonometric.

* r1 ¼ cosh θð Þ
24sinh θð Þ�11cosh θð Þ � 1, r2 ¼ �1

24sinh θð Þ�11cosh θð Þ,θ ¼ 1
2.
3. Solving approach

To procure the numerical outputs of critical stability of the FGM
beam with the deemed imperfection, here the Galerkin technique is
used referring to the first mode of buckling. This method is a kind of
weighted residual methods (WRMs). To exploit it, we presume a resi-
due for the equations where the residue is errors of equations. Indeed,
the approximation causes the errors. If we utilize an exact solution, so
the residuals become zero. WRMs are on the basis of attaining an
approximation solution for which the average of residue over the
domain is assumed to be zero. It can be obtained by a weight function
(Xm) so that the weighted integral equals to zero. This weight function
satisfies a variety of boundary conditions (BCs). Generally, the weight-
ing function should be multiplied with the residue and then integra-
tion across the whole domain [0, L] is accomplished. In this regard,
the following functions can be executed.

• Pinned‐Pinned BCs (S‐S):

Xm xð Þ ¼ sin αmxð Þ ð15aÞ

• Clamped‐Clamped BCs (C–C):

Xm xð Þ ¼ 1
2
1� cos 2αmxð Þ½ � ð15bÞ

• Clamped‐Pinned BCs (C–S):

Xm xð Þ ¼ 0:170938 sin βmxð Þ � βmLcos βmxð Þ þ βmL 1� x
L

� �h i
ð15cÞ

• Clamped‐Free BCs (C–F):

Xm xð Þ ¼ sin γmxð Þ � cos γmxð Þ ð15dÞ
in which αm ¼ mπ

L , βm ¼ 1:4318 mπ
L , γm ¼ mπ

4L.
As such, the assumed displacements can be taken as below [11]

u xð Þ ¼ ∑
1

m¼1
Um

@Xm xð Þ
@x

ð16aÞ

wb xð Þ ¼ ∑
1

m¼1
WbmXm xð Þ ð16bÞ

ws xð Þ ¼ ∑
1

m¼1
WsmXm xð Þ ð16cÞ

wz xð Þ ¼ ∑
1

m¼1
WzmXm xð Þ ð16dÞ

In the present study, we are using Sine or Cosine functions as
weight functions and the Sine and Cosine are continuously differen-
tiable in the whole domain. So, this will behave like an analytical
method, and the rate of convergence will be irrelevant. That is why
the convergence rate is not assessed and m denotes mode numbers.

Then, with imposing Eq. (16) in Eq. (14), the matrix form of consti-
tutive equation of the problem can be regulated as

K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44

2
6664

3
7775

Um

Wbm

Wsm

Wzm

8>>><
>>>:

9>>>=
>>>;

¼ 0 ð17Þ
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in which Kij

 �

4�4 is the matrix coefficients for the FGM beam. If the
determinant of the matrix equals to zero, one can acquire the non‐
trivial solution as

det Kij

 �

4�4 ¼ 0 ð18Þ
The output of this operation would be an algebraic polynomial

equation based on the one unknown (N0
xx), which solving this equation

generates the critical buckling loads.
The components of the coefficients matrix are exploded in

Appendix A.

4. Credibility of results

This part of the present research is assigned to demonstrate the
validity and punctuality of the closed‐form solution, in particular the
new shape function of shear deformation distribution. First off, most
of the momentous theories of shear deformation variations are listed
in Table 2, next to each other.

To estimate the aforementioned shape functions, Figs. 4a and 4b
are designed in which some shape functions are drawn. As seen, the
proposed shape function is in very good parallelism with other func-
tions. More comparisons can be observed by Tables 3 and 4 for which
also results of the finite element method (FEM) are added. It is worth
noticing that the results of FEM are given based on the 1D beam ele-
ment and using a suitable number of elements and nodes depending
on the cross‐section and length of the beam. As can be found, the
results of the proposed shape function can be permitted to use as cor-
relation of results is simply seen.

After reaching a concordance for the new shape function proposed
in this research and understanding its very good balancing against



Table 3
Elastic buckling loads (kN) for several shape functions in a S-S square steel column based on HSDT (E = 2 × 105MPa, h = 60 mm).

Function L/h

10 15 20 30

Zenkour [72] 5813.68 2610.32 1473.59 656.617
Touratier [73] 5813.25 2610.24 1473.56 656.612
Shahsavari et al. [11] 5807.16 2609.01 1473.17 656.534
Zohra Zaoui et al. [12] 5921.76 2631.89 1480.44 657.974
Akavci and Tanrikulu [8] 5813.36 2610.26 1473.57 656.613
Reddy [7] 5813.68 2610.33 1473.59 656.617
Mantari et al. [74] 5921.76 2631.89 1480.44 657.974
Joshan et al. [75] 5825.87 2612.78 1474.37 656.772
Neves et al. [76] 5824.64 2612.53 1474.29 656.757
Neves et al. [77] 5827.76 2613.16 1474.49 656.796
Sarangan and Singh [78] 5825.14 2612.63 1474.33 656.763
Aydogdu [79] 5826.05 2612.82 1474.39 656.775
Soldatos [80] 5829.55 2613.52 1474.61 656.819
Karama et al. [81] 5812.89 2610.17 1473.54 656.607
Thai and Choi [82] 5847.56 2617.13 1475.76 657.047
Hebali et al. [83] 5847.35 2617.09 1475.75 657.045
Present 5825.92 2612.79 1474.37 656.773
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literature, the further acknowledgments of numerical outcomes are
tabulated by Tables 5–12. This deliberation dedicates outputs of the
Euler‐Bernoulli (EB) beam model, a modified first‐order shear defor-
mation theory (S‐FSDT), higher‐order shear deformation theory with-
out thickness stretching effect (HSDT, εz = 0), and with considering
this effect (εz ≠ 0), and FEM [84]. Note that both HSDT and the new
theory are based on using the present shape function. In doing so,
the beam is debated in two cross‐sectional shapes, namely square
and rectangular. Moreover, the S‐S, F‐F, and C–C edge conditions are
discussed. For Tables 5–8, the behavioral of the beam is based on a
thin material as 45 < L/h < 60 for the square and 65 < L/h < 90
for the rectangular one, but Tables 9‐12 are prepared for a thick and
very thick material as 2.5 < L/h < 12.5 for the square beam and
3.5 < L/h < 18.5 for the rectangular beam. For Tables 5 and 6, one
can see that the results of EB and S‐FSDT are not in an excellent agree-
ment with those of HSDT, HPET as well as FEM. Albeit while the beam
is enlarging, the results of all the theories are in the neighborhood.
Furthermore, considering Tables 7 and 8 presents equivalent results
for all theories, although some discrepancies can be found. By this part
of the comparison, one can conclude that the importance of shear
Table 4
Elastic buckling loads (kN) for several shape functions in a F-F square steel column

Method L/h

10

FEM (ABAQUS) 1471
Function
Zenkour [72] 1473.59
Touratier [73] 1473.56
Shahsavari et al. [11] 1473.17
Zohra Zaoui et al. [12] 1480.44
Akavci and Tanrikulu [8] 1473.57
Reddy [7] 1473.59
Mantari et al. [74] 1480.44
Joshan et al. [75] 1474.37
Neves et al. [76] 1474.29
Neves et al. [77] 1474.49
Sarangan and Singh [78] 1474.33
Aydogdu [79] 1474.39
Soldatos [80] 1474.61
Karama et al. [81] 1473.54
Thai and Choi [82] 1475.76
Hebali et al. [83] 1475.75
Present 1474.37
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deformations is more and more obvious by having less flexible edge
conditions.

On the other hand, thick and very thick beams are concerned with
the rest of the Tables (Tables 9–12). Within these Tables, the signifi-
cance of shear deformations is noticeably found. As can also be seen,
the results of HPET are more accurate than HSDT. More importantly,
it can be stated that when a beam is in the zone of a very thick beam,
even HSDT results fail and a higher‐order beam theory based on the
stretching effect should be taken in use. As far as we investigate a
non‐flexible boundary condition i.e. C–C, the huge conflicts between
all theories are clearer. To conclude, it is worth mentioning to say that
the difference between HSDT and HPET can be further ascertained by
C–C.

5. Stability of an imperfect FGM beam

To determine and report the structural response of the defected
FGM in a stability problem, the material specifications are collected
in Table 13. It is germane to note that in this section we are going
to examine two types of FGM beams, the first case (I) is the customary
based on HSDT (E = 2 × 105MPa, h = 60 mm).

15 20 30

656.10 369.52 164.38

656.61 369.68 164.40
656.61 369.68 164.40
656.53 369.65 164.40
657.97 370.11 164.49
656.61 369.68 164.40
656.61 369.68 164.40
657.97 370.11 164.49
656.77 369.73 164.41
656.75 369.72 164.41
656.79 369.73 164.42
656.76 369.72 164.42
656.77 369.73 164.42
656.82 369.74 164.42
656.60 369.67 164.41
657.05 369.82 164.43
657.04 369.82 164.43
656.77 369.73 164.42



Table 6
Elastic buckling load (kN) for a S-S rectangular steel column (E = 2 × 105MPa, h = 40 mm, b = 90 mm).

L (m) EB S-FSDT,
ks = 5/6

Present FEM [84]

εz = 0 εz ≠ 0

2.75 125.287 125.284 125.244 125.235 125.122
3 105.276 105.274 105.245 105.239 105.230
3.25 89.702 89.700 89.680 89.676 89.668
3.5 77.345 77.344 77.329 77.326 77.320

Table 7
Elastic buckling load (kN) for a F-F square steel column (E = 2 × 105MPa, h = 60 mm).

L (m) EB S-FSDT,
ks = 5/6

Present FEM [84]

εz = 0 εz ≠ 0

2.75 70.474 70.473 70.460 70.457 70.452
3 59.218 59.217 59.207 59.206 59.202
3.25 50.458 50.457 50.450 50.449 50.447
3.5 43.507 43.506 43.503 43.500 43.499

Table 5
Elastic buckling load (kN) for a S-S square steel column (E = 2 × 105MPa, h = 60 mm).

L (m) EB S-FSDT,
ks = 5/6

Present FEM [84]

εz = 0 εz ≠ 0

2.75 281.895 281.891 281.675 281.631 281.550
3 236.871 236.867 236.715 236.684 236.630
3.25 201.830 201.828 201.717 201.695 201.650
3.5 174.027 174.026 173.944 173.927 173.900

Table 8
Elastic buckling load (kN) for a F-F rectangular steel column (E = 2 × 105MPa, h = 40 mm, b = 90 mm).

L (m) EB S-FSDT,
ks = 5/6

Present FEM [84]

εz = 0 εz ≠ 0

2.75 31.322 31.321 31.319 31.318 31.318
3 26.319 26.318 26.317 26.316 26.316
3.25 22.426 22.425 22.424 22.423 22.423
3.5 19.336 19.336 19.335 19.335 19.335

Table 9
Elastic buckling load (kN) for a very thick and thick S-S square steel column (E = 2 × 105MPa, h = 60 mm).

L (m) EB S-FSDT,
ks = 5/6

Present

εz = 0 εz ≠ 0

0.15 94748.2 94252.1 74996.4 72063.1
0.25 34109.4 34044.8 31155.4 30634.1
0.5 8527.34 8523.3 8329.89 8292.05
0.75 3789.93 3789.13 3750.42 3742.72
1 2131.83 2131.58 2119.28 2116.82
1.25 1364.37 1364.27 1359.22 1358.21
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case, namely composition of ceramic and metal, and then the second
case (II) is a compound of alumina and aluminium. Subsequently,
under various sorts of boundary conditions, parametric studies on
the thick and very thick FGM beams are plotted.
8

To gain the critical buckling loads, we introduce a dimensionless
relation as

PCr ¼ 100� N0
xx

E2h
2 ð19Þ



Table 11
Elastic buckling load (kN) for a very thick and thick C–C square steel column (E = 2 × 105MPa, h = 60 mm).

L (m) EB S-FSDT,
ks = 5/6

Present

εz = 0 εz ≠ 0

0.15 378993.1 371178.1 184561.1 168539.1
0.25 136437.1 135411.1 98921.2 93937.6
0.5 34109.4 34044.8 31155.4 30634.9
0.75 15159.7 15147.1 14546.7 14431.9

Table 12
Elastic buckling load (kN) for a very thick and thick F-F rectangular steel column (E = 2 × 105MPa, h = 40 mm, b = 90 mm).

L (m) EB S-FSDT,
ks = 5/6

Present

εz = 0 εz ≠ 0

0.15 10527.6 10506.8 10228.43 10171.3
0.25 3789.93 3787.24 3750.45 3742.72
0.5 947.482 947.314 944.995 944.50
0.75 421.103 421.07 420.61 420.51

Table 10
Elastic buckling load (kN) for a very thick and thick F-F square steel column (E = 2 × 105MPa, h = 60 mm).

L (m) EB S-FSDT,
ks = 5/6

Present

εz = 0 εz ≠ 0

0.15 23687.1 23655.9 22223.8 21956.9
0.25 8527.34 8523.3 8329.89 8292.05
0.5 2131.83 2131.58 2119.28 2116.82
0.75 947.482 947.432 944.993 944.504

Table 13
Marerial parameters.

FGM beam-I [85–88] Ceramic:
Silicon Carbide (Si3C4)
E1 = 348GPa, ν1 = 0.24
Metal:Stainless Steel-Grade 304
(AISI 304)
E2 = 200GPa, ν2 = 0.29

FGM beam-II [8] Alumina:
(Al2O3)
E1 = 380GPa, ν1 = 0.3
Aluminium:
(Al)
E2 = 70GPa, ν2 = 0.3
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In Figs. 5a–d, we examine the role of the incomplete FGM beams in
a thick manner and in the two states and patterns mentioned before for
two types of FGM beams. In Fig. 5a, the variation of the volume frac-
tion parameter is seen in both perfect and imperfect matter states. The
incomplete matter of this figure follows the pattern of the first case.
That is, in the case of the FGM composite material, the amount of pure
ceramic area is substantial in the thickness of the beam. For this pur-
pose, a = 0.2 h was chosen. Also, a = 0.5 h is the perfect state of
FGM. As can be seen, when k = 0 (the whole beam is full of ceramic),
the value of parameter a does not make any difference in the results.
That is quite logical. But as the parameter k increases and the metal
composition is added, it can be seen that as we move toward the beam
with pure metal (k = ∞), the results will be disparate. However, the
incomplete FGM beam, in this case, is much more resistant than the
perfect case because of the increased ceramic powder content in the
composite material. This result is due to the higher modulus of elastic-
9

ity for ceramic. Interestingly, the difference in results with the more
rigid boundary conditions increases. This means that the less flexible
the boundary condition and, indeed, the lower the degrees of freedom
of the two ends of the beam, the greater the impact of the defect. In
terms of diagrams, the maximum effect is on the boundary condition
of the clamped and the least on the free edges.

On the other hand, Fig. 5c is designed for the second defect pattern,
in which the pattern of the metallic area will be remarkable in the
thickness and will not be confined to the lowest layer. Here,
b = 0.5 h means perfect beam, and b = 0.2 h means imperfect beam,
which accounts for about 30% of the thickness with the pure metal
area with the remainder being a combination of two metal and cera-
mic materials (Fig. 3b). By examining this figure, we can see that when
the numerical value of the power‐law index is k ≤ 1, due to the pres-
ence of ceramic in the composite material, it is important to determine
how much metal has formed in the thickness. However, by increasing
the parameter k as we approach the rich‐metal beam and the ceramic
content is negligible, the defect importance in this model is also elim-
inated, and the results in both perfect and defected beams are
matched. The important point here is for the results k < 1, which
the difference between the results confirms this. In fact, this incom-
plete case may be more important in the stability analysis than the pre-
vious case. Because FGM beams are used in product design assuming a
complete pattern, which in regard to a complete FGM beam the safety
factor is assured for them. According to the above figure, it can be sta-
ted that if the metal region is not unique to the lowest layer of thick-
ness, and some part of the thickness forms with pure metal, the
stability of the composite material will be far less than that of the per-
fect material, resulting in unpredictable failure and yield with loads
lower than the loads designed for the criterion. This underlines the



Fig. 4a. Shear deformation functions based on the literature.

Fig. 4b. Variation of shear deformation functions based on the literature.
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significance of examining defective cases for products made of FGM
materials.

Under other conditions, regarding Figs. 5b and 5d, we are trying to
investigate the FGM beam‐II as well as compare its results with the
10
first type of beam. Fig. 5b is drawn exactly as same as Fig. 5a but
the alumina and aluminium are respectively replaced with the ceramic
and metal. It is in a clear view that the results here are further remark-
able than those of the two other figures, that is, the imperfection



Fig. 5a. Power-law index vs. different edge conditions for a thick FGM beam-I
(Case I, L = 5 h).

Fig. 5b. Power-law index vs. different edge conditions for a thick FGM beam-
II (Case I, L = 5 h).

Fig. 5c. Power-law index vs. different edge conditions for a thick FGM beam-I
(Case II, L = 5 h).

Fig. 5d. Power-law index vs. different edge conditions for a thick FGM beam-
II (Case II, L = 5 h).
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impact is more visible. In point of fact, the difference between values
of two mixed materials can directly affect this finding. In addition to
these, for Figs. 5b and 5d, an intensive fall can be observed for results
between k = 0 and k = 1. This can be in light of the difference in the
elasticity modulus of two mixed materials. This means, going from
pure alumina state into the FGM compound leads to such the behavior.

With the help of Figs. 6a‐d and in conformity with Figs. 5a‐d, but
here we will continue to look for a very thick beam (L = 2 h). First,
we should state that the difference in results between the two perfect
and incomplete cases can be seen more seriously in diagrams of Figs. 6,
which can lead to the conclusion that the thicker the beam, the greater
the defect effect. Another important point to note may be that the dif-
ference in the results of the C–C, S–S and C–S boundary conditions is
increased against the free boundary condition and subsequently the
difference of their results decreases with each other as the beam thick-
ens. The comparison between Figs. 5 and 6 illustrates vividly this
result.

Figs. 7a–d are presented for a more complete examination of the
defects in both patterns. In Fig. 7a, which represents the first defect
pattern, the diagram starts from the case where a = 0, which means
that half the thickness is made up of the pure ceramic area. The end
Fig. 6a. Power-law index vs. different edge conditions for a very thick FGM
beam-I (Case I, L = 2 h).



Fig. 6c. Power-law index vs. different edge conditions for a very thick FGM
beam-I (Case II, L = 2 h).

Fig. 6d. Power-law index vs. different edge conditions for a very thick FGM
beam-II (Case II, L = 2 h).

Fig. 6b. Power-law index vs. different edge conditions for a very thick FGM
beam-II (Case I, L = 2 h).

Fig. 7a. The first pattern of imperfection vs. different edge conditions for a
thick FGM beam-I (L = 5 h).

Fig. 7b. The first pattern of imperfection vs. different edge conditions for a
thick FGM beam-II (L = 5 h).

Fig. 7c. The second pattern of imperfection vs. different edge conditions for a
thick FGM beam-I (L = 5 h).
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Fig. 7d. The second pattern of imperfection vs. different edge conditions for a
thick FGM beam-II (L = 5 h).

Fig. 8b. Slenderness ratio vs. different edge conditions for an FGM beam-II
(Case I, k = 1).

Fig. 8c. Slenderness ratio vs. different edge conditions for an FGM beam-I
(Case II, k = 1).
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of the horizontal axis is a = 0.5 h, which shows the perfect state. The
same is true in Fig. 7c, that is, when b = 0, we can say that half the
thickness is formed by pure metal, and b = 0.5 means a perfect FG
beam. Both modes are provided for a thick beam. As can be seen, with
increasing a/h and b/h values, the stability of the composite beam
decreases and increases, respectively. It should be remembered that
the increase of a means decreasing the amount of ceramic in the com-
posite material, while the increase of b means of decreasing the
amount of metal powder in the mixed material. As it turns out, the
defect in the FGM material does not affect strikingly the free edge
boundary condition. The physical reason for this may be that the sta-
bility of an FGM beam is at maximum affected by defect when the
beam itself can exhibit maximum resistance. In point of fact, this will
be possible when the degrees of freedom of both ends of the beam are
reduced.

Elseway, regarding Figs. 7b and 7d, the FGM beam‐II is assessed
precisely similar to Figs. 7a and 7c. Fig. 7b shows quite equivalent
with Fig. 7a but the alumina and aluminium are respectively substi-
tuted with the ceramic and metal. The prominence of the imperfection
effect is here easily seen compared with the two other figures. This
influence is evidently more prominent for C–C end conditions than
others.

Finally, by presenting Figs. 8a–d, we desire to investigate the effect
of the dimensionless parameter of slenderness ratio (L/h) on both
Fig. 8a. Slenderness ratio vs. different edge conditions for an FGM beam-I
(Case I, k = 1).

Fig. 8d. Slenderness ratio vs. different edge conditions for an FGM beam-II
(Case II, k = 1).
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defect patterns. The first pattern is displayed in Figs. 8a and 8b and the
second pattern is devoted in Figs. 8c and 8d for the two kinds of
beams, respectively. The figures are a linearly distribution of metal
and ceramic or alumina and aluminium. The results are obtained for
the two C–C and S–S boundary conditions. The interesting point in
these figures can be that by increasing the length‐to‐thickness ratio,
the slope of results of the C–C boundary condition has no regularity
like the hinge boundary condition. The reduction slope of the result
at the S‐S boundary condition is smooth and gradual. However, this
decreasing trend in the C–C will be at initial with a low slope and then
with a steeper gradient after L/h = 3. The reason may be that if the
beam is thicker or thinner, it has gradual importance on boundary con-
ditions, and the behavior is diverse for various end conditions. Hence,
it is important that the beam be thin, thick, or very thick, and results
will go with the fall for end conditions with lower degrees of freedom.
For this reason, the behavior of the curve results in a break. On the
other hand, it is quite obvious that in very large L/h values the signif-
icance of boundary conditions and consequently the defect will be neg-
ligibly small.

6. Conclusions

A defect in the material composition of FGM beams was investi-
gated in this paper. Moreover, the influence of stretching in thickness
layers was examined by a higher‐order elasticity theory (HPET). An
analytical solution was achieved to give the axial buckling behavior
of thick FGM beams on the basis of variants of end conditions. Plus,
a novel shear deformation shape function was proposed based on
the hyperbolic‐polynomial functions. To obtain the mathematical
model of the problem, energy principle and linear Lagrangian strain
have assisted. A full validation was prepared to assure the quality of
the new shape function. The imperfect FGM was analyzed with tabular
and pictorial numerical outcomes. The study generated some new find-
ings summarized below,

* The flexibility of boundary conditions directly affects the signifi-
cance of shear deformations.

* The EB and S‐FSDT can be applicable for thin (20 < L/h < ∞) and
moderately thick beams (10 < L/h < 20), respectively. And for
thick beams (5 < L/h < 10) their results fail and the higher‐
order elasticity theories based on modified shear deformations
should be used. However, when the material falls within the range
of a very thick beam (1 < L/h < 5) the results of the common
higher‐order theories fail, and the higher‐order theories based on
including the stretching effect should be taken into consideration
while there is difficulty to use of exact‐3D.

* The less‐flexible the boundary conditions, the more impact the
imperfections.

* The thicker the beam, the more prominent the influence of
imperfections.

* A drawback to the material composition of FGMs can lead to dis-
parate responses of such composite materials against mechanical
loading. This behavior which is dependent entirely on the differ-
ence between the two materials’ elasticity features can give an
unpredictable reaction if the basic concept and safety factor of
designing of parts and products made of FGMs are based on the per-
fect power‐law mixture.
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Appendix B. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.compstruct.2020.112486.
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