10,313 research outputs found

    Grid service discovery with rough sets

    Get PDF
    Copyright [2008] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.The computational grid is evolving as a service-oriented computing infrastructure that facilitates resource sharing and large-scale problem solving over the Internet. Service discovery becomes an issue of vital importance in utilising grid facilities. This paper presents ROSSE, a Rough sets based search engine for grid service discovery. Building on Rough sets theory, ROSSE is novel in its capability to deal with uncertainty of properties when matching services. In this way, ROSSE can discover the services that are most relevant to a service query from a functional point of view. Since functionally matched services may have distinct non-functional properties related to Quality of Service (QoS), ROSSE introduces a QoS model to further filter matched services with their QoS values to maximise user satisfaction in service discovery. ROSSE is evaluated in terms of its accuracy and efficiency in discovery of computing services

    Efficient algorithms for conditional independence inference

    Get PDF
    The topic of the paper is computer testing of (probabilistic) conditional independence (CI) implications by an algebraic method of structural imsets. The basic idea is to transform (sets of) CI statements into certain integral vectors and to verify by a computer the corresponding algebraic relation between the vectors, called the independence implication. We interpret the previous methods for computer testing of this implication from the point of view of polyhedral geometry. However, the main contribution of the paper is a new method, based on linear programming (LP). The new method overcomes the limitation of former methods to the number of involved variables. We recall/describe the theoretical basis for all four methods involved in our computational experiments, whose aim was to compare the efficiency of the algorithms. The experiments show that the LP method is clearly the fastest one. As an example of possible application of such algorithms we show that testing inclusion of Bayesian network structures or whether a CI statement is encoded in an acyclic directed graph can be done by the algebraic method

    Using Description Logics for Recognising Textual Entailment

    Get PDF
    The aim of this paper is to show how we can handle the Recognising Textual Entailment (RTE) task by using Description Logics (DLs). To do this, we propose a representation of natural language semantics in DLs inspired by existing representations in first-order logic. But our most significant contribution is the definition of two novel inference tasks: A-Box saturation and subgraph detection which are crucial for our approach to RTE

    On the Control of Non Holonomic Systems by Active Constraints

    Full text link
    The paper is concerned with mechanical systems which are controlled by implementing a number of time-dependent, frictionless holonomic constraints. The main novelty is due to the presence of additional non-holonomic constraints. We develop a general framework to analyze these problems, deriving the equations of motion and studying the continuity properties of the "control-to-trajectory" maps. Various geometric characterizations are provided, in order that the equations be affine w.r.t. the time derivative of the control. In this case the system is fit for jumps, and the evolution is well defined also in connection with discontinuous control functions. The classical Roller Racer provides an example where the non-affine dependence of the equations on the derivative of the control is due only to the non-holonomic constraint. This is a case where the presence of quadratic terms in the equations can be used for controllability purposes.Comment: 26 pages, 3 figures. The current version will appear on Discrete and Continuous Dynamical Systems, Series

    Biodiversity in a forest island: reptiles and amphibians of the West African Togo Hills

    Get PDF
    Our recent surveys of the herpetological diversity of the West African Togo Hills documented a total of 65 reptile and amphibian species, making Kyabobo National Park one of the most diverse sites surveyed in Ghana. We provide accounts for all species recorded along with photographs to aid in identification. We recorded 26 amphibians, including six new records for Kyabobo N. P., one of which is a record for the Togo Hills. Our collection of reptile species (22 lizards, 16 snakes, and one crocodile) also provides new records and range extensions for Kyabobo N. P., such as the first observation of the dwarf crocodile, Osteolaemus tetraspis. Amphibian species still lacking from our surveys in the Togo Hills include several species that are adapted to fast running water or large closed forests, like the Togo toad, Bufo togoensis and the slippery frog, Conraua derooi. Appropriate habitat for such species still remains in Kyabobo, highlighting the need for additional survey work. We draw attention to the importance of conserving forest stream habitats, which will in turn help ensure the persistence of forest-restricted species. We also highlight those species that may prove most useful for evolutionary studies of West African rain forest biogeography

    Geothermal reservoir engineering research

    Get PDF
    The Stanford University research program on the study of stimulation and reservoir engineering of geothermal resources commenced as an interdisciplinary program in September, 1972. The broad objectives of this program have been: (1) the development of experimental and computational data to evaluate the optimum performance of fracture-stimulated geothermal reservoirs; (2) the development of a geothermal reservoir model to evaluate important thermophysical, hydrodynamic, and chemical parameters based on fluid-energy-volume balances as part of standard reservoir engineering practice; and (3) the construction of a laboratory model of an explosion-produced chimney to obtain experimental data on the processes of in-place boiling, moving flash fronts, and two-phase flow in porous and fractured hydrothermal reservoirs
    • 

    corecore