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Abstract. The aim of this paper is to show how we can handle the Recognising
Textual Entailment (RTE) task by using Description Logics (DLs). To do this, we
propose a representation of natural language semantics in DLs inspired by existing
representations in first-order logic. But our most significant contribution is the
definition of two novel inference tasks: A-Box saturation and subgraph detection

which are crucial for our approach to RTE.

1 Introduction

Recognising textual entailment (RTE) is performing the following task:
given two texts T1 and T2 in natural language, determine if we can infer
T2 from T1. As an example consider the three following sentences:

A: “Adam has a son who has a son”,

B: “Adam has an offspring who has an offspring”,

C: “Adam is a grandfather”

We can infer B from A because a son is an offspring. We can also say that B
and C are equivalent because a grandfather is a male who has an offspring
who has an offspring and because Adam is a male name. But we cannot
infer A from B or C because an offspring can be a son or a daughter.

As we can see, recognising textual entailments is far from trivial, involv-
ing many issues that are difficult to solve. The main issue is that natural
language is highly expressive. Due to this expressivity, it is possible to
express the same meaning in several ways, as in B and C. Furthermore
modifying, adding or deleting a word in a sentence can completely change
its meaning (e.g., Adam (dis)likes Eve). Another important issue, related
to the first, is that there exists a huge number of synsets (i.e., sets of words
with the same meaning). It is difficult to exactly map the relation among
them (e.g., an offspring is a child) and to represent all background knowledge
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Using Description Logics for Recognising Textual Entailment

needed for detecting textual entailment. However, as the RTE task is widely
considered to be relevant for such tasks as Question-Answering, information
retrieval, multi-document summarization and information extraction, the
task has received a great deal of attention in recent years.

Several different approaches to this task have been proposed and some
of them have been compared in the RTE Pascal challenge [1]. This chal-
lenge compares the different approaches using a corpus of annotated pairs
of texts, usually referred to as T for Text and H for Hypothesis. For each
pair, it is specified whether T entails H or not. One outcome of this com-
parison is that symbolic methods perform better than statistical methods.
Symbolic methods — using techniques and intuitions rooted in semantics,
syntax, logic, etc — typically have about 75% accuracy. Statistical meth-
ods — based on techniques like n-grams, lexicon, etc — have about 60%
accuracy. The method that we describe in this paper is symbolic. It dif-
fers from other symbolic methods because it uses Description Logics. The
first important reason to choose these logics for the RTE task is that they
are decidable and there exists highly optimized reasoners (e.g., RACER [2])
for different inference tasks. Moreover, we can (at least partially) represent
background knowledge and the semantic representation of sentences in these
logics. Other symbolic techniques which have already been investigated for
the RTE task (e.g., lexical alignment to detect synonyms), could perhaps
be integrated into our approach, improving the performance, but we are not
going to discuss these possibilities here.

As Description Logics (DLs) are the core of our approach to textual en-
tailment, we will start with a very brief introduction to these formalisms.
Description Logics are formal languages for knowledge representation. They
were inspired by Quillian’s semantic network [3] and Minsky’s frame seman-
tics [4]. DLs classify knowledge in two parts: the T-Box and the A-Box.
The T-Box contains terminological information which is general (good for
representing background knowledge). The A-Box contains assertions which
are specific (good for representing sentences). Another way to see the divi-
sion between these two kinds of information is to regard the T-Box as rules
which govern our world (e.g., laws from physics, chemistry, biology, etc),
and the A-Box as depicting the world’s individuals (e.g., a table, a chair, a
man, etc).

Description Logics employ the notions of concept, role and individual.
Concepts are classes of elements and are interpreted as a subset of a given
universe. Roles are links between elements and are interpreted as binary
relations of a given universe. Individuals are the elements of a given universe.

A knowledge base Σ is a pair 〈T,A〉. T is the T(erminological)-Box, a
finite set of expressions called General Concept Inclusions (CGI) with shape
C1 ⊑ C2 where C1,C2 are concepts. The intended meaning of C1 ⊑ C2

is that the set of individuals in C1 is included in the set of individuals in
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C2. C1
.
= C2 is a notation for C1 ⊑ C2 and C2 ⊑ C1. Formulas of T are

also called terminological axioms. A is the A(ssertion)-Box, a finite set of
expressions with shape a:C or (a, b):R where C is a concept, R a role and a,b
two individuals. The first expression means that the individual a belongs to
the set of individuals satisfying C. The second expression means that the
relation R holds between a and b. Formulas of A are called assertions.

In the description logic that we used, which is known as ALCI [5], we
can form complex concepts from atomics concepts. They can be made up
by negation (¬), conjunction (⊓) and disjunction (⊔) of concepts. Roles can
either be atomic, or the inverse (R−) of an atomic role. We can also use
the universal quantifier (∀ Role.CONCEPT) to form a complex concept which
is true for an individual i if all roles Role which have for first argument
i, have for second argument an individual for whom CONCEPT is true. The
existential counterpart is defined as in first order logic: (∃Role.CONCEPT) ≡
(¬∀Role.¬CONCEPT).

Several reasoning tasks can be handled in DLs once we have defined a
knowledge base 〈T,A〉. For example, instance checking tests if an individual
is an instance of a specified concept. Relation checking tests if there exists a
relation between two individuals. Knowledge base consistency tests if 〈T,A〉
is consistent. These tasks can be used for defining more complex tasks such
as query individuals which find all instances of a concept.

We will define two novel reasoning tasks to use DLs for RTE. The most
important of these is the subgraph detection task, which we will discuss in
detail later; here we’ll introduce the simpler A-Box saturation task. This
consists of completing A-Box information according to a given T-Box. Given
a knowledge base 〈T,A〉, we say that A′ is a saturation if for each individual
a, atomic concept C and role R appearing in 〈T,A〉 there is an assertion a:C
in A′ if and only if 〈T,A〉 |= a:C, and an assertion (a, b):R in A′ if and only
if 〈T,A〉 |= (a, b):R.

For example we can have the following T-Box:

T =

{

PARENT
.
= ∃Parent-of.SOMEONE

GRANDFATHER
.
= ∃Father-of.PARENT

}

expressing respectively that parent is equivalent to someone who is the parent
of someone and grandfather is equivalent to someone who is the father of
someone who is a parent. We can also represent the sentence “Adam is the
father of someone who is the parent of someone” by the following assertions:

A =

{

a:ADAM, s1:SOMEONE, s2:SOMEONE
(a, s1):Father-of, (s1, s2):Parent-of

}

By applying the T-Box to the A-Box we can deduce that s1 is a PARENT

thanks to the first rule and that a is a GRANDFATHER thanks to the second
rule. If we add the two pieces of information to the A-Box, we obtain a
saturated A-Box.
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There exist automatic theorem provers for different DLs including ALCI
the logic we are going to use. They handle efficiently several reasoning
tasks, including instance and relation checking, concept and knowledge base
consistency, and getting all instances of a concept. They can also perform A-
Box saturation, but the more complex subgraph detection task will require
a new algorithm.

2 Representation of sentences in DLs

To start with, we will explain how the meaning of a sentence can be partially
represented as a DL formula. We say partially because the expressivity of
DLs is limited and the meaning of a text is complex, so our representation
is an approximation of the actual meaning of the text. For instance, many
syntactic elements such as articles, quantifiers, and modalities will not be
considered in our approach. The sentence “The cat eats an apple”, for
example, will be approximated by “cat eat apple”.

During the definition of our representation we should remember that
our final goal is recognising textual entailment, hence we should struggle to
have the same representation for the same meaning whenever possible. The
main idea of our approach is to represent each sentence by an A-Box, the
background knowledge by a T-Box and then to check if the model of the
entailed sentence is a subgraph of the graph of the entailing sentence.

We now describe our approach step by step. We first discuss how to
represent sentences in DLs. We start by introducing predicate-arguments
dependencies, then we discuss modifiers, and we finish by explaining adjec-
tives and negation.

Predicates-arguments dependencies. Our representation of sentences
is based on Davidson’s semantics [6] which represents events as individuals.
For example, the sentence “John loves Mary” is represented by the first
order formula love(e) ∧ john(j) ∧ mary(m) ∧ agent(e, j) ∧ patient(e,m).
Here e stands for the event of loving, j stands for the individual named
John, and m stands for the individuals named Mary. j is the agent of the
event e, and m is its patient.

By using Davidson’s semantics we only need to use unary or binary
predicates. This fits well with our DLs approach by making a correspondence
between unary predicates and concepts, and binary predicates and roles.
The sentence “John loves Mary” is represented in DL as e:LOVE, j:JOHN,
m:MARY, (e, j):Agent, (e, m):Patient.

We have agreed then on a semantic form, but we don’t know which
set of basic concepts and roles we will use for representing the meaning of
words and the relations between words. To define our signature (i.e., the
set of basic concepts and roles), we use the linguistic database FrameNet [7]

4



Paul Bedaride

based on frame semantics. FrameNet is composed of semantic frames which
involve frame elements and which are evoked by certain lexical units. For
instance, the Commercial transaction frame describes a common situation
involving a buyer, a seller, some goods and some money and it is evoked by
such words as buy, sell, pay, cost, spend, etc.

To specify the signature which allows us to represent verb semantics,
we link the frame semantics to our representation, and we link frames to
concepts which represent the sense of verbs, and frame elements to relations
which connect verbs to their arguments.

For example, when we want to represent a verb like sell, we start by
looking up in FrameNet the corresponding frame. FrameNet tells us that
the concept sell is represented by the frame COMMERCIAL TRANSACTION and
by the thematic relations Buyer, Seller, Goods and Money. Then for the
sentence “Adam buys chocolate in the supermarket for 2 euros”, we have the
following representation as a DL A-Box:

A =







ct:COMMERCIAL TRANSACTION

a:ADAM, s:SUPERMARKET, c:CHOCOLATE, p:2 EUROS

(ct, a):Buyer, (ct, s):Seller, (ct, c):Goods, (ct, p):Money







Verb modifiers. The meaning of a verb can be affected by modifiers
(e.g., place, time, manner, etc). For example in the sentence “The dog barks
loudly”, loudly affects the meaning of bark by adding to it the fact that
the sound produced by the bark is noisy. We must be able to say that
“The dog barks loudly” entails that “The dog barks” but not the converse.
Verbs may have many modifiers of the same type, but this is not a problem
with Davidson-style representations. For each modifier we simply conjoin
a concept which represents the modifier sense to the A-Box individual cor-
responding to the verb. For example, the sentence “John bought a car on
Monday 8 may at 5pm” has the following representation:

A =







ct:COMMERCIAL TRANSACTION ⊓ MONDAY ⊓ 8 MAY ⊓ 5PM

j:JOHN, c:CAR
(ct, j):Buyer, (ct, c):Goods







Adjectives. In Davidson’s approach, adjectives are represented as unary
predicates applied to the variable which represents the word to which the
adjective is applied. This representation can easily be used in DLs for adjec-
tives that modify nouns; such adjectives are essentially treated in the same
way that verb modifiers are. But adjectives can also occur following the
copula as in “The cat is big”. How do we treat them? As our final goal is
to recognize textual entailment, we have to be able to check that “The big
cat” is equivalent to “The cat is big”.

The simplest way to recognise textual entailment is to have the same
representation for the same meaning. We will thus represent adjectives and
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the verb to be in the same way. That is, for adjectives we add a concept
representing the adjective to the event individual which represents the word
to which the adjective is applied. And we consider the verb to be as an
isolated verb; we don’t create any individual for it, but we add to the in-
dividual representing the subject of the verb the concept representing the
verb’s copula. That is, “the big cat” and “the cat is big” will be represented
in the same way, by: c:CAT ⊓ BIG.

Negation. Even though, we have negation in our representation language,
modeling natural language negation is difficult. The problem is scope. For
example, for the sentence “The dog doesn’t bark loudly” there are two possi-
ble interpretations. In the first interpretation, negation takes narrow scope
and applies to loudly. In this reading we mean that the dog barks but that
it doesn’t bark loudly. In the second interpretation, negation takes wide
scope and applies to bark loudly. It means that we don’t know if the dog
barks, but if it barks it doesn’t do it loudly.

Scope is an ubiquitous phenomenon in natural language. Besides nega-
tion, it also plays a role for quantifiers and verb arguments (e.g., “John sees
the girl with the telescope”). We can try to analyse all possibilities, but this
soon leads to an exponential blowup (e.g., two negations in a sentence can
give rise to four different interpretations, three negation to eight different
meanings, and so on). Moreover, we must have a YES or NO answer for the
RTE task, hence what should we do if the possibilities don’t all agree?

Our choice of representation for negation is motivated by our mechanism
for recognising textual entailment. This mechanism is a mix between logical
implication and syntactic similarity. Let’s analyse a concrete example. We
take the following sentences: (A) “John didn’t buy a fruit”, (B) “John didn’t
buy a fruit at midnight”, (C) “John didn’t buy an apple”, and (D) “John
didn’t buy a big fruit” because they represent the most common kinds of
scope negation. With a standard reading of the sentences we are able to
detect the following entailments (and only those): (A)⇒(B), (A)⇒(C) and
(A)⇒(D).

To detect (A)⇒(B), we must have a logical implication between the
negation of the verb (i.e., “buy”) and the negation of the verb and its mod-
ifiers (i.e., “buy at midnight”). So we must have a scope for the nega-
tion on verb and its modifier, because otherwise we won’t detect ¬BUY ⊑
¬(BUY ∧ MIDNIGHT). To detect (A)⇒(C), we must have a logical implica-
tion between the concept FRUIT and the concept APPLE. Lexical knowledge
will give us the implication APPLE ⊑ FRUIT, but we need the contraposed
form ¬FRUIT ⊑ ¬APPLE. So we must have the negation of concepts associ-
ated with verb objects to detect this textual entailment. Finally, to detect
(A)⇒(D), we must have a logical implication between the negation of the
verb arguments (i.e., “fruit”) and the negation of the verb arguments and
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their adjectives. This is similar to the first case, so we have a scope for the
negation on the verb arguments and their adjectives ¬(FRUIT ∧ BIG).

3 Representing knowledge

Now that we have seen how to represent sentences in DLs by encoding them
into the A-Box, we will see how we use background knowledge to detect
textual entailments such as “a cat eats” ⇒ “an animal eats”. The knowledge
required to detect this entailment is lexical knowledge which explains that
a cat is an animal, thus that the CAT concept is subsumed by the ANIMAL

concept.

We use two repositories of lexical knowledge to detect textual entailment.
The first is FrameNet, which we already used to represent text with the same
meaning in the same way. The second is WordNet [8], which records different
lexical relations between synsets, like synonymy, antonymy or hyponymy.
To check that T entails H, we retrieve slt and slh, the synsets list of
the words of T and H using WordNet. For each synset st and sh of slt

and slh we check if there exists a lexical relation between them. If there
exists a synonymy relation between st and sh we add the following CGI to
the background knowledge: ST

.
= SH. If there exists an antonymy relation

between st and sh we add the following CGI to the background knowledge:
ST ⊑ ¬SH and SH ⊑ ¬ST. And finally for the hyponymy relation we have
three different cases. If st is an hyponym of sh then we get the following
CGI: SH ⊑ ST. If sh is an hyponym of st then we get ST ⊑ SH. And if sh

and st share an hyponym we get ST ⊑ ¬SH and SH ⊑ ¬ST.

For example, to detect the textual entailment “a cat eats” ⇒ “an animal
eats” we check lexical relations between senses of cat and animal using
WordNet. We get that cat is an hyponym of animal and we obtain the
CGI: CAT ⊑ ANIMAL. By applying this CGI to the representation of “a cat
eats” we obtain the following saturated A-Box for the sentence “a cat eats”:

A = {i:INGESTION, c:CAT ⊓ ANIMAL, (i, c):Ingestor}

4 Inference detection - Subgraph detection

We have now a way to represent sentences and use background knowledge to
detect textual entailment, and this brings us to the second, and more com-
plex, of our novel inference tasks: subgraph detection. It remains to specify
how we check if a sentence entails another sentence. To understand what
this involves, we must first note that a saturated A-Box can be represented
as one or more oriented and labeled graphs (see, for example Figure 1.1).
What we call subgraph detection is divided into three steps. First, we create
A-Boxes for the pair (T,H). Then we saturate them with the T-Box created
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Figure 1.1: The graph H is a subgraph of the graph T

by using WordNet. Finally we traverse the graphs corresponding to these
saturated A-Boxes to check if the second is a subgraph of the first. By doing
this we verify if all the information in H is also in T. The algorithm is shown
on Figure 1.2.

We need to do this because existing theorem provers for DLs focus on
tasks which involve one A-Box and one T-Box. There is no existing tool
which handles relations between two DL knowledge bases, and this is what
we required for RTE.

To illustrate our algorithm, we use the example in Figure 1.1 which aims
to show the entailment between the sentence T:“John buys a cat at the pet
shop for 50 euros” and the sentence H:“A shop sells an animal for 50 euros
to John”. These sentences are represented by the following A-Boxes:

T =







ct1:COMMERCIAL TRANSACTION

j1:JOHN, ps1:PET SHOP, c1:CAT, p1:50 EUROS

(ct1, j1):Buyer, (ct1, ps1):Seller, (ct1, c1):Goods, (ct1, p1):Money







H =







ct2:COMMERCIAL TRANSACTION

j2:JOHN, s2:SHOP, a2:ANIMAL, p2:50 EUROS

(ct2, j2):Buyer, (ct2, s2):Seller, (ct2, a2):Goods, (ct2, p2):Money







We compute the background knowledge for detecting the entailment between
these two sentences by using WordNet and we obtain the following T-Box:

BK =

{

CAT ⊑ ANIMAL

PET SHOP ⊑ SHOP)

}

By applying this background knowledge to the DLs representation of the
sentences T and H we obtain the graphs of the Figure 1.1.

Now we need to check whether a graph gh is a subgraph of another
graph gt. Our approach is divided in two parts: node checking and arc
checking. The first step consists in checking that there exists a function f

which links to each node nh of gh a node nt of gt such that the concept
associated to nh is subsumed by the concept associated to nt. The next
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deftype BIJ = Dict : {IND −> IND}
deftype UNBIJ = Dict : {IND −> ( L i s t : IND)}

/∗ t h e main f un c t i o n ∗/
def main ( t :ABOX, h :ABOX) : BOOL i s

b i j : BIJ // nodes t h a t have j u s t one cor r e spondance
unbi j :UNBIJ // nodes t h a t have more than one cor r e spondance
foreach ind in h . g e t I nd i v id u a l s do // g e t b i j and un b i j

inds = t . i n d s S a t i s f y i n g ( ind . concepts )
i f l en ( inds )>1 then

unbi j [ ind ] = inds
e l i f l en ( inds)==1 then

b i j [ ind ] = inds
else

pr in t ‘ ‘ no correspondence f o r i n d i v i d u a l ’ ’ + ind . name
stop

return t e s tA l lB i j e c t i o n ( b i j , unbi j )

/∗ f i n d a l l b i j e c t i o n s and t e s t them ∗/
def t e s tA l l B i j e c t i o n s ( b i j : BIJ , unbi j :UNBIJ) : BOOL i s

i f l en ( unbi j )<=0 then

t e s tB i j e c t i o n ( b i j ) // we have a b i j e c t i o n and we t e s t i t
else

ind , L i s t [ Ind ] = unbi j . pop
foreach i in L i s t [ Ind ] do

i f t e s tA l lB i j e c t i o n s ( b i j +(ind , [ i ] ) , unbi j ) then

return True
unbi j . append ( ind , L i sd [ Ind ] )
return False

/∗ t e s t i f w i t h t h i s b i j e c t i o n t he en t a i lmen t i s c o r r e c t ∗/
def t e s tB i j e c t i o n ( b i j : BIJ ) : BOOL i s

foreach ( src , trg , name) in h . ge tRe l at i on s do : // t e s t a l l r e l a t i o n s
i f not t . hasRelat ion ( b i j [ s r c ] , b i j [ t r g ] , name) then

return False
return True .

Figure 1.2: Algorithm for subgraph detection

step is to check for each arc a of gh between nodes n1 and n2 if there is an
arc between f(n1) and f(n2) in gt which have the same label as a.

Now that we know how to check if a graph gh is a subgraph of a graph
gt, we will check if the graph of the sentence H is a subgraph of the graph
of the sentence T. The first step is to find if there exists a function f .
In our example, finding this function is easy, and it is defined like this:
f(ct2) = ct1, f(j2) = j1, f(a2) = c1, f(s2) = ps1, f(p2) = p1. Now
for the second step we must check arcs, and we can see easily that the arcs
of the graph of the sentence H exist in the graph of the sentence T via the
function f . For instance, the arc Buyer between ct2 and j2 exists between
f(ct2 and f(j2), that is to say ct1 and j1.

We have used a simple example, but subgraph checking works with more
complex graphs. By more complex graphs we mean graphs containing iden-
tically labelled nodes, or more than one relation between two nodes. The
limit of our algorithm is when we have existentially quantified information,
because in the saturated A-Box we don’t expand existentials. So if we com-
pare the saturated A-Boxes of “Adam is the father of someone who is a
parent of someone” and “Adam is a grandfather” we will have many nodes
in the first sentence and only one in the second. Thus the first sentence
implies the second but not the converse.
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5 Tests and Conclusion

To test our algorithm we have made an implementation in Python which
uses the DL prover RACER. The application takes a file as input which
contains pairs T,H of texts which have been annotated by hand with respect
to whether T entails H or not, and it generates the semantics1 by using
the C&C Tools and Boxer [9], and adds the relevant lexical knowledge to
detect entailment using WordNet. After computing all this information,
it will use the algorithm we describe in the previous section to test if T
entail H. We have tested our algorithm on PARC sentence pairs from the
University of Illinois at Urbana-Champaign, which contains 76 pairs selected
to show relevant issues important to the textual entailment. We can test
our implementation on only 75 pairs, as the semantic generation step fails
in one of them. We obtain the following results:

By Hand
Sum

True False

Application
True 23 10 33
False 18 24 42

Sum 41 34 75

These tests have shown that what we do works for what we want to do.
That is to say, it works for detecting entailments between simple sentences
(with verbs, noun, verb modifiers, noun modifiers and negation), with simple
lexical knowledge. As we said at the start of the paper, the present system
is not intended to handle entailments which need complex knowledge, or
entailments which hold due to modality, time expressions, quantification or
counting. The incorrect cases in the test set were usually of this kind.

Our approach is limited by the expressivity of our representation, which
handles only a tiny fragment of the English language. Due to the expres-
sivity of DLs, some fragments of English will be hard to represent. For
instance, modality needs ideas form modal logic to be represented cor-
rectly (e.g., “John is an alleged murderer” is represented by the formula
john(j) ∧ alleged(murderer(j)) in neo-Davison’s semantic). Nevertheless,
by using more expressives description logics, we can handle some other frag-
ments, such as articulate connective examples (e.g., “if Mary comes, then
John comes too”).

Currently we are working on the implementation of a syntactic analyser
which translates text into our DL representation by using FrameNet, and
testing the use of more expressive logics. For instance, we can use the one-
of operator O [5] to have constraints on labelled nodes in terminological
axioms. This could be useful for representing sentences with disjunction

1At present the system doesn’t use FrameNet, and instead we take the verb as concept
and basic roles as agent and patient. Becuase of this we will miss converse cases (i.e., to

sell and to buy) in our test.
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on individuals like “John loves Mary or Jane”. We can also use hybrid
logics [10] as H(@) for having more expressive constraints on labelled nodes,
and to represent articulate connectives.
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