40 research outputs found

    Multiple access protocols for multichannel communication systems

    Get PDF
    Thesis (M.Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2000.Includes bibliographical references (leaves 108-111).System architecture design, evaluation, and optimization are key issues to developing communication systems that meet the requirements of today and expectations of the future. In this thesis, we introduce the concept of multiple access communication and the need to use efficient transmission techniques to expand both present and future wireless communication networks. We will study two areas regarding multiple access on multichannel communication systems. First, we describe fundamental multiplexing techniques that we can build upon and investigate the performance of different candidate architectures for the transmission of messages from bursty sources on multiple channels. We will consider traditional protocols such as Time Division Multiple Access (TDMA) and Slotted ALOHA (S-ALOHA) alongside a channelized architecture, which is based on the idea of multiplexing by dividing total transmission capacity into a fixed number of frequency channels. We develop mathematical models that describe the overall delay for sending large messages of a fixed length arriving from bursty sources and analyze their performances. We will make real-world parameter assumptions in the context of wireless networks and analyze the performance to develop intuition about the effectiveness of the different architectures. Second, we will investigate channel capacity allocation among mixed traffic, i.e., multiple classes of users. We will consider a first-come first-serve (FCFS) access strategy, a non-preemptive priority scheme, a preemptive resume priority scheme, and several channel capacity allocation schemes. We develop models that describe the overall delay for sending messages and analyze their performance. Our focus will concentrate on two classes of users. This scenario is typical of classes of users with small and large messages to transmit. present quantitative results by making real-world parameter assumptions in the context of wireless networks and analyze the performance to develop intuition about the effectiveness of each architecture.by Serena Chan.M.Eng

    Queueing models for token and slotted ring networks

    Get PDF
    Currently the end-to-end delay characteristics of very high speed local area networks are not well understood. The transmission speed of computer networks is increasing, and local area networks especially are finding increasing use in real time systems. Ring networks operation is generally well understood for both token rings and slotted rings. There is, however, a severe lack of queueing models for high layer operation. There are several factors which contribute to the processing delay of a packet, as opposed to the transmission delay, e.g., packet priority, its length, the user load, the processor load, the use of priority preemption, the use of preemption at packet reception, the number of processors, the number of protocol processing layers, the speed of each processor, and queue length limitations. Currently existing medium access queueing models are extended by adding modeling techniques which will handle exhaustive limited service both with and without priority traffic, and modeling capabilities are extended into the upper layers of the OSI model. Some of the model are parameterized solution methods, since it is shown that certain models do not exist as parameterized solutions, but rather as solution methods

    Analysis of exhaustive limited service for token ring networks

    Get PDF
    Token ring operation is well-understood in the cases of exhaustive, gated, gated limited, and ordinary cyclic service. There is no current data, however, on queueing models for the exhaustive limited service type. This service type differs from the others in that there is a preset maximum (omega) on the number of packets which may be transmitted per token reception, and packets which arrive after token reception may still be transmitted if the preset packet limit has not been reached. Exhaustive limited service is important since it closely approximates a timed token service discipline (the approximation becomes exact if packet lengths are constant). A method for deriving the z-transforms of the distributions of the number of packets present at both token departure and token arrival for a system using exhaustive limited service is presented. This allows for the derivation of a formula for mean queueing delay and queue lengths. The method is theoretically applicable to any omega. Fortunately, as the value of omega becomes large (typically values on the order of omega = 8 are considered large), the exhaustive limited service discipline closely approximates an exhaustive service discipline

    Discrete-time queueing models: generalized service mechanisms and correlation effects

    Get PDF
    corecore