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Abstract

In this paper we consider a single-server cyclic polling system. Between visits to suc-
cessive queues, the server is delayed by a random switch-over time. The order in which
customers are served in each queue is determined by a priority level that is assigned to each
customer at his arrival. For this situation the following service disciplines are considered:
gated, exhaustive, and globally gated. We study the cycle time distribution, the waiting times
for each customer type, the joint queue length distribution of all priority classes at all queues
at polling epochs, and the steady-state marginal queue length distributions for each customer
type.

Keywords: Polling, priority levels, queue lengths, waiting times

1 Introduction

A polling model is a single-server system in which the server visits N queues Q1, . . . , QN in
cyclic order. Customers that arrive at Qi are referred to as type i customers. The special feature
of the model considered in the present paper is that, within a customer type, we distinguish
multiple priority levels. More specifically, we study a polling system which consists of N queues,
Q1, . . . , QN , and Ki priority levels in Qi . The exhaustive, gated and globally gated service
disciplines are studied.

Our motivation to study a polling model with priorities is that scheduling through the introduction
of priorities in a polling system can improve the performance of the system significantly without
having to purchase additional resources [23]. Priority polling systems can be used to study the
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Bluetooth and IEEE 802.11 wireless LAN protocols, or scheduling policies at routers and I/O
subsystems in web servers. For example, Quality-of-Service (QoS) has become a very important
issue in wireless LAN protocols because delays in responses or data transmissions do not have
a major impact on, e.g., web browsing or email traffic, but video transmissions and Voice over
Wireless LAN (VoWLAN) are very sensitive to delays or loss of data. The 802.11e amendment
introduces different priority levels to differentiate between types of data in order to improve QoS
for streaming traffic. In production environments the introduction of priorities can lead to smaller
mean waiting times. It is shown in [1, 23] that assigning highest priority to jobs with a service
requirement below a certain threshold level may reduce overall mean waiting times. Priority
polling models also can be used to study traffic intersections where conflicting traffic flows face
a green light simultaneously; e.g. traffic which takes a left turn may have to give right of way to
conflicting traffic that moves straight on, even if the traffic light is green for both traffic flows.

Although there is an extensive amount of literature available on polling systems, very few papers
treat priorities in polling models. Most of these papers only provide approximations or focus
on pseudo-conservation laws [12, 20]. Wierman, Winands and Boxma [23] have obtained exact
mean waiting time results using the Mean Value Analysis (MVA) framework for polling systems,
developed in [24]. The MVA framework can only be used to find the first moment of the waiting
time distribution for each customer type, and the mean residual cycle time. In a recent report
[1] we have studied a polling model with two queues that are served according to the exhaustive,
gated or globally gated service discipline. The first of these two queues contains customers of two
priority classes. The main contribution of [1] is the derivation of Laplace-Stieltjes Transforms
(LSTs) of the distributions of the marginal waiting times for each customer type; in particular it
turned out to be possible to obtain exact expressions for the waiting time distributions of both
high and low priority customers at a queue of a polling system. Probability Generating Functions
(GFs) have been derived for the joint queue length distribution at polling epochs, and for the
steady-state marginal queue length distribution of the number of customers at an arbitrary epoch.
In the present paper these results are generalised to a polling model with N queues and Ki priority
levels in Qi (i = 1, . . . , N ). The actual probability distributions can be obtained by numerical
inversion of the LSTs and GFs. A very efficient technique for numerical inversion of GFs and
LSTs in polling models is discussed in [8].

The present paper is structured as follows: Section 2 gathers known results of nonpriority polling
models which we shall need in the present study. Sections 3 (gated and exhaustive), and 4 (glob-
ally gated) give new results on the priority polling model. In each of the sections we succes-
sively discuss the joint queue length distribution at polling epochs, the cycle time distribution,
the marginal queue length distributions and waiting time distributions. The mean waiting times
are given at the end of each section.
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2 The nonpriority polling model

The model that is considered in this section, is a polling model with N queues (Q1, . . . , QN )
without priorities. Each queue is served according to either the gated, or the exhaustive ser-
vice discipline. The gated service discipline states that during a visit to Qi , only those type i
customers are served who are present at the moment that the server arrives at Qi . All type i cus-
tomers that arrive during the visit to Qi will be served during the next cycle. A cycle is the time
between two successive visit beginnings (or completions) at a queue. The exhaustive service
discipline states that when the server arrives at Qi , all type i customers that are present at that
polling epoch, and all type i customers that arrive during this particular visit to Qi , are served
until no type i customer is present in the system. In Section 4 we also consider the globally
gated service discipline, which is similar to the gated service discipline, except for the fact that
the symbolic gate is being set at the beginning of a cycle for all queues. This means that during
a cycle only those customers will be served that were present at the beginning of that cycle.

Customers of type i arrive at Qi according to a Poisson process with arrival rate λi . Service
times can follow any distribution. The LST of the distribution of the generic service time Bi of
type i customers is denoted by βi (·). The fraction of time that the server is serving customers of
type i equals ρi := λi E(Bi ). Switches of the server from Qi to Qi+1 (all indices modulo N ),
require a switch-over time Si . The LST of this switch-over time distribution is denoted by σi (·).
The fraction of time that the server is working (i.e., not switching) is ρ :=

∑N
i=1 ρi . We assume

that ρ < 1, which is a necessary and sufficient condition for the steady state distributions of
cycle times, queue lengths and waiting times to exist. We assume that all the usual independence
assumptions apply to the model under consideration.

This model has been extensively investigated. Takács [21] studied this model, but with only
two queues, without switch-over times and only with the exhaustive service discipline. Cooper
and Murray [10] analysed this polling system for any number of queues, and for both gated
and exhaustive service disciplines. Eisenberg [11] obtained results for a polling system with
switch-over times (but only exhaustive service) by relating the GFs of the joint queue length
distributions at visit beginnings, visit endings, service beginnings and service endings. Resing
[19] and Fuhrmann [13] both pointed out the relation between polling systems and Multitype
Branching Processes (MTBPs). Resing [19] considers the use of MTBPs with immigration in
each state, which makes it possible to relate polling systems with and without switch-over times.
His results can be applied to polling models in which each queue satisfies the following property:

Property 2.1 If the server arrives at Qi to find ki customers there, then during the course of
the server’s visit, each of these ki customers will effectively be replaced in an i.i.d. manner by
a random population having probability generating function hi (z1, . . . , zN ), which can be any
N -dimensional probability generating function.

We use this property, and the relation to Multitype Branching Processes, to find results for our
polling system with multiple priority levels, and gated, globally gated, and exhaustive service
discipline. Notice that, unlike the gated and exhaustive service disciplines, the globally gated
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service discipline does not satisfy Property 2.1. But the results obtained by Resing also hold
for a more general class of polling systems, namely those which satisfy the following (weaker)
property that is formulated in [2]:

Property 2.2 If there are ki customers present at Qi at the beginning (or the end) of a visit to
Qπ(i), with π(i) ∈ {1, . . . , N }, then during the course of the visit to Qi , each of these ki cus-
tomers will effectively be replaced in an i.i.d. manner by a random population having probabil-
ity generating function hi (z1, . . . , zN ), which can be any N -dimensional probability generating
function.

Globally gated and gated are special cases of the synchronised gated service discipline, which
states that only customers in Qi will be served that were present at the moment that the server
reaches the “parent queue” of Qi : Qπ(i). For gated service, π(i) = i , for globally gated service,
π(i) = 1. The synchronised gated service discipline is discussed in [17], but no observation
is made that this discipline is a member of the class of polling systems satisfying Property 2.2
which means that results as obtained in [19] can be extended to this model.

Borst and Boxma [3] combined the results of Resing [19] and Eisenberg [11] to find a relation
between the GFs of the marginal queue length distribution for polling systems with and without
switch-over times, expressed in the Fuhrmann-Cooper queue length decomposition form [14].

2.1 Joint queue length distribution at polling epochs

As discussed in [19], polling systems which satisfy Property 2.1 can be modelled as a MTBP. If
the polling model has switch-over times, as is assumed in the present paper, we are dealing with
a MTBP with immigration in each state. The immigration is formed by the customers that arrive
during the switch-over times and all of their descendants. Polling models without switch-over
times can be modelled as a MTBP with immigration in state zero (when the server is idle) only.
Although the present paper studies a polling model with switch-over times, it is possible to relate
results from a model with switch-over times to a model without switch-over times, as is shown
in [3].

For now, we choose the beginning of a visit to Q1 as start of a cycle. Property 2.1 states that each
customer present at the beginning of a cycle will be “replaced” by customers of type 1, . . . , N
during that cycle according to the probability generating function hi (z1, . . . , zN ), which depends
on the service discipline. If Qi (i = 1, . . . , N ) receives gated service, a customer of type i
present at the beginning of the cycle is replaced by the type 1, . . . , N customers that arrive during
his service: hi (z1, . . . , zN ) = βi (

∑N
j=1 λ j (1 − z j )). For exhaustive service, a type i customer

will not just be replaced by all type 1, . . . , N customers that arrive during his service, but also all
customers that arrive during the service of all type i customers that have arrived during the service
of this tagged customer, etc., until no type i customer is present in the system. The consequence
is that this type i customer has been replaced by the type j customers ( j = 1, . . . , N ; j 6= i) that
have arrived during the busy period (BP) of type i customers that is initiated by the particular
type i customer. This results in the expression hi (z1, . . . , zN ) = πi (

∑
j 6=i λ j (1 − z j )), where
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πi (·) is the LST of a BP distribution in an M/G/1 system with only type i customers, so it is the
root in (0, 1] of the equation πi (ω) = βi (ω + λi (1− πi (ω))), ω ≥ 0 (cf. [9], p. 250).

In order to find the joint queue length distribution at the beginning of a cycle, we have to define
the immigration GF and the offspring GF analogous to [19]. The first generation of offspring
consists of the customers that have effectively replaced the customers present at the beginning of
the cycle. The offspring GFs for queues N , N − 1, . . . , 1 are given below.

f (N )(z1, . . . , zN ) = hN (z1, . . . , zN ),

f (i)(z1, . . . , zN ) = hi (z1, . . . , zi , f (i+1)(z1, . . . , zN ), . . . , f (N )(z1, . . . , zN )),

i = 1, . . . , N − 1.

We define the GF for the nth generation of offspring recursively:

fn(z1, . . . , zN ) = ( f (1)( fn−1(z1, . . . , zN )), . . . , f (N )( fn−1(z1, . . . , zN ))),

f0(z1, . . . , zN ) = (z1, . . . , zN ).

The immigration GF is the GF of the joint distribution of the numbers of customers that are
present at the beginning of a cycle due to the immigration during the switch-over times of the
previous cycle. These customers can be divided into two groups: the customers that arrived
during a switch after the service of their queue, and offspring of customers that arrived during a
switch before the service of their queue. The immigration GFs are:

g(N )(z1, . . . , zN ) = σN (

N∑
j=1

λ j (1− z j )),

g(i)(z1, . . . , zN ) = σi (

i∑
j=1

λ j (1− z j )+

N∑
j=i+1

λ j (1− f ( j)(z1, . . . , zN ))), i = 1, . . . , N − 1.

The total immigration GF is the product of these GFs:

g(z1, . . . , zN ) =

N∏
i=1

g(i)(z1, . . . , zN ).

This leads to the following recursive expression for the GF of the steady-state joint queue length
at the beginning of a cycle (starting with a visit to Q1) :

P1(z1, . . . , zN ) = P1( f1(z1, . . . , zN ))g(z1, . . . , zN ). (2.1)

Resing [19] shows how (2.1) can be used to obtain moments from the marginal queue length
distribution at the beginning of a cycle. It is shown in [18] that iteration of (2.1) leads to

P1(z1, . . . , zN ) =

∞∏
n=0

g( fn(z1, . . . , zN )). (2.2)
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Resing [19] proves that this infinite product converges if and only if ρ < 1.

We can relate the steady-state joint queue length distribution at other visit beginnings and endings
to P1(z1, . . . , zN ). We denote the GF of the joint queue length distribution at a visit beginning
to Qi by Vbi (·), so Vb1(·) = P1(·). The queue length GF at a visit completion to Qi is denoted
by Vci (·). The following relation holds:

Vbi (z1, . . . , zN ) = Vci−1(z1, . . . , zN )σi−1(

N∑
j=1

λ j (1− z j ))

= Vbi−1(z1, . . . , zi−2, hi−1(z1, . . . , zN ), zi , . . . , zN )σi−1(

N∑
j=1

λ j (1− z j )).

(2.3)

Since Vb1(·) is known, applying (2.3) i − 1 times expresses Vbi (·) into Vb1(·) = P1(·). Applying
(2.3) N times gives expression (2.1).

2.2 Cycle time

The cycle time, starting at a visit beginning to Q1, is the sum of the visit times to Q1, . . . , QN ,
and the switch-over times S1, . . . , SN which are independent of the visit times. Let θi (·) denote
the LST of the distribution of the time that the server spends at Qi due to the presence of one
type i customer there. For gated service θi (·) = βi (·), for exhaustive service θi (·) = πi (·).
Furthermore, we define

ψi (ω) = ω + λi (1− θi (ω)), i = 1, . . . , N ,
ψi,N (ω) = ψi+1(ψi+2(. . . (ψN (ω)))), i = 1, . . . , N − 1,
ψN ,N (ω) = ω.

It is shown in [7] that the LST of the distribution of the cycle time C1, γ1(·), is related to P1(·)

as follows:

γ1(ω) =

N∏
i=1

σi (ψi,N (ω)) P1(θ1(ψ1,N (ω)), . . . , θN (ψN ,N (ω))).

In the present paper we need expressions for the LST of the distribution of the cycle time starting
at the beginning of a visit to an arbitrary queue. We denote the cycle time starting with a visit
beginning to Q j by C j , and its LST by γ j (·). It is straightforward to see that

γ j (ω) =

N∏
i=1

σi (ψi, j−1(ω)) Vb j (θ1(ψ1, j−1(ω)), . . . , θN (ψN , j−1(ω))), (2.4)
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where we use the following notation:

ψi, j (ω) = ψi+1(. . . (ψ j (ω))), j = 1, . . . , N ; i < j,
ψi, j (ω) = ψi+1(. . . (ψN (ψ1(. . . (ψ j (ω)))))), j = 1, . . . , N ; i > j,
ψ j, j (ω) = ω, j = 1, . . . , N .

When analysing a queue with exhaustive service, it is convenient to define C∗j to be the time
between two successive visit completions to Q j . The LST of its distribution, denoted by γ ∗j (·),
is:

γ ∗j (ω) =

N∏
i=1

σi (ψ
∗

i, j (ω)) Vc j (θ1(ψ1, j (ω)), . . . , θN (ψN , j (ω))), (2.5)

with Vc j (z1, . . . , zN ) = Vb j (z1, . . . , z j−1, h j (z1, . . . , zN ), z j+1, . . . , zN ), and

ψ∗i, j (ω) = ψi, j (ω), j = 1, . . . , N ; i 6= j,

ψ∗j, j (ω) = ψ j+1(. . . (ψN (ψ1(. . . (ψ j (ω)))))), j = 1, . . . , N .

2.3 Marginal queue lengths and waiting times

We denote the GF of the steady-state marginal queue length distribution of Qi at the visit be-
ginning by Ṽbi (z) = Vbi (1, . . . , 1, z, 1, . . . , 1), with z as i th argument. Analogously we define
Ṽci (·). It is shown in [3] that the steady-state marginal queue length of Qi can be decomposed
into two parts: the queue length of the corresponding M/G/1 queue with only type i customers,
and the queue length at an arbitrary epoch during the intervisit period of Qi , denoted by Ni |I .
An intervisit period of Qi is the time between a visit ending at Qi , and the next visit beginning
at Qi . Borst [2] shows that by virtue of PASTA, Ni |I has the same distribution as the number of
type i customers seen by an arbitrary type i customer arriving during an intervisit period, which
equals

E(zNi |I ) =
E(zNi |Ibegin )− E(zNi |Iend )

(1− z)(E(Ni |Iend)− E(Ni |Ibegin))
, (2.6)

where Ni |Ibegin is the number of type i customers at the beginning of an intervisit period Ii , and
Ni |Iend is the number of type i customers at the end of Ii . Since the beginning of an intervisit
period coincides with the completion of a visit to Qi , and the end of an intervisit period coincides
with the beginning of a visit, we know the GFs for the distributions of these random variables:
Ṽci (·) and Ṽbi (·). This leads to the following expression for the GF of the steady-state queue
length distribution of Qi at an arbitrary epoch, E[zNi ]:

E[zNi ] =
(1− ρi )(1− z)βi (λi (1− z))

βi (λi (1− z))− z
·

Ṽci (z)− Ṽbi (z)
(1− z)(E(Ni |Iend)− E(Ni |Ibegin))

. (2.7)

Keilson and Servi [15] show that the distributional form of Little’s law can be used to find the
LST of the distribution of the marginal waiting time Wi : E(zNi ) = E(e−λi (1−z)(Wi+Bi )), hence
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E(e−ωWi ) = E[(1− ω
λi
)Ni ]/βi (ω). This can be substituted into (2.7):

E[e−ωWi ] =
(1− ρi )ω

ω − λi (1− βi (ω))
·

Ṽci

(
1− ω

λi

)
− Ṽbi

(
1− ω

λi

)
(E(Ni |Iend)− E(Ni |Ibegin))ω/λi

= E[e−ωWi |M/G/1]E

[(
1−

ω

λi

)Ni |I
]
. (2.8)

The interpretation of this formula is that the waiting time of a type i customer in a polling model
is the sum of two independent random variables: the waiting time of a customer in an M/G/1
queue with only type i customers, Wi |M/G/1, and the remaining intervisit time for a customer
that arrives at an arbitrary epoch during the intervisit time of Qi .

For gated service, the number of type i customers at the beginning of a visit to Qi is exactly the
number of type i customers that arrived during the previous cycle, starting at Qi . In terms of GFs:
Ṽbi (z) = γi (λi (1 − z)). The type i customers at the end of a visit to Qi are exactly those type
i customers that arrived during this visit. In terms of GFs: Ṽci (z) = γi (λi (1 − βi (λi (1 − z)))).
We can rewrite E(Ni |Iend) − E(Ni |Ibegin) as λi E(Ii ), because this is the mean number of type
i customers that arrive during an intervisit time. In Section 2.4 we observe that λi E(Ii ) =

λi (1− ρi )E(C). Using these expressions we can rewrite Equation (2.8) for gated service to:

E[e−ωWi ] =
(1− ρi )ω

ω − λi (1− βi (ω))
·
γi (λi (1− βi (ω)))− γi (ω)

(1− ρi )ωE(C)
. (2.9)

For exhaustive service, Ṽci (z) = 1, because Qi is empty at the end of a visit to Qi . The number
of type i customers at the beginning of a visit to Qi in an exhaustive polling system is equal to
the number of type i customers that arrived during the previous intervisit time of Qi . Hence,
Ṽbi (z) = Ĩi (λi (1 − z)), where Ĩi (·) is the LST of the intervisit time distribution for Qi . Sub-
stitution of Ĩi (ω) = Ṽbi (1 −

ω
λi
) in (2.8) leads to the following expression for the LST of the

steady-state waiting time distribution of a type i customer in an exhaustive polling system:

E[e−ωWi ] =
(1− ρi )ω

ω − λi (1− βi (ω))
·

1− Ĩi (ω)

ωE(Ii )
. (2.10)

In [1] another expression is found for E[e−ωWi ]. Let the cycle time C∗i be the time between two
successive visit completions to Qi . The LST of the cycle time distribution, γ ∗i (·), is given by
(2.5). In [1] an equation is derived that expresses Ĩi (·) in γ ∗i (·):

Ĩi (ω) = γ
∗

i (ω − λi (1− βi (ω))). (2.11)

Using this expression we can write E[e−ωWi ] in terms of E[e−ωC∗i ]:

E[e−ωWi ] =
1− γ ∗i (ω − λi (1− βi (ω)))

(ω − λi (1− βi (ω)))E(C)

= E[e−(ω−λi (1−βi (ω)))C∗i,res], (2.12)

where C∗i,res is the residual length of C∗i .
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Remark 2.3 Substitution of ω := s + λi (1− πi (s)) in (2.12) leads to:

E[e−(s+λi (1−πi (s)))Wi ] = E[e−(s+λi (1−πi (s))−λi (1−βi (s+λi (1−πi (s)))))C∗i,res]

= E[e−(s+λi (1−πi (s))−λi (1−πi (s)))C∗i,res]

= E[e−sC∗i,res].

The interpretation, which can also be found in [4], is that the residual cycle time consists of
two components; firstly the amount of work present at the beginning of the residual cycle, and
secondly all work that arrives at Qi during the residual cycle. By virtue of PASTA, the amount
of work at the beginning of the residual cycle is the waiting time of an arbitrary type i customer.
The work that arrives during this waiting time, is equal to the length of the busy periods generated
by the customers that have arrived during this waiting time.

2.4 Moments

The focus of this paper is on LST and GF of distribution functions, not on their moments. Mo-
ments can be obtained by differentiation or Taylor series expansion, and are also discussed in
[23]. In this subsection we will only mention some results that will be used later.

First we derive the mean cycle time E(C). Unlike higher moments of the cycle time, the mean
does not depend on where the cycle starts: E(C) = E(S)

1−ρ , where S =
∑N

i=1 Si . This can easily
be seen, because 1 − ρ is the fraction of time that the server is not working, but switching. The
total mean switch-over time is

∑N
i=1 E(Si ) = E(S).

The expected length of a visit to Qi is E(Vi ) = ρi E(C), hence the mean length of an intervisit
period for Qi is E(Ii ) = (1 − ρi )E(C). Notice that these expectations do not depend on the
service discipline used. The expected number of type i customers at polling moments does
depend on the service discipline. For gated service the expected number of type i customers at
the beginning of a visit to Qi is λi E(C). For exhaustive service this is λi E(Ii ).

Moments of the waiting time distribution for a type i customer at an arbitrary epoch can be
derived from the LSTs given by (2.9), (2.10) and (2.12). We only present the first moment:

Qi gated: E(Wi ) = (1+ ρi )
E(C2

i )

2E(C)
, (2.13)

Qi exhaustive: E(Wi ) =
E(I 2

i )

2E(Ii )
+

ρi

1− ρi

E(B2
i )

2E(Bi )
,

= (1− ρi )
E(C∗i

2)

2E(C)
. (2.14)

Notice that the start of Ci is the beginning of a visit to Qi for gated service, whereas the start of
C∗i is the end of a visit for exhaustive service. Equations (2.13) and (2.14) are in agreement with
Equations (4.1) and (4.2) in [4], which also gives interpretations of these equations. Although
at first sight these might seem nice, closed formulas, it should be noted that second moments
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of the cycle time and intervisit time are not easy to determine, requiring the solution of a set
of equations. MVA is an efficient technique to compute mean waiting times, the mean residual
cycle time, and also the mean residual intervisit time. We refer to [24] for an MVA framework
for polling models.

3 The priority polling model with gated and/or exhaustive
service

In this section we study a polling system with N queues. The service discipline of each queue
is either gated, or exhaustive. Each queue contains customers that can be divided into one or
more priority classes. Let Ki be the total number of priority levels in Qi . Customers of level
1 receive highest priority, customers of level Ki receive lowest priority. Customers in Qi of
priority level k (k = 1, . . . , Ki ) arrive according to a Poisson process with intensity λik , and
have a service requirement Bik with LST βik(·). If we consider the total number of customers
in each queue at polling epochs, which means that we ignore the fact that they will be served
according to their priority levels instead of ordinary First-Come-First-Served (FCFS), all the
results from Subsections 2.1 and 2.2 still hold. In this situation the system should be regarded as
a polling system with N queues where customers in Qi arrive according to a Poisson process with
intensity λi :=

∑Ki
k=1 λik and have service requirement Bi with LST βi (·) =

∑Ki
k=1

λik
λi
βik(·).

We follow the same approach as in Section 2. First we study the joint queue length distribution
of all customer types at polling epochs, then the cycle time distribution, followed by the marginal
queue length distribution and waiting time distribution, which depend on the service discipline
in the selected queue. Subsection 3.4 provides the first moment of these distributions. The last
subsection gives a pseudo-conservation law for this system.

3.1 Joint queue length distribution at polling epochs

Equation (2.2) gives the GF of the joint queue length distribution at the beginning of a visit
to Q1 in a non-priority polling system. Equation (2.3) can be used to find the GF of the joint
queue length distribution at the beginning of a visit to any other queue. The introduction of
multiple priority levels to this polling system will only affect the queue length of a queue that
is being served, but it will not affect the queue lengths at polling epochs. At the beginning
of a visit to Qi , a waiting type i customer has priority level k with probability λik/λi . We
can express the GF of the joint queue length distribution in the polling system with priorities,
Vbi (z11, . . . , z1K1, . . . , zN1, . . . , zN KN ), in terms of the GF of the joint queue length distribution
in the polling system without priorities, Vbi (z1, . . . , zN ).

10



Lemma 3.1

Vbi (z11, . . . , z1K1, . . . , zN1, . . . , zN KN ) = Vbi

(
1
λ1

K1∑
k=1

λ1kz1k, . . . ,
1
λN

KN∑
k=1

λNkzNk

)
. (3.1)

Proof:
Let X i jk be the number of customers with priority level k present in Q j at the beginning of a
visit to Qi (i, j = 1, . . . , N ). Let X i j =

∑K j
k=1 X i jk . Since the type j customers with priority k

are exactly those customers that arrived since the previous visit beginning (for gated service; for
exhaustive: visit ending) at Q j , we know that for i, j = 1, . . . , N :

P(X i j1 = n1, X i j2 = n2, . . . , X i j K j = nK j |X i j = n)

=
n!

n1! · · · nK j !

(
λ j1

λ j

)n1

· · ·

(
λ j K j

λ j

)nK j

,

under the condition
∑K j

k=1 nk = n.

Hence, for i, j = 1, . . . , N :

E[z
X i j1
j1 · · · z

X i j K j
j K j
|X i j = n)

=

∞∑
n1=0

· · ·

∞∑
nK j=0

zn1
j1 · · · z

nK j
j K j

P(X i j1 = n1, X i j2 = n2, . . . , X i j K j = nK j |X i j = n)

=

∑
n1, . . . , nK j

n1 + · · · + nK j = n

n!
n1! · · · nK j !

(
λ j1

λ j
z j1

)n1

· · ·

(
λ j K j

λ j
z j K j

)nK j

=

 K j∑
k=1

λ jk

λ j
z jk

n

.

Finally,

Vbi (z11, . . . , z1K1, . . . , zN1, . . . , zN KN )

=

∞∑
n1=0

· · ·

∞∑
nN=0

N∏
j=1

 K j∑
k=1

λ jk

λ j
z jk

n j

P(X i1 = n1, . . . , X i N = nN )

= Vbi

(
1
λ1

K1∑
k=1

λ1kz1k, . . . ,
1
λN

KN∑
k=1

λNkzNk

)
, i = 1, . . . , N .

�
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3.2 Cycle time

The LST of the cycle time distribution is still given by (2.4) (cycle starting at a visit begin-
ning) or (2.5) (cycle starting at a visit completion) if we define λi :=

∑Ki
k=1 λik and βi (·) :=∑Ki

k=1
λik
λi
βik(·), for i = 1, . . . , N , because the cycle time does not depend on the order of ser-

vice within each queue.

3.3 Marginal queue lengths and waiting times

The LST of the marginal queue length distribution of Qi at an arbitrary epoch depends on the
service discipline that is used to serve Qi , and so does the LST of the waiting time distribution.
First we study a queue with gated service, afterwards a queue with exhaustive service.

Gated service

We focus on a particular queue, say Qi , assuming it has gated service. We determine the LST
of the waiting time distribution for a type i customer with priority level k, from now on called
a “type ik customer”, using the fact that this customer will not be served until the next cycle
(starting at a visit beginning to Qi ). The time from the start of the cycle until the arrival of
this customer will be called “past cycle time”, denoted by Ci P . The residual cycle time will
be denoted by Ci R . The waiting time of a type ik customer is composed of Ci R , the service
times of all higher priority customers that arrived during Ci P + Ci R , and the service times of
all type ik customers that have arrived during Ci P . Let NH (T ) be the number of higher priority
customers that have arrived during time interval T , and equivalently define Nk(T ) for the type ik
customers. The arrival process of higher priority customers is a Poisson process with intensity
λH :=

∑k−1
j=1 λi j . This intensity equals 0 if k = 1, which corresponds to the highest priority

customers in Qi . The service time distribution of these higher priority customers is denoted by
BH (suppressing i and k for notational reasons), with LST βH (·) :=

∑k−1
j=1

λi j
λH
βi j (·).

Theorem 3.2 The LST of the waiting time distribution of a type ik customer in a polling system
with Qi being served according to the gated discipline, is:

E
[
e−ωWik

]
=
γi (λH (1− βH (ω))+ λik(1− βik(ω)))− γi (ω + λH (1− βH (ω)))

[ω − λik(1− βik(ω))]E(C)
.

12



Proof:

E
[
e−ωWik

]
=E

[
e−ω(Ci R+

∑NH (Ci P+Ci R )
j=1 BH, j+

∑Nk (Ci P )
j=1 Bik, j )

]
=

∫
∞

t=0

∫
∞

u=0

∞∑
m=0

∞∑
n=0

E
[
e−ω(u+

∑m
j=1 BH, j+

∑n
j=1 Bik, j )

]
· P(NH (Ci P + Ci R) = m, Nk(Ci P) = n) dP(Ci P < t,Ci R < u)

=

∫
∞

t=0

∫
∞

u=0
e−ωu

∞∑
m=0

∞∑
n=0

E
[
e−ω

∑m
j=1 BH, j

]
E
[
e−ω

∑n
j=1 Bik, j

]
·
(λH (t + u))m

m!
e−λH (t+u) (λik t)n

n!
e−λik t dP(Ci P < t,Ci R < u)

=

∫
∞

t=0

∫
∞

u=0
e−t (λH (1−βH (ω))+λik(1−βik(ω)))e−u(ω+λH (1−βH (ω))) dP(Ci P < t,Ci R < u)

=
γi (λH (1− βH (ω))+ λik(1− βik(ω)))− γi (ω + λH (1− βH (ω)))

[ω − λik(1− βik(ω))]E(C)
. (3.2)

For the last step in the derivation of (3.2) we used

E[e−ωP Ci P−ωRCi R ] =
E[e−ωP Ci ] − E[e−ωRCi ]

(ωR − ωP)E(C)
,

see, e.g., [6]. The cycle time Ci starts with a visit beginning to Qi , and its LST γi (·) is given by
(2.4). �

We now present an alternative derivation of (3.2) by modelling the system in such a way that
the Fuhrmann-Cooper decomposition [14] can be used. Fuhrmann and Cooper [14] showed
that the waiting time of a customer in an M/G/1 queue with server vacations is the sum of two
independent quantities: the waiting time of a customer in a corresponding M/G/1 queue without
vacations, and the residual vacation time. Conditions that have to be satisfied in order to use this
composition, are:

1. Poisson arrivals, service times are independent of each other, of the arrival process and of
the sequence of vacation periods that precede a certain service time;

2. all customers are eventually served;

3. customers are served in an order that is independent of their service times;

4. service is nonpreemptive;

5. the rules that govern when the server begins and ends vacations do not anticipate future
jumps of the Poisson arrival process.

13



In order to use the Fuhrmann-Cooper decomposition to determine E
[
e−ωWik

]
, we first model the

system as a polling system with N + 2 queues (Q1, . . . , Qi−1, Q H , Qik, QL , Qi+1, . . . , QN )

and no switch-over times between Q H , Qik , and QL . Q H contains all type i customers with
priority level higher than k (i.e. priority index less than k), Qik contains all type i customers
of priority level k, and QL contains all type i customers of priority level lower than k. Lower
priority customers arrive according to a Poisson process with intensity λL :=

∑Ki
j=k+1 λi j (again

suppressing index i for notational reasons). The service time distribution of these customers is
denoted by BL , with LST βL(·) :=

∑Ki
j=k+1

λi j
λL
βi j (·). The service discipline of this equivalent

system is synchronised gated, which is a more general version of gated. The gates for queues
Q H , Qik , and QL are set simultaneously when the server arrives at Q H , but the gates for the
other queues are still set at the server’s arrival at these queues. From the viewpoint of a type
ik customer, and as far as waiting times are concerned, this system is an M/G/1 queue with
generalised vacations (because service is not exhaustive and the length of a vacation is positively
correlated with the length of a visit period). The vacation is the intervisit period of Qik , which
starts with a service to QL and ends when Q H is served. Fuhrmann and Cooper [14] state that
the number of type ik customers in the system at an arbitrary epoch (Nik) is the sum of the queue
length in an isolated M/G/1 queue with only type ik customers (Nik|M/G/1), and the number of
type ik customers at a random epoch during a vacation (Nik|I ):

E
[
zNik

]
=
(1− ρik)(1− z)βik(λik(1− z))

βik(λik(1− z))− z
·

Ṽcik (z)− Ṽbik (z)
(1− z)(E(Nik|Iend)− E(Nik|Ibegin))

. (3.3)

Equation (2.6) has been used to derive the second term at the right-hand side of (3.3), where
Ṽbik (z) denotes the GF of the distribution of the number of type ik customers at the beginning of
a visit to Qik , and Ṽcik (z) denotes the GF at the completion of a visit to Qik . The number of type
ik customers at the beginning of a visit to Qik is the number of type ik customers that arrived
during the previous cycle (starting with a visit to Qi , which corresponds to a visit beginning to
Q H in this model), plus the number of type ik customers that arrived during the service of the
type H customers that arrived during the previous cycle. However, because of the synchronised
gated service discipline only those type ik customers present at the visit beginning of Q H will
be served:

Ṽbik (z) = γi (λH (1− βH (λik(1− z)))+ λik(1− z)),

Ṽcik (z) = γi (λH (1− βH (λik(1− z)))+ λik(1− βik(λik(1− z)))).

Furthermore, we have E(Nik|Iend) − E(Nik|Ibegin) = λik E(Iik) = λik(1 − ρik)E(C). Now, to
derive the LST of the waiting time Wik , we can apply the distributional form of Little’s law [15]
to (3.3), because the required conditions are fulfilled for each customer class (including customer
types H , ik, and L): the customers enter the system in a Poisson stream, every customer enters
the system and leaves the system one at a time in order of arrival, and for any time t the entry
process into the system of customers after time t and the time spent in the system by any customer
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arriving before time t are independent. This leads to the following expression:

E
[
e−ωWik

]
=

(1− ρik)ω

ω − λik(1− βik(ω))

·
γi (λH (1− βH (ω))+ λik(1− βik(ω)))− γi (ω + λH (1− βH (ω)))

(1− ρik)ωE(C)
. (3.4)

We recognise the first term on the right-hand side of (3.4) as the LST of the waiting time dis-
tribution of an M/G/1 queue with only type ik customers. Equation (3.4) can be rewritten to
(3.2).

Exhaustive service

Analysis of the model with exhaustive service requires a different approach. The key observation,
made by Fuhrmann and Cooper [14], is that the polling system from the viewpoint of a type i
customer is an M/G/1 queue with multiple server vacations. The M/G/1 queue with priorities
and vacations has been extensively analysed by Kella and Yechiali [16]. We use their approach
to find the waiting time LST for type ik customers. Kella and Yechiali [16] distinguish between
systems with single and multiple vacations, and preemptive resume and nonpreemptive service.
The polling system that we consider corresponds to the system with multiple vacations, because
the server is never idling, but keeps on switching if the system is empty. In the present paper we
do not focus on preemptive resume, but we will give some results on it later in this subsection.
First we focus on the case labelled as NPMV (nonpreemptive, multiple vacations) in [16]. We
consider the system from the viewpoint of a type ik customer to derive E[e−ωWik ]. For the
waiting time of a type ik customer, the order in which the higher priority customers are served is
irrelevant. We will refer to all type i customers with higher priority than k as “type H customers”
arriving according to one Poisson stream with intensity λH :=

∑k−1
j=1 λi j . The service time

distribution of these customers is denoted by BH , with LST βH (·) :=
∑k−1

j=1
λi j
λH
βi j (·). A busy

period of type H customers is denoted by BPH with LST πH (·) which is the root of the equation
πH (ω) = βH (ω + λH (1 − πH (ω))). In a similar way we define “type L” customers which
arrive according to a Poisson stream with intensity λL :=

∑Ki
j=k+1 λi j . The service time of these

customers is denoted by BL , with LST βL(·) :=
∑Ki

j=k+1
λi j
λL
βi j (·).

From the viewpoint of a type ik customer and as far as waiting times are considered, a polling
system is a nonpriority single server system with multiple vacations. The vacation can either be
the intervisit period Ii , or a busy period of type H customers, or the service of a type L customer.
The LSTs of these three types of vacations are:

E[e−ωIi ] = Ṽbi (1− ω/λi ),

E[e−ωBPH ] = πH (ω), (3.5)

E[e−ωBL ] = βL(ω).
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The first equality in Equation (3.5) follows immediately from the fact that the number of type i
customers at the beginning of a visit to Qi is the number of type i customers that have arrived
during the previous intervisit period: Ṽbi (z) = E[e−(λi (1−z))Ii ].

The key observation is that an arrival of a type ik customer will always take place within either
an IH,ik cycle, or an L H,ik cycle. An IH,ik cycle is a cycle that starts with an intervisit period for
Qi , followed by the service of all customers with priority level H or k, and ends at the moment
that no type H or ik customers are left in the system. Notice that at the start of the intervisit
period, no type H or ik customers were present in the system either. An L H,ik cycle is a similar
cycle, but starts with the service of a type L customer. This cycle also ends at the moment that
no type H or ik customers are left in the system.

The fraction of time that the system is in an L H,ik cycle is ρL
1−ρH−ρik

, because type L customers
arrive with intensity λL . Each of these customers will start an L H,ik cycle and the length of an
L H,ik cycle equals E(BL )

1−ρH−ρik
:

E(L H,ik cycle) = E(BL)+ λH,ik E(BL)E(BPH,ik)

= E(BL)+ λH,ik E(BL)
E(BH,ik)

1− ρH,ik

=

(
1+

ρH + ρik

1− ρH − ρik

)
E(BL) =

E(BL)

1− ρH − ρik
,

where λH,ik, BH,ik,BPH,ik , and ρH,ik denote the intensity, service time, busy period and occu-
pation rate corresponding to type i customers with priority level 1, . . . , k.

The fraction of time that the system is in an IH,ik cycle, is 1 − ρL
1−ρH−ρik

=
1−ρi

1−ρH−ρik
. This

result can also be obtained by using the argument that the fraction of time that the system is in an
intervisit period is the fraction of time that the server is not serving Qi , which is equal to 1−ρi . A
cycle which starts with such an intervisit period and stops after the service of all customers with
priority levels 1, . . . , k that arrived during the intervisit period and their descendants of priority
levels 1, . . . , k, has mean length E(Ii ) + λH,ik E(Ii )E(BPH,ik) =

E(Ii )
1−ρH−ρik

. This also leads to

the conclusion that 1−ρi
1−ρH−ρik

is the fraction of time that the system is in an IH,ik cycle.

A type ik customer arriving during an IH,ik cycle views the system as a nonpriority M/G/1
queue with multiple server vacations. The service requirement in this system is not the service
requirement of a type ik customer, Bik , but the time that is required to serve a type ik customer
and all higher priority customers that arrive during this service until no higher priority customers
are present in the system. We will elaborate on this so-called completion time later. The vacation
is the intervisit time Ii , plus the service times of all type H customers that have arrived during
that intervisit time and their type H descendants. We denote this extended intervisit time by I ∗i
with LST

Ĩ ∗i (ω) = Ĩi (ω + λH (1− πH (ω))).

The mean of I ∗i equals E(I ∗i ) =
E(Ii )
1−ρH

.

A type ik customer arriving during an L H,ik cycle views the system as a nonpriority M/G/1
queue with multiple server vacations BL plus the busy periods generated by all type H customers
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that have arrived during the service time of the type L customer. We will denote this extended
service time by B∗L with mean E(B∗L) =

E(BL )
1−ρH

, and LST

β∗L(ω) = βL(ω + λH (1− πH (ω))).

We also have to take into account that a busy period of type ik customers might be interrupted
by the arrival of type H customers. Therefore, in the alternative system that we are considering,
the service time of a type ik customer is equal to Bik plus the service times of all type H cus-
tomers that arrive during this service time, and all of their type H descendants. The LST of the
distribution of this extended service time B∗ik is

β∗ik(ω) = βik(ω + λH (1− πH (ω))).

This extended service time is often called completion time in the literature, cf. [22]. In this
alternative system, the mean service time of these customers equals E(B∗ik) =

E(Bik)
1−ρH

. The

fraction of time that the system is serving these customers is ρ∗ik =
ρik

1−ρH
= 1− 1−ρH−ρik

1−ρH
.

Theorem 3.3 The LST of the waiting time distribution of a type ik customer in polling system
with Qi being served exhaustively, is:

E[e−ωWik ] =
(1− ρ∗ik)ω

ω − λik(1− β∗ik(ω))
·

[
1− ρi

1− ρH − ρik
·

1− Ĩ ∗i (ω)
ωE(I ∗i )

+
ρL

1− ρH − ρik
·

1− β∗L(ω)
ωE(B∗L)

]
.

(3.6)

Proof:
The system has been modelled as an M/G/1 queue with customers that have service require-
ment B∗ik , and multiple server vacations that have length I ∗i with probability 1−ρi

1−ρH−ρik
, and

length B∗L with probability ρL
1−ρH−ρik

. Equation (3.6) follows immediately from application of
the Fuhrmann-Cooper decomposition to this system. �

Remark 3.4 Equation (3.6) can be rewritten in several forms, which lead to different interpreta-
tions. A compact form is

E[e−ωWik ] =

1−ρi
E(Ii )
[1− Ĩi (ω + λH − λHπH (ω))] + λL [1− βL(ω + λH − λHπH (ω))]

λikβik(ω + λH − λHπH (ω))− λik + ω
, (3.7)

which is the form used by Kella and Yechiali (see [16], Section 4.1).

Another form, which is more suitable for interpretation, is

E[e−ωWik ] =
(1− ρ∗ik)ω

ω − λik(1− β∗ik(ω))

·

[
1− ρi

1− ρH − ρik
·

1− Ĩi (ω + λH (1− πH (ω)))

(ω + λH (1− πH (ω)))E(Ii )

+
ρL

1− ρH − ρik
·

1− βL(ω + λH (1− πH (ω)))

(ω + λH (1− πH (ω)))E(BL)

]
·

[
(1− ρH )+ ρH ·

1− πH (ω)

ωE(BPH )

]
.

(3.8)
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The first term on the right hand side of (3.8) is the LST of the waiting time distribution of a
customer in a nonpriority M/G/1 queue with customers arriving with intensity λik and having
service requirement LST β∗ik(·), i.e. the completion time of a type ik customer. The second term
indicates that with probability 1−ρi

1−ρH−ρik
a type ik customer has to wait a residual intervisit time,

plus the busy periods of all higher priority customers that arrive during this residual intervisit
time. With probability ρL

1−ρH−ρik
the customer has to wait a residual service time of a type L

customer, plus the busy periods of all higher priority customers that arrive during this residual
intervisit time. The last term in (3.8) indicates that with probability ρH a customer also has to
wait for the residual length of a busy period of higher priority customers.

Remark 3.5 Substitution of (2.11) in (3.7) leads to a different expression for E[e−ωWik ]:

E[e−ωWik ]

=
1− γ ∗i

(
ω − λik(1− βik(ω + λH (1− πH (ω))))− λL(1− βL(ω + λH (1− πH (ω))))

)
[ω − λik(1− βik(ω + λH (1− πH (ω))))]E(C)

+
λL
[
1− βL(ω + λH (1− πH (ω)))

]
ω − λik(1− βik(ω + λH (1− πH (ω))))

. (3.9)

For the lowest priority customers this expression simplifies to

E[e−ωWi Ki ] =
1− γ ∗i

(
ω − λi Ki (1− βi Ki (ω + λH (1− πH (ω))))

)(
ω − λi Ki (1− βi Ki (ω + λH (1− πH (ω))))

)
E(C)

= E[e−(ω−λi Ki (1−βi Ki (ω+λH (1−πH (ω)))))C∗i,res],

where type H customers in this case are all type i customers except for those with the lowest
priority.

Remark 3.6 In the derivation of Equation (3.6) we followed the approach of Kella and Yechiali
[16], but restricted ourselves to the nonpreemptive situation only. However, the M/G/1 queue
with generalised vacations with preemptive resume priorities is discussed in [16] and the results
can be applied to our polling model. We only present the final result here:

E[e−ωWik ] =

1−ρi
E(Ii )
[1− Ĩi (ω + λH − λHπH (ω))] + ρL [ω + λH − λHπH (ω)]

λikβik(ω + λH − λHπH (ω))− λik + ω
. (3.10)

We refer to [16] for the proof of (3.10).

We will refrain from mentioning the GFs of the marginal queue length distributions here, because
they can be obtained by applying the distributional form of Little’s law as we have done before.

3.4 Moments

As mentioned in Section 2.4, we do not focus on moments in this paper, and we only mention the
mean waiting times of type ik customers. The formulas in this subsection can also be obtained
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using MVA, as shown in [23], but we have obtained them by differentiating (3.2), (3.6), and
(3.10) respectively:

Qi gated: E(Wik) = (1+ 2ρH + ρik)E(Ci,res)

= (1+ 2
k−1∑
j=1

ρi j + ρik)E(Ci,res),

Qi exhaustive
(nonpreemptive): E(Wik) =

∑Ki
j=1 ρi j E(Bi j,res)+ (1− ρi )E(Ii,res)

(1−
∑k−1

j=1 ρi j )(1−
∑k

j=1 ρi j )
,

Qi exhaustive
(preemptive resume): E(Wik) =

∑k
j=1 ρi j E(Bi j,res)+ (1− ρi )E(Ii,res)

(1−
∑k−1

j=1 ρi j )(1−
∑k

j=1 ρi j )
.

Differentiation of (3.9) leads an to alternative expression for the mean waiting time of a type ik
customer if Qi is served exhaustively:

E(Wik) =
(1− ρi )

2

(1− ρH )(1− ρH − ρik)

E(C∗i
2)

2E(C)

=
(1− ρi )

2

(1−
∑k−1

j=1 ρi j )(1−
∑k

j=1 ρi j )

E(C∗i
2)

2E(C)
.

Notice that the cycle time in this exhaustive case starts at a visit completion to Qi .

3.5 A pseudo-conservation law

Let V be the amount of work in the polling system at an arbitrary epoch. Boxma and Groenendijk
[5] show that V can be written as the sum of two independent random variables:

V =
d

VM/G/1 + VI , (3.11)

with VM/G/1 the amount of work at an arbitrary epoch in the corresponding M/G/1 queue, and
VI the amount of work in the system at an arbitrary epoch in an intervisit period when the server
is idling. It is shown in [5] that relation (3.11) leads to a pseudo-conservation law for nonpriority
polling systems which is not specified in more detail here. This law has been generalised for
polling systems with multiple priority levels in each queue in [20] and [12]:

N∑
i=1

Ki∑
k=1

ρik E(Wik) =
ρ

1− ρ

N∑
i=1

Ki∑
k=1

ρik
E(B2

ik)

2E(Bik)

+ ρ
E(S2)

2E(S)
+

[
ρ2
−

N∑
i=1

ρ2
i

]
E(S)

2(1− ρ)
+

N∑
i=1

E(Zi i ),

(3.12)
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where S =
∑N

i=1 Si and Zi i is the amount of work left behind by the server at Qi at the
completion of a visit. Equation (3.12) is called a pseudo-conservation law because it indi-
cates that the weighted sum of the mean waiting times

∑N
i=1

∑Ki
k=1 ρik E(Wik) is constant, ex-

cept for the term Zi i which depends on the service discipline. For gated service, E(Zi i ) =

ρ2
i E(C). For exhaustive service, E(Zi i ) = 0 because Qi is empty at the completion of a visit

to this queue. For globally gated service, which is discussed in the next section, E(Zi i ) =

ρi

(
E(C)

∑i
j=1 ρ j +

∑i−1
j=1 E(S j )

)
.

4 Globally gated service

In this section we discuss a polling model with N queues (Q1, . . . , QN ) and Ki priority classes
in Qi with globally gated service. For this service discipline, only customers that were present
when the server started its visit to Q1 are served. This feature makes the model exactly the same
as a nonpriority polling model with

∑N
i=1 Ki queues (Q11, . . . , Q1K1, . . . , QN1, . . . , QN KN ).

It was observed in Section 2 that, although this system does not satisfy Property 2.1, it does
satisfy Property 2.2 which implies that we can still follow the same approach as in the previous
sections.

4.1 Joint queue length distribution at polling epochs

We define the beginning of a visit to Q1 as the start of a cycle, since this is the moment that de-
termines which customers will be served during the next visits to the queues. Arriving customers
will always be served in the next cycle, so the offspring GFs are:

f (ik)(z11, . . . , z1K1, . . . , zN1, . . . , zN KN )

= hik(z11, . . . , z1K1, . . . , zN1, . . . , zN KN )

= βik(

N∑
j=1

K j∑
l=1

λ jl(1− z jl)), i = 1, . . . , N ; k = 1, . . . , Ki .

The N immigration functions are:

g(i)(z11, . . . , z1K1, . . . , zN1, . . . , zN KN ) = σi (

N∑
j=1

K j∑
l=1

λ jl(1− z jl)), i = 1, . . . , N .

Using these definitions, the formula for the GF of the joint queue length distribution at the be-
ginning of a cycle is similar to the one found in Section 2:

P1(z11, . . . , z1K1, . . . , zN1, . . . , zN KN ) =

∞∏
n=0

g( fn(z11, . . . , z1K1, . . . , zN1, . . . , zN KN )). (4.1)
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Notice that in a system with globally gated service it is possible to express the joint queue length
distribution at the beginning of a cycle in terms of the cycle time LST, since all customers that
are present at the beginning of a cycle are exactly all of the customers that have arrived during
the previous cycle:

P1(z11, . . . , z1K1, . . . , zN1, . . . , zN KN ) = γ1(

N∑
i=1

Ki∑
k=1

λik(1− zik)). (4.2)

4.2 Cycle time

Since only those customers that are present at the start of a cycle, starting at Q1, will be served
during this cycle, the LST of the cycle time distribution is

γ1(ω) =

N∏
i=1

σi (ω)P1(β11(ω), . . . , β1K1(ω), . . . , βN1(ω), . . . , βN KN (ω)). (4.3)

Substitution of (4.2) into this expression gives us the following relation:

γ1(ω) =

N∏
i=1

σi (ω) γ1(

N∑
i=1

Ki∑
k=1

λik(1− βik(ω))).

Boxma, Levy and Yechiali [6] show (for a model without priorities) that this relation leads to the
following expression for the cycle time LST:

γ1(ω) =

∞∏
i=0

σ(δ(i)(ω)),

where σ(·) =
∏N

i=1 σi (·), and δ(i)(ω) is recursively defined as follows:

δ(0)(ω) = ω,

δ(i)(ω) = δ(δ(i−1)(ω)), i = 1, 2, 3, . . . ,

δ(ω) =

N∑
i=1

Ki∑
k=1

λik(1− βik(ω)).
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4.3 Marginal queue lengths and waiting times

The expression for E(e−ωWik ) can be obtained by the method used in Section 3.3:

E
[
e−ωWik

]
=

i−1∏
j=1

σ j (ω) ·
(
[ω − λik(1− βik(ω))]E(C)

)−1

·

γ1(

i−1∑
j=1

λ j (1− β j (ω))+ λH (1− βH (ω))+ λik(1− βik(ω)))

−γ1(ω +

i−1∑
j=1

λ j (1− β j (ω))+ λH (1− βH (ω)))

 . (4.4)

We can use the distributional form of Little’s law to determine the LST of the marginal queue
length distribution of Qik . Substituting ω := λik(1−z) in (4.4) yields an expression for E

[
zNik

]
,

the GF of the distribution of the number of type ik customers at an arbitrary epoch.

4.4 Moments

We can obtain E(Wik) by differentiation of (4.4):

E(Wik) =

i−1∑
j=1

E(S j )+ (1+ 2
i−1∑
j=1

ρ j + 2ρH + ρik)E(C1,res)

=

i−1∑
j=1

E(S j )+ (1+ 2
i−1∑
j=1

K j∑
l=1

ρ jl + 2
k−1∑
l=1

ρil + ρik)E(C1,res).

The interpretation of this expression is that the mean waiting time of a type ik customer in a
globally gated polling system consists of the mean residual cycle time, the mean switch-over
times S1+· · ·+ Si−1, the mean service times of all type 1, . . . , i−1 customers that arrive during
the past cycle time plus the residual cycle time, the mean service times of all type i customers
with higher priority level than k that arrive during the past cycle time plus the mean residual
cycle time, and the mean service times of all type i customers of priority level k that have arrived
during the past cycle time. Notice that the mean past cycle time is equal to the mean residual
cycle time.

5 Numerical example

Consider a polling system with two queues, and assume exponential service times and switch-
over times. Suppose that λ1 =

6
10 , λ2 =

2
10 , E(B1) = E(B2) = 1, E(S1) = E(S2) = 1. The

22



workload of this polling system is ρ = 8
10 . This example is extensively discussed in [24] where

MVA is used to compute mean waiting times and mean residual cycle times for the gated and
exhaustive service disciplines, and in [1], where it is shown that the performance of this system
can be improved by dividing jobs into two categories (small and large service times) and giving
higher priority to jobs with smaller service times. In this example we illustrate how much further
the performance of this system can be improved by increasing the number of priority levels in
Q1. Let K1 be the number of priority levels in Q1. We define thresholds t1, . . . , tK1−1 that divide
the jobs arriving in Q1 into K1 classes: jobs with a service time less than t1 receive highest
priority, jobs with a service time between t1 and t2 receive second highest priority, and so on.
The thresholds t1, . . . , tK1−1 are determined in such a way that the overall mean waiting time for
customers in Q1 is minimised. The values of these thresholds depend on the service discipline
and are discussed in [23]. Figures 1 and 2 show the overall mean waiting time for customers
in Q1 versus the number of priority levels K1 for gated and exhaustive service respectively.
Notice that K1 = 1 corresponds to a system without priorities in which customers are served
FCFS. Both plots indicate that most of the improvement is obtained for values of K1 up to 3
or 4. Creating more than 4 priority levels hardly improves this system anymore. The situation
K1 → ∞ corresponds to a system with shortest-job-first (SJF) policy, which results in a mean
waiting time of 10.38 for gated service, and 3.53 for exhaustive service. The dotted horizontal
lines in Figures 1 and 2 indicate these values.

From Figures 1 and 2 we can conclude that, as far as overall mean waiting time is concerned, the
introduction of priority levels significantly improves the performance of this polling system of
two queues. An interesting question is whether the introduction of multiple priority levels still
significantly improves the performance of a polling system consisting of more than two queues.
In order to answer this question we compare polling systems with identical total occupation rate
and identical total mean switch-over time. We only vary the number of queues N and, in order
to keep the total occupation rate constant, the arrival intensities λi , i = 1, . . . , N . All systems
are symmetrical, which means that in each system λi = 3/N , ρi = ρ/N , E(Bi ) = β, E(Si ) =

E(S)/N , i = 1, . . . , N . For this example we use 3 = 8
10 , Bi exponentially distributed with

mean β = 1, and deterministic switch-over times with E(S) = 2. Figures 3 (gated) and 4
(exhaustive) show the mean waiting time (which is identical for each queue, because of symme-
try) versus the number of queues in the system. In each figure the mean waiting time is plotted
for both the FCFS and the SJF policy. The mean waiting time of SJF provides a lower bound
for what can be achieved by introducing priority levels. A conclusion that can be drawn from
both figures is that the relative improvement by adding priority levels decreases quickly when
the number of queues increases. This suggests that the introduction of priority levels has less
influence in a system with more queues, because the server spends a greater part of each cycle
serving other queues. Another typical feature that is illustrated in Figures 3 and 4 is that the
mean waiting time of an arbitrary customer decreases when the number of queues increases in a
gated polling system, whereas it increases in an exhaustive polling system. This can be verified
using the pseudo-conservation law. For a polling system without priorities with FCFS service at
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each queue, Equation (3.12) reduces to

N∑
i=1

ρi E(Wi ) =
ρ

1− ρ

N∑
i=1

ρi
E(B2

i )

2E(Bi )

+ ρ
E(S2)

2E(S)
+

[
ρ2
−

N∑
i=1

ρ2
i

]
E(S)

2(1− ρ)
+

N∑
i=1

E(Zi i ).

The Zi i (i = 1, . . . , N ) depend on the service discipline that is used and are discussed in Sub-
section 3.5. For an exhaustive polling system, E(Zi i ) = 0, so if we substitute ρi = ρ/N , we
obtain

E(Wi ) =
ρ

1− ρ
E(B2

i )

2E(Bi )
+

E(S2)

2E(S)
+

(
1−

1
N

)
ρE(S)

2(1− ρ)
,

which indeed gets larger as N increases. For gated service, we have E(Zi i ) =
ρ2

i E(S)
1−ρ , which

results in

E(Wi ) =
ρ

1− ρ
E(B2

i )

2E(Bi )
+

E(S2)

2E(S)
+

(
1+

1
N

)
ρE(S)

2(1− ρ)
.

This expression indeed gets smaller as N increases. In practice this means that mean waiting
times can be reduced when gated service is used, by creating more queues and assign arriving
customers to a random queue. It is however questionable whether this can be realised without
changing the total switch-over time distribution. Notice that for N →∞ the mean waiting time
in an exhaustive symmetric polling system is equal to the mean waiting time in a gated symmetric
polling system.
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Figure 1: Overall mean waiting time of customers in Q1 in the gated polling system, versus
number of priority levels K1.
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Figure 2: Overall mean waiting time of customers in Q1 in the exhaustive polling system, versus
number of priority levels K1.
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Figure 3: Mean waiting time E(Wi ) in the gated polling system, versus number of queues.
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Figure 4: Mean waiting time E(Wi ) in the exhaustive polling system, versus number of queues.
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