5 research outputs found

    Graph Mixture Density Networks

    Full text link
    We introduce the Graph Mixture Density Networks, a new family of machine learning models that can fit multimodal output distributions conditioned on graphs of arbitrary topology. By combining ideas from mixture models and graph representation learning, we address a broader class of challenging conditional density estimation problems that rely on structured data. In this respect, we evaluate our method on a new benchmark application that leverages random graphs for stochastic epidemic simulations. We show a significant improvement in the likelihood of epidemic outcomes when taking into account both multimodality and structure. The empirical analysis is complemented by two real-world regression tasks showing the effectiveness of our approach in modeling the output prediction uncertainty. Graph Mixture Density Networks open appealing research opportunities in the study of structure-dependent phenomena that exhibit non-trivial conditional output distributions

    Query by Example of Audio Signals using Euclidean Distance Between Gaussian Mixture Models

    No full text

    Indexing and knowledge discovery of gaussian mixture models and multiple-instance learning

    Get PDF
    Due to the increasing quantity and variety of generated and stored data, the manual and automatic analysis becomes a more and more challenging task in many modern applications, like biometric identification and content-based image retrieval. In this thesis, we consider two very typical, related inherent structures of objects: Multiple-Instance (MI) objects and Gaussian Mixture Models (GMM). In both approaches, each object is represented by a set. For MI, each object is a set of vectors from a multi-dimensional space. For GMM, each object is a set of multi-variate Gaussian distribution functions, providing the ability to approximate arbitrary distributions in a concise way. Both approaches are very powerful and natural as they allow to express (1) that an object is additively composed from several components or (2) that an object may have several different, alternative kinds of behavior. Thus we can model e.g. an image which may depict a set of different things (1). Likewise, we can model a sports player who has performed differently at different games (2). We can use GMM to approximate MI objects and vice versa. Both ways of approximation can be appealing because GMM are more concise whereas for MI objects the single components are less complex. A similarity measure quantifies similarities between two objects to assess how much alike these objects are. On this basis, indexing and similarity search play essential roles in data mining, providing efficient and/or indispensable supports for a variety of algorithms such as classification and clustering. This thesis aims to solve challenges in the indexing and knowledge discovery of complex data using MI objects and GMM. For the indexing of GMM, there are several techniques available, including universal index structures and GMM-specific methods. However, the well-known approaches either suffer from poor performance or have too many limitations. To make use of the parameterized properties of GMM and tackle the problem of potential unequal length of components, we propose the Gaussian Components based Index (GCI) for efficient queries on GMM. GCI decomposes GMM into their components, and stores the n-lets of Gaussian combinations that have uniform length of parameter vectors in traditional index structures. We introduce an efficient pruning strategy to filter unqualified GMM using the so-called Matching Probability (MP) as the similarity measure. MP sums up the joint probabilities of two objects all over the space. GCI achieves better performance than its competitors on both synthetic and real-world data. To further increase its efficiency, we propose a strategy to store GMM components in a normalized way. This strategy improves the ability of filtering unqualified GMM. Based on the normalized transformation, we derive a set of novel similarity measures for GMM. Since MP is not a metric (i.e., a symmetric, positive definite distance function guaranteeing the triangle inequality), which would be essential for the application of various analysis techniques, we introduce Infinite Euclidean Distance (IED) for probability distribution functions, a metric with a closed-form expression for GMM. IED allows us to store GMM in well-known metric trees like the Vantage-Point tree or M-tree, which facilitate similarity search in sublinear time by exploiting the triangle inequality. Moreover, analysis techniques that require the properties of a metric (e.g. Multidimensional Scaling) can be applied on GMM with IED. For MI objects which are not well-approximated by GMM, we introduce the potential densities of instances for the representation of MI objects. Based on that, two joint Gaussian based measures are proposed for MI objects and we extend GCI on MI objects for efficient queries as well. To sum up, we propose in this thesis a number of novel similarity measures and novel indexing techniques for GMM and MI objects, enabling efficient queries and knowledge discovery on complex data. In a thorough theoretic analysis as well as extensive experiments we demonstrate the superiority of our approaches over the state-of-the-art with respect to the run-time efficiency and the quality of the result.Angesichts der steigenden Quantität und Vielfalt der generierten und gespeicherten Daten werden manuelle und automatisierte Analysen in vielen modernen Anwendungen eine zunehmend anspruchsvolle Aufgabe, wie z.B. biometrische Identifikation und inhaltbasierter Bildzugriff. In dieser Arbeit werden zwei sehr typische und relevante inhärente Strukturen von Objekten behandelt: Multiple-Instance-Objects (MI) und Gaussian Mixture Models (GMM). In beiden Anwendungsfällen wird das Objekt in Form einer Menge dargestellt. Bei MI besteht jedes Objekt aus einer Menge von Vektoren aus einem multidimensionalen Raum. Bei GMM wird jedes Objekt durch eine Menge von multivariaten normalverteilten Dichtefunktionen repräsentiert. Dies bietet die Möglichkeit, beliebige Wahrscheinlichkeitsverteilungen in kompakter Form zu approximieren. Beide Ansätze sind sehr leistungsfähig, denn sie basieren auf einfachsten Ideen: (1) entweder besteht ein Objekt additiv aus mehreren Komponenten oder (2) ein Objekt hat unterschiedliche alternative Verhaltensarten. Dies ermöglicht es uns z.B. ein Bild zu repräsentieren, welches unterschiedliche Objekte und Szenen zeigt (1). In gleicher Weise können wir einen Sportler modellieren, der bei verschiedenen Wettkämpfen unterschiedliche Leistungen gezeigt hat (2). Wir können MI-Objekte durch GMM approximieren und auch der umgekehrte Weg ist möglich. Beide Vorgehensweisen können sehr ansprechend sein, da GMM im Vergleich zu MI kompakter sind, wogegen in MI-Objekten die einzelnen Komponenten weniger Komplexität aufweisen. Ein ähnlichkeitsmaß dient der Quantifikation der Gemeinsamkeit zwischen zwei Objekten. Darauf basierend spielen Indizierung und ähnlichkeitssuche eine wesentliche Rolle für die effiziente Implementierung von einer Vielzahl von Klassifikations- und Clustering-Algorithmen im Bereich des Data Minings. Ziel dieser Arbeit ist es, die Herausforderungen bei Indizierung und Wissensextraktion von komplexen Daten unter Verwendung von MI Objekten und GMM zu bewältigen. Für die Indizierung der GMM stehen verschiedene universelle und GMM-spezifische Indexstrukuren zur Verfügung. Jedoch leiden solche bekannten Ansätze unter schwacher Leistung oder zu vielen Einschränkungen. Um die parametrisieren Eigenschaften der GMM auszunutzen und dem Problem der möglichen ungleichen Komponentenlänge entgegenzuwirken, präsentieren wir das Verfahren Gaussian Components based Index (GCI), welches effizienten Abfrage auf GMM ermöglicht. GCI zerlegt dabei ein GMM in Parameterkomponenten und speichert alle möglichen Kombinationen mit einheitlicher Vektorlänge in traditionellen Indexstrukturen. Wir stellen ein effizientes Pruningverfahren vor, um ungeeignete GMM unter Verwendung der sogenannten Matching Probability (MP) als ähnlichkeitsma\ss auszufiltern. MP errechnet die Summe der gemeinsamen Wahrscheinlichkeit zweier Objekte aus dem gesamten Raum. CGI erzielt bessere Leistung als konkurrierende Verfahren, sowohl in Bezug auf synthetische, als auch auf reale Datensätze. Um ihre Effizienz weiter zu verbessern, stellen wir eine Strategie zur Speicherung der GMM-Komponenten in normalisierter Form vor. Diese Strategie verbessert die Fähigkeit zum Ausfiltern ungeeigneter GMM. Darüber hinaus leiten wir, basierend auf dieser Transformation, neuartige ähnlichkeitsmaße für GMM her. Da MP keine Metrik (d.h. eine symmetrische, positiv definite Distanzfunktion, die die Dreiecksungleichung garantiert) ist, dies jedoch unentbehrlich für die Anwendung mehrerer Analysetechniken ist, führen wir Infinite Euclidean Distance (IED) ein, ein Metrik mit geschlossener Ausdrucksform für GMM. IED erlaubt die Speicherung der GMM in Metrik-Bäumen wie z.B. Vantage-Point Trees oder M-Trees, die die ähnlichkeitssuche in sublinear Zeit mit Hilfe der Dreiecksungleichung erleichtert. Außerdem können Analysetechniken, die die Eigenschaften einer Metrik erfordern (z.B. Multidimensional Scaling), auf GMM mit IED angewandt werden. Für MI-Objekte, die mit GMM nicht in außreichender Qualität approximiert werden können, stellen wir Potential Densities of Instances vor, um MI-Objekte zu repräsentieren. Darauf beruhend werden zwei auf multivariater Gaußverteilungen basierende Maße für MI-Objekte eingeführt. Außerdem erweitern wir GCI für MI-Objekte zur effizienten Abfragen. Zusammenfassend haben wir in dieser Arbeit mehrere neuartige ähnlichkeitsmaße und Indizierungstechniken für GMM- und MI-Objekte vorgestellt. Diese ermöglichen effiziente Abfragen und die Wissensentdeckung in komplexen Daten. Durch eine gründliche theoretische Analyse und durch umfangreiche Experimente demonstrieren wir die überlegenheit unseres Ansatzes gegenüber anderen modernen Ansätzen bezüglich ihrer Laufzeit und Qualität der Resultate

    Query-by-Example Spoken Term Detection ALBAYZIN 2012 evaluation: overview, systems, results and discussion

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1186/1687-4722-2013-23Query-by-Example Spoken Term Detection (QbE STD) aims at retrieving data from a speech data repository given an acoustic query containing the term of interest as input. Nowadays, it has been receiving much interest due to the high volume of information stored in audio or audiovisual format. QbE STD differs from automatic speech recognition (ASR) and keyword spotting (KWS)/spoken term detection (STD) since ASR is interested in all the terms/words that appear in the speech signal and KWS/STD relies on a textual transcription of the search term to retrieve the speech data. This paper presents the systems submitted to the ALBAYZIN 2012 QbE STD evaluation held as a part of ALBAYZIN 2012 evaluation campaign within the context of the IberSPEECH 2012 Conferencea. The evaluation consists of retrieving the speech files that contain the input queries, indicating their start and end timestamps within the appropriate speech file. Evaluation is conducted on a Spanish spontaneous speech database containing a set of talks from MAVIR workshopsb, which amount at about 7 h of speech in total. We present the database metric systems submitted along with all results and some discussion. Four different research groups took part in the evaluation. Evaluation results show the difficulty of this task and the limited performance indicates there is still a lot of room for improvement. The best result is achieved by a dynamic time warping-based search over Gaussian posteriorgrams/posterior phoneme probabilities. This paper also compares the systems aiming at establishing the best technique dealing with that difficult task and looking for defining promising directions for this relatively novel task.Tejedor, J.; Toledano, DT.; Anguera, X.; Varona, A.; Hurtado Oliver, LF.; Miguel, A.; Colás, J. (2013). Query-by-Example Spoken Term Detection ALBAYZIN 2012 evaluation: overview, systems, results and discussion. EURASIP Journal on Audio, Speech, and Music Processing. (23):1-17. doi:10.1186/1687-4722-2013-23S11723Zhang T, Kuo CCJ: Hierarchical classification of audio data for archiving and retrieving. In Proceedings of ICASSP. Phoenix; 15–19 March 1999:3001-3004.Helén M, Virtanen T: Query by example of audio signals using Euclidean distance between Gaussian Mixture Models. In Proceedings of ICASSP. Honolulu; 15–20 April 2007:225-228.Helén M, Virtanen T: Audio query by example using similarity measures between probability density functions of features. EURASIP J. Audio Speech Music Process 2010, 2010: 2:1-2:12.Tzanetakis G, Ermolinskyi A, Cook P: Pitch histograms in audio and symbolic music information retrieval. In Proceedings of the Third International Conference on Music Information Retrieval: ISMIR. Paris; 2002:31-38.Tsai HM, Wang WH: A query-by-example framework to retrieve music documents by singer. In Proceedings of the IEEE International Conference on Multimedia and Expo. Taipei; 27–30 June 2004:1863-1866.Chia TK, Sim KC, Li H, Ng HT: A lattice-based approach to query-by-example spoken document retrieval. In Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Singapore; 20–24 July 2008:363-370.Tejedor J, Fapšo M, Szöke I, Černocký H, Grézl F: Comparison of methods for language-dependent and language-independent query-by-example spoken term detection. ACM Trans. Inf. Syst 2012, 30(3):18:1-18:34.Muscariello A, Gravier G, Bimbot F: Zero-resource audio-only spoken term detection based on a combination of template matching techniques. In Proceedings of Interspeech. Florence; 27–31 August 2011:921-924.Lin H, Stupakov A, Bilmes J: Spoken keyword spotting via multi-lattice alignment. In 9th International Speech Communication Association Annual Conference. Brisbane, Australia; September 2008:2191-2194.Parada C, Sethy A, Ramabhadran B: Query-by-Example Spoken Term Detection for OOV terms. In Proceedings of ASRU. Merano; 13-17 December 2009:404-409.Shen W, White TJ, Hazen CM: A comparison of Query-by-Example methods for Spoken Term Detection. In Proceedings of Interspeech. Brighton; September 2009:2143-2146.Lin H, Stupakov A, Bilmes J: Improving multi-lattice alignment based spoken keyword spotting. In Proceedings of ICASSP. Taipei; 19–24 April 2009:4877-4880.Barnard E, Davel M, van Heerden C, Kleynhans N, Bali K: Phone recognition for spoken web search. In Proceedings of MediaEval. Pisa; 1–2 September 2011:5-6.Buzo A, Cucu H, Safta M, Ionescu B, Burileanu C: ARF@MediaEval 2012: a Romanian ASR-based approach to spoken term detection. In Proceedings of MediaEval. Pisa; 4–5 October 2012:7-8.Abad A, Astudillo RF: The L2F spoken web search system for MediaEval 2012. In Proceedings of MediaEval. Pisa; 4–5 October 2012:9-10.Varona A, Penagarikano M, Rodríguez-Fuentes L, Bordel L, Diez M: GTTS system for the spoken web search task at MediaEval 2012. In Proceedings of MediaEval. Pisa; 4–5 October 2012:13-14.Szöke I, Faps̆o M, Veselý K: BUT2012 Approaches for spoken web search - MediaEval 2012. In Proceedings of MediaEval. Pisa;4–5October 2012:15-16.Hazen W, Shen TJ, White CM: Query-by-Example spoken term detection using phonetic posteriorgram templates. In Proceedings of ASRU. Merano; 13–17 December 2009:421-426.Zhang Y, Glass JR: Unsupervised spoken keyword spotting via segmental DTW on Gaussian Posteriorgrams. In Proceedings of ASRU. Merano; 13–17 December 2009:398-403.Chan C, Lee L: Unsupervised spoken-term detection with spoken queries using segment-based dynamic time warping. In Proceedings of Interspeech. Makuhari; 26–30 September 2010:693-696.Anguera X, Macrae R, Oliver N: Partial sequence matching using an unbounded dynamic time warping algorithm. In Proceedings of ICASSP. Dallas; 14–19 March 2010:3582-3585.Anguera X: Telefonica system for the spoken web search Task at Mediaeval 2011. In Proceedings of MediaEval. Pisa; 1–2 September 2011:3-4.Muscariello A, Gravier G: Irisa MediaEval 2011 spoken web search system. In Proceedings of MediaEval. Pisa; 1–2 September 2011:9-10.Szöke I, Tejedor J, Faps̆o M, Colás J: BUT-HCTLab approaches for spoken web search - MediaEval 2011. In Proceedings of MediaEval. Pisa; 1–2 September 2011:11-12.Wang H, Lee T: CUHK System for the spoken web search task at Mediaeval 2012. In Proceedings of MediaEval. Pisa; 4–5 October 2012:3-4.Joder C, Weninger F, Wöllmer M, Schuller M: The TUM cumulative DTW approach for the Mediaeval 2012 spoken web search task. In Proceedings of MediaEval. Pisa; 4–5 October 2012:5-6.Vavrek J, Pleva M, Juhár J: TUKE MediaEval 2012: spoken web search using DTW and unsupervised SVM. In Proceedings of MediaEval. Pisa; 4–5 October 2012:11-12.Jansen A, Durme P, Clark BV: The JHU-HLTCOE spoken web search system for MediaEval 2012. In Proceedings of MediaEval. Pisa; 4–5 October 2012:17-18.Anguera X: Telefonica Research System for the spoken web search task at Mediaeval 2012. In Proceedings of MediaEval. Pisa; 4–5 October 2012:19-20.NIST: The Ninth Text REtrieval Conference (TREC 9). 2000. http://trec.nist.gov . Accessed 16 September 2013NIST: The Spoken Term Detection (STD) 2006 Evaluation Plan. 10 (National Institute of Standards and Technology (NIST), Gaithersburg, 2006). . Accessed 16 September 2013 http://www.nist.gov/speech/tests/stdSakai T, Joho H: Overview of NTCIR-9. Proceedings of NTCIR-9 Workshop 2011, 1-7.Rajput N, Metze F: Spoken web search. In Proceedings of MediaEval. Pisa; 1–2 September 2011:1-2.Metze F, Barnard E, Davel M, van Heerden C, Anguera X, Gravier G, Rajput N: Spoken web search. In Proceedings of MediaEval. Pisa; 4–5 October 2012:1-2.Tokyo University of Technology: Evaluation of information access technologies: information retrieval, question answering and cross-lingual information access. 2013. http://research.nii.ac.jp/ntcir/ntcir-10/ . Accessed 16 September 2013NIST: The OpenKWS13 evaluation plan. 1, (National Institute of Standards and Technology (NIST), Gaithersburg, 2013). . Accessed 16 September 2013 http://www.nist.gov/itl/iad/mig/openkws13.cfmTaras B, Nadeu C: Audio segmentation of broadcast news in the Albayzin-2010 evaluation: overview, results, and discussion. EURASIP J. Audio Speech Music Process 2011, 1: 1-10.Zelenák M, Schulz H, Hernando J: Speaker diarization of broadcast news in Albayzin 2010 evaluation campaign. EURASIP J. Audio Speech Music Process 2012, 19: 1-9.Rodríguez-Fuentes LJ, Penagarikano M, Varona A, Díez M, Bordel G: The Albayzin 2010 language recognition evaluation. In Proceedings of Interspeech. Florence; 27–31 August 2011:1529-1532.Méndez F, Docío L, Arza M, Campillo F: The Albayzin 2010 text-to-speech evaluation. In Proceedings of FALA. Vigo; November 2010:317-340.Fiscus JG, Ajot J, Garofolo JS, Doddington G: Results of the 2006 spoken term detection evaluation. In Proceedings of SIGIR Workshop Searching Spontaneous Conversational Speech. Rhodes; 22–25 September 2007:45-50.Martin A, Doddington G, Kamm T, Ordowski M, Przybocki M: The DET curve in assessment of detection task performance. In Proceedings of Eurospeech. Rhodes; 22-25 September 1997:1895-1898.NIST: NIST Speech Tools and APIs: 2006 (National Institute of Standards and Technology (NIST), Gaithersburg, 1996). . Accessed 16 September 2013 http://www.nist.gov/speech/tools/index.htmIberspeech 2012: VII Jornadas en Tecnología del Habla and III Iberian SLTech Workshop. . Accessed 16 September 2013 http://iberspeech2012.ii.uam.es/IberSPEECH2012_OnlineProceedings.pdfAnguera X: Speaker independent discriminant feature extraction for acoustic pattern-matching. In Proceedings of ICASSP. Kyoto; 25–30 March 2012:485-488.Anguera X, Ferrarons M: Memory efficient subsequence DTW for Query-by-Example spoken term detection. Proceedings of ICME 2013. http://www.xavieranguera.com/papers/sdtw_icme2013.pdfAnguera X: Telefonica Research System for the Query-by-example task at Albayzin 2012. In Proceedings of IberSPEECH. Madrid, Spain; 21–23 November 2012:626-632.Schwarz P: Phoneme recognition based on long temporal context. PhD Thesis, FIT, BUT, Brno, Czech Republic. 2008.Stolckem A: SRILM - an extensible language modeling toolkit. In Proceedings of Interspeech. Denver; 2002:901-904.Wang D, King S, Frankel J: Stochastic pronunciation modelling for out-of-vocabulary spoken term detection. IEEE Trans. Audio Speech Language Process 2011, 19(4):688-698.Wang D, Tejedor J, King S, Frankel J: Term-dependent confidence normalization for out-of-vocabulary spoken term detection. J. Comput. Sci. Technol 2012, 27(2):358-375. 10.1007/s11390-012-1228-xWang D, King S, Frankel J, Vipperla R, Evans N, Troncy R: Direct posterior confidence for out-of-vocabulary spoken term detection. ACM Trans. Inf. Syst 2012, 30(3):1-34.Varona A, Penagarikano M, Rodríguez-Fuentes LJ, Bordel G, Diez M: GTTS systems for the query-by-example spoken term detection task of the Albayzin 2012 search on speech evaluation. In Proceedings of IberSPEECH. Madrid, Spain; 21–23 November 2012:619-625.Gómez J, Sanchis E, Castro-Bleda M: Automatic speech segmentation based on acoustical clustering. Proceedings of the Joint IAPR International Conference on Structural, Syntactic, and Statistical Pattern Recognition 2010, 540-548.Gómez J, Castro M: Automatic segmentation of speech at the phonetic level. Proceedings of the joint IAPR International Workshop on Structural, Syntactic, and Statistical Pattern Recognition 2002, 672-680.Sanchis E, Hurtado LF, Gómez JA, Calvo M, Fabra R: The ELiRF Query-by-example STD systems for the Albayzin 2012 search on speech evaluation. In Proceedings of IberSPEECH. Madrid, Spain; 21–23 November 2012:611-618.Park A, Glass J: Towards unsupervised pattern discovery in speech. In Proceedings of ASRU. Cancun; 27 November to 1 December 2005:53-58.Young S, Evermann G, Gales M, Hain T, Kershaw D, Liu X, Moore G, Odell J, Ollason D, Povey D, Valtchev V, Woodland P: The HTK Book. Engineering Department, Cambridge University; 2006.Miguel A, Villalba J, Ortega A, Lleida E: Albayzin 2012 search on speech @ ViVoLab UZ. In Proceedings of IberSPEECH. Madrid, Spain; 21–23 November 2012:633-642.Boersma P, Weenink D: Praat: Doing Phonetics by Computer. University of Amsterdam, Spuistraat, 210, Amsterdam, Holland. 2007. http://www.fon.hum.uva.nl/praat/ . Accessed 16 September 2013Goldwater S, Jurafsky D, Maning CD: Which words are hard to recognize? Prosodic, lexical, and disfluency factors that increase speech recognition error rates. Speech Commun 2009, 52(3):181-200.Mertens T, Wallace R, Schneider D: Cross-site combination and evaluation of subword spoken term detection systems. In Proceedings of CBMI. Madrid; 13–15 June 2011:61-66
    corecore