647 research outputs found

    Dynamic Vs Static Term-Expansion using Semantic Resources in Information Retrieval

    Get PDF
    Information Retrieval in a Telugu language is upcoming area of research. Telugu is one of the recognized Indian languages. We present a novel approach in reformulating item terms at the time of crawling and indexing. The idea is not new, but use of synset and other lexical resources in Indian languages context has limitations due to unavailability of language resources. We prepared a synset for 1,43,001 root words out of 4,83,670 unique words from training corpus of 3500 documents during indexing. Index time document expansion gave improved recall ratio, when compared to base line approach i.e. simple information retrieval without term expansion at both the ends. We studied the effect of query terms expansion at search time using synset and compared with simple information retrieval process without expansion, recall is greatly affected and improved. We further extended this work by expanding terms in two sides and plotted results, which resemble recall growth. Surprisingly all expansions are showing improvement in recall and little fall in precision. We argue that expansion of terms at any level may cause inverse effect on precision. Necessary care is required while expanding documents or queries with help of language resources like Synset, WordNet and other resources

    Treatment of Semantic Heterogeneity in Information Retrieval

    Full text link
    "Nowadays, users of information services are faced with highly decentralised, heterogeneous document sources with different content analysis. Semantic heterogeneity occurs e.g. when resources using different systems for content description are searched using a single query system. This report describes several approaches of handling semantic heterogeneity used in projects of the German Social Science Information Centre." (author's abstract

    Using Search Term Positions for Determining Document Relevance

    Get PDF
    The technological advancements in computer networks and the substantial reduction of their production costs have caused a massive explosion of digitally stored information. In particular, textual information is becoming increasingly available in electronic form. Finding text documents dealing with a certain topic is not a simple task. Users need tools to sift through non-relevant information and retrieve only pieces of information relevant to their needs. The traditional methods of information retrieval (IR) based on search term frequency have somehow reached their limitations, and novel ranking methods based on hyperlink information are not applicable to unlinked documents. The retrieval of documents based on the positions of search terms in a document has the potential of yielding improvements, because other terms in the environment where a search term appears (i.e. the neighborhood) are considered. That is to say, the grammatical type, position and frequency of other words help to clarify and specify the meaning of a given search term. However, the required additional analysis task makes position-based methods slower than methods based on term frequency and requires more storage to save the positions of terms. These drawbacks directly affect the performance of the most user critical phase of the retrieval process, namely query evaluation time, which explains the scarce use of positional information in contemporary retrieval systems. This thesis explores the possibility of extending traditional information retrieval systems with positional information in an efficient manner that permits us to optimize the retrieval performance by handling term positions at query evaluation time. To achieve this task, several abstract representation of term positions to efficiently store and operate on term positional data are investigated. In the Gauss model, descriptive statistics methods are used to estimate term positional information, because they minimize outliers and irregularities in the data. The Fourier model is based on Fourier series to represent positional information. In the Hilbert model, functional analysis methods are used to provide reliable term position estimations and simple mathematical operators to handle positional data. The proposed models are experimentally evaluated using standard resources of the IR research community (Text Retrieval Conference). All experiments demonstrate that the use of positional information can enhance the quality of search results. The suggested models outperform state-of-the-art retrieval utilities. The term position models open new possibilities to analyze and handle textual data. For instance, document clustering and compression of positional data based on these models could be interesting topics to be considered in future research

    A model for information retrieval driven by conceptual spaces

    Get PDF
    A retrieval model describes the transformation of a query into a set of documents. The question is: what drives this transformation? For semantic information retrieval type of models this transformation is driven by the content and structure of the semantic models. In this case, Knowledge Organization Systems (KOSs) are the semantic models that encode the meaning employed for monolingual and cross-language retrieval. The focus of this research is the relationship between these meanings’ representations and their role and potential in augmenting existing retrieval models effectiveness. The proposed approach is unique in explicitly interpreting a semantic reference as a pointer to a concept in the semantic model that activates all its linked neighboring concepts. It is in fact the formalization of the information retrieval model and the integration of knowledge resources from the Linguistic Linked Open Data cloud that is distinctive from other approaches. The preprocessing of the semantic model using Formal Concept Analysis enables the extraction of conceptual spaces (formal contexts)that are based on sub-graphs from the original structure of the semantic model. The types of conceptual spaces built in this case are limited by the KOSs structural relations relevant to retrieval: exact match, broader, narrower, and related. They capture the definitional and relational aspects of the concepts in the semantic model. Also, each formal context is assigned an operational role in the flow of processes of the retrieval system enabling a clear path towards the implementations of monolingual and cross-lingual systems. By following this model’s theoretical description in constructing a retrieval system, evaluation results have shown statistically significant results in both monolingual and bilingual settings when no methods for query expansion were used. The test suite was run on the Cross-Language Evaluation Forum Domain Specific 2004-2006 collection with additional extensions to match the specifics of this model

    Augmenting Latent Dirichlet Allocation and Rank Threshold Detection with Ontologies

    Get PDF
    In an ever-increasing data rich environment, actionable information must be extracted, filtered, and correlated from massive amounts of disparate often free text sources. The usefulness of the retrieved information depends on how we accomplish these steps and present the most relevant information to the analyst. One method for extracting information from free text is Latent Dirichlet Allocation (LDA), a document categorization technique to classify documents into cohesive topics. Although LDA accounts for some implicit relationships such as synonymy (same meaning) it often ignores other semantic relationships such as polysemy (different meanings), hyponym (subordinate), meronym (part of), and troponomys (manner). To compensate for this deficiency, we incorporate explicit word ontologies, such as WordNet, into the LDA algorithm to account for various semantic relationships. Experiments over the 20 Newsgroups, NIPS, OHSUMED, and IED document collections demonstrate that incorporating such knowledge improves perplexity measure over LDA alone for given parameters. In addition, the same ontology augmentation improves recall and precision results for user queries

    Mixed-Language Arabic- English Information Retrieval

    Get PDF
    Includes abstract.Includes bibliographical references.This thesis attempts to address the problem of mixed querying in CLIR. It proposes mixed-language (language-aware) approaches in which mixed queries are used to retrieve most relevant documents, regardless of their languages. To achieve this goal, however, it is essential firstly to suppress the impact of most problems that are caused by the mixed-language feature in both queries and documents and which result in biasing the final ranked list. Therefore, a cross-lingual re-weighting model was developed. In this cross-lingual model, term frequency, document frequency and document length components in mixed queries are estimated and adjusted, regardless of languages, while at the same time the model considers the unique mixed-language features in queries and documents, such as co-occurring terms in two different languages. Furthermore, in mixed queries, non-technical terms (mostly those in non-English language) would likely overweight and skew the impact of those technical terms (mostly those in English) due to high document frequencies (and thus low weights) of the latter terms in their corresponding collection (mostly the English collection). Such phenomenon is caused by the dominance of the English language in scientific domains. Accordingly, this thesis also proposes reasonable re-weighted Inverse Document Frequency (IDF) so as to moderate the effect of overweighted terms in mixed queries
    • …
    corecore