1,189 research outputs found

    Hypermedia-based discovery for source selection using low-cost linked data interfaces

    Get PDF
    Evaluating federated Linked Data queries requires consulting multiple sources on the Web. Before a client can execute queries, it must discover data sources, and determine which ones are relevant. Federated query execution research focuses on the actual execution, while data source discovery is often marginally discussed-even though it has a strong impact on selecting sources that contribute to the query results. Therefore, the authors introduce a discovery approach for Linked Data interfaces based on hypermedia links and controls, and apply it to federated query execution with Triple Pattern Fragments. In addition, the authors identify quantitative metrics to evaluate this discovery approach. This article describes generic evaluation measures and results for their concrete approach. With low-cost data summaries as seed, interfaces to eight large real-world datasets can discover each other within 7 minutes. Hypermedia-based client-side querying shows a promising gain of up to 50% in execution time, but demands algorithms that visit a higher number of interfaces to improve result completeness

    Opportunistic linked data querying through approximate membership metadata

    Get PDF
    Between URI dereferencing and the SPARQL protocol lies a largely unexplored axis of possible interfaces to Linked Data, each with its own combination of trade-offs. One of these interfaces is Triple Pattern Fragments, which allows clients to execute SPARQL queries against low-cost servers, at the cost of higher bandwidth. Increasing a client's efficiency means lowering the number of requests, which can among others be achieved through additional metadata in responses. We noted that typical SPARQL query evaluations against Triple Pattern Fragments require a significant portion of membership subqueries, which check the presence of a specific triple, rather than a variable pattern. This paper studies the impact of providing approximate membership functions, i.e., Bloom filters and Golomb-coded sets, as extra metadata. In addition to reducing HTTP requests, such functions allow to achieve full result recall earlier when temporarily allowing lower precision. Half of the tested queries from a WatDiv benchmark test set could be executed with up to a third fewer HTTP requests with only marginally higher server cost. Query times, however, did not improve, likely due to slower metadata generation and transfer. This indicates that approximate membership functions can partly improve the client-side query process with minimal impact on the server and its interface

    Efficient Query Processing for SPARQL Federations with Replicated Fragments

    Get PDF
    Low reliability and availability of public SPARQL endpoints prevent real-world applications from exploiting all the potential of these querying infras-tructures. Fragmenting data on servers can improve data availability but degrades performance. Replicating fragments can offer new tradeoff between performance and availability. We propose FEDRA, a framework for querying Linked Data that takes advantage of client-side data replication, and performs a source selection algorithm that aims to reduce the number of selected public SPARQL endpoints, execution time, and intermediate results. FEDRA has been implemented on the state-of-the-art query engines ANAPSID and FedX, and empirically evaluated on a variety of real-world datasets

    SMART-KG: Hybrid Shipping for SPARQL Querying on the Web

    Get PDF
    While Linked Data (LD) provides standards for publishing (RDF) and (SPARQL) querying Knowledge Graphs (KGs) on the Web, serving, accessing and processing such open, decentralized KGs is often practically impossible, as query timeouts on publicly available SPARQL endpoints show. Alternative solutions such as Triple Pattern Fragments (TPF) attempt to tackle the problem of availability by pushing query processing workload to the client side, but suffer from unnecessary transfer of irrelevant data on complex queries with large intermediate results. In this paper we present smart-KG, a novel approach to share the load between servers and clients, while significantly reducing data transfer volume, by combining TPF with shipping compressed KG partitions. Our evaluations show that outperforms state-of-the-art client-side solutions and increases server-side availability towards more cost-effective and balanced hosting of open and decentralized KGs.Series: Working Papers on Information Systems, Information Business and Operation

    DBpedia's triple pattern fragments: usage patterns and insights

    Get PDF
    Queryable Linked Data is published through several interfaces, including SPARQL endpoints and Linked Data documents. In October 2014, the DBpedia Association announced an official Triple Pattern Fragments interface to its popular DBpedia dataset. This interface proposes to improve the availability of live queryable data by dividing query execution between clients and servers. In this paper, we present a usage analysis between November 2014 and July 2015. In 9 months time, the interface had an average availability of 99.99 %, handling 16,776,170 requests, 43.0% of which were served from cache. These numbers provide promising evidence that low-cost Triple Pattern Fragments interfaces provide a viable strategy for live applications on top of public, queryable datasets

    Substring filtering for low-cost linked data interfaces

    Get PDF
    Recently, Triple Pattern Fragments (TPFS) were introduced as a low-cost server-side interface when high numbers of clients need to evaluate SPARQL queries. Scalability is achieved by moving part of the query execution to the client, at the cost of elevated query times. Since the TPFS interface purposely does not support complex constructs such as SPARQL filters, queries that use them need to be executed mostly on the client, resulting in long execution times. We therefore investigated the impact of adding a literal substring matching feature to the TPFS interface, with the goal of improving query performance while maintaining low server cost. In this paper, we discuss the client/server setup and compare the performance of SPARQL queries on multiple implementations, including Elastic Search and case-insensitive FM-index. Our evaluations indicate that these improvements allow for faster query execution without significantly increasing the load on the server. Offering the substring feature on TPF servers allows users to obtain faster responses for filter-based SPARQL queries. Furthermore, substring matching can be used to support other filters such as complete regular expressions or range queries

    Towards efficient query processing over heterogeneous RDF interfaces

    Get PDF

    Robust query processing for linked data fragments

    Get PDF
    Linked Data Fragments (LDFs) refer to interfaces that allow for publishing and querying Knowledge Graphs on the Web. These interfaces primarily differ in their expressivity and allow for exploring different trade-offs when balancing the workload between clients and servers in decentralized SPARQL query processing. To devise efficient query plans, clients typically rely on heuristics that leverage the metadata provided by the LDF interface, since obtaining fine-grained statistics from remote sources is a challenging task. However, these heuristics are prone to potential estimation errors based on the metadata which can lead to inefficient query executions with a high number of requests, large amounts of data transferred, and, consequently, excessive execution times. In this work, we investigate robust query processing techniques for Linked Data Fragment clients to address these challenges. We first focus on robust plan selection by proposing CROP, a query plan optimizer that explores the cost and robustness of alternative query plans. Then, we address robust query execution by proposing a new class of adaptive operators: Polymorphic Join Operators. These operators adapt their join strategy in response to possible cardinality estimation errors. The results of our first experimental study show that CROP outperforms state-of-the-art clients by exploring alternative plans based on their cost and robustness. In our second experimental study, we investigate how different planning approaches can benefit from polymorphic join operators and find that they enable more efficient query execution in the majority of cases
    • …
    corecore