12,551 research outputs found

    A Quasilinear-Time Algorithm for Tiling the Plane Isohedrally with a Polyomino

    Get PDF
    A plane tiling consisting of congruent copies of a shape is isohedral provided that for any pair of copies, there exists a symmetry of the tiling mapping one copy to the other. We give a O(n log2 n)-time algorithm for deciding if a polyomino with n edges can tile the plane isohedrally. This improves on the O(n18)-time algorithm of Keating and Vince and generalizes recent work by Brlek, Provençal, Fédou, and the second author.SCOPUS: cp.pinfo:eu-repo/semantics/publishe

    Motion magnification in coronal seismology

    Get PDF
    We introduce a new method for the investigation of low-amplitude transverse oscillations of solar plasma non-uniformities, such as coronal loops, individual strands in coronal arcades, jets, prominence fibrils, polar plumes, and other contrast features, observed with imaging instruments. The method is based on the two-dimensional dual tree complex wavelet transform (DTC\mathbb{C}WT). It allows us to magnify transverse, in the plane-of-the-sky, quasi-periodic motions of contrast features in image sequences. The tests performed on the artificial data cubes imitating exponentially decaying, multi-periodic and frequency-modulated kink oscillations of coronal loops showed the effectiveness, reliability and robustness of this technique. The algorithm was found to give linear scaling of the magnified amplitudes with the original amplitudes provided they are sufficiently small. Also, the magnification is independent of the oscillation period in a broad range of the periods. The application of this technique to SDO/AIA EUV data cubes of a non-flaring active region allowed for the improved detection of low-amplitude decay-less oscillations in the majority of loops.Comment: Accepted for publication in Solar Physic

    Generalizations of tournaments: A survey

    Get PDF

    Orbital configurations and dynamical stability of multi-planet systems around Sun-like stars HD 202206, 14 Her, HD 37124 and HD 108874

    Get PDF
    We perform a dynamical analysis of the recently published radial velocity (RV) measurements of a few solar type stars which host multiple Jupiter-like planets. In particular, we re-analyze the data for HD 202206, 14 Her, HD 37124 and HD 108874. We derive dynamically stable configurations which reproduce the observed RV signals using our method called GAMP (an acronym of the Genetic Algorithm with MEGNO Penalty). The GAMP relies on the N-body dynamics and makes use of genetic algorithms merged with a stability criterion. For this purpose, we use the maximal Lyapunov exponent computed with the dynamical fast indicator MEGNO. Through a dynamical analysis of the phase-space in a neighborhood of the obtained best-fit solutions, we derive meaningful limits on the parameters of the planets. We demonstrate that GAMP is especially well suited for the analysis of the RV data which only partially cover the longest orbital period and/or correspond to multi-planet configurations involved in low-order mean motion resonances (MMRs). In particular, our analysis reveals a presence of a second Jupiter-like planet in the 14 Her system (14 Her c) involved in a 3:1 or 6:1 MMR with the known companion b. We also show that the dynamics of the HD 202206 system may be qualitatively different when coplanar and mutually-inclined orbits of the companions are considered. We demonstrate that the two outer planets in the HD 37124 system may reside in a close neighborhood of the 5:2 MMR. Finally, we found a clear indication that the HD 108874 system may be very close to, or locked in an exact 4:1 MMR.Comment: Contains 7 pages (text), 17 figures (some in low resolution suitable for astro-ph), 1 table. Submitted to ApJ. The manuscript with high-resolution figures is available from http://www.astri.uni.torun.pl/~chris/ms64109.ps.g

    Closed-loop focal plane wavefront control with the SCExAO instrument

    Get PDF
    This article describes the implementation of a focal plane based wavefront control loop on the high-contrast imaging instrument SCExAO (Subaru Coronagraphic Extreme Adaptive Optics). The sensor relies on the Fourier analysis of conventional focal-plane images acquired after an asymmetric mask is introduced in the pupil of the instrument. This absolute sensor is used here in a closed-loop to compensate the non-common path errors that normally affects any imaging system relying on an upstream adaptive optics system.This specific implementation was used to control low order modes corresponding to eight zernike modes (from focus to spherical). This loop was successfully run on-sky at the Subaru Telescope and is used to offset the SCExAO deformable mirror shape used as a zero-point by the high-order wavefront sensor. The paper precises the range of errors this wavefront sensing approach can operate within and explores the impact of saturation of the data and how it can be bypassed, at a cost in performance. Beyond this application, because of its low hardware impact, APF-WFS can easily be ported in a wide variety of wavefront sensing contexts, for ground- as well space-borne telescopes, and for telescope pupils that can be continuous, segmented or even sparse. The technique is powerful because it measures the wavefront where it really matters, at the level of the science detector.Comment: 9 pages, 14 figures, accepted for publication by A&

    Josephson Vortex Qubit based on a Confocal Annular Josephson Junction

    Get PDF
    We report theoretical and experimental work on the development of a Josephson vortex qubit based on a confocal annular Josephson tunnel junction (CAJTJ). The key ingredient of this geometrical configuration is a periodically variable width that generates a spatial vortex potential with bistable states. This intrinsic vortex potential can be tuned by an externally applied magnetic field and tilted by a bias current. The two-state system is accurately modeled by a one-dimensional sine-Gordon like equation by means of which one can numerically calculate both the magnetic field needed to set the vortex in a given state as well as the vortex depinning currents. Experimental data taken at 4.2K on high-quality Nb/Al-AlOx/Nb CAJTJs with an individual trapped fluxon advocate the presence of a robust and finely tunable double-well potential for which reliable manipulation of the vortex state has been classically demonstrated. The vortex is prepared in a given potential by means of an externally applied magnetic field, while the state readout is accomplished by measuring the vortex-depinning current in a small magnetic field. Our proof of principle experiment convincingly demonstrates that the proposed vortex qubit based on CAJTJs is robust and workable.Comment: 20 pages, 11 figure

    Understanding of bridge cable vibrations and the associate flow-field through the full-scale monitoring of vibrations and Wind

    Get PDF
    • …
    corecore