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UNIVERSITY OF PALERMO

Abstract
Department of Mathematics and Computer Sciences

Doctor of Philosophy

Repetitiveness Measures based on String Attractors and Burrows-Wheeler

Transform: Properties and Applications

by Giuseppe ROMANA

(EN) The problem of storing and indexing huge amount of data in a compact

space is a fundamental task in Computer Science. Over the years different solu-

tions have been proposed which exploit redundancies of information within texts

to compress them, and their efficiency pushed the scientific community to consider

the sizes of the compact representations of texts as measures of repetitiveness of the

text. Two measures in particular have raised a discrete interest: the measure r, which

refers to the number of equal-letter runs of the Burrows-Wheeler Transform, widely

used in different tools in bioinformatics and data compression; the size γ∗ of a small-

est string attractor, which is asymptotically smaller than other classical compression

schemes.

The goal of this thesis is to produce a qualitative analysis of r and γ as measures

of repetitiveness, by identifying what properties of words or operations affect this

sizes. We further show how the structure of the BWT allows to solve classical prob-

lem in bioinformatics in a space which grows at least as r. On string attractors on the

other hand, we present the first combinatorial study on the measure γ∗, and we in-

troduce new measures based on string attractors, which denote different properties

of words. Finally, we extend the study to a circular variant of string attractor, and

other one for infinite words, which can be used to characterize families of strings

related to Sturmian words.
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UNIVERSITY OF PALERMO

Abstract
Department of Mathematics and Computer Sciences

Doctor of Philosophy

Repetitiveness Measures based on String Attractors and Burrows-Wheeler

Transform: Properties and Applications

by Giuseppe ROMANA

(IT) Memorizzare e indicizzare grandi quantità di dati in uno spazio compresso

è un problema fondamentale in Informatica. Nel corso degli anni sono state pro-

poste diverse soluzioni che traggono vantaggio dalla ridondanza di informazioni

contenute in testi per comprimere, e la loro efficacia ha spinto la comunità scientifica

a considerare le dimensioni delle rappresentazioni compresse come misure di ripet-

itività del testo. Due misure in particolare hanno recentemente suscitato un discreto

interesse: la misura r, che si riferice al numero di run della trasformata di Burrows-

Wheeler (BWT), largamente usata in diversi applicativi nell’ambito bioinformatico

e in compressione dati; la taglia γ∗ di uno string attractor minimo, che è asintotica-

mente minore di altri schemi di compressione classici.

L’obiettivo di questa tesi è quello di produrre un’analisi qualitativa per r e γ come

misure di ripetitività, individuando gli effetti che proprietà di parole o operazioni

hanno sulle stringhe. Mostriamo inoltre come la struttura della BWT permetta di ri-

solvere classici problemi di bioinformatica in uno spazio che cresce almeno come r.

Sugli string attractor invece presentiamo il primo studio combinatorio sulla misura

γ∗, introducendo anche nuove misure legate agli string attractor che catturano di-

verse proprietà delle parole. Infine, estendiamo lo studio ad una variante circolare,

e ad una per parole infinite, che possono essere usate per caratterizzare famiglie di

stringhe legate alle parole Sturmiane.
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Chapter 1

Introduction

With the advent of the new millennium, new generation technologies forced us to

confront with unpredictable challenges. To name a few contexts: collections for

DNA sequencing, pangenomic datasets, astronomical images, web storage, etc. The

global amount of these data produced increase year by year, at a speed rate that

outperform the Moore’s Law. Luckily for us, some of these domains of application

are full of redundancies, which can be exploited to get compact representations of

data. In the last two decades, the problem of accessing information directly from the

compressed representation of words has been crucial. The field that deals with this

problem took the name of compressed full-text indexing. Ideally, we would like to

index words in a space close to their Kolmogorov complexity [75], that is the size

of the smallest program returning them. However, the Kolmogorov complexity is

not computable, and finding a universal index that properly works regardless of the

representation adopted seems an unreachable task. On the other hand, the Shannon

entropy [122] measures the average number of bits required to represent a letter from

a source with a certain probability distribution. On finite words, if we suppose that

the frequencies of the letters or factors in the word follow the probability distribu-

tion of a source, we can compute on the word the so called empirical entropy. With

respect to the Kolmogorov complexity, the empirical entropy is achievable [63, 126],

however different studies show that it is insensitive to long repetitions, ending up

in a representation space of the same order as the length of the word [47, 100, 99].

To overcome this problem, over the years different approaches have been at-

tempted, but without any doubts there are very few compressors as efficient as the
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family of dictionary based compressors [124]. The underlying common idea is the fol-

lowing: the compressed text is no longer a concatenation of letters that takes (on av-

erage) less space, but instead the text is represented through pointers to substrings,

likely to contain redundant information. Indeed, the more repetitive the text is, the

more likely is to represent words in a compact space. For very repetitive strings,

a variety of compressors have shown up remarkable results in terms of compres-

sion ratio [81, 124, 70, 69, 102]. Moreover, for most of the cases it is possible to

index directly the compressed text without decompressing it. The efficiency of these

schemes on repetitive datasets has motivated considering them as measures of repet-

itiveness [99]. A theoretical study of these measures is then become necessary, to

understand what properties of words affect them, and how these measures are re-

lated.

Out of all the schemes proposed, the Burrows-Wheeler Transform [21], in short

BWT, has plenty of applications in data compression and bioinformatics, and it is

at the basis of some of the most used tools in the fields [79, 121, 82, 43, 49]. The

BWT is a reversible permutation of the word which boosts the performance of 0th-

order entropy compressors. For instance, the run length encoding tends to be more

effective on the BWT with respect to the word when it is repetitive. The number

of equal-letter runs of the BWT induced from the run length encoding, that we call

BWT-runs, is usually denoted by r. What makes the BWT so appreciated is the fact

that it can be computed in linear time, and recently it has been proved that it is

possible to index the text in a space proportional to r [110].

On the other hand, the very recent notion of string attractor has been introduced

in the field of data compression as a unifying framework for all dictionary based

compressors. A string attractor consists in a set Γ of γ positions of a word such

that each distinct factors has at least an occurrence crossing a position in Γ, and by

γ∗ we denote the size of a smallest string attractor of a word. The measure γ∗ has

been proved to be asymptotically smaller than the size of any dictionary-compressor

based measure [66, 5], since its definition is intrinsically the basic concept underlying

all these schemes. This, along with the fact that it is possible to index words in

O(γ log n
γ ) words of space [31], makes the string attractor and the measure γ∗ very

appealing in the field of compressed full text indexing. In general however, finding
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γ∗ is an NP-complete problem [66, 68].

For the work of this thesis, we evaluate the measure r of the number of Burrows-

Wheeler transform and the size γ∗ of a smallest string attractor of a word γ∗ [66], as

measures of repetitiveness.

On the Burrows-Wheeler transform we obtain novel bounds related to particular

substrings that occur in the original word. Then, we show that in the worst-case sce-

nario, the measure r is sensitive when small edits are applied to words, and we test

its efficiency on families of words containing very long repetitions, namely purely

morphic words. Moreover, we show how we can use properties of the BWT to extend

the functionality of compressed text indexes in a space proportional to r, mainly with

applications in settings where the data are highly redundant (e.g., in pangenomics).

On string attractors, we present the first combinatorial study on the measure γ∗.

We introduce new measures related to string attractors, which takes into account

the density of information within words. We further introduce the circular variant of

string attractors, and present a novel characterization for powers of standard Stur-

mian words. Its introduction is followed by the first algorithm that checks whether a

set is a circular string attractor of a word. Finally, we extend the measures based on

string attractors to infinite words, and show new characterizations of words captured

by these new string attractor based complexities. Extending the comprehension of

such measures and complexities lead to interesting applications in the field of Com-

binatorics on Words.

1.1 Contributions of the Thesis

Most of the material of this thesis are contained from seven papers, listed here in

chronological order of publication.

[90] Sabrina Mantaci, Antonio Restivo, Giuseppe Romana, Giovanna Rosone, and

Marinella Sciortino. A Combinatorial View on String Attractors. Theoretical Com-

puter Science 850, pp. 236-248, 2021.
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[45] Andrea Frosini, Ilaria Mancini, Simone Rinaldi, Giuseppe Romana, and Marinella

Sciortino. Burrows-Wheeler Transform on Purely Morphic Words. In Data Com-

pression Conferenc (DCC 2022), Poster. IEEE, 2022.

[46] Andrea Frosini, Ilaria Mancini, Simone Rinaldi, Giuseppe Romana, and Marinella

Sciortino. Logarithmic Equal-Letter Runs for BWT of Purely Morphic Words. In In-

ternational Conference on Developments in Language Theory (DLT 2022), pp.

139-151. Springer, 2022.

[57] Sara Giuliani, Giuseppe Romana, and Massimiliano Rossi Computing Maximal

Unique Matches with the r-Index. In International Symposium on Experimental

Algorithms (SEA 2022), pp. 22:1-22:16. Schloss Dagstuhl - Leibniz-Zentrum

für Informatik, 2022.

[112] Antonio Restivo, Giuseppe Romana, and Marinella Sciortino. String Attrac-

tors and Infinite Words. In Latin American Theoretical Informatics Symposium

(LATIN 2022), pp. 426-442, Springer, 2022.

[44] Gabriele Fici, Giuseppe Romana, Marinella Sciortino, and Cristian Urbina. On

the Impact of Morphisms on BWT-Runs. In Annual Symposium on Combina-

torial Pattern Matching (CPM 2023). Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 2023 (accepted, to be published).

[55] Sara Giuliani, Shunsuke Inenaga, Zsuzsanna Lipták, Giuseppe Romana, Marinella

Sciortino, and Cristian Urbina: Bit catastrophes for the Burrows-Wheeler Trans-

form. In International Conference on Developments in Language Theory (DLT

2023), pp. 86–99. Springer, 2023.

[53] France Gheeraert, Giuseppe Romana, Manon Stipulanti. String attractors of

fixed points of k-bonacci-like morphisms. In Combinatorics on Words (WORDS

2023), pp. 192–205. Springer, 2023.

Additional unpublished content can be found in Sections 6.2, 8.2, and 8.3.
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1.2 Outline

We assume the reader to be familiar with fundamentals in Computability, Logic, and

Set Theory. In Chapter 2, we introduce the basic concepts on words and repetitive-

ness, that will be used throughout the thesis. For this aim, here we provide basic

definitions and notations from the Combinatorics on Words field, in addition with

some data structures from the full-text indexing world. Moreover, we introduce to

the reader different interpretations of repetitiveness known in literature.

In Chapter 3, we present a qualitative study of the measure r. We will show the

role that some special factors of words play in the size of the BWT-runs, and test its

sensitivity to the effect of simple edit operations.

A morphism, from the Formal Language Theory, can be seen as a mathematical

tool to extend repetitions of words. In Chapter 4, we explore the size r on the family

of purely morphic finite words. For the case of binary purely morphic words, we show

both upper and lower bounds on r, which are tight for most of the cases. Then, in

Chapter 5 we deal with the analogous problem from a different perspective, that is

the response of the BWT to the application of morphisms. This has resulted in a

novel characterization of the well-known family of Sturmian morphisms.

We conclude the study of the measure r in Chapter 6, by showing properties of

the Burrows-Wheeler Transform that can be used for practical applications in pange-

nomics, and more in general in bioinformatics. First, we deal with the problem of

building a compact index in a space proportional to r able to locate maximal unique

matches. Then, we are interested in the efficiency of the BWT for storing collections

of samples. The common goal of both contributions is indeed to make accessible

data and algorithms to researchers with limited space resources.

The notion of string attractor has been given very recently in the Data Compres-

sion field to define a unifying framework for dictionary-based compressors. The size

γ∗ of a smallest string attractor is asymptotically smaller than most of dictionary-

based compressor schemes, but its definition can be easily seen as object of study in

Combinatorics on Words. In Chapter 7, we study the notion of string attractor from

different perspectives. First we observe how the measure γ behaves when classical

combinatorial operations are applied. We prove that the measure is not monotone
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with respect to the concatenation, and that, unlike r, the size γ∗ may differ for ro-

tations of the same word. Then, we introduce two novel measures related to string

attractors: the span measure and the leftmost measure. These measures spot combina-

torial properties of words that the measure γ∗ by itself would miss otherwise.

Given the vulnerability of γ∗ with respect to rotations, In Chapter 8 we introduce

the circular string attractor, which aims to consider the factors crossing two consec-

utive occurrences of the same word as exploitable information to represent the text.

Here we analogously define the circular span, and show that a bound on this mea-

sure can be used to characterize standard Sturmian words. Moreover, we provide the

first algorithm for checking if a set is a circular string attractor of a word. From an

equivalence shown later, this induce a novel algorithm for checking if a set is a string

attractor, based on suffix arrays and longest common prefix array.

In Chapter 9 we extend the link between string attractors and classical notions of

repetitiveness from the Combinatorics on Words field. More in detail, we extend the

literature on the string attractor profile function of infinite words. On infinite words,

we introduce new complexities based on the leftmost and the span measure, and

show that the boundedness of these functions characterize eventually periodic words

and quasi-Sturmian words, respectively. Finally, we continue on Chapter 10 by consid-

ering the case study of fixed point of k-bonacci like morphisms. The way the results

are obtained wants to introduce a new perspective on the link between the computa-

tion of string attractors for a wide family of repetitive words by using notions from

the enumeration system world.
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Chapter 2

Preliminaries

Throughout the thesis, we use a standard mathematical notation. Here, we list the

notions that are assumed to be known in the next chapters. First, we present the

basic terminology that will be used throughout the paper, along with well known

properties and definitions in combinatorics on words. Then, we introduce concepts

and measures related to repetitiveness of words.

2.1 Finite and Infinite Words

Finite Words An alphabet Σ is a set of elements called letters (or characters). If the

size of Σ is finite, then we denote by σ = |Σ| its cardinality. A word (or string) w is a

sequence of letters from an alphabet Σ, and its length is denoted by |w|. We denote

with ε the empty word, that is the only word such that |ε| = 0. We denote by Σ∗ the

set of all words over Σ, by Σ+ = Σ∗ \ {ε} the set of all non-empty words over Σ, and

by Σn = {w ∈ Σ∗ | |w| = n} the set of all words of length n, for some n ∈ N0. We

denote by alph(w) ⊆ Σ the set of letters from Σ that occurs in w.

Factors of Words For any pair i, j ∈ [1, n], we denote by w[i, j], the factor (or sub-

string) of w starting at positions i and ending at positions j. Further, if i = 1 or j = n,

then w[i, j] is called prefix or suffix respectively. Note that w[1, n] = w, and if i > j,

we assume that w[i, j] = ε. The set of factors of a word w is denoted by F(w). We say

that a factor w[i, j] is proper if either i ̸= 1 or j ̸= n, i.e. when w[i, j] ̸= w.

Concatenation of Words Given two words u, v ∈ Σ∗, if u = u[1]u[2] · · · u[|u|]

and v = v[1]v[2] · · · v[|v|], the concatenation of u and v, denoted by u · v or simply
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uv, is the word u[1]u[2] · · · u[|u|] · v[1]v[2] · · · v[|v|]. Given an indexed set words

C = {w1, w2, . . . , wm}, we denote by ∏m
k=1 wk = w1w2 · · ·wm the concatenation of

the words from C taken in order.

Reverse Given a word w ∈ Σn, we denote by wR the reverse of w, that is the word w

spelled backwards from right to left. In other words, if w = w[1]w[2] · · ·w[n], then

wR = w[n]w[n− 1] · · ·w[1].

Special Factors A factor u of w is left special (right special) if there exist a, b ∈ Σ with

a ̸= b such that both au and bu (ua and ub) are factors of w. A factor u is bispecial if it

is both left and right special. Inspired by the notation in [22], we denote by er(u) =

|{a ∈ Σ | ua ∈ F(w)}| − 1 the number of right extensions of u in w minus 1, and by

eℓ(u) = |{a ∈ Σ | au ∈ F(w)}| − 1 the number of left extensions of u in w minus 1. The

bispecial factors of w can be classified according to the number of their extensions.

In particular, a factor u is strictly bispecial if |F(w) ∩ ΣuΣ| = (er(u) + 1)(eℓ(u) + 1), u

is weakly bispecial if |F(w)∩ ΣuΣ| = max{er(u), eℓ(u)}+ 1. We denote by SBS(w) and

WBS(w) the set of strictly and weakly bispecial factors of w, respectively.

Order Relations of Words If on the alphabet is defined a total order among its

elements, then we can induce different orders on words. Given two words u, v ∈ Σ∗,

we say that u ≤ v if u is prefix of v, or there exists a common prefix w, the suffixes

u′, v′ ∈ Σ∗ of u and v respectively, and two letters a < b ∈ Σ, such that u = wau′ and

v = wbv′. We refer to this order of the words as lexicographical order.

The colexicographical order is defined by u ≤colex v if uR ≤ vR.

The genealogical order, also known as radix order, on Σ∗ induced by ≤ is defined

as follows: for two words u, v ∈ Σ∗, we say that u is genealogically smaller than v, and

we write u <gen v, if either |u| < |v|, or |u| = |v| and u = wau′ and v = wbv′ for

some letters a, b with a < b. We write again u ≤gen v if u is genealogically smaller

than or equal to v.

Power of Words and Periods For some n ≥ 0, we denote by wn the concatenation

of w with itself n times. A finite word w is called primitive if w = up if and only if

w = u and p = 1. On the other hand, we say that w is a power of a word u if there
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exists an integer p > 1 such that w = up, and we call u root of w. For all p > 0 such

that w[i] = w[i + p] for all i ∈ [1, |w| − p], we say that p is a period of w. In this case,

there exists a rational q > 1 such that w = uq, with q = k
|u| for some k > |u|, and

w is called fractional power. Note that a fractional power w is a power when k is a

multiple of |u|, otherwise it is primitive.

Rotations of Words Given two words w1, w2 ∈ Σ∗, we say that w1 is a conjugate

(or cyclic rotation, or simply rotation) of w2 if there exist u, v ∈ Σ∗ such that w1 = uv

and w2 = vu. We denote by R(w) the set of rotations of the word w. Note that

R(w1) = R(w2) if and only if w1 and w2 are respectively conjugate. A finite word w

is then primitive if and only if |R(w)| = |w|, i.e., when all rotations of w are distinct. A

primitive word w is called Lyndon if it is the smallest in lexicographical order among

its rotations.

Circular Factors of Words Given a word w, we refer by C(w) =
⋃

w′∈R(w) F(w′) to

the set of circular factors of w, that is the set of factors of all rotations of w. A circular

factor u ∈ C(w) can be denoted by a pair of positions (i, j) in w, where (i, j) = w[i, j],

if i ≤ j, or (i, j) = w[i, n] · · ·w[1, j] otherwise. All the definitions related to bispecial

factors can be extended to circular factors by considering C(w) instead of F(w). We

denote by cSBS(w) and cWBS(w) the set of strictly and weakly bispecial factors of w,

respectively.

Suffix Array, Inverse Suffix Array, and Longest Common prefix array The Suffix

array (SA) of a word w ∈ Σn is an array of length n such that w[SA[i], n] < w[SA[j], n]

for any 1 ≤ i < j ≤ n. The Inverse Suffix array (ISA) is the inverse of SA, i.e. ISA[i] = j

if and only if SA[j] = i.

Given two words u, v ∈ Σ∗, let ℓcp(u, v) be the the longest common prefix be-

tween u and v, that is ℓcp(u, v) = u[1, |ℓcp(u, v)|] = v[1, |ℓcp(u, v)|], but u[|ℓcp(u, v)|+

1] ̸= v[|ℓcp(u, v)| + 1] (assuming ℓcp(u, v) < min{|u|, |v|}). The Longest Common

Prefix array (LCP) of w ∈ Σn is an array of length n such that LCP[1] = 0 and

LCP[i] = |ℓcp(w[SA[i− 1], n], w[SA[i], n))|, for any 0 < i < n.



10 Chapter 2. Preliminaries

Distances Given two words u and v having the same length, the Hamming distance

between u and v, denoted as dH(u, v), is the number of positions at which the corre-

sponding letters in u and v are different.

Given a word w ∈ Σn, an index p ≥ 0, and a letter a ∈ Σ, we refer with edit

operation to any of the following operations on words:

• insertion: add the letter a in w at position p, that is

ins(w, p, a) = w[1, p] · a · w[p + 1, n];

• deletion: delete the letter in w at position p, that is

del(w, p) = w[1, p− 1] · w[p + 1, n];

• substitution: replace the letter in position p in w with a, that is

sub(w, p, a) = w[1, p− 1] · a · w[p + 1, n].

Given two words u, v ∈ Σ∗, the edit distance between u and v is the minimum number

of edit operations to apply on u to obtain v and vice versa, and it is denoted by

ed(u, v).

Example 1. Let us consider the words u = abbabb and v = babbab. One can see that

dH(u, v) = 4, since u and v differ at positions 1, 2, 4, and 6. On the other hand, one can see

that u′ = del(u, 6) = abbab and ins(u′, 1, b) = babbab = v. By exhaustive research, one

can check that this is the minimum number of edit operations needed to go from u to v, and

therefore ed(u, v) = 2.

Infinite Words An infinite word x on the alphabet Σ is an infinite sequence of letters

from Σ, that we can denote by x = a1a2 · · · an · · · , where ai ∈ Σ for all integer i > 0.

We denote by Σω the set of all infinite words on Σ. An infinite word x is periodic if

there exists p > 0 such that x[i] = x[i + p], for all i > 0. It follows that there exists

v ∈ Σp such that x = vω, where vω denotes the concatenation of infinite copies of

v. An infinite word x is called eventually periodic if there exist finite words u, v ∈ Σ∗
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such that x = uvω. If x is neither eventually periodic nor periodic, then x is called

aperiodic.

Recurrence and appearance functions An infinite word x is said to be recurrent if

every factor that occurs in x occurs infinitely often in x, or equivalently that each

factor of x appear at least two times. The recurrence function Rx(n) gives, for each n,

the least integer m (or ∞ if no such m exists) such that every block of m consecutive

letters in x contains at least an occurrence of each factor of x of length n. An infinite

word x is uniformly recurrent if Rx(n) < ∞ for each n > 0. Rx(n)− n + 1 is the max-

imum gap between successive occurrences of any factor, when all factors of length

n are considered. If Rx(n) is linear, x is called linearly recurrent. It is easy to see that

an eventually periodic word x = uvω that is not periodic it is not recurrent. On the

other hand, if x is periodic (the case u = ε) then x is linearly recurrent. Therefore, a

recurrent word is either aperiodic or periodic. Given an infinite word x, Ax(n) de-

notes the length of the shortest prefix containing all the factors of x of length n. The

function Ax(n) is called appearance function of x.

Remark 2. It is known that Ax(n) ≤ Rx(n) (see [2]). Moreover, for any infinite word x and

for each n > 0, since |Σ| is finite, Ax(n) is always defined and Ax(n) ≥ px(n) + n− 1 =

Ω(n).

k-power free and ω-power free words Given an integer k > 1, an infinite word

x ∈ Σω is called k-power free if, for all u ∈ Σ∗, it holds that uk /∈ F(x), that is x does

not contain k consecutive occurrences of any factor. An infinite word x ∈ Σω is called

ω-power free if, for each factor u ∈ Σ∗, there exists k ≥ 1 such that uk /∈ Fx.

Sturmian Words Let Σ = {a, b}. A word w ∈ Σ∗ is called balanced if the difference

of the number of a’s (or, equivalently, b’s) in every two factors of the same length of

w is at most 1. An infinite word x is balanced if every finite factor of x is balanced. A

finite word w is circularly balanced if each word inR(w) is balanced.

An infinite word over Σ = {a, b} is a Sturmian word if it has exactly n + 1 distinct

factors of length n for every n ≥ 0. The theory of Sturmian words is very well
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studied (see [84] for a reference). For example, the following characterization is well

known.

Theorem 3. An infinite word over Σ = {a, b} is Sturmian if and only if it is balanced and

aperiodic.

A class of Sturmian words, called characteristic Sturmian words, can be constructed

by using finite words, called standard Sturmian words, defined recursively as follows.

Given an infinite sequence of integers (d0, d1, d2, . . .), with d0 ≥ 0, di > 0 for all

i > 0, called directive sequence, the associated standard Sturmian words are defined

by s0 = b, s1 = a, and si+1 = sdi−1
i si−1, for i ≥ 1. A characteristic Sturmian word

is the limit of an infinite sequence of standard Sturmian words, i.e., s = limi→∞ si.

A very well-known example of characteristic Sturmian word is the infinite Fibonacci

word, obtained from the directive sequence (1, 1, 1, . . .), that is the word

f = abaababaabaababaababa · · · .

We refer to standard Sturmian prefixes si of f as the finite Fibonacci words. Note that

in this case, the size |si| grows as the sequence of Fibonacci numbers.

We denote by Stand the set of all standard Sturmian words. Standard Sturmian

words appear as extremal case for several algorithms and data structures ([71, 23,

94, 120]).

For instance, a characterization of (rotations of) powers of standard Sturmian

words can be derived from their circular balance [113]

Lemma 4. Let w be a finite word. Then, w ∈ R(sℓ) for some s ∈ Stand and some ℓ > 0 if

and only if w is circularly balanced.

Let PER be the set of all words v ∈ {a, b}∗ having two periods p and q such that

gcd(p, q) = 1, and |v| = p+ q− 2. It is known that Stand = {a, b}∪PER{ab, ba} [86].

Given a word w ∈ Stand, we denote by π(w) its prefix of length |w| − 2, belonging

to the set PER, uniquely defined by using previous equality. By using a property of

words in PER (cf. [86]), π(w) = QxyP = PyxQ, where x ̸= y are letters and Q and

P are uniquely determined palindromes. So, a standard Sturmian word w = π(w)ba
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can be decomposed as w = QxyPba = PyxQba. Any factorization of this type is

called PER-decomposition of w.

2.2 Morphisms

In Formal Language theory, a homomorphism, frequently simply referred as morphism,

is an algebraic tool that is frequently used as an automatic system to generate words.

Given two alphabets Σ and Σ′, a morphism µ : Σ∗ 7→ Σ′∗ maps the words over

the alphabet Σ to words over the alphabet Σ′, and that preserves the concatenation,

that is µ(uv) = µ(u)µ(v) for all u, v ∈ Σ∗. For any word w ∈ Σ, we refer to µ(w)

as the image of w under µ (simply image of w if µ is clear from the context). If it is

defined an order within the letters of Σ = {a1 < a2 < . . . < aσ}, then we can define

the morphism with the notation µ ≡ (u1, u2, . . . , uσ), where ui = µ(ai) ∈ Σ′∗ for all

i ∈ [1, σ].

A morphism µ : Σ∗ 7→ Σ∗ is called primitive if there exists k such that, for each

pair of letters a, b ∈ Σ, it holds that b ∈ F(µk(a)), that is b appear in µk(a).

A morphism µ : Σ∗ 7→ Σ′∗ is called non-erasing if µ(a) ̸= ε for all a ∈ Σ. If

|µ(a)| = k for all a ∈ Σ and some integer k > 0, then the morphism µ is called

k-uniform. If a morphism µ is 1-uniform, then µ is also called a coding.

A morphism µ : Σ∗ 7→ Σ∗ is called elementary if it does not exists a composition

of two morphisms η1 : Σ∗ 7→ Σ′∗ and η2 : Σ′∗ 7→ Σ∗ with |Σ| > |Σ′| such that

µ = η2ηη1. A morphism that is not elementary is called simplifiable.

Growth Function of Morphisms Given a morphism µ : Σ∗ 7→ Σ∗ and a letter

a ∈ Σ, the growth function µa returns for each n ≥ 0 the length of the word obtained

after applying n times µ on a, i.e., µa(n) = |µn(a)|. A letter a ∈ Σ is growing for µ

if limn→+∞ µa(n) = +∞. On the contrary, a is bounded for µ if there exists k > 0

such that µa(n) < k for all n > 0. A morphism µ is called growing if all letters Σ are

growing for µ, and it is called non-growing if there exists a ∈ Σ that is bounded for µ.

Clearly, if µ is a coding then it is non-growing, while if µ is k-uniform for some k ≥ 2

then µa(n) = kn for all n ≥ 0, and therefore it is growing.
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It is known that for growing morphisms, for all a ∈ Σ the growth function is

µa(n) = Θ(nea ρn
a ), for some ea ≥ 0 and some ρa > 1 [118, 117]. Growing morphisms

can be classified based on their growth functions. A growing morphism µ : Σ 7→ Σ

is called:

1. quasi-uniform if, for all a ∈ Σ, there exists ρ > 1 such that µa(n) = Θ(ρn);

2. polynomially divergent if there exist a, b ∈ Σ such that µa(n) = Θ(nea ρn) and

µb(n) = Θ(neb ρn), for some ρ > 1 and two distinct ea ̸= eb ≥ 0;

3. exponentially divergent if there exist a, b ∈ Σ such that µa(n) = Θ(nea ρn
a ) and

µb(n) = Θ(neb ρn
b ), for some ea, eb ≥ 0 and two distinct ρa ̸= ρb > 1.

It is known that any primitive morphism is quasi-uniform.

Purely morphic words Given a morphism µ : Σ 7→ Σ, a fixed-point of µ is any

word w that verifies µ(w) = w. A morphism µ : Σ 7→ Σ is called prolongable on

a ∈ Σ if µ(a) = au, for some u ∈ Σ+. From the definition, one can see that if

µ is prolongable on a, then µn(a) = auµ(u)µ2(u) · · · µn−1(u) for all n, and therefore

each µn(a) is prefix of µn+1(a). Then, there exists an infinite word x fixed-point of

µ obtained after applying the morphism infinitely many times, i.e., limn→∞ µn(a) =

µ(x) = x, and it is called purely morphic word. Further, a word w is called purely

morphic finite word if w = µn(a) for some n > 0.

Example 5. Let τ ≡ (ab, ba) denote the Thue-Morse morphism. The first iterations of the

morphism τ, and the purely morphic word t = τ∞(a) are shown below.

τ(a) = ab

τ2(a) = abba

τ3(a) = abbabaab

τ4(a) = abbabaabbaababba

...

t = τ∞(a) = abbabaabbaababbabaababbaabbabaab · · ·

Acyclic and Cyclic Morphisms A morphism µ : Σ∗ 7→ Σ′∗ is cyclic if there exists

u ∈ Σ′∗ such that µ(a) ∈ {u}∗, for each a ∈ Σ. Otherwise, it is called acyclic. Note that
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the fixed point of a cyclic morphism is periodic. In the case of a binary morphism, it

is known that µ is cyclic if and only if µ(ab) = µ(ba).

Sturmian morphisms A Sturmian morphism is a morphism that maps infinite Stur-

mian words to infinite Sturmian words. Some combinatorial characterizations of

Sturmian morphisms have been proved in [11]. In particular, a binary morphism µ

is Sturmian if and only if it is acyclic and balanced (i.e., it maps balanced words to

balanced words). Berstel and Séébold [11] proved the following characterization:

Theorem 6. An acyclic morphism µ is Sturmian if and only if it is locally Sturmian, that

is, there exists a Sturmian word s such that µ(s) is Sturmian.

Let us denote the following morphisms:

E :

 a 7→ b

b 7→ a
φ :

 a 7→ ab

b 7→ a
φ̃ :

 a 7→ ba

b 7→ a

The morphism φ is called the Fibonacci morphism, since its fixed point is the Fi-

bonacci word abaababaabaababaab · · · . The monoid {E, φ, φ̃}∗ generated by E, φ, and

φ̃, by using the composition operator ◦, is known as the Sturm monoid. The following

theorem, proved in [97], shows the combinatorial structure of Sturmian morphisms.

Theorem 7. A morphism is Sturmian if and only if it belongs to {E, φ, φ̃}∗.

Sturmian morphisms can be used to characterize the rotations of standard Stur-

mian words, as described in the following lemma (see [106, 32]).

Lemma 8. Let w be a finite word. Then, w ∈ R(sℓ) for some s ∈ Stand and some ℓ > 0 if

and only if there exists a Sturmian morphism µ ∈ {E, φ, φ̃} such that w = (µ(a))ℓ.

2.3 Repetitiveness of Words

Everyone has a vague idea of what repetitions are. Between the words ababababab

and bdacabbcdc, instinctively one perceive that first is more repetitive than the sec-

ond one. Even though different definitions related to redundancies in words have

been given, still the scientific community has not agreed on a universal measure to

quantify their degree of repetitiveness.
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In this Section, we introduce different notions of repetitiveness given in the liter-

ature. First we present some notions from the Combinatorics on Words field. Then,

we show some measures based on sizes of the compressed representations of the

words, using different compression schemes.

2.3.1 Combinatorial Notions of Repetitiveness

Factor Complexity Given an infinite word x ∈ Σω, the factor complexity (function)

px : N 7→ N of x counts for each integer n > 0, the number of distinct factors that

occur in x, that is:

px(n) = |Σn ∩ F(x)|.

If we assume that Σ is finite, such a function always exists. For all finite words

w ∈ Σ∗, we denote by pw the analogous function on finite words. The famous Morse-

Hedlund theorem shows a characterization of eventually periodic words based on

the factor complexity (see [84] for a reference).

Theorem 9 (Morse-Hedlund theorem). Let x be an infinite word. The following are

equivalent.

1. The word x is eventually periodic.

2. We have px(n + 1) = px(n) for some integer n.

3. The complexity function px is bounded by a constant.

From the point 2. of Theorem 9, one can observe that the factor complexity of an

aperiodic word is at least linear, as described in the following Corollary.

Corollary 10. An infinite word x ∈ Σω is aperiodic if and only if px(n) > n.

For a word w ∈ Σn, the circular factor complexity of w, denoted by cw, counts for

each k ∈ [1, n] the number of distinct circular factors of w, that is cw(k) = |C(w)∩Σk|.

Recurrence and Appearance Functions An infinite word x is said to be recurrent if

every factor of x occurs infinitely often (in x). The recurrence function Rx(n) returns,

for each n, the least integer m (or ∞ if no such m exists) such that every block of m

consecutive letters in x contains at least an occurrence of each length-n factor of x.
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An infinite word x is uniformly recurrent if Rx(n) < ∞ for each n ≥ 1. Rx(n)−n+ 1

is the maximum distance between consecutive occurrences of any factor, when all

factors of length n are considered. If Rx(n) is linear, then x is linearly recurrent.

It is easy to see that an eventually periodic word x = uvω with u ̸= ε is not

recurrent, while on the other hand, if x is periodic (the case u = ε) then x is linearly

recurrent. Therefore, a recurrent word is either aperiodic or periodic.

Given an infinite word x, Ax(n) denotes the length of the shortest prefix contain-

ing all the length-n factors of x. The function Ax(n) is called the appearance function

of x.

Parikh Vectors Given a word w ∈ Σ∗, we denote by |w|a the number of occurrences

in w of the letter a ∈ Σ. The Parikh vector of w ∈ {a1, a2, . . . , aσ}∗, denoted as P(w), is

the σ-tuple (|w|a1 , . . . , |w|aσ ).

2.3.2 Compressor based Repetitiveness Measures

Grammars and Straight Line Programs A (context-free) grammar is defined through

the tuple G = (V, Σ, R, S), where:

1. V is the set of nonterminal characters (or variables);

2. Σ is the set of terminal characters;

3. R : V 7→ (V ∪ Σ)∗ is the set of rules, that is an application from the letters in V

to words over terminal and/or nonterminal characters;

4. S ∈ V is the axiom, or initial variable, to which we start applying rules from R.

We denote by L(G) the set of words in Σ∗ that can be generated by G.

A Straight Line Program (SLP) [70] consists in a particular context-free grammar

that generates only one string, that is |L(SLP)| = 1. A SLP allows only two type of

rules:

• X → AB, with A, B nonterminals;

• X → a, with a terminal.

If the grammar contains also some rules of the following type
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• X → Yk, with Y nonterminal and k > 2

then we have a particular type of SLP, the run-length SLP (RLSLP) [102]. The prob-

lems of finding the smallest SLP or RLSLP of a word w, respectively of size g∗ and

g∗rl , are NP-hard [26, 62, 69].

Based on the rules applied, we can build the associated parse-tree, as shown in

the following example.

Example 11. Consider the word

w = abracadabra.

The following rules represent a SLP that refers to w:

• S→ XY

• X → X1X2

• X1 → AB

• X2 → RA

• Y → Y1X;

• Y1 → CY2;

• Y2 → AD

• A→ a

• B→ b

• C → c

• D → d

• R→ r

In Figure 2.1 it is reported the parse-tree for w.

Lempel-Ziv Factorization The Lempel-Ziv Factorization [81] consists in a factoriza-

tion of a word w ∈ Σn with a sequence of triples (s, l, c) where:

• s ∈ [1, n] is the position where the longest common substring to be copied

starts;

• l ≥ 0 is the length of the longest common substring to be copied;

• c ∈ Σ is the letter to concatenate with the longest common substring copied.

In other word, the i-th triple (si, li, ci) tells us that the portion of string built so far

until the i-th triple is obtained as follows:
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S

Y

Y1

Y2

A

C

D

X

X1 X2

A B R A

a b r a c a d a b r a

X

X1 X2

A B R A

FIGURE 2.1: The parse-tree for a SLP generating the word w =
abracadabra

wi = wi−1 · wi−1[si, (si + li − 1)] · ci.

We denote by z the measure which computes the size of the Lempel-Ziv factor-

ization of a word.

Example 12. Consider w = abracadabra. By using the LZ-77 algorithm, we can replace

the word by the sequence of triples

LZ77(w) = (0, 0, a)(0, 0, b)(0, 0, r)(1, 1, c)(1, 1, d)(1, 3, a)

where:

• (0, 0, a)→ a

• (0, 0, b)→ b

• (0, 0, r)→ r

• (1, 1, c)→ w[1, 1] · c = ac

• (1, 1, d)→ w[1, 1] · d = ad

• (1, 3, a)→ w[1, 3] · a = abra.

It follows that z(w) = |LZ(w)| = 6.
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δ-Measure Given a word w ∈ Σn, the measure δ strongly depends on the factor

complexity pw. Such a measure is in fact defined as δ(w) = maxk∈[1,n]{ pw(k)
k } [111].

L-Systems, Macro Systems, and NU-Systems Lindenmayer systems (or CD0L-systems,

or simply L-systems), originally developed by Lyndenmayer to model simple organ-

isms [83], had a huge impact in the formal language field [117]. An L-system can be

defined through a tuple L = (Σ, µ, w, η), where:

• Σ is an alphabet;

• µ : Σ∗ 7→ Σ∗ is a morphism;

• w is the axiom word of the L-system;

• η : Σ∗ 7→ Σ′∗ is a coding.

The language of the words generated by L is L(L) = {η(µi(w)) | i ∈N}, and it is

of size ℓ = ∑a∈Σ |µ(a)|.

Example 13. Let us consider the alphabet Σ = {a, b, c}, the morphism µ ≡ (ab, bc, cc),

and the coding η ≡ (a, a, b). The first words of the L-system L = (Σ, µ, a, η) are:

η(µ(a)) = η(ab) = aa

η(µ2(a)) = η(abcb) = aaba

η(µ3(a)) = η(abcbcccb) = aababbba

η(µ4(a)) = η(abcbcccbcccccccb) = aababbbabbbbbbba

. . .
The infinite word c = η(µ∞(a)) is also known as the characteristic sequence of the

power of 2, since it verifies that c[i] = a if and only if i = 2j for some j ∈N.

A macro system [101] is a tuple M = (V, Σ, R, S) where:

• V is the set of nonterminals or variables;

• Σ is the set of terminals;

• R : V 7→ (V ∪ Σ ∪ {A[i, j] | A ∈ V, i, j ∈ N})∗ is the set of rules that uniquely

maps nonterminals into sequences of nonterminals and terminals;

• S ∈ V is the axiom, or initial variable.
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If a word w is uniquely generated by M by applying all the rules in R, then M

has size m = |Σ|+ ∑A∈V |R(A)|.

From the combination of L-systems and macro systems, Navarro and Urbina in-

troduced the notion of NU-system [101]. A NU-system is a tuple N = (V, R, S, λ, d, n),

where:

• V is the set of variables;

• R : V 7→ (V ∪ E)+ is the set of rules that uniquely maps variables into se-

quences of variables and extraction rules, that are of the type

E = {A(l)[i, j] | A ∈ V, l, i, j ∈N};

• S ∈ V is the axiom;

• λ : V 7→ V is a coding;

• d is the depth;

• n is the length of the word produced.

Note that A(l) denotes the word obtained after applying l times the rules from

R in parallel on each letter. If N is the smallest NU-system that generates a word

w = S(d)[1, n], we denote its size by ν = ∑A∈V |R(A)|. From the definition, which

combines both L and macro systems, it can be derived that ν = O(min(ℓ, m)). More-

over, the measures ν and δ are incomparable [101].
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Chapter 3

Burrows-Wheeler Transform,

BWT-runs, and Measure r

The Burrows-Wheeler Transform, named after its designers Michael Burrows and

David Wheeler, is a reversible permutation of strings, defined in the field of Data

Compression [21]. Since its introduction, the Burrows-Wheeler Transform (BWT)

has been a hot topic for the scientific community. Such a permutation tends to be

more compressible with standard techniques: on repetitive texts, 0th-order entropy

compressors on the BWT are efficient as higher-order entropy compressors on the

original word [95]. A standard compression technique to apply on the BWT is the

run-length encoding, which consists in replacing maximal equal letter runs of the

BWT, called BWT-runs, in pairs of the form (a, ℓ), where a is the letter repeated and

ℓ > 0 is the length of the BWT-run. The size of the run-length encoding of the BWT

is usually referred by r, and this measure tends to be smaller than the run-length

encoding of the word itself when abundant and long repetitions occur in the word.

Due its efficiency, it is currently at the basis of many compressors, like bzip [121], and

different notions of BWT have been given in time [40, 92, 51].

Based on the properties of the Burrows-Wheeler transform, Ferragina and Manzini

will later introduce the FM-index [43], a full text index at the base of widely used

bioinformatics tools [79, 82]. Although we can store and query the BWT in com-

pressed space [88], the number of samples of the suffix array required by the index

grows with the length of the uncompressed text. The renovated interest from the

combinatorial community is indeed given by the recent introduction of the r-index

by Gagie et al. [49], which permits optimal searching time of one occurrence of a
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pattern in a space proportional to r. The efficiency of the r-index truly depends on

the repetitiveness of the dataset, which is the case for practical applications in pange-

nomics. Due to its properties in compressed full-text indexing, the size r has started

to be considered as a measure of repetitiveness of finite words [99]. The Burrows-

Wheeler Transform has also found applications in Combinatorics on Words [94], and

recent studies have expanded the knowledge on the measure r [93, 54, 20, 55, 56, 44].

In this chapter, we focus on the study of the measure r from different theoretical

aspects, in order to evaluate the measure r.

First, in Section 3.1 we describe the notion of Burrows-Wheeler Transform, and

the associated measure r.

In Section 3.2 we show what properties of words influence the number of BWT-

runs. As it will be clear later, circular bispecial factors play a crucial role on the mea-

sure r, and they represent natural bounds, even if not always tight. This relationship

with bispecial factors appeared in [46].

In Section 3.3 we present some novel results on the sensitivity of the measure

r, that is the capacity of the structure of the BWT of being affected when a simple

edit operation is applied. In particular, we will focus on the additive sensitivity, and

show a lower bound for all edit operations. For the insertion, our bound is of a

significantly greater order than the previous Ω(log n) proposed by Akagi et al. [1].

The results from this section appeared in [55].

3.1 Burrows-Wheeler Transform, Measures r and r$

Given an ordered alphabet Σ, let w ∈ Σn be a finite word. We denote by M =

{{w1, w2, . . . , wn}} the ordered multiset of rotations of w, i.e., wi ≤ wi+1 for all i ∈

[1, n− 1]. This multiset can be seen as a matrix n× n, whereM[i][j] = wi[j]. Note

that if w is primitive,M is a set. The Burrows-Wheeler Transform, in short BWT, is the

concatenation of the last letters ofM taken in order. In Figure 3.1, the BWT for the

word abracadabra$ can be read in the last column L in bold from top to bottom.

A powerful property of the Burrows-Wheeler Transform is that it is reversible.

In fact, consider the last column L (= bwt(w)). It is easy to check that ordering

lexicographically its elements returns the first column F of the matrixM. Burrows
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F L
↓ ↓
a a b r a c a d a b r
a b r a a b r a c a d
a b r a c a d a b r a
a c a d a b r a a b r
a d a b r a a b r a c
b r a a b r a c a d a
b r a c a d a b r a a
c a d a b r a a b r a
d a b r a a b r a c a
r a a b r a c a d a b
r a c a d a b r a a b

FIGURE 3.1: Example of BWT for the word abracadabra.

and Wheeler proved that the i-th occurrence of a letter a ∈ Σ in L corresponds to

the i-th occurrence of a in F [21]. We denote by LF : [1, n] 7→ [1, n] the LF-mapping

that uniquely associates the letters in L with the corresponding in F, that is LF[i] = j

if SA[i] = SA[j] + 1 mod n. From the definition, one has that bwt(w)[i] is preceded

in w by bwt(w)[LF[i]], for all i ∈ [1, n]. Thus, starting from the occurrence of the last

letter of w in bwt(w), we can reconstruct the whole word by applying the LF mapping

exactly n times.

Note that the bwt(w) consists in a permutation of the word w. However, the BWT

tends to have longer equal-letter runs then the original word, particularly in highly

repetitive texts.

Let w ∈ Σ∗ be a finite word. We can then factorize w = ap1
1 ap2

2 · · · a
pk
k , for some

k > 0 such that ai ∈ Σ and pi > 0 for all i ∈ [1, k], and aj ̸= aj+1 for all j ∈ [1, k− 1].

The run-length encoding rle of the word w is

rle(w) = (a1, p1)(a2, p2) · · · (ak, pk).

The measure r for the word is then the number of equal-letter runs of the BWT of w,

that is r(w) = |rle(bwt(w))|. Moreover, for a given word w, we use the term BWT-run

to refer to any equal-letter run from rle(bwt(w)).

Different variants of the BWT have been presented over the years [40, 50, 78],

and its definition has been extended for collections of sequences too [92, 10, 25]. In

the context of combinatorial pattern matching, for a word w ∈ Σ∗ it is a standard
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procedure computing the BWT after appending to w a special letter $ /∈ Σ such that

$ < a for all a ∈ Σ. By doing this, the order of the rotations in R(w) is equivalent

to the order of the suffixes of w. To distinguish the size of the run-length encoding

for these cases, we denote by r$(w) = r(w$). Note that most of the literature on the

size of the BWT in compressed data structures concerns the measure r$ (see [99] for a

reference). In Figures 3.1 and 3.2 we can compare the matrices of the sorted rotations

and the corresponding BWT for the words abracadabra and abracadabra$. One can

notice that r(abracadabra) = 7 ̸= r$(abracadabra) = 8. However, this difference can

grow logarithmically with the length n of the word [55].

F L
↓ ↓
$ a b r a c a d a b r a
a $ a b r a c a d a b r
a b r a $ a b r a c a d
a b r a c a d a b r a $
a c a d a b r a $ a b r
a d a b r a $ a b r a c
b r a $ a b r a c a d a
b r a c a d a b r a $ a
c a d a b r a $ a b r a
d a b r a $ a b r a c a
r a $ a b r a c a d a b
r a c a d a b r a $ a b

FIGURE 3.2: Example of BWT for the word abracadabra$.

In the field of combinatorics on words, the measure r has been used to obtain

a novel characterization of powers of standard Sturmian word [94]. We summarize

this characterization along with the others from Lemmas 4 and 8 in the next theorem.

Theorem 14. Let w be a word such that alph(w) = {a, b}. Then the following are equiva-

lent:

1. w is circularly balanced;

2. w ∈ R(sℓ), for some standard Sturmian word s and for some ℓ > 0;

3. w = (µ(a))ℓ for a Sturmian morphism µ and for some ℓ > 0;

4. r(w) = 2.



3.2. Factors of a Word and BWT-runs 27

3.2 Factors of a Word and BWT-runs

In this section, we show some results that relate the measures r and r$ of a word

w with the number of the factors of the word itself. Moreover, we prove that some

combinatorial properties of the factors of a word affect the structure of its Burrows-

Wheeler Transform and the measure r. Recall that for a given word w, the measure

δ(w) returns, among all lengths 1 ≤ k ≤ |w|, the maximum ratio between the number

of distinct k-length factors of w over the length k. The following relationship between

δ and the measure r$ has been proved by [67].

Theorem 15 ([67], Theorem 3.7). Every word w of length n satisfies

r$(w) = O(δ(w) log δ(w) ·max{1, log
n

δ(w) log δ(w)
}).

Even though this refers to the measure r$, the following lemma shows how to

extend this relationship to the measure r.

Lemma 16. Let w ∈ Σ∗ be a Lyndon word. Then, for all u, v ∈ Σ∗ such that w = uv,

r(vu) + 1 ≤ r$(w) ≤ r(vu) + 2.

Proof. Let M and M$ be the matrix of the sorted rotations of w and w$. The first

rotation in M$ is the one starting with the $, that is preceded by the last letter of

w. Since w is Lyndon, and therefore it is the first rotation in M, it follows that

bwt(w)[1] = bwt(w$)[1]. Let rot(v) and rot$(v) be the sorted rotations with prefix v

respectively fromM andM$, for any v such that w = uv. From the hypothesis on

the primitivity of w, there can not be two equal rotations in any rot(v). Since every

prefix u of any Lyndon word is the smallest |u|-length circular factor that occur in w,

vu is the first rotation in lexicographical order in rot(v). Analogously, v$u is the first

rotation in lexicographical order in rot$(v), while the other stays in the same relative

order as rot(v). In correspondence of such rotations, both bwt(w$) and bwt(w) are the

same, with the solely exception when v = w since rot(w) = {w} and rot$(w) = {w$}.

It follows that bwt(w$) = bwt(w)[1]$bwt(w)[2, n]. If bwt(w)[1] = bwt(w)[2], then the $

split the first run in bwt(w) with a consequent increase of two BWT-runs, otherwise

it is only one more for the run of the $.
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In other words, the measure r of a word is of the same order as the measure

r$ of its Lyndon rotation. One may observe that in order to extend Theorem 15 to

measure r, the measure δ should refer to Lyndon words. However, the following

lemma shows that the difference between the δ-measures of two words in the same

conjugacy class is less than 1.

Lemma 17. Let u, v ∈ Σ∗ be two finite words. Then, |δ(uv)− δ(vu)| < 1.

Proof. Clearly, one has that cuv(k) = cvu(k) for all k ∈ [1, n]. Moreover, for every

word w ∈ Σn, it holds that Cw(k) = Fw(k) ∪ {w[n− i + 1, n] · w[1, k− i] | i ∈ [1, k−

1]}. Then, for all k ∈ [1, n], it follows that pw(k) ≤ cw(k) ≤ pw(k) + k − 1, and by

reformulating the relation we obtain cw(k)− k + 1 ≤ pw(k) ≤ cw(k). If we divide all

members by k, we can see that pw(k)
k ∈ [ cw(k)

k − 1 + 1
k , cw(k)

k ]. Such a range has size

1− 1
k < 1 for all k ∈ [1, n], and it is the same for all the rotations of w.

We now prove our thesis by contradiction. Let us assume that there exist two

words u, v ∈ Σ∗ such that δ(uv)− δ(vu) > 1, and let k∗ ∈ [1, n] be such that δ(uv) =
puv(k∗)

k∗ . But then, since puv(k∗)
k∗ −

pvu(k∗)
k∗ < 1 for all u, v, we would have δ(uv) = puv(k∗)

k∗ >

pvu(k∗)
k∗ > δ(vu), contradiction.

Thus, we can write the following corollary.

Corollary 18. Every word w of length n satisfies

r(w) = O(δ(w) log δ(w) ·max{1, log
n

δ(w) log δ(w)
}).

Proof. Let w = vu such that uv is Lyndon. By Lemmas 16 and 17, we have that

r(w) = Θ(r$(uv)) = O(δ(uv) log δ(uv) ·max{1, log
n

δ(uv) log δ(uv)
})

= O(δ(w) log δ(w) ·max{1, log
n

δ(w) log δ(w)
}).

Such a result remarks how the number of distinct factors affects the maximum

number of BWT-runs, regardless of the order of the alphabet. Nonetheless, not all

factors have the same impact on r.
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We now show how the circular bispecial factors can be used to derive both a

lower and an upper bound on the number of BWT-runs.

Lemma 19. Let w ∈ Σ∗ be a finite word. Then,

∑
u∈cWBS(w)

min{el(u), er(u)}+ 1 ≤ r(w) ≤ ∑
u∈cBS(w)

er(u) + 1.

Proof. Let y = bwt(w), and let S = {p1 < p2 < . . . < pr−1} be the set of positions

in y of the last letter of the first r − 1 BWT-runs. This means that the equal-letter

runs of y are y[1, p1], y[p1 + 1, p2], . . ., y[pr−2 + 1, pr−1], and y[pr−1 + 1, n]. It follows

that y[pj] ̸= y[pj + 1] for every 1 ≤ j ≤ r− 1. Let moreover wj be the jth conjugate

of w in lexicographic order. We can then define the set WS = {wp1 , wp2 , . . . , wpr−1},

that is the multiset of rotations of w corresponding to the positions in S. We observe

that every ui = lcp(wpi , wpi+1) is a bispecial circular factor, since wpi = uiav′a′ and

wpi+1 = uibv′′b′, for some a, b, a′, b′ ∈ Σ such that a < b and a′ ̸= b′, and some

v′, v′′ ∈ Σ+ that end with distinct letters.

Let us prove the first implication. Let e(u) = max{el(u), er(u)}. By definition, for

any u ∈ cWBS(w), there are exactly e(u) + 1 distinct circular factors of w of the type

aua′, for some a, a′ ∈ Σ. Let Su = {q1 < q2 < . . . < qer(u)} be the set of positions in the

BWT such that wqj = uav1 and wqj+1 = ubv2, for every j ∈ [1..er(u)], some a, b ∈ Σ

such that a < b and some v1, v2 ∈ Σ∗. If el(u) ≤ er(u), then el(ua) = 0 (i.e. there exists

only one circular left extension of ua) for all a ∈ Σ. It follows that there are at least

el(u) rotations such that wqi = uav1 and wqi+1 = ubv2 end with distinct letters, i.e.

there are at least el(u) changes of letters in y that uniquely correspond to the weak

bispecial circular factor u. On the other hand, if el(u) > er(u), then er(au) = 0 (i.e.

there exists only one circular right extension of au) for all a ∈ Σ. It follows that if

there exist two consecutive cyclic rotations wq and wq+1 such that wq = uav′1 and

wq+1 = ubv′2, then wq and wq+1 end with different letters, i.e. there are at least er(u)

changes of letters in y that correspond to u.

We prove the second direction of the implication by contradiction. Let us sup-

pose that there exist pi1 < pi2 < . . . < pier (ui )+1 ∈ S such that lcp(wpij
, wpij+1) = ui

for each j ∈ [1, er(u) + 1]. By the pigeonhole principle, in WS there are at least two

distinct rotations wpij
= uiav and wpij′

= uiav′, for some j < j′, some a ∈ Σ, and



30 Chapter 3. Burrows-Wheeler Transform, BWT-runs, and Measure r

some v, v′ ∈ Σ∗. However, one can see that uia = lcp(wpij
, wpij′

). By definition,

wpj+1 = uibv′′, for some b ∈ Σ such that b > a, and some v′′ ∈ Σ∗. Thus, we obtain

that wpj < wpj′ < wpj+1, but this is impossible because wpj and wpj+1 are consecutive,

contradiction.

The same upper bound has been defined on the measure r$ by [8]. However, as

it will be shown at the end of the next section, the bounds on the measure r can not

be directly derived from it.

3.3 Effects of Edit Operations on r

In this section, we focus on the effects that an edit operation may have on the mea-

sure r of a word. We start right away by observing how the BWT behaves when

some combinatorial operation is considered.

A very well known property of the BWT is that, for every word w ∈ Σ∗ and

every integer n > 0, it holds that r(w) = r(wn) [94]. Further, the structure of the BWT

can be used to characterize powers of words.

Theorem 20 ([94]). Let u ∈ Σm be a word such that bwt(u) = a1a2 · · · am, where ai ∈ Σ

for all i ∈ [1, m]. Then, for a word w it holds that bwt(w) = ap
1 ap

2 · · · a
p
m for some p ≥ 1 if

and only if w = up.

This property clearly shows the efficacy of the BWT on periodic words. On the

other hand, the BWT of a word does not have such a predictable behaviour when

the concatenation is involved. In fact, the measure r is not monotone, that is there

exist w ∈ Σ∗ and a ∈ Σ such that r(w) > r(wa).

Theorem 21. The measure r is not monotone.

In fact, characteristic Sturmian words have infinite prefixes that are power of

standard Sturmian words, but not all prefixes are standard Sturmian words, and

from the characterization of Theorem 4 the thesis follows. In Figure 3.3 is shown the

BWT for the prefixes of the Fibonacci word f of length 12 and 13 respectively. One

can see that r( f [1, 12]) = 6, while r( f [1, 13]) = r( f [1, 12] · b) = 2. More recently, we

have formalized this property in [55].
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BWT

aaabaababaa b

aabaaabaaba b

aabaababaab a

aababaabaaa b

abaaabaabab a

abaabaaabaa b

abaababaaba a

ababaabaaab a

baaabaababa a

baabaaabaab a

baababaabaa a

babaabaaaba a

BWT

aabaababaaba b

aababaabaaba b

aababaababaa b

aababaabaaba b

abaababaabaa b

abaababaabab a

ababaabaabab a

aabaababaaba a

babaababaaba a

baabaababaab a

baababaabaab a

babaabaababa a

babaababaaba a

FIGURE 3.3: Matrix of sorted rotations and corresponding Burrows-
Wheeler Transforms of the words abaababaabaa and abaababaabaab.

Akagi et al. [1], studied the sensitivity of different repetitiveness measures, that is

the maximal increase that a measure can have on a word after a simple edit opera-

tion. More in detail, given a repetitive measure λ, they have defined the worst-case

multiplicative sensitivity for insertion, deletion, and substitution as follows:

MSins(λ, n) = max
w∈Σn
{λ(w′)

λ(w)
| w′ ∈ Σn+1, ed(w, w′) = 1},

MSsub(λ, n) = max
w∈Σn
{λ(w′)

λ(w)
| w′ ∈ Σn, ed(w, w′) = 1},

MSdel(λ, n) = max
w∈Σn
{λ(w′)

λ(w)
| w′ ∈ Σn−1, ed(w, w′) = 1}.

Analogously, they have defined the worst-case additive sensitivity:

ASins(λ, n) = max
w∈Σn
{λ(w′)− λ(w) | w′ ∈ Σn+1, ed(w, w′) = 1},

ASsub(λ, n) = max
w∈Σn
{λ(w′)− λ(w) | w′ ∈ Σn, ed(w, w′) = 1},

ASdel(λ, n) = max
w∈Σn
{λ(w′)− λ(w) | w′ ∈ Σn−1, ed(w, w′) = 1}.

In this section, we show novel results on the worst-case additive and multiplica-

tive sensitivity of the measure r. In [1], the authors proved a tight upper bound

O(log n log r) on all three multiplicative sensitivities, by using the relationship showed
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in the previous section in Theorem 15 [67]. On the other hand, they showed a log-

arithmic lower bound only for the sensitivities of the insertion. These bounds were

obtained from the results by Giuliani et al. [54] from the BWT of the Fibonacci-plus

words, defined as follows:

Definition 22. For all k ≥ 4, let fk be the kth Fibonacci word. Then, the kth order Fibonacci-

plus word f+k is either of the form fkb, if k is even, or fka, if k is odd.

They showed that the measure r of the reverse of these words grows as the order

of the Fibonacci-plus word considered.

Proposition 23 ([54], Proposition 3). Let ( f+k )R be the Fibonacci-plus word of kth order,

for some k ≥ 4. If k is even, then r(( f+k )R) = k. If k is odd, then r(( f+k )R) = k− 1.

In particular, note that r(( f+k )R) = r(c( fk)R) = Θ(k) = Θ(log n), where c is either

a or b if k is odd or even respectively. On the other hand, since f R
k ∈ R( fk) for every

k, by Theorem 4 it follows that r( f R
k ) = r( fk) = 2, the following lower-bounds can be

deduced.

Corollary 24 ([1], Corollary 2). The following lower bounds on the sensitivity of the mea-

sure r over binary words w ∈ {a, b}∗ hold:

MSins(r, n) = Θ(log n), ASins(r, n) = Θ(log n).

More recently, we have proved that the same logarithmic bound on the multi-

plicative sensitivity can be reached to the remaining edit operations, namely deletion

and substitution, when these are applied rotations of Fibonacci words.

Proposition 25. Let f2k be the Fibonacci word of length n and order 2k > 4, and f̂2k =

f2k[1, n− 1], and f̂ R
2k = ( f2k[2, n])R. Then, the following structures for the BWT hold:

1. bwt( f̂2k) = bk−1abF2k−3−k+1abF2k−5 · · · bF5abF3abaF2k−1−k+1;

2. bwt( f̂ R
2kb) = bF2k−2−k+1aF0baF2b · · · aF2k−4baF2k−2−2ba.

In particular, both have 2k runs.

In this section, we will focus on the worst-case additive sensitivity of the measure

r. In fact, for insertion, deletion, and substitution, we can obtain a larger lower

bound than the Ω(log n) by Akagi et al. [1].
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Theorem 26. The following lower bounds on the sensitivity of the measure r over binary

words w ∈ {a, b} hold:

1. ASins(r, n) = Ω(
√

n);

2. ASdel(r, n) = Ω(
√

n);

3. ASsub(r, n) = Ω(
√

n).

To prove them, we have considered the following family of words: given an

integer k, let si = abiaa, ei = abiabai−2 for all 2 ≤ i ≤ k − 1, and qk = abka. The

words for which the gap announced holds is for wk = (∏k−1
i=2 siei)qk, for all k > 5. In

the next lemma, we explicit the length n of wk in terms of the integer k.

Lemma 27. Let n = |wk| for some k > 2. It holds that n = (3k2 + 7k− 18)/2. Moreover,

it holds that k = Θ(
√

n).

Proof. From their definitions, we have that, for all i ∈ [2, k− 1], |si| = |abiaa| = i + 3,

and |ei| = |abiabai−2| = i + (i− 2) + 3 = 2i + 1, while |qk| = |abka| = k + 2. Hence,

|wk| =
k−1

∑
i=2

(|si|) +
k−1

∑
i=2

(|ei|) + |qk|

=
k−1

∑
i=2

(i + 3) +
k−1

∑
i=2

(2i + 1) + (k + 2)

=
k−1

∑
i=2

(3i + 4) + k + 2

= 3
k−1

∑
i=2

(i) + 4(k− 2) + k + 2

= 3
k2 − k

2
− 3 + 5k− 6

=
3k2 + 7k− 18

2
.

One can observe that n = Θ(k2), and symmetrically k = Θ(
√

n).

We say that a set S of words is prefix-free if for all pairs u, v ∈ S, u is not prefix

of v (and vice versa). Given the regular construction of wk, we can use its factors to

deduce the order of its rotations.

Lemma 28. Let k > 2 be an integer. Then, s2 < e2 < s3 < e3 < . . . < sk−1 < ek−1 < qk.

Moreover the set
⋃k−1

i=2 {si, ei} ∪ {qk} is prefix-free.
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Proof. The proof easily follows from the longest run of b’s after the first a. In fact,

for every pair of indices i, j such that 2 ≤ i < j ≤ k− 1, we have that si = abiaa <

abiabai−2 = ei < abibbj−i−1aa = sj < abibbj−i−1abaj−2 = ej < abibbj−i−1bbk−j−1a =

qk. From the comparison above, one can see that for every i ∈ [2, k − 1], si differs

from ei at position i+ 3 = |si|, while for every j > i, si and ei both differ from sj, ej and

qk at position i + 2 < |si| ≤ |ei|. Thus, since there is no word in
⋃k−1

i=2 {si, ei} ∪ {qk}

that is prefix of another within the same set, such a set is prefix-free.

The BWT of the word wk is described in the following lemmas. Given the mul-

titude of cases to analyse, we consider for each lemma only a range of consecutive

rotations that share a common prefix. To do so, given a word w and a factor u, we use

the notation rotw(u) to denote the factor in bwt(w) in correspondence of the rotation

starting with u. When w is clear from the context, we simply write rot(u).

Lemma 29 (rot(ak−2b)). Given the word wk = (∏k−1
i=2 siei)qk for some k > 5, the first

rotation in the BWT matrix is ak−3qk · · · b.

Proof. The first rotation in lexicographic order must start with the longest run of a’s.

By definition of wk, the longest run of a’s has length k − 2, and it is obtained by

concatenating the suffix ak−3 of ek−1 with qk, which is preceded by a b (otherwise we

could extend the run of a’s).

Lemma 30 (rot(aib) for 4 ≤ i ≤ k − 3). Given the word wk = (∏k−1
i=2 siei)qk for some

k > 5, and an integer 4 ≤ i ≤ k− 3, the rotations in the BWT matrix starting with aib are

ai−1si+2 · · · b < ai−1si+3 · · · a < . . . < ai−1sk−1 · · · a < ai−1qk · · · a.

Proof. One can notice that, for all 4 ≤ i ≤ k − 3, the (circular) factor aib can only

be obtained, for all i + 2 ≤ j ≤ k, from the concatenation of the suffix ai−1 of ej−1,

with either the prefix ab of sj, if i + 2 ≤ j ≤ k − 1, or the prefix ab of qk, if j = k.

By Lemma 28, we can sort these rotations according to the lexicographic order of⋃k−1
j=i {sj} ∪ {qk}. Note that all these rotations end with an a, with the exception of

the rotation starting with ai−1si+2, since it is where the only occurrence of baib can

be found.

Lemma 31 (rot(aaab)). Given the word wk = (∏k−1
i=2 siei)qk for some k > 5, the first five

rotations in the BWT matrix starting with aaab are aae2 · · · b < aae3 · · · b < aae4 · · · b <
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aas5 · · · b < aae5 · · · b, while the remaining are aas6 · · · a < aae6 · · · b < . . . < aask−1 · · · a <

aaek−1 · · · b < aaqk · · · a.

Proof. Analogously to the proof of Lemma 30, some of the rotations starting with

aaab can be obtained, for all 5 ≤ j ≤ k, from the concatenation of the suffix aa

of ej−1, with either the prefix ab of sj, if 5 ≤ j ≤ k − 1, or the prefix ab of qk, if

j = k. However, in this case we have more rotations starting with aaab, that are

those rotations starting with the suffix aa of sj′ concatenated with the prefix ab of ej′ ,

for all 2 ≤ j′ ≤ k− 1. Thus, all the rotations starting with aaab are sorted according

to the lexicographic order of the words in
⋃k−1

j=5 {sj} ∪
⋃k−1

j′=2{ej′} ∪ {qk}. Note that

all the rotations starting either with aasj, for all 6 ≤ j ≤ k − 1, or with aaqk, end

with a. On the other hand, the rotations starting either with aas5 or with aaej, for all

2 ≤ j ≤ k− 1, end with a b.

Lemma 32 (rot(aab)). Given the word wk = (∏k−1
i=2 siei)qk for some k > 5, the first five

rotations in the BWT matrix starting with aab are as2 · · · b < ae2 · · · a < ae3 · · · a <

as4 · · · b < ae4 · · · a, while the remaining are as5 · · · a < ae5 · · · a < . . . < ask−1 · · · a <

aek−1 · · · a < aqk · · · a.

Proof. Each of the rotations starting with aaab from Lemma 31 induces a rotation

starting with aab, obtained by shifting on the left one letter a. It follows that all

of these rotations end with an a. The other rotations starting with aab are the one

obtained by concatenating the suffix a of e3 and the prefix ab of s4, and the one

obtained by concatenating the suffix a of qk and the prefix ab of s2. Moreover, both

the rotations end with a b. The thesis follows by sorting the rotations according to

the lexicographic order of the words in {s2} ∪
⋃k−1

j=4 {sj} ∪
⋃k−1

j′=2{ej′} ∪ {qk}.

Lemma 33 (rot(ab)). Given the word wk = (∏k−1
i=2 siei)qk for some k > 5, the first k − 2

rotations in the BWT matrix starting with ab are abak−3qk · · · b < abak−4sk−1 · · · b <

. . . < abs3 · · · b, the following four rotations are s2 · · · a < e2 · · · a < s3 · · · b < e3 · · · a,

and the remaining are s4 · · · a < e4 · · · a < . . . < sk−1 · · · a < ek−1 · · · a < qk · · · a.

Proof. For any two distinct integers i, i′ ≥ 0, we have that abaib < abai′b if and only

if i > i′. Thus, the first rotation in lexicographic order starting with ab is the one

which is followed by the longest run of a’s. The smallest of these rotations can be
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found by concatenating the suffix abak−3 of ek−1 with the prefix ab of qk, followed

by the suffix abai−2 of ei−1 concatenated with the prefix ab of si, for all 3 ≤ i ≤ k− 1

taken in decreasing order. By construction of ei, for all 3 ≤ i ≤ k− 1, these rotations

must end with a b.

The remaining rotations starting with ab are exactly those rotations having as

prefix either si or ei, for all 2 ≤ i ≤ k− 1, or qk. Note that all of these rotations are

obtained by shifting on the left one letter a from the rotations starting with aab from

Lemma 32, with the exception of the one starting with s3. It follows that the latter

ends with a b, while all the other rotations with an a.

Lemma 34 (rot(ba)). Given the word wk = (∏k−1
i=2 siei)qk for some k > 5, the first k −

5 rotations in the BWT matrix starting with ba are bak−3qk · · · a < bak−4sk−1 · · · a <

. . . < ba3s6 · · · a, followed by baae2 · · · b < baae3 · · · b < baae4 · · · b < baas5 · · · a <

baae5 · · · b, then by baae6 · · · b < baae7 · · · b < . . . < baaek−1 · · · b < bas2 · · · b <

bas4 · · · a, and finally by babak−3qk · · · b < babak−4sk−1 · · · b < . . . < babs3 · · · b <

bs3 · · · a.

Proof. One can notice that we have as many circular occurrences of ba as the number

of maximal (circular) runs of b’s in wk. Then, for all 2 ≤ i ≤ k− 1, we have (i) one

run of b’s in si, and (ii) two runs in ei, and (iii) one run in qk.

For the case (i), we have one rotation starting with baaei, for each 2 ≤ i ≤ k −

1. Since each run of b’s within each word from
⋃k−1

i=2 {si} is of length at least 2, all

rotations in (i) end with a b.

For the case (ii), for all 2 ≤ i ≤ k − 1, we can distinguish between two sub-

cases, based on where ba starts: if either (ii.a) from the first run of b’s in ei, or (ii.b)

from the second one. For the case (ii.a), we can see that these rotations are of the

type babai−2si+1, if 2 ≤ i < k− 2, and babak−3qk. Analogously to the case (i), each

rotations for case (ii.a) end with a b. Each rotation in (ii.b) is obtained by shifting two

letters on the right each rotation in (ii.a). Therefore, all of these rotations end with

an a and have prefixes of the type bai−2si+1, if 2 ≤ i < k− 2, or bak−3qk.

For the case (iii), the rotation starting with ba in qk has bas2 as prefix, and it is

preceded by a b.
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Observe that only for (ii.b) we have rotations starting with baaaa. Hence, the

first rotation in lexicographic order is the one starting with bak−3qk, followed by

those starting with bak−4sk−1 < bak−5sk−2 < . . . < baaas6.

Among the remaining rotations, those having prefix baaa either start with baas5

from (ii.b), or baaei from (i), for all 2 ≤ i ≤ k− 1. Thus, by Lemma 28, we can sort

them according to the order of the words in {s5} ∪
⋃k−1

i=2 {ei}. Then, the remaining

rotations with prefix baa are those starting with bas2 from (iii), and bas4 from (ii.b).

Finally, let us focus on the rotations from case (ii.a). These rotations are sorted ac-

cording to the length of the run of a’s following the common prefix bab, similarly to

the sorting of the rotations from the case (ii.b). The last rotation left is the one start-

ing with bs3 from case (ii.b). Since this rotation is greater than each word from case

(ii.a), this is the greatest rotation of wk starting with ba and the thesis follows.

Lemma 35 (rot(bja) for all 2 ≤ j ≤ k− 1). Given the word wk = (∏k−1
i=2 siei)qk for some

k > 5, and an integer 2 ≤ i ≤ k− 2, the first k− i rotations in the BWT matrix starting

with bia are biaaei · · · a < biaaei+1 · · · b < . . . < biaaek−1 · · · b < bias2 · · · b, followed by

biabak−3qk · · · b < biabak−4sk−1 · · · b < . . . < biabai−1si+2 · · · b < biabai−2si+1 · · · a.

Proof. All runs of b’s of length at least 2 ≤ i ≤ k − 2, either appear in (i) sj or (ii)

ej, for all i ≤ j ≤ k − 1, or in (iii) qk. Let us consider the three cases separately.

For all i ≤ j ≤ k − 1, the rotation starting within sj (i) has as prefix biaaej. For all

i ≤ j ≤ k − 2, the rotation starting within ej (ii) has as prefix biabaj−2sj+1, and for

j = k− 1 we have the rotation with prefix biabak−3qk. Finally, the rotation starting

within qk (iii) has as prefix bias2.

By construction, we can see that first we have all the rotations from case (i) sorted

according to the lexicographic order of the words in
⋃k−1

j=i {ei} (Lemma 28), then we

have the rotation from case (iii), and finally the rotation from case (ii), sorted accord-

ing to the decreasing length of the run of a’s following the common prefix biab.

Moreover, note that only when the run of b’s is of length exactly i the rotation

end with an a. Thus, the only for the rotations ending with an a are those starting

within si and ei, i.e. those with prefix biaei and biabai−2si+1.
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Block
prefix

Ordering
factor

BWT

ak−2b bk−1a b

ak−3b
bk−2aa b

bk−1a a
...

...
...

a4b

b5aa b

b6aa a
...

...
bk−1a a

aaab

bab b

bbaba b

bbbabaa b

bbbbaa b

bbbbabaaa b

bbbbbaa a

bbbbbabaaaa b
...

...
bk−2aa a

bk−2abak−3 b

bk−1a a

Block
prefix

Ordering
factor

BWT

aab

baa b

bab a

bbaba a

bbbaa b

bbbabaa b

bbbbaa a

bbbbabaaa a
...

...
bk−2aa a

bk−2abak−3 a

bk−1a a

ab

ak−3qk b

ak−4sk−1 b
...

...
s3 b

baa a

bab b

bbaa b

bbaba a

bbbaa a

bbbabaa a
...

...
bk−1a a

Block
prefix

Ordering
factor

BWT

ba

ak−4qk a

ak−5sk−1 a
...

...
a2s6 a

ae2 b

ae3 b

ae4 a

as5 a

ae5 b

ae6 b
...

...
aek−1 b

s2 b

s4 a

bak−3qk b

bak−4sk−1 b
...

...
bs3 b

bbbaa a

Block
prefix

Ordering
factor

BWT

bba

ae2 a

ae3 b
...

...
aek−1 b

s2 b

bak−3qk b

bak−4sk−1 b
...

...
bas4 b

bas3 a
...

...
...

bk−1a

aek−1 a

s2 b

bak−3qk a

bka s2 a

TABLE 3.1: Scheme of the BWT-matrix of a word wk with k > 5.

Lemma 36 (rot(bka)). Given the word wk = (∏k−1
i=2 siei)qk for some k > 5, the last four

rotations of the BWT matrix are bk−1aaek−1 · · · a < bk−1as2 · · · b < bk−1abak−3qk · · · a <

bkas2 · · · a.

Proof. Observe that the only rotations with prefix bk−1a either start within sk−1,

or qk, or ek−1. These rotations have prefix respectively bk−1aaek−1, bk−1as2, and

bk−1abak−3qk. One can see that these rotations taken in this order are already sorted,

and only the rotation starting within qk ends with a b, while the other two with an

a. Finally, the only occurrence of bk is within qk. Hence, the last rotation in lexico-

graphic order starts with bkas2, and since the run of b’s is maximal it ends with an a,

and the thesis follows.

The following proposition summarises the results obtained in the previous lem-

mas, and properly describe the size of the run-length encoding of bwt(wk).
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Proposition 37. Given an integer k > 5, let wk = (∏k−1
i=2 siei)qk. Then, it holds that

rot(aib) = bak−i−2 for all 4 ≤ i ≤ k− 2,

rot(a3b) = b5(ab)k−6a,

rot(a2b) = baaba2k−8,

rot(ab) = bk−2aaba2k−6,

rot(ba) = ak−5bbbabk−4abk−2a,

rot(bja) = ab2k−2j−1a for all 2 ≤ j ≤ k− 1, and

rot(bka) = a.

Hence, bwt(wk) = ∏k−1
i=2 rot(ak−ib) ·∏k

i=1 rot(bia). Moreover, it holds that r(wk) = 6k−

12.

Proof. The words rot(ak−2b), rot(aib) for all 4 ≤ i ≤ k− 2, rot(a3b), rot(a2b), rot(ab),

rot(ba), rot(bja) for all 2 ≤ j ≤ k− 1, and rot(bka), are the concatenations of the last

letters of the rotations from Lemma 29, Lemma 30, Lemma 31, Lemma 32, Lemma 33,

Lemma 34, Lemma 35, and Lemma 36 respectively. Moreover, every rotation used to

build rot(aib) is smaller than each rotation used to build rot(ai′b), for every 1 ≤ i′ <

i ≤ k − 2. Symmetrically, every rotation used to build rot(bja) is greater than each

rotation used to build rot(bj′a), for every 1 ≤ j′ < j ≤ k. Since we have considered

all the disjoint ranges of rotations of wk based on their common prefix, the word

∏k−1
i=2 rot(ak−ib) ·∏k

i=1 rot(bia) is the BWT of wk.

With the structure of bwt(wk), we can easily derive its number of runs. The word

∏k−4
i=2 (rot(ak−ib)) has exactly 2(k− 6) runs: we start with 2 runs from rot(ak−2b)rot(ak−3b) =

bba, and then, concatenating each other rot(aib) up to rot(a4b) adds 2 new runs each.

It is easy to see that rot(aaab), rot(aab), and rot(ab), have 2(k− 5), 4, and 4 runs,

respectively. Moreover, the boundaries between these words do not merge, nor with

the one in the previous paragraph in the case of rot(aaab).

The word rot(ba) has exactly 7 runs but it merges with rot(ab) and rot(bba), hence

we only charge 5 runs to this word.
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The remaining part of the BWT, i.e., ∏k
i=2(rot(bia)), has 2(k − 2) + 1 runs: we

start with 3 runs from rot(bba), and then, concatenating each other rot(bia) up to

rot(bk−1a) adds 2 new runs each. The word rot(bka) does not add new runs, as it

consists only of an a that merges with the previous one.

Overall, we have 2(k− 6) + 2(k− 5) + 4 + 4 + 5 + 2(k− 2) + 1 = 6k− 12, and the

claim holds.

A graphical interpretation is detailed in Table 3.1. The block prefix column shows

the common prefix shared by all the rotations of the block. The ordering factor column

shows the factor following the block prefix of a rotation, which affects the relative

order of the rotations within the same block. The BWT column shows the last letter

of each rotation. The dashed lines divide sub-ranges of rotations for which the BWT

follows distinct patterns.

To prove Theorem 26, in the next lemmas we show the behaviour of BWT when

an edit operation is applied on wk. For a given word w ̸= ϵ, the words wins, wdel ,

and wsub are obtained by applying on w an insertion, a deletion, and a substitution

of a letter respectively. Since a single edit operation does not completely change

the relative order of some rotations, instead of proving the whole structure from

the beginning, we often compare how the edit operation changes either the relative

order or the last letter of the rotations of wk. In other words, for specific factors v of

wk, we compare rot(v, wk) with rot(v, w′k), where w′k is obtained after applying to wk

an edit operation. For simplicity of exposition, in this part we use the notation rot(v)

and rot⋆(v) to denote the BWT in correspondence of the rotations with prefix v ∈ Σ∗

of wk and w′k respectively.

For the insertion, we have considered the word wins
k obtained by appending the

letter a to wk.
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Lemma 38 (BWT of wka). Given an integer k > 5, for wka it holds that

rot⋆(aib) = bak−i−2 for all 4 ≤ i ≤ k− 2,

rot⋆(a3b) = bb5(ab)k−6a,

rot⋆(a2b) = aaaba2k−8,

rot⋆(ab) = bk−2aaba2k−6,

rot⋆(ba) = ak−5bbbbabk−5abk−2a,

rot⋆(bja) = bab2k−2j−2a for all 2 ≤ j ≤ k− 1 and

rot⋆(bka) = a.

Hence, bwt(wka) = ∏k−1
i=2 rot⋆(ak−ib) ·∏k

i=1 rot⋆(bia). Moreover, it holds that r(wka) =

8k− 20.

Proof. By Lemmas 29 and 30, we can see that appending an a after qk does not affect

the BWT in the range of rotations having aib as prefix, for all 4 ≤ i ≤ k− 2. Thus,

rot⋆(aib) = rot(aib) for all 4 ≤ i ≤ k− 2.

The rotation starting with aas2, which is not a circular factor of wk, ends with

a b. By Lemma 31, we can see that such a rotation is the smallest one with prefix

aaab in lexicographic order, while the other rotations maintain their relative order.

Therefore, rot⋆(aaab) = b · rot(aaab).

By Lemma 32, the rotation with prefix as2 is still the smallest rotation starting

with aab, with the difference that in this case, it ends with the last a of qk. It follows

that rot⋆(aab) is obtained by replacing the first b of rot(aab) with an a.

Both the order and the last letter of all the rotations having as prefix ab described

in Lemma 33 is not affected from the insertion of the a, and therefore rot⋆(ab) =

rot(ab).

Let us now consider all the rotations of wk with prefix bjas2, for all 1 ≤ j ≤ k.

One can notice that wka does not have any rotation starting with bjas2, for all 1 ≤

j ≤ k, but instead it has rotations starting with bjaas2. Thus, for all 1 ≤ j ≤ k − 1,

to obtain rot⋆(bja) from rot(bja) we have to remove the b in correspondence of the

rotations starting with bjas2, and add a b in correspondence of the rotations bjaas2.
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By Lemmas 34, 35, and 36, such rotations are placed right before the rotation starting

with bjaae2.

Finally, the last rotation has still the same prefix bka and ends with an a, and the

thesis follows.

The word wdel
k is obtained by removing the last letter from wk, that is wdel

k =

wk[1, n− 1]. For simplicity of exposition, we use the notation ŵk = wk[1, n− 1].

Lemma 39 (BWT of ŵk). Given an integer k > 5, for ŵk it holds that

rot⋆(aib) = bak−i−2 for all 4 ≤ i ≤ k− 2,

rot⋆(a3b) = b5(ab)k−6a,

rot⋆(a2b) = aaba2k−8,

rot⋆(ab) = bk−2baba2k−6,

rot⋆(ba) = ak−5bbbabk−5abk−2ba,

rot⋆(bja) = ab2k−2j−2ab for all 2 ≤ j ≤ k− 1 and

rot⋆(bka) = a.

Hence, bwt(ŵk) = ∏k−1
i=2 rot⋆(ak−ib) ·∏k

i=1 rot⋆(bia). Moreover, it holds that r(ŵk) =

8k− 20.

Proof. Analogously to the previous lemma, if we look in Lemmas 29, 30, and 31, at

the structure of the BWT in correspondence of the rotations starting with aib, for all

3 ≤ i ≤ k− 2, we can notice that the order or the letters in the BWT is not affected.

Thus, for all 3 ≤ i ≤ k− 2, we have rot⋆(aib) = rot(aib).

Since the last a of qk is omitted, the circular factor as2 does not appear anymore

in ŵ. Thus, rot⋆(aab) is obtained by removing the first b from rot(aab), since by

Lemma 32 it is in correspondence of the rotation with prefix as2.

On the other hand we can observe from Lemma 33 that the rotation with prefix

s2 maintains its relative order also in ŵk, but its last letter is now a b instead of an a.

For each 1 ≤ j ≤ k, the rotation starting with bjas2 of wk does not appear in ŵk,

but in fact it is replaced by one having bjs2 as prefix and ending in the same way.

When j = 1, by Lemma 34 such a rotation is located between the last two rotations
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with the prefix ba, which start by babs3 and bs3 respectively. When 2 ≤ j ≤ k− 1,

by Lemmas 35 and 36, the rotation starting with bjs2 is greater than all the other

rotations with prefix bja. Thus, for all 1 ≤ j ≤ k− 1, we obtain rot⋆(bja) by moving

the b in correspondence of the rotation starting with bas2 from rot(bja) and placing

it in correspondence of bjs2. Finally, the last rotation has still the same prefix bka and

ends with an a, and the thesis follows.

For the last case, we consider the word wsub
k obtained by replacing the last a of

wk with a b, that is wsub
k = ŵkb.

Lemma 40 (BWT of ŵkb). Given an integer k > 5, for ŵkb it holds that

rot⋆(aib) = bak−i−2 for all 4 ≤ i ≤ k− 2,

rot⋆(a3b) = b5(ab)k−6a,

rot⋆(a2b) = aaba2k−8,

rot⋆(ab) = bk−2baba2k−6,

rot⋆(ba) = ak−5bbbabk−5abk−2ba,

rot⋆(bja) = ab2k−2j−2ab for all 2 ≤ j ≤ k− 1,

rot⋆(bka) = b and

rot⋆(bk+1a) = a.

Hence, bwt(ŵkb) = ∏k−1
i=2 rot⋆(ak−ib) ·∏k+1

i=1 rot⋆(bia). Moreover, it holds that r(ŵkb) =

8k− 20.

Proof. For the rotations in correspondence of the rotations starting with an a, notice

that replacing the last a of wk for a b or removing the last a affects the BWT in the

same way. Therefore, rot⋆(aib) is the same as Lemma 39 for all 1 ≤ i ≤ k− 2.

The same behaviour can be noticed on the rotations with prefix bja, for all 1 ≤

j ≤ k− 1, while the rotation starting with bka is now preceded by a b.

With respect to the other edit operations, we have the range of rotations starting

with bk+1a, which consists solely in bk+1s2 · · · a.

In Table 3.2 is shown the BWTs of the words wk, wins
k = wka, wdel

k = ŵk, and

wsub
k = ŵkb, grouped by the shared common prefix of the rotations. The word in
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the intersection of the column rot(u) with the row w is the range of bwt(w) in corre-

spondence to all the rotations having u as a prefix. The columns rot(aib) and rot(bja)

represent ranges of columns for i ∈ [k − 2, 4] (in that order) and j ∈ [2, k − 1], re-

spectively. Note that the all u in the headings of the columns are prefix-free among

them, and cover all the possible ranges for the set of words considered. The BWT of

each word is the concatenation of all the words in its row from left to right. In the

last column appears the number of BWT runs of each of these words.

Word rot(aib) rot(a3b) rot(a2b) rot(ab)

wk bak−i−2 b5(ab)k−6a baaba2k−8 bk−2aaba2k−6

wka bak−i−2 bb5(ab)k−6a aaaba2k−8 bk−2aaba2k−6

ŵk bak−i−2 b5(ab)k−6a aaba2k−8 bk−2baba2k−6

ŵkb bak−i−2 b5(ab)k−6a aaba2k−8 bk−2baba2k−6

Word rot(ba) rot(bja) rot(bka) rot(bk+1) r(·)
wk ak−5bbbabk−4abk−2a ab2k−2j−1a a ϵ 6k− 12
wka ak−5bbbbabk−5abk−2a bab2k−2j−2a a ϵ 8k− 20
ŵk ak−5bbbabk−5abk−2ba ab2k−2j−2ab a ϵ 8k− 20
ŵkb ak−5bbbabk−5abk−2ba ab2k−2j−2ab b a 8k− 20

TABLE 3.2: BWTs of the words wk and its variants after an insertion,
a deletion, and a substitution respectively.

Finally, we compare the measures r over wk and the words obtained by applying

an edit operation.

Proposition 41. There exists an infinite family of words w such that:

1. r(wins)− r(w) = Θ(
√

n);

2. r(wdel)− r(w) = Θ(
√

n);

3. r(wsub)− r(w) = Θ(
√

n);

where wins, wdel , and wsub are words obtained after applying an insertion, a deletion, and a

substitution to w respectively.

Proof. Such a family is composed of the words wk with k > 5. Let n = |wk|. If

wins
k = wka, wdel

k = ŵk, and wsub
k = ŵkb, from Table 3.2 we have that r(wka) = r(ŵk) =

r(ŵkb) = r(wk)+ (2k− 8). From Lemma 27 it can be derived that 2k− 8 = Θ(
√

n).
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This lower bound is the best on the additive sensitivity of the measure r known

so far, and it represents a significative improvement over the previous lower bound

Ω(log n) by [1].

On the other hand, for the family of words wk for all k ≥ 5, it holds that r(w) =

6k − 12 = Θ(
√

n), and for each w′k ∈ {wka, ŵk, ŵkb}, we have r(w) = 8k − 20 =

Θ(
√

n). This implies that for our example we obtain for r a Θ(
√

n) additive sensi-

tivity, while the multiplicative sensitivity is not affected at all, that is r(w′k) grows

as r(wk). In particular, we can express such a lower bound in terms of r over the

original word.

Theorem 42. The following lower bounds on the sensitivity of the measure r over binary

words w ∈ {a, b} with respect to measure r hold:

1. ASins(r, n) = Ω(r);

2. ASdel(r, n) = Ω(r);

3. ASsub(r, n) = Ω(r).

Proof. The proof follows by comparing the size r over wk from Proposition 37, with r

over wka, ŵk, and ŵkb, from Lemmas 38, 39, and 40 respectively. For the insertion, for

all k ≥ 5 we have that r(wka)− r(wk) = 2k− 8, and therefore ASins(r, n) ≥ 2k− 8 ≥
1
9 (6k− 12) ≥ 1

9 r(wk) = Ω(r). The analogous bounds are obtained for ASdel(r, n) and

ASsub(r, n) in the same way.

Best to our knowledge, it has not been found an example of word for which an

edit operation affects both the multiplicative and additive sensitivity more than a

logarithmic factor.

Furthermore, Akagi et al. showed by using a bound in [67] that an upper bound

on any worst-case additive sensitivity of the measure r isO(r log n log r). We wonder

then if the bound from Theorem 42 is the best we could get, or if there is actually

something in between Ω(r) and O(r log n log r).

We conclude this chapter with a final remark on the measures r$. Quite often

r and r$ have been improperly considered as interchangeable measures. By using

the same words of this section, it was possible to derive the following separation

between the two measures.
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Proposition 43. There exists an infinite family of words w such that r$(w)/r(w) = Θ(log n),

where n = |w|. Moreover, there exists another infinite family of words w′ such that

r$(w′)− r(w′) = Θ(
√

n′), where n′ = |w′|.
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Chapter 4

Measure r on Purely Morphic

Words

Despite the theoretical limits of the measure r described in the previous chapter, the

Burrows-Wheeler Transform is still at the basis of the most used tools in bioinfor-

matics for handling huge collections of genomes. Indeed, the BWT gives its best

when it is applied on highly repetitive texts. It is therefore natural to wonder how

the BWT behaves when families of repetitive words are considered.

Some families of prolongable morphisms can be seen as mechanism to create

strings with long repetitions. For instance, let us consider a k-uniform morphism

µ : Σ 7→ Σ for some k ≥ 2, and let t be the smallest integer such that µt(a) contains

m ≥ 2 occurrences of any letter b ∈ Σ. Then, for all n > 0, all the following iterations

µn+t(a) = µn(µt(a)) will contain m occurrences of the factors µn(b), and the lengths

of these factors grows exponentially with n.

Even though not all morphisms verify the property just mentioned, Pansiot [104]

proved that the factor complexity of purely morphic words cannot grow more than

a quadratic function. More in detail, given a morphism µ : Σ 7→ Σ, Pansiot [104]

showed how to relate the factor complexity with the growth functions over the let-

ters in Σ.

Theorem 44 ([104]). Let x = µ∞(a) be an infinite aperiodic word for some morphism

µ : Σ 7→ Σ, and let px be its factor complexity.

1. If µ is growing, then px(n) is Θ(n), Θ(n log log n) or Θ(n log n) if µ is quasi-uniform,

polynomially divergent or exponentially divergent, respectively.
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2. If µ is not-growing, let B be the set of its bounded letters:

(a) if x has arbitrarily large factors of B∗ then px(n) = Θ(n2)

(b) if the factors of B∗ in x have bounded length then px(n) can be any of Θ(n),

Θ(n log log n), or Θ(n log n).

Representing strings through applications of morphisms is indeed a well-known

subject. Both L-systems [117] and the more recent ν-systems [101], are based on

morphisms, and their space of representation is in fact optimal, since these can be

represented in an extreme compact space. However, this representation implies an

extra cost for the extraction of the string.

The problem of considering the BWT of purely morphic words has been already

object of study in the literature. For instance, Mantaci et al. [94] implicitly proved

that at each iteration of a Sturmian morphism µ : {a, b} 7→ {a, b} the BWT is per-

fectly clustered, that is, r(µn(a)) = 2 for all n > 0 (see Theorem 14), while more re-

cently Blrek et al. [20] have studied the BWT of different families of purely morphic

words, like the finite Thue-Morse words generated from the morphism τ ≡ (ab, ba).

For this family of words, they showed that the r(τn(a)) = r(τn(b)) = 2n for all n > 0.

Given the regularity on the construction of words via morphisms, it is legit to won-

der if the same O(n) upper bound holds for other classes of morphic sequences.

In this chapter, we focus on the problem of studying the measure r for purely

morphic words.

First, in Section 4.1 we try to obtain theoretical bounds based on the comparison

between r and other notions of repetitiveness already explored for purely morphic

words.

Then, in Section 4.2 we show some combinatorial properties of binary morphisms,

and how these can be used in Section 4.3 to prove that, for a given morphism µ :

{a, b}∗ 7→ {a, b}∗ prolongable on a, the measure r grows linearly with the iteration

of the morphism, that is r(µn(a)) = O(n).

Finally, in Section 4.4 we make a comparison between the measure r of a purely

morphic word and the size of the run-length encoding applied on the word itself.

This study extend the results on the compression ratio of the BWT by Mantaci et

al. [93] to the family of purely morphic words.
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4.1 Comparison with other Repetitiveness Measures

The Burrows-Wheeler Transform is indeed efficient on periodic words. In fact, for

every word w, it holds that r(wn) = r(w) ≤ |w| for all n > 0. More in general, this

result can be extended for prefixes of eventually periodic words.

Lemma 45. Let x = uvω be a eventually periodic word, for some u ∈ Σ∗ and some primitive

word v ∈ Σ+. Then, r(x[1, n]) = O(1) for every n > 0.

Eventually periodic words are a clear example of words for which the measure r

is independent from the length of the prefix considered. We remark that also purely

morphic words can be eventually periodic, as showed in the following example.

Example 46. Let µ ≡ (ab, bb). One can see that the first iterations of the morphism µ over

a are

µ(a) = ab

µ2(a) = abbb

µ3(a) = abbbbbbb

µ4(a) = abbbbbbbbbbbbbbb

and the fixed point is x = µ∞(a) = abω.

The study of compression schemes applied to morphic sequences is not new in

the field. For instance, Constantinescu and Ilie [33] have studied the size of the

LZ77-factorization z of purely morphic words, and proved the following results.

Proposition 47 ([33]). For a non-erasing morphism µ that admits the fixed point x =

µ∞(a), for any iteration i of the morphism it holds that z(µi(a)) is either Θ(1), if x is eventu-

ally periodic, or Θ(i), otherwise, where i ≥ 0 is the iteration of the morphism.

Note that the same O(1) upper bound is shared with the size z when the purely

morphic words are eventually periodic. If we focus on aperiodic words, we can use

the bound of Proposition 47 to get a basic bound on r.
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Corollary 48. Let µ : Σ 7→ Σ be a non-erasing morphism prolongable on a ∈ Σ, and let

x = µ∞(a) be its fixed point. If x is aperiodic, then r(µi(a)) = O(i3), where i ≥ 0 is the

iteration of the morphism.

Proof. From Proposition 47 it holds that z(µi(a)) = Θ(i). Moreover, [67] showed that

for every word w holds that r(w) = O(z(w) log2 n), where n = |w|, and by [117]

we know that for each purely morphic word there exists a constant ρa > 1 such

that µa(i) = O(ρi
a), where µa is the growth function of µ over a. Hence, we get

r(µi(a)) = O(z(µi(a)) log2 µa(i)) = O(i log2 ρi
a) = O(i3).

However, with bounded-size alphabets and bounded-size length of the images,

we were not able to find a sequence of finite purely morphic words for which the

measure r seems to grow more than linearly. Nonetheless, we can obtain a tighter

upper bound with the comparison with the measure δ.

At the beginning of this chapter we have mentioned that for any purely morphic

word x = µ∞(a), its the factor complexity px grows at most as a quadratic function.

Since pµn(a)(k) ≤ px(k) for all n, k > 0, we can use the factor complexity to get an

upper bound on the δ-measure. In particular, when px is linear, we obtain a tight

upper bound.

Proposition 49. Let µ : Σ 7→ Σ be a morphism prolongable on a ∈ Σ, and let x = µ∞(a)

be its fixed point. If px(n) = Θ(n), then r(µi(a)) = O(i), where i ≥ 0 is the iteration of the

morphism.

Proof. Let wi = µi(a) be the ith iterate of the morphism µ : Σ 7→ Σ on the letter

a ∈ Σ. If px(n) = Θ(n), then there exist t > 0 such that pwi (k) ≤ px(k) ≤ t · k, for all

k, i > 0. This implies that δ(wi) ≤ t, for all i ≥ 0. Thus, δ(wi) ∈ O(1) implies that

there exists a constant t′ such that δ(wi) log δ(wi) ≤ t′. Moreover, [117], showed that

for all morphic sequences it holds µa(n) = O(ρn
a ), for some ρa > 1. By Theorem 15,

recall that for all words w it holds that r$(w) = O(δ(w) log δ(w) max{1, log |w|
δ(w))}.

Since t′ and ρa are constant values, and assuming without loss of generality that
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log |wi |
δ(wi) log δ(wi)

> 1, there exist constant values c1, c2 > 0 such that:

δ(wi) log δ(wi) log
|wi|

δ(wi) log δ(wi)
≤ t′(log |wi| − log t′)

≤ t′(c1 · i log ρa − log t′)

≤ c2 · i.

Finally, by Lemmas 16 and 17, it follows that r(wi) = Θ(r$(wi)) = O(i).

To show that this bound is tight, it is sufficient to consider the Thue-Morse mor-

phism τ, for which [20] showed that r(τn(a)) = 2n = Θ(n). Analogous bounds can be

obtained for the purely morphic words x with either factor complexity Θ(n log log n),

Θ(n log n), or Θ(n2), but for these cases the measure δ is not bounded by a constant.

Proposition 50. Let µ : Σ 7→ Σ be a morphism prolongable on a ∈ Σ, and let x = µ∞(a) be

its fixed point. If we denote by i ≥ 0 is the iteration of the morphism, the following bounds

hold:

1. px(n) = Θ(n log log n), then r(µi(a)) = O(i log i log log i);

2. px(n) = Θ(n log n), then r(µi(a)) = O(i2 log i).

3. px(n) = Θ(n2), then r(µi(a)) = O(i2 log i).

Proof. Analogously to the proof of Proposition 49, let wi = µi(a) be the ith iterate of

the morphism µ : Σ 7→ Σ on the letter a ∈ Σ. Moreover, recall that for all morphic

sequences it holds µa(i) = O(ρi
a), for some ρa > 1 ([117]). In all three cases, we aim

to apply Theorem 15.

1. px(n) = Θ(n log log n): Since pwi (k) ≤ px(k) ≤ t · k log log k for every i ≥ 0,

k > 0 and for some t > 0, we have δ(wi) ≤ t · log log |wi|. Hence, δ(wi) log δ(wi) ·

max{1, log |wi |
δ(wi) log δ(wi)

} ≤ t′ log log |wi| log log log |wi| · log |wi| for some t′ > 0, and

by Theorem 15, we have r$(wi) = O(i log i log log i).

2. px(n) = Θ(n log n): Analogously to the previous case, pwi (k) ≤ px(k) ≤ t ·

k log k, for any i ≥ 0, k > 0 and for some t > 0, and therefore δ(wi) ≤ t · log |wi|.

Hence, δ(wi) log δ(wi) ·max{1, log |wi |
δ(wi) log δ(wi)

} ≤ t′ log |wi| log log |wi| · log |wi| for

some t′ > 0, and by Theorem 15, we have r$(wi) = O(i2 log i).
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3. px(n) = Θ(n2): For this last case we take a different route. Recall that δ(w) ≤

z(w) for every word w [74]. Then, by Proposition 47 follows that δ(wi) = O(z(wi)) =

O(i). Thus, as for case 2., if we replace i to δ to the bound from Theorem 15 get

r$(wi) = O(i2 log i).

Finally, by Lemmas 16 and 17, the same bounds holds for r.

In general, we want to point out that a different order of the letters of the alphabet

can affect the size of the BWT [10], but this is not the case for binary words. In fact,

given a binary word w ∈ {a, b}∗ with a < b, computing the BWT of w after changing

the order of the alphabet is equivalent to compute the BWT for w, and for binary

words hold that r(w) = r(w). We will return to this result later in the next chapter.

4.2 Combinatorial Properties of Binary Morphisms

In this section we focus on combinatorial properties of binary morphisms and binary

purely morphic words. Recall that the order of a binary alphabet is not relevant

for the size of the BWT. Thus, from now on we assume that a binary morphism

µ : Σ2 7→ Σ2 is defined over the alphabet Σ2 = {a, b} with a < b, and that it is

prolongable on a.

To study the BWT of binary purely morphic words, we describe the structure of

different morphisms based on common properties of their fixed points. Note that,

unlike words built on greater alphabets, the size r is independent from the order of

the letters, since the other order possible is the symmetric. In fact, given word w,

if ≤c is the reverse order over {a, b}, then for each pair of rotations w1, w2 ∈ R(w)

holds that w1 ≤ w2 if and only if w1 ≥c w2, and therefore the BWT is symmetric too.

The first group that we handle is a characterization of binary morphisms with

eventually periodic fixed points. Here we report the procedure that Pansiot pre-

sented to decide whether or not a word is eventually periodic [105]. The correctness

is detailed in the same work.

Proposition 51 (Corollary 3 of [105]). If x = µ∞(a), with µ : Σ∗ 7→ Σ∗ elementary, we

can decide if x is eventually periodic.
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Proof. Let G, B ⊆ Σ be respectively the set of growing letters and the set of bounded

letters.

• If µ(a) contains only one occurrence of one letter from G, then x is eventually

periodic.

• If µ(a) contains several occurrences of letters from G, then:

– compute the length n of the shortest prefix that contains two occurrences

of the same letter x[n] ∈ G;

– we can then factorize x[1, n] = u0c1u1c2u2 · · · uk−1ckuk · · · cmumck, where

ci ̸= ci′ ∈ C for all 1 ≤ i < i′ ≤ m, ck = x[n] for some k ∈ [1, m], and

uj ∈ B∗ for all j ∈ [0, m];

– if for all ciu′ prefix of ciui for all i ∈ [1, m] the factor ciu′ is not right special,

then x is eventually periodic.

The correctness of the procedure is given by [105, Lemma 2].

We can use the procedure described to derive the following proposition.

Proposition 52. Let x = µ∞(a) be an infinite binary eventually periodic word, where µ ≡

(α, β). Then, one of the following cases occurs:

1. α = up and β = uq, for some u ∈ {a, b}∗ and some p, q ≥ 1;

2. α = abk and β = bℓ, for some k ≥ 1, ℓ ≥ 1;

3. α = (ab)pa and β = (ba)qb for some p, q ≥ 1;

4. α = (abp)qa and β = b, for some p ≥ 1, q ≥ 1.

Proof. Let µ be a simplifiable morphism. This means that exist η1 : {a, b}∗ 7→ {a}∗

and η′2 : {a}∗ → {a, b}∗ such that µ(w) = η2(η1(w)) for every w ∈ {a, b}∗. More

into detail, we have that η1(a) = ap and η1(b) = aq for some p, q > 0, and η2(a) = u

for some u ∈ {a, b}∗. It is easy to see that the fixed point of these morphisms is

x = u∞, that is eventually periodic, and therefore µ(a) = η2(η1(a)) = η2(ap) = up,

and µ(b) = η2(η1(b)) = η2(aq) = uq (that is the case 1.).

Let us suppose that µ is elementary, and let G and B be the set of growing and

bounded letters respectively. Since we assume the morphism is prolongable on a,
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we have that a ∈ G. Note that this can occur only when |µ(a)|a = 1 and b ∈ B, that

is µ ≡ (abk, b) for every k ≥ 1 (case 2. for ℓ = 1). From the procedure described

in the proof of Proposition 51, if the fixed point of the morphism contains only one

growing letter, then it is eventually periodic. Note that this can occur only when

|µ(a)|a = 1 and b ∈ B, that is µ ≡ (abk, b) for every k ≥ 1 (case 2. for ℓ = 1).

Otherwise, let n be the length of the shortest prefix containing two occurrences

of a same letter c ∈ G. We can then factorize

x[1, n] = u0c1u1c2u2 · · · uk−1ukuk · · · um−1cmumck,

with ci ∈ G for every i ∈ [1, m] and uj ∈ B∗ for every j ∈ [0, m]. It follows that ci ̸= cj

for every 1 ≤ i ̸= j ≤ m. By Proposition 51, if for every prefix ciu′ of every ciui factor

of x[1, n] it holds that er(ciu′) = 0, then x is eventually periodic.

If b ∈ B, then x = abpa for some p ≥ 0. It follows that in order to have an eventu-

ally periodic word, er(abq) = 0 for every 0 ≤ q ≤ p, and the fixed point is x = (abp)∞.

Since µ(a) is a prefix of x, we have that µ(a) = (abp)qabp′ , for some p, q ≥ 1 and

0 ≤ p′ ≤ p (notice that if p = 0 or q = 0, then x = a∞ or x = ab∞ respectively). How-

ever, we can see that µ2(a) = µ((abp)qabp′) = (((abp)qabp+p′)q(abp)qabp+p′). Note that

the words abpa and abp+p′a appear as factors of x. Since if p′ > 0 we would have

er(abp) = 1, it follows that p′ = 0 and µ ≡ ((abp)qa, b) is eventually periodic for

every pair p, q ≥ 1 (case 4.).

If b ∈ G (and therefore B = ∅), then either x[1, n] = abb, or x[1, n] = aba. Since

it must hold that er(a) = er(b) = 0, then either x = ab∞ or x = (ab)∞, whether the

prefix of x is abb or aba respectively. If abb is prefix of x, since µ(a) is prefix of the

fixed point, it follows that µ ≡ (abk, bℓ) for some k ≥ 1 and ℓ > 1 (case 2. for ℓ > 1).

If aba is prefix of x, note that by definition x = µ(x) = (αβ)∞. Therefore, either µ ≡

((ab)p, (ab)q) for some p, q ≥ 1 (which falls in case 1. again), or µ ≡ ((ab)pa, (ba)qb)

for some p, q ≥ 1 (case 3.), and the thesis follows.

Symmetrically, we can use the characterization of Proposition 52 to recognize

when a fixed point of a morphism is aperiodic. Recall that any primitive morphism

µ is quasi-uniform. Hence, if x = µ∞(a) is aperiodic, then by Theorem 44 its factor
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complexity is always linear. Let us cover then the remaining cases, that is when µ is

not primitive.

With the next lemma we show a general structure of non-primitive morphisms

with aperiodic fixed-point.

Lemma 53. Let µ be a binary non-primitive morphism prolongable on a with fixed point

x = µ∞(a) aperiodic. Then µ ≡ (au, bℓ) for some u ∈ Σ+ such that |u|a, |u|b ≥ 1 and for

some ℓ ≥ 1.

Proof. In order to be prolongable on a, we must have µ(a) = au for some u ∈ Σ+.

Moreover, |u|b ≥ 1, otherwise µ∞(a) = aaaaaa . . .. Since µ(a) contains both a and

b, and the morphism is not primitive, then |µ(b)|a = 0, i.e. µ(b) = bℓ for some

ℓ ≥ 1. Finally, we can observe that if |u|a = 0, then we have the morphism µ ≡

(abk, bℓ) that is eventually periodic (Proposition 52). Therefore, |u|a ≥ 1 and the

thesis follows.

With the next propositions, we describe how to recognize the factor complexity

of a non-primitive purely morphic word based on the structure of the morphism that

generates it.

Proposition 54. Let µ = (α, β) be a non-growing morphism prolongable on a and let

x = µ∞(a) be its aperiodic fixed point. Then, one of the following cases must occur:

1. α = aubak, β = b, for some u ∈ Σ∗ and k ≥ 1, and p(n) = Θ(n);

2. α = auabk, β = b, for every u ∈ Σ∗ and k ≥ 1, and px(n) = Θ(n2).

Proof. Let B be the set of bounded letters in the morphism µ. By Theorem 44, we

know that every morphism that generates an infinite word x = µ∞(a) with factor

complexity px(n) = Θ(n2) is non-growing and x contains infinitely many runs of

letters over B∗ with unbounded lengths. By Lemma 53, we know that µ ≡ (au′, bℓ),

for some u′ such that |u′|a, |u′|b ≥ 1 and ℓ ≥ 1. Since µ is growing on a, we have

that ℓ = 1 (that is µ(b) = b). One can see that, if µ ≡ (auabk, b) for some k ≥ 1, then

x contains the factor abk+ia for infinitely many i > 0, and therefore x = Θ(n2) (more

details can be found later in Lemma 58).

On the other hand, if µ ≡ (aubak, b), then there is a finite number of values

i ≥ 0 for which the words abia are factors of x. By [104, Theorem 4.1], we know
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that if the number of factors of µ∞(a) in B∗ is bounded, then there exist a growing

morphism µ′ : Σ′∗ 7→ Σ′∗ with fixed point x′ = µ′∞(a′) for some a′ ∈ Σ′, a morphism

η : Σ′∗ 7→ Σ∗ such that η(µ′∞(a′)) = µ∞(a), and px(n) = Θ(px′(n)).

In the proof of [104, Theorem 4.1] it is described how to build the alphabet Σ′,

and the morphisms µ′ and η2. The correctness of the procedure can be verified in the

same work.

Let us consider as a unique letter every factor of the type u1cu2 that occurs in x,

where c belongs to the set G of growing letters, and u1, u2 ∈ B∗. Since a ∈ G and

b ∈ B, it follows that these letters can be only of the type {[biabj], biabj ∈ F(x)}, and

therefore the alphabet is finite by hypothesis.

Let µ(u1au2) = v1av2av2a · · · vm−1avm, for some u1, u2 ∈ B∗, some k ≥ 1, and

some vi ∈ B∗ for all i ∈ [1, m]. Then, µ′([u1au2]) = [v1a][v2a] · · · [vm−1avm]. Since we

can factorize α as µ(a) = abp1abp2 · · · bpma for some pi ≥ 0 for all i ∈ [1, m], we can

derive Σ′, µ′ and η as follows:

• the alphabet Σ′ = {[a]} ∪⋃m
i=1{[bpia]};

• the morphism µ′ : Σ′∗ 7→ Σ′∗ as µ′([a]) = [a][bp1a][bp2a] · · · [bpma], and for

each j such that [bja] ∈ Σ′, we have µ′([bpia]) = [bpia][bp1a][bp2a] · · · [bpma];

• the morphism η : Σ′∗ 7→ Σ∗ as η([u]) = u, for all u ∈ Σ∗.

One can verify that η(µ′i([a])) = µi(a) for all i ≥ 0. Moreover, the morphism µ′ is

(m + 1)-uniform, for some m ≥ 1, and by Theorem 44 it follows that p′x(n) = Θ(n)

when x′ is aperiodic. Thus, by Proposition 51, in order for x′ to be aperiodic (and

subsequently also x), we need that µ ̸= ((abp)qa, b) for every p, q ≥ 1, and as a

consequence we have that |Σ′| > 2. For all the other cases, the thesis follows since

px(n) = Θ(px′(n)) = Θ(n).

Proposition 55. Let µ = (α, β) be a growing non-primitive morphism prolongable on a and

let x = µ∞(a) be its aperiodic fixed point. Then, µ ≡ (av, bℓ), for some ℓ ≥ 2 and v ∈ Σ+

such that |v|a, |v|b ≥ 1. Moreover, let na = |av|a. Then, it holds that:

1. na < ℓ if and only if px(n) = Θ(n);

2. na = ℓ if and only if px(n) = Θ(n log log n);
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3. na > ℓ if and only if px(n) = Θ(n log n).

Proof. The first claim can be deduced from Lemma 53 and the hypothesis of µ being

growing (that is, B = ∅).

For the rest of the proof, we use the characterization of morphisms defined in

Theorem 44, and show that under the conditions above mentioned, we obtain a

quasi-uniform, a polynomially divergent, and an exponentially divergent morphism

respectively. Clearly, µb(i) = ℓi = Θ(ℓi). What is left is to compute µa and compare

it with µb.

Let us define analogously nb = |av|b. For any word w ∈ {a, b}∗, by hyphotesis

on µ we have that |µ(w)|a = na|w|a and |µ(w)|b = nb|w|a + ℓ|wb|. By induction, we

can prove that |µi(a)|a = ni
a, |µi(a)|b = nb(ni

a−ℓi)
na−ℓ , if na ̸= ℓ, and |µi(a)|b = nbiℓi−1, if

na = ℓ. We can then distinguish the three cases.

1. If na < ℓ, then we can rewrite the growth function on a as

µa(i) = |µi(a)|a + |µi(a)|b

= ni
a +

nb(ni
a − ℓi)

na − ℓ

=
ni
a(ℓ− na) + nb(ℓi − ni

a)
ℓ− na

=
nbℓi + ni

a(ℓ+ nb − na)
ℓ− na

.

From this description, we can see that

nbℓi

ℓ− na
≤ nbℓi + ni

a(ℓ+ nb − na)
ℓ− na

≤ nbℓi + ℓi(ℓ+ nb − na)
ℓ− na

=
ℓi(ℓ+ 2nb − na)

ℓ− na
.

Thus, µa(i) = Θ(ℓi), and by Theorem 44 the factor complexity is px(n) = Θ(n).

2. If na = ℓ, then

µa = |µi(a)|a + |µi(a)|b

= ℓi + nbiℓi−1

= ℓi−1(nbi + ℓ)

=
ℓi(nbi + ℓ)

ℓ
.
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Since ℓ and nb are constant values, easily follows that µa(i) = Θ(iℓi), and there-

fore µ is polynomially divergent and px(n) = Θ(n log log n).

3. If na > ℓ, we can rewrite the description from case 1. to obtain a different

bound.

µa(i) = |µi(a)|a + |µi(a)|b

= ni
a +

nb(ni
a − ℓi)

na − ℓ

=
ni
a(na − ℓ) + nb(ni

a − ℓi)
na − ℓ

=
ni
a(na + nb − ℓ)− nbℓi

na − ℓ
.

From this description we can deduce the following bounds:

ni
a =

ni
a(na − ℓ)
na − ℓ

=
ni
a(na + nb − ℓ)− nbni

a

na − ℓ
≤ ni

a(na + nb − ℓ)− nbℓi

na − ℓ

≤ ni
a(na + nb − ℓ)

na − ℓ

Thus, µa(i) = Θ(ni
a) with na ̸= ℓ. Then, µ is exponentially divergent and

px(n) = Θ(n log n).

Since we have exhausted all the possible cases, the implication goes in the other

direction as well, and the thesis follows.

In the next section, we show how to take advantage of the structure of the mor-

phisms to get a theoretical bound on the measure r in the case of binary morphisms.

4.3 Logarithmic BWT-Runs of Binary Purely Morphic Words

Here we use the results from the previous section to compute the number of BWT-

runs for binary purely morphic words.

We have already shown in Section 4.1 that the measure r = O(1) when the prefix

of an eventually periodic word is considered. On aperiodic words, a first bound that

can be deduced from the previous sections is the following.
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Proposition 56. Let x = µ∞(a) be the fixed point of the morphism µ : Σ∗ 7→ Σ∗. If µ is

quasi-uniform, then r(µi(a)) = O(i), where i ≥ 0 is the iteration of the morphism. Moreover,

if n = µa(i), then r(µi(a)) = O(log n).

Proof. The proof follows from Proposition 49 and from the definition of quasi-uniform

morphisms.

From the proposition above, we can extend this result to all primitive morphisms.

Corollary 57. Let x = µ∞(a) be the fixed point of the morphism µ : Σ∗ 7→ Σ∗. If µ is

primitive, then r(µi(a)) = O(i) = O(log n), where i ≥ 0 is the iteration of the morphism.

Proof. The proof follows since any primitive morphism is quasi-uniform and by

Proposition 56.

Note that these results are independent from the size of the alphabet Σ consid-

ered. For the rest of the section, we will try to cover the remaining binary cases,

namely non-primitive morphisms with aperiodic fixed point for which the factor

complexity is either Θ(n log log n), Θ(n log n), or Θ(n2).

Given a morphism µ : {a, b}∗ 7→ {a, b}∗, let Ri = {q | abqa ∈ C(µi(a))}. If na =

|µ(a)|a, one can verify that |R1| ≤ na, since we can factorize µ(a) = abp1abp2a · · · abpna ,

with pi ≥ 0 for all i ∈ [1, na]. As it will be clear later in this section, we can use the

growth of |Ri| to obtain tighter bounds with respect to those obtained in Proposi-

tion 50 through the comparison with δ and z measures.

In the next lemmas, we describe the elements that Ri contains in the case of non-

primitive morphisms, according to whether µ is growing or not.

Lemma 58. Let µ = (α, β) be a non-growing morphism prolongable on a and let x = µ∞(a)

be its fixed point.

1. If α = aubak, β = b, for some u ∈ {a, b}∗ and k ≥ 1, then Ri = R1 for every i ≥ 1;

2. If α = auabk, β = b, for some u ∈ {a, b}∗ and k ≥ 1, then Ri =
⋃i

h=1
⋃na−1

j=1 {tj +

(h− 1)k} ∪ {ik} for every i ≥ 1.

Proof. Suppose µ(a) = auabk with k ≥ 1. We can see that for R1 =
⋃na

j=1{tj} the thesis

holds. By induction, suppose it holds for Ri. We can see that all abqa ∈ C(µi+1(a)), for
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some q ∈ Ri+1, either are factors of µ(a) = auabk (that is q = tj for some 1 ≤ j < na)

or there exists q′ = q− k such that q′ ∈ Ri and µ(abq′a) = au · abqa · uabk. Hence,

Ri+1 =
⋃na−1

j=1 {tj} ∪
⋃

q′∈Ri
{q′ + k} = ⋃i+1

h=1
⋃na−1

j=1 {tj + (h− 1)k} ∪ {(i + 1)k}. For case

1, note that the proof holds also in this case but with tna = k = 0, hence we obtain

Ri+1 =
⋃na

j=1{tj} = R1 and the thesis follows.

With an analogous proof, the following result can be proven for all growing non-

primitive morphisms.

Lemma 59. Let µ be a growing non-primitive binary morphism. If x = µ∞(a) is eventually

periodic, then µ ≡ (abk, bℓ), for all k ≥ 1 and ℓ > 1, and Ri = k ∑i−1
j=0 ℓ

j, for all i ≥

1. Otherwise, it holds that µ ≡ (auabk, bℓ), k ≥ 0, ℓ > 1, u ∈ {a, b}∗ and Ri =⋃i
h=1

⋃na−1
j=1 {

ℓh−1((ℓ−1)tj+k)−k
ℓ−1 } ∪ {k ℓi−1

ℓ−1 }, for every i ≥ 1.

For some of the cases above mentioned, we can show the growth of the set Ri is

linear with i.

Proposition 60. Let µ ≡ (auabk, bℓ) a binary morphism with k ≥ 0, ℓ ≥ 1 and k + ℓ > 1

and aperiodic fixed point. Then |Ri| = Θ(i), where i ≥ 0 is the iteration of the morphism.

Proof. By definition, we have that na ≥ 2. Let us consider the case ℓ = 1. By

Lemma 58 (case 2), it follows that there exists t1 ∈ R1 such that abt1+hka ∈ C(µi(a))

for every 0 ≤ h ≤ i− 1. This means that |Ri| ≥ i. Moreover, for every positive inte-

ger d such that abda ∈ C(µi(a)), it follows that d = ik or d = tj + hk for each tj ∈ R1

(with 1 ≤ j ≤ na − 1) and for every 0 ≤ h ≤ i − 1. This provides an upper bound

for |Ri|, i.e., |Ri| ≤ i(na − 1) + 1. The case ℓ > 1 can be proved by using a similar

argument and by applying Lemma 59. In fact, for every positive integer d such that

abda ∈ C(µi(a)), it follows that d = k ℓi−1
ℓ−1 or d =

ℓh((ℓ−1)tj+k)−k
ℓ−1 for each tj ∈ R1 (with

1 ≤ j ≤ na − 1) and for every 0 ≤ h ≤ i− 1. Therefore, |Ri| = Θ(i).

Here we start to see how to relate the notion of the set Ri with the measure r, and

more in particular with bispecial factors.

Lemma 61. Let µ ≡ (auabk, bℓ) be a binary morphism, for some k ≥ 0, ℓ ≥ 1. If v is a

circular bispecial factor of µi(a), for some iteration i ≥ 1, then w = bkµ(v) is a bispecial

circular factor of µi+1(a).
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Proof. If v is a circular bispecial factor in µn−1(a), then we can suppose w.l.g. ava

and bvb are circular factors of µn−1(a). This means that µ(ava) = auabkµ(v)auabk

and µ(bvb) = bℓµ(v)bℓ are circular factors of µn(a). Note that every β is circularly

preceded by bk, i.e. abkµ(v)a and bbkµ(v)b are circular factors of µn(a).

The following lemmas will be used to find the circular bispecial factors of finite

purely morphic words.

Lemma 62. Let µ ≡ (α, β) = (auabk, bℓ) for some k ≥ 0, ℓ ≥ 1 such that k + ℓ > 1, and

let m be the length of the longest runs of b’s that occurs in auabk. Then, for every i ≥ 2,

every circular factor v of µi(a) of length |v| > |µ(α)|+ (2− ℓ)m− k + ℓ2M contains bm+1

as factor, where M = max{⌊m−(ℓ+1)k
ℓ2 ⌋, 0}.

Proof. Let na = |µ(a)|a. Then we can uniquely factorize µ(a) = abp1abp2a · · · abpna ,

for some p1, p2, . . . , pna−1 ≥ 0 and pna
= k ≥ 0. Let j be an index such that pj =

m. Since µi(a) ∈ {µ(α), µ(β)}∗ for every i ≥ 2, where µ(α) = ∏na

i=1 auabpna+ℓpi and

µ(β) = bℓ
2
, we have that bℓpj+pna occurs in µ(α), for every 1 ≤ j ≤ na. Note that, with

the exception of the case k = 0 and ℓ = 1 (that we are not considering since otherwise

k+ ℓ = 1), ℓpj + pna
= ℓm+ k > m, that is µ(α) has at least an occurrence of the factor

bm+1. Then the longest circular factor of a string w ∈ {µ(α), µ(β)}∗ that does not

contain bm+1 must be a factor of µ(α)µ(β)Mµ(α), where M = max{⌊m−(ℓ+1)pna
ℓ2 ⌋, 0}

and it is v∗ = bpj ∏na

i=j+1 auabpna+ℓpi · (bℓ2
)M ·∏j−1

i=1 auabpna+ℓpi · auabpj , since if we

extend either on the left or on the right we find another b and we have bpj+1 = bm+1

as factor. We can see that |v∗| = |µ(α)|+ (2− ℓ)pj − k + ℓ2M.

By using the techniques developed in the proof of Lemma 62, we can derive the

following.

Lemma 63. Let µ ≡ (α, β) = (auabk, bℓ) for some k ≥ 0, ℓ ≥ 1 such that k + ℓ > 1, and

let m be the length of the longest runs of b’s that occurs in auabk. Then, the circular factors

of a string in {µ(α), µ(β)}∗ having maximal length and not containing bm+1, must be factor

of µ(α)µ(β)hµ(α), for some 0 ≤ h ≤ max{m− 2k, 0}.

Now, we describe the structure of circular bispecial factors of µi(a), for all non-

primitive binary morphisms.
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Lemma 64. Let µ ≡ (α, β) = (auabk, bℓ) for some k ≥ 0, ℓ ≥ 1, let m be the length of

the longest equal-letter run of b’s that occurs in auabk, and let M = max{⌊m−(ℓ+1)k
ℓ2 ⌋, 0}.

Then, every circular bispecial factor w of µi+1(a), i ≥ 1, either appears as a circular factor of

a word in
⋃M

j=0{µ(α)µ(β)jµ(α)} or w = bkµ(v), for some circular bispecial factor v in µi(a)

(or w = bh, for some h ≥ 1, when k ≥ 0 and ℓ > 1).

Proof. Consider the case ℓ = 1. By Lemma 63, if w is not a circular factor of a word

in
⋃M

j=0{µ(α)µ(β)jµ(α)}, then it holds that w = ybm+1z, for some y, z ∈ Σ∗. Note

that the last m− k + 1 letters of bm+1 can be obtained only as µ(b). Since {µ(a), µ(b)}

is a prefix code, z can be uniquely factorized as a sequence of µ(a)’s and µ(b)’s, i.e.

w = ybkµ(b)m−k+1µ(v)z′, for some v ∈ C(µn−1(a)) and some proper prefix z′ of µ(a) or

µ(b). From the fact that w is right special, we can prove that z′ = ε. In fact, if z′ ̸= ε,

then z′ is a proper prefix of α and w must be followed by α|z′|+1, i.e. w would not

be right special. Moreover, ybkµ(bm−k+1) can be uniquely factorized as a sequence of

µ(a)’s and µ(b)’s, unless for a prefix bj, with j ≤ k, since that prefix could be a proper

suffix of α, a run of β’s or a combination of both. However, if j < k, then w must be

preceded by bk−j, that is w is not left special and therefore j = k.

If ℓ > 1, the proof holds but with the exception of bispecial factors w = bh, with

h ≥ m + 1, that do not occur in
⋃M

h=0{µ(α)µ(β)hµ(α)}. In fact, only in this case we

can not uniquely factorize any of the factor of w (observe that bµ(β) = µ(β)b). Let m′

be the greatest value such that abm′a is a factor of µn(a). Since abm′a = abhbm′−ha =

abm′−hbha for every 1 ≤ h < m′, it holds that abhb and bbha occur in µn(a). It follows

that bh is bispecial for every 0 ≤ h < m′ and the thesis follows.

Here we obtain the first tight lower bound for the classes of binary purely mor-

phic words generated by a non-primitive morphism.

Proposition 65. Let µ ≡ (auabk, bℓ) be a non-primitive morphism with k ≥ 0, ℓ ≥ 1 with

aperiodic fixed point. Then r(µi(a)) = O(i), where i ≥ 0 is the iteration of the morphism.

Proof. Let m be the longest run of b’s that occurs in auabk and let M = max{⌊m−(ℓ+1)k
ℓ2 ⌋, 0}.

Let us consider the following three sets:

• BS0(µi(a)) = {v ∈ {a, b}∗ | v is a bispecial circular factor of a word in
⋃M

i=0{µ(α)µ(β)iµ(α)}},
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• BSb(µi(a)) = {bh | bh ∈ C(µi(a))}, and

• BSµ(µi(a)) = {bkµ(v) | v ∈ C(µi−1(a)) and |v|a ≥ 1}.

From Lemma 64, we can see that BS(µi(a)) = BS0(µi(a))∪ BSb(µi(a))∪ BSµ(µi(a))

(note that the intersection can be non-empty). It is easy to see that |BS0| = O(1).

Moreover, since µi(a) = auµ(u)µ2(u) · · · µi−1(u), we can see that every element w ∈

BSµ(µi(a)) that do not belong to BSµ(µi−1(a)) has to cross µi−1(u) and w = bkµ(v) for

some v that crosses µi−2(u). Iterating the procedure, we can see that |BSµ(µi(a))| =

O(i). If ℓ = 1, from Lemma 64, we can see that also BSb(µi(a)) = O(i). It follows that

r(µi(a)) ≤ |BS(µi(a)| ≤ |BS0(µi(a)|+ |BSµ(µi(a)|+ |BSb(µi(a)| = O(i).

On the other hand, if ℓ > 1, clearly |BSb(µi(a))| = Ω(ℓi), and therefore |BS(µi(a))| =

Ω(ℓi). However, recall that each change of letters in bwt(w) uniquely corresponds to

a unique bispecial factor, that is the longest common prefix between the two con-

jugates in correspondence of the change of letter (see Lemma 19 and recall that

el(u), er(u) ≤ 1 for binary alphabets). Let m′ be the length of the longest run of

b’s in µi(a). Note that m′ ∈ Ri. We define Ri = {0, 1, . . . , m′ − 1} \ Ri, i.e. Ri is

the set of indices 0 ≤ q < m′ such that abqa is not a factor of µi(a). By Lemma 59

we know that |Ri| grows as O(i). This implies that, even though |Ri| ∈ Ω(ℓi), we

can split Ri in K ≤ |Ri| subsets of maximal sizes that contain consecutive lengths

of runs of b’s, i.e. Pj = {hj, hj + 1, . . . , hj + dj ∈ Ri | hj − 1, hj + dj + 1 /∈ Ri}, for

every 1 ≤ j ≤ K. We can see that bh is the longest common prefix of two consecutive

conjugate words Ct and Ct+1 of w, for some 0 ≤ t < n if and only if Ct = bhaz

and Ct+1 = bh+1az′, for some z, z′ ∈ Σ∗ (if b < a then just switch the order of Ct

with Ct+1). Note that we can assign to each set Pj the maximal interval [sj . . . sj + ℓj]

(for some 0 ≤ sj, ℓj ≤ |µi(a)|) of sorted conjugates {Csj , Csj+1, . . . , Csj+ℓj} with prefix

with bha, for every h ∈ Pj. Let y = bwt(µi(a)). Since by definition abha is not a fac-

tor of µi(a) for every h ∈ Ri, then ysj ysj+1 · · · ysj+ℓj = bℓj+1, and therefore a change

of letter in y can not correspond to a bispecial factor bh with h ∈ Pj, with the only

possible exception for bhj+dj if ysj+ℓj+1 = a, since abhj+dj+1a is a factor of µi(a) and

lcp(Csj+ℓj , Csj+ℓj+1) = bhj+dj . Finally, since there are K ≤ |Ri| of these intervals, we

have that r(µi(a)) ≤ |BS0(µi(a))|+ |BSµ(µi(a))|+ 2|Ri| = O(i).
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As shown in the next proposition, the set Ri can be used to obtain a lower bound

as well.

Proposition 66. Let µ ≡ (auabk, bℓ) be a non-primitive morphism with k ≥ 0, ℓ ≥ 1

and x = µ∞(a) is aperiodic. Then r(µi(a)) = Ω(|Ri|), where i ≥ 0 is the iteration of the

morphism. Moreover, when µ is not growing with px(n) = Θ(n2) or µ is growing, then

r(µi(a)) = Ω(i).

Proof. Let C1 < C2 < . . . < Cn be the lexicographically sorted rotations of µi(a) and

let m′ be the length of the longest run of b’s in µi(a). We denote by (sj, ℓj) the first

index of rotations with prefix bja and the number of these rotations respectively. It

follows that rot(bja) = {Csj , Csj+1, . . . , Csj+ℓj−1}, for every j ∈ [0, m′].

Let y = bwt(µi(a)). We can see that for every j ∈ [0, m′], if rot(bja) exists, then

y[sj−1, sj−1 + ℓj−1 − 1] contains at least ℓj occurrences of b’s. In fact, for every h ≥ 0,

if there exist ℓj rotations such that Cj = bh+1au for some u ∈ Σ∗, then there exist

as much rotations Cj′ = bhaub. It follows that, for every j ∈ [0, m′ − 1], the factor

y[sj, sj + ℓj − 1] contains at least one b.

Moreover, by definition, we know that if j ∈ Ri, then there is at least an occur-

rence a in y[sj, sj + ℓj − 1]. Hence, for every 0 ≤ j′ ≤ ⌈ |Ri |−1
2 ⌉ such that q2j′+1 ∈ Ri,

we have that in y[s2j′+1, s2(j′+1)+1 + ℓ2(j′+1)+1 − 1] it must occur aba as subsequence,

since there is at least one run of a’s in y[s2j′+1, s2j′+1 + ℓ2j′+1], at least one run of b’s

in y[s2(j′+1), s2(j′+1) + ℓ2(j′+1) − 1] and at least one run of a’s in y[s2(j′+1)+1, s2(j′+1)+1 +

ℓ2(j′+1)+1− 1]. Hence, r(µi(a)) = |rle(y)| ≥ |rle(y[s1, sm′ + ℓm′ − 1])| ≥ |rle((ab)⌈
|Ri |−1

2 ⌉a)| =

Ω(|Ri|).

By Proposition 54 we know that px(n) = Θ(n2), if and only if µ ≡ (auabk, b) for

some u ∈ Σ∗ and k ≥ 1. If µ is growing and non-primitive then, by Proposition 55,

there exist ℓ ≥ 2 and u, v ∈ {a, b}∗, with v = uabk for some k ≥ 0 and |v|b ≥ 1, such

that µ ≡ (av, bℓ). Finally, by using Proposition 60, the thesis follows.

In the next theorem, we summarize the results on the Burrows-Wheeler Trans-

form of finite purely morphic words, grouped by classes of factor complexity. Once

again, recall that this theorem holds independently from the order defined on the

letters of the alphabet.
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Theorem 67. Let x = µ∞(a) be an aperiodic fixed point for some morphism µ : {a, b}∗ 7→

{a, b}∗ prolongable on a, and let n = µa(i), where i ≥ 0 is the iteration of the morphism.

The following bounds hold:

1. if px(n) = Θ(n), then r(µi(a)) = O(i) = O(log n);

2. if px(n) = Θ(n log log n), then r(µi(a)) = Θ(i) = Θ(log n);

3. if px(n) = Θ(n log n), then r(µi(a)) = Θ(i) = Θ(log n);

4. if px(n) = Θ(n2), then r(µi(a)) = Θ(i) = Θ(log n).

Proof. All primitive morphisms are quasi-uniform, i.e. µa(i) = Θ(ρi) for some ρ > 1.

By Lemma 53, all morphisms non-primitive with aperiodic fixed point verifies that

|µ(a)|a ≥ 2, and therefore µx = Ω(2i), and for each morphic sequences there exists a

constant ρ > 1 such that µx(i) = O(ρi). For both cases, one can see that i = Θ(log n).

The case 1. follows from Proposition 56 and Theorem 44.

The cases 2.-4. can be derived from the structures of the morphisms of Proposi-

tions 55 and 54, and by Propositions 65 and 66 the thesis follows.

Note that only for the case 1. of Theorem 67 we do not have Ω(i) as lower bound.

In fact, for any Sturmian morphism φ′ holds that, for all i ≥ 1, φ′i(a) is a standard

Sturmian word, and for any standard Sturmian word s holds that r(s) = 2 = O(1)

(Theorem 14). We conclude this section with the following question concerning the

gap between O(1) and O(i).

Question 68. Let µ : {a, b}∗ 7→ {a, b}∗ be a binary morphism prolongable on a. If

r(µi(a)) ̸= O(1), does it follow that r(µi(a)) = Ω(i) (and vice versa)?

4.4 Run-Length Compression of Purely Morphic Words

Despite the theoretical flaws on the measure r observed in the previous chapter,

the BWT is still widely used for its efficiency on compressing highly repetitive text,

while giving the possibility index the text in a space proportional to r. Nonetheless,

typical problems of string pattern matching have been dealt for run-length com-

pressed words [89, 125]. Mantaci et al. [93] have considered the problem of finding
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words that can not be clustered from the BWT, and introduced the notion of BWT-

clustering ratio, defined for any word w as ρ(w) = r(w)
|rle(w)| . They proved that ρ(w) ≤ 2

for any word w, and found an infinite family of words for which their bound is tight.

Later, Brlek et al. proved that for Thue-Morse morphism the measure ρ(τi(a)) tends

to 0 as i grows [20].

In this section, we extend this result to other families of purely morphic words,

with a particular focus on the binary case for which we have proved tight bounds

on the measure r. In particular, we are interested in classifying morphisms based on

the efficiency of the run-length encoding on BWT with respect to the word.

Definition 69. A morphism µ prolongable on a ∈ Σ is BWT-highly compressible if

lim supi→∞ ρ(µi(a)) = 0, where ρ is the BWT-clustering ratio.

To facilitate the reading, given a morphism µ prolongable on a letter a ∈ Σ, we

denote by runsµ,a(i) = |rle(µi(a))|. Clearly, the function runsµ,a is independent from

the order of the letters in Σ.

Example 70. Let us consider the infinite word x = µ∞(a), where the binary morphism

µ : {a, b}∗ 7→ {a, b}∗ is defined as follows:

µ :
a 7→ abab

b 7→ bb
.

In this case µa(i) = (i + 1)2i and µb(i) = 2i, i.e., µ is polynomially divergent, and px(n) =

Θ(n log log n). We know by Theorem 67 that r(µi(a)) = Θ(i). Moreover, one can see that

runsµ,a = 2i+1 = Θ(2i). Hence, µ is BWT-highly compressible.

Experimentally, we have observed that this behavior is not shared for all mor-

phisms. For instance on the morphism ψ : {a, b, c}∗ 7→ {a, b, c}∗ defined as ψ(a) =

abc, ψ(b) = bb and ψ(c) = ccc, one can verify that

runsψ,a(i) = |rle(ψi(a))| = |(a, 1)(b, 1)(c, 1)(b, 2)(c, 3) · · · (b, 2i)(c, 3i)| = 2i + 1.

On the other hand, tests suggest that r(ψi(a)) = 4i for all i > 2, which is close to

upper bound for the BWT-clustering ratio.
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A first approach to the problem is to understand what properties of morphisms

influence the growth of the run-length encoding on the iteration of the morphism.

Definition 71. Let µ : Σ 7→ Σ be a morphism such that runsµ,a(i) ≤ K, for every i > 0, for

some a ∈ Σ, and some K > 0. Then we say that µ is run-bounded on a.

Clearly, the function runsµ,a is monotone whenever µ is prolongable on a. In

the next proposition, we give un upper bound on the measure runsµ,a under certain

conditions.

Proposition 72. Let µ be a morphism prolongable on a ∈ Σ and let R = {b ∈ Σ | µ is

run-bounded on b}. If µ(a) = au with u ∈ R+ then runsµ,a(i) = O(i), where i ≥ 0 is the

iteration of the morphism.

Proof. Recall that µi(a) = auµ(u)µ2(u) · · · µi−1(u) for every i ≥ 1. Since µ is run-

bounded on every letter in u,then |rle(µi(u))| ≤ K · |u|, for some K > 0 and every

i > 0. Hence, we have that runsµ,a(i) ≤ 1 + ∑i−1
j=0 |rle(µj(u))| ≤ (K · |u|) · i = O(i).

Note that the morphism from Example 70 falls in the case described in Proposi-

tion 72. It is open the question whether the converse of the statement is true. Sym-

metrically, we obtain the following lower bound.

Proposition 73. Let µ be a morphism prolongable on a ∈ Σ such that |rle(µ(a))| ≥ 2. If

there exists t > 0 such that a occurs at least twice in µt(a), then the growth of runsµ,a is

exponential.

Proof. Let t > 0 be the smallest integer such that a occurs twice in µt(a). We prove

by induction that |µj·t(a)|a grows as Ω(2j). By definition of t, the case j = 1 is trivial.

For the inductive step, assume it holds that |µj·t(a)|a = Ω(2j). Let ak be the kth occur-

rence of a in µj·t(a). This implies that µ(j+1)t(a) = µt(µjt(a)) = µt(a1 · · · a2 · · · a2j · · · ) =

µt(a1) · · · µt(a2) · · · µt(a2j ) · · · . Since µt(ai) produces at least 2 a’s for each i and the

morphism is prolongable, then |µ(j+1)·t(a)|a ≥ 2|µj·t(a)|a ∈ Ω(2j+1). Note that since

|rle(µ(a))| ≥ 2, then runsµ,a(j · t + 1) ≥ 2|µj·t(a)|a = Ω(2j+1) (this holds even if

we assume that the last letter of µ(a) is an a as well, since this would imply that

|rle(µ(a))| ≥ 3). Since every t steps the growth of the function is exponential, the

overall growth is exponential too.
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The following corollary can be proved by using Propositions 49 and 73.

Corollary 74. Let µ : Σ∗ 7→ Σ∗ be a primitive morphism and prolongable on a ∈ Σ and let

n = |µi(a)|, where i ≥ 1 is the iteration of the morphism. It holds that r(µi(a)) = O(log n)

and limi→∞ ρ(µi(a)) = 0, therefore µ is BWT-highly compressible.

We conclude this section with this final theorem on the efficiency of the BWT

when we consider binary morphisms.

Theorem 75. Let µ ≡ (α, β) be a binary morphism prolongable on a such that µ ̸≡

(abm, bn) for every m ≥ 1, n ≥ 1. Then limi→∞ ρ(µi(a)) = 0, consequently µ is BWT-

highly compressible.

Proof. The proof is analogous if µ is prolongable on b. If µ∞(a) is eventually peri-

odic, then r(µi(a)) is Θ(1). By Propositions 52 and 73 we have that runsµ,a(i) grows

exponentially with i, except the case µ ≡ (abm, bn). Then limi→∞ ρ(µi(a)) = 0. If

µ ≡ (abm, bn), then ρ(µi(a)) = 1 for every m, n ≥ 1. Let us suppose µ∞(a) is ape-

riodic. If µ is primitive, the thesis follows from Corollary 74. If µ is not primitive,

then r(µi(a)) = O(i) (Theorem 65). Moreover, by using Propositions 73, 54 and 55,

we have that runsµ,a(i) = Ω(2i). Thus, limi→∞ ρ(µi(a)) = 0 for any binary morphism

with aperiodic purely morphic word, and the thesis follows.
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Chapter 5

Effects of Morphisms on the

BWT-Runs

In the previous chapter, we have studied the behavior of the Burrows Wheeler Trans-

form when the word considered is a finite purely morphic word. Here we deal with

a similar problem from another perspective: given any word w ∈ Σ∗ and a mor-

phism µ : Σ∗ 7→ Σ∗, how do the BWT-runs change when the µ is applied on w? In

other words, how is the size r(µ(w)) related to r(w)? This problem has brought us to

new interesting characterizations of morphisms based on the effect that a morphism

has on the BWT.

First, in Section 5.1 we show some properties of words and morphisms, which

will become handy later in this chapter. Then, in Section 5.2 we show the main

result, that is a new characterization of Sturmian morphisms based on its effect on

the Burrows-Wheeler transform.

The results of this chapter appeared at the 34th Annual Symposium on Combi-

natorial Pattern Matching (CPM 2023) [44].

5.1 Abelian Order-Preserving and Order-Reversing Morphisms

In this section, we introduce the notions of abelian order-preserving an abelian order-

reversing morphisms, and show how the measure r varies when one of these mor-

phisms is applied to a word. Let us start by introducing some definitions regarding

the rotations of morphic images of words.
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Definition 76. Let µ : Σ∗ 7→ Γ∗ be a morphism. Then, we define the multisets

Iµ(w) = {µ(w′) |w′ ∈ R(w)}

Sµ(w) = {vµ(w′)u | u, v ∈ Γ+, uv = µ(a) for some a ∈ Σ, and aw′ ∈ R(w)}.

The multiset Iµ(w) corresponds to the rotations of µ(w) obtained by applying µ

to the rotations of w. The multiset Sµ(w) corresponds to all the remaining rotations

of µ(w). We refer to the multiset Iµ(w) as the I-rotations of µ(w), and to the multiset

Sµ(w) as the S-rotations of µ(w).

We continue by showing a lemma on the Hamming distance of two words with

the same Parikh vector.

Lemma 77. Let w1, w2 ∈ Σ∗ be such that w1 ̸= w2 and P(w1) = P(w2). Then, dH(w1, w2) ≥

2.

Proof. By definition of dH, we have that dH(w1, w2) = 0 if and only if w1 = w2. So, let

us suppose by contradiction that dH(w1, w2) = 1. Then, there exist two finite words

u, v ∈ Σ∗ and two distinct indices i < j ∈ [1, σ] such that w1 = uaiv and w2 = uajv.

It follows that the Parikh vectors of w1 and w2 are respectively

P(w1) = (|u|a1 + |v|a1 , . . . , |u|ai + |v|ai + 1, . . . , |u|aj + |v|aj , . . . , |u|aσ + |u|aσ )

and

P(w2) = (|u|a1 + |v|a1 , . . . , |u|ai + |v|ai , . . . , |u|aj + |v|aj + 1, . . . , |u|aσ + |u|aσ ).

Thus, we obtain that the P(w1) ̸= P(w2), a contradiction.

Since all the words in the same conjugacy class share the same Parikh vector, we

can derive the following.

Corollary 78. Let w ∈ Σ∗ be a word. Then, for every word w′ ∈ R(w) such that w′ ̸= w,

one has dH(w, w′) ≥ 2.

Here we consider two notions that we can use to classify morphisms.
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Definition 79. A morphism µ is abelian order-preserving if for every pair of words u ̸= v

such that P(u) = P(v), it holds that u < v ⇐⇒ µ(u) < µ(v).

A morphism µ is abelian order-reversing if for every pair of u ̸= v such that P(u) =

P(v), it holds that u < v ⇐⇒ µ(u) > µ(v).

We want to point out that, in general, a morphism can be neither of both, as

shown in the next simple example.

Example 80. Let us consider the word abc ∈ {a, b, c}∗, where a < b < c, and the

morphisms µ, η : {a, b, c}∗ 7→ {a, b, c}∗, defined as µ ≡ (b, a, c) and η ≡ (ba, ba, ba). The

order of the rotations is abc > bca > cab. One can see, µ(abc) = bac < acb = µ(bca),

so µ is not abelian order-preserving. On the other hand, µ(bca) = acb < cba = µ(cab),

and therefore it is not abelian order-reversing either. Since η(abc) = η(bca) = η(cab), also

η is neither abelian order-preserving or -reversing.

However, when binary acyclic morphisms are considered, we have a different

scenario, as showed in the next lemma.

Lemma 81 ([44]). Let µ : {a, b}∗ 7→ Σ∗ be an acyclic morphism. Then, µ is either abelian

order-preserving or abelian order-reversing.

A direct consequence of Lemma 81 is the order induced on the rotations of a

binary morphism.

Corollary 82. Let w ∈ {a, b}∗ be a binary word and let µ : {a, b}∗ 7→ {a, b}∗ be an acyclic

morphism. Then, for all pairs of rotations u, v ∈ R(w), either u < v ⇐⇒ µ(u) < µ(v)

(when µ is abelian order-preserving), or u < v ⇐⇒ µ(u) > µ(v) (when µ is abelian

order-reversing).

We have introduced new measures of sensitivities to study how the action of a

morphism affects the BWT-runs.

Definition 83. Let µ : Σ∗ 7→ Σ∗ be a morphism and w ∈ Σ∗ a word. We define

∆+
µ (w) = r(µ(w))− r(w)

and

∆×µ (w) =
r(µ(w))

r(w)
.
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In other words, ∆+
µ (w) and ∆×µ (w) are respectively the additive and multiplicative

increase of the size r when the morphism µ is applied on the word w.

In the next theorem we show a tight lower bound on the measure ∆+
µ .

Theorem 84. Let µ : {a, b}∗ 7→ Σ∗ be an acyclic morphism. Then ∆+
µ (w) ≥ 0 for every

w ∈ {a, b}∗.

Proof. Let µ ≡ (α, β). Since r(w) = r(wm) for every w ∈ Σ∗ and m > 1, let us assume

that w is primitive. For the proof, we assume that |α| ≥ |β|, and the other case is

treated symmetrically. First, let us consider the case where β is not a suffix of α. Let

moreover x ∈ Σ∗ be the longest common suffix between α and β. It follows that

there exist α′, β′ ∈ Σ+ such that α = α′x and β = β′x, and that the last letter of α′ is

different from the last of β′ (otherwise x would be longer). Let Rx(µ(w)) denote the

multiset of rotations of µ(w) with x as a prefix. Note that if x = ε, then Rx(µ(w)) =

Iµ(w). Since x appears in both α and β, it follows that |Rx(µ(w))| ≥ |w|. Specifically,

for each i ∈ [1, |w|], there exists ti ∈ Rx(µ(w)) such that ti = xµ(w[i + 1, |w|] ·w[1, i−

1])v, where v is either α′ or β′, depending on whether w[i] is a or b respectively. The

lexicographical order of these |w| rotations of µ(w) with the same prefix correspond

to the lexicographical order of the rotations in Iµ(w), since by Corollary 78 the words⋃|w|
i=1{µ(w[i+ 1, |w|] ·w[1, i− 1])}must differ in at least one position. By Corollary 82

this is either in the same or in the reverse order with respect to the sorting of the

rotations of w. Thus, there exists an injective coding λ : {a, b}∗ 7→ Σ′∗ ⊆ Σ such that

either λ(bwt(w)) or λ(bwt(w)R) is a subsequence of bwt(µ(w)), and therefore r(µ(w)) ≥

r(w).

Let us now consider the case where β is suffix of α. Then, there exists a primitive

word u ∈ Σ+ and two integers p ≥ q ≥ 1 such that β = uq, and α = α′up, with

α′ ∈ Σ+ that does not have u as suffix. Note that α′ ̸= ε, otherwise we would have

αβ = upuq = uqup = βα, i.e. µ would not be acyclic. Let x be the longest common

suffix between α′ and u. If x ̸= α′, from analogous arguments to the case where β

is not a suffix of α, we have at least r(w) equal-letter runs in Rxup (µ(w)). Otherwise,

if x = α′, let us consider the word y ∈ Σ+ such that u = yx. We can then consider

the longest common suffix x′ between xy and yx, which must be a proper suffix
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(otherwise u would not be primitive), and apply the same reasoning over the set

Rx′xup (µ(w)) and the thesis follows.

In general, Theorem 84 does not hold in the case of larger alphabets, as the fol-

lowing example shows.

Example 85. Consider the acyclic morphism µ ≡ (b, a, c). Then, bwt(bcba) = bcab and

bwt(µ(bcba)) = bwt(acab) = cbaa, and therefore ∆+
µ (bcba) = 3− 4 = −1 < 0.

As consequence of Theorem 84, we obtain the following lower bound on ∆×µ .

Corollary 86. Let µ : {a, b}∗ 7→ Σ∗ be an acyclic morphism. Then, ∆×µ (w) ≥ 1, for every

w ∈ {a, b}∗.

We conclude this section with a characterization of cyclic and acyclic binary mor-

phisms in terms of the number of BWT-runs in the images of the words.

Theorem 87. A morphism µ : {a, b}∗ 7→ Σ∗ is cyclic if and only if there exists k > 0 such

that r(µ(w)) = k for all w ∈ {a, b}∗.

Proof. If µ ≡ (α, β) is cyclic then there exists a primitive word u ∈ Σ∗ such that

α = up and β = uq, for some p, q ≥ 0. Therefore, for each word w ∈ {a, b}∗,

we have r(µ(w)) = r(up·|w|a+q·|w|b) = r(u). The other implication is a consequence

of Theorem 84. In fact, by contraposition for each k > 0 we can find a word w

such that r(w) > k. For instance, for the i-th Thue–Morse finite word holds that

r(τi(a)) = 2i [20]. Hence, for any acyclic morphism µ and for all i > k
2 , we have that

r(µ(τi(a))) ≥ r(τi(a)) = 2i > k as well.

As a consequence, we obtain a stronger result than Theorem 84.

Corollary 88. A morphism µ : {a, b}∗ 7→ Σ∗ is acyclic if and only if ∆+
µ (w) ≥ 0 for every

w ∈ {a, b}∗.

Proof. Theorem 84 proves the first implication, while the other direction can be de-

duced from the characterization of cyclic morphism in Theorem 87.
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5.2 Characterization of Sturmian Morphisms via r

In this section, we show that Sturmian morphisms are characterized by their effect

on the BWT of any binary word.

Recall that a Sturmian morphism is obtained from the any composition of the

following morphisms:

E :
ß

a 7→ b

a 7→ a
φ :
ß

a 7→ ab

b 7→ a
φ̃ :
ß

a 7→ ba

b 7→ a

Next, we show that every Sturmian morphism fixes the number of BWT-runs.

From the definition of E, φ, and φ̃, and by Lemma 81, we derive the following.

Lemma 89. Let w ∈ {a, b}∗ be a binary word. Then, for all pairs of rotations u and v of w,

and for each χ ∈ {E, φ, φ̃}, it holds that u < v if and only if χ(u) > χ(v).

We prove now that the number of BWT-runs is preserved when any Sturmian

morphism is applied on a binary word.

Lemma 90. Let w ∈ {a, b}∗ be a binary word with |alph(w)| = 2. Then, for all χ ∈

{E, φ, φ̃}, one has r(w) = r(χ(w)). More in details, one has bwt(E(w)) = bwt(w)R and

bwt(φ(w)) = bwt(φ̃(w)) = bwt(w)R · a|w|a .

Proof. Since for each word w and each integer k > 0 we have r(w) = r(wk), let us

assume that w is a primitive word. From Lemma 89, the case χ = E is trivial: in fact,

from it follows that bwt(E(w)) = bwt(w)R, and therefore r(w) = r(E(w)).

For the case χ = φ one can observe that every b that occurs in φ(w) is obtained

from φ(a), and therefore it is always preceded by an a. Thus, the rotations of φ(w)

left to cover are all those starting with an a, which therefore must also start with

either φ(a) or φ(b). By Lemma 89, and by observing that φ(a) ends with a b and φ(b)

ends with an a, we have that bwt(φ(w)) = bwt(w)R · a|w|a . Thus, we need to check if

the run of a’s at the end merges with the last letter of bwt(w)R. This is equivalent to

check that the first letter of bwt(w) is a b, and by contradiction if the first rotation in

lexicographical order is ua for some u ∈ {a, b}n−1, then au is a conjugate of w and

au < ua for each binary word w, a contradiction.
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For the case χ = φ̃, each b’s that appear in φ̃(w) is obtained as first letter of the

image φ̃(a). This means that every b is preceded by the last letter of either φ̃(a) or

φ̃(b), which in both cases it is an a. Let us consider then the rotations starting with

an a. Whether this first a is obtained as φ̃(b) or as proper suffix of φ̃(a), we can write

prefixes of these remaining n rotations of φ̃(w) as a · φ̃(u), for some u ∈ {a, b}n−1. By

Lemma 77 and Lemma 89, we can see that we can sort these rotations according to

the reverse order with respect to the order of the words in R(w). Thus, if a rotation

of w is of the type ua, then the rotation starting with aφ̃(u) is followed by (and ends

with) a b. On the other hand, if we had ub, then the rotation with prefix aφ̃(u) is

exactly φ̃(bu), which it must ends with an a. Then, bwt(φ̃(w)) = bwt(w)R · a|w|a , and

analogously to the case χ = φ it holds that the run a|w|a merges with the last run of

bwt(w)R and the thesis holds.

Note that from Lemma 90 we can derive a method to construct bwt(µ(w)) starting

from bwt(w), for every Sturmian morphism µ and every binary word w.

An example of the effect of the morphisms φ and φ̃ on the BWT is shown in

Figure 5.1.

M(w)

aabba b
abaab b
abbab a
baabb a
babaa b
bbaba a

M(φ(w))

a.a.ab.a.ab.a b.
a.ab.a.ab.ab. a.
a.ab.ab.a.a.a b.
ab.a.a.ab.a.a b.
ab.a.ab.ab.a. a.
ab.ab.a.a.ab. a.
b.a.a.ab.a.ab. a
b.a.ab.ab.a.a. a
b.ab.a.a.ab.a. a

M(φ̃(w))

a. a.a.ba.a.ba. b
a. a.ba.a.ba.b a.
a. a.ba.ba.a.a. b
a. ba.a.a.ba.a. b
a. ba.a.ba.ba. a.
a. ba.ba.a.a.b a.
b a.a.a.ba.a.b a.
b a.a.ba.ba.a. a.
b a.ba.a.a.ba. a.

FIGURE 5.1: BWT-matrices for the words w = abbaba, φ(w), and φ̃(w)
respectively.

For M(φ(w)) and M(φ̃(w)), the dots separate the images of letters from w. The

rotations in bold of M(φ(w)) and M(φ̃(w)) correspond to the words in Iφ(w) and

Iφ̃(w) respectively. The block of rotations in gray at the end of both M(φ(w)) and

M(φ̃(w)) are in correspondence of the equal-letter run of a’s of length |w|a, which

occurs for every w ∈ {a, b}∗. One can see that bwt(φ(w)) = bwt(φ̃(w)) = bwt(w)R ·

a|w|a .
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A clear consequence of Lemma 90 is that, for each binary word w, the words

φ(w) and φ̃(w) are conjugate. More in detail, the images are just one shift away

from each other. In fact, for any binary word w = w1w2 · · ·wn we have that φ(w) =

φ(w1w2 · · ·wn) = av1av2 · · · avn, where for each i ∈ [1, n] we have vi = b if wi = a,

or vi = ε if wi = b. On the other hand, for the same word w we have φ̃(w) =

φ̃(w1w2 · · ·wn) = v1av2 · · · avna, where analogously to the previous case vi = b if

wi = a, or vi = ε if wi = b. Hence, φ̃(w) can be obtained by applying a shift to the

left on φ(w).

Here we show the main theorem of this chapter, giving a new characterization of

Sturmian morphisms.

Theorem 91. Let µ be a binary morphism. Then, the following are equivalent:

1. ∆+
µ (w) = 0 for every word w with |alph(w)| = 2;

2. µ is a Sturmian morphism.

Proof. By Theorem 7 and Lemma 90, all Sturmian morphisms preserve the number

of BWT-runs. Conversely, suppose that µ preserves the number of BWT-runs. By

Theorem 84, such a morphism must be acyclic. Let s = limi→∞ si be a characteristic

Sturmian word. For every i, the word µ(si) has 2 runs in its BWT, hence it is circu-

larly balanced (Theorem 14). Let us consider the word µ(s) = lim µ(si). Since it is

obtained by applying an acyclic morphism to a Sturmian word, it is balanced and

aperiodic [22]. Then, µ(s) is Sturmian by using Theorem 3, whence µ is a Sturmian

morphism by applying Theorem 6.

This characterization represents another link between the fields of formal lan-

guages and combinatorics on words with notions from data compression and in-

dexed structures. Note that such a characterization can be used to obtain a new

proof for Theorem 14.

It would be interesting to explore more practical applications. For instance, one

may think of the problem of a hidden data structure working in O(polylogr) space,

which is indexed for string pattern matching and accessible by multiple parties. If

actor A wants to hide the content of a binary text, this can be mapped through a

Sturmian morphism φ⋆ = χ1 ◦ χ2 ◦ · · · ◦ χk, with χi ∈ {E, φ, φ̃} for all i ∈ [1, k],
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and represent the mapped text in the same space r, while the k-tuple of morphisms

K = (χ1, χ2, . . . χk) would be the key to access the real text.

The first problem that one may observe is that this regularity may be easily

cracked, since any acyclic binary morphism is a code. However, the Sturmian mor-

phism can be chosen to make this operation unfeasible. For instance, if φ⋆ = φ100,

any a in the text would be mapped into the 100th Fibonacci word, whose length

is |φ⋆(a)| = 354224848179261915075, while the measure r stays untouched, but we

can choose k way larger than this. Further, since |χ1 ◦ χ2 ◦ · · · ◦ χk(a)| < 2k, we can

represent the extended first and last runs of the BWT in O(k) bits of space.

On the other hand, the pattern should be increased of the same size, leading to

the analogous time and space resources needed to crack the key. Nonetheless, recall

that the original BWT stays untouched, meaning that either the bwt(w), bwt(w), or

their reverse, appear as factor of bwt(φ⋆(w)), and its location can be found through

the key K. This may suggest the design of an indexed data structure which indexes

only n consecutive letters of the BWT of φ⋆(w), and that can be properly queried

when the key K is known.

5.3 On the Sensitivity of r for the Application of Morphisms

We conclude this chapter with some general remarks on the impact that morphisms

have on the Burrows-Wheeler Transform of binary words.

After characterizing Sturmian morphisms as those morphisms fixing the BWT-

runs on binary words, it is natural wondering if the application of any other mor-

phism, instead of preserving the number of runs in the BWT, increases the size r by

a given constant k > 0. If such a constant exists, it has to be an even integer. In fact,

unless considering powers of a single letter, the BWT of any binary word starts with

a b and ends with an a.

In this section, we show some final remarks on the effect of morphisms on the

measure r. First, we present a family of morphisms with a fixed 2k increase for all

k > 0. Then, we show that this effect is not shared by all morphisms, i.e., we can find

an example of morphism such that the difference is in the BWT-runs is arbitrarily

large.
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In the same work, we have showed that for every k > 0, we can find an infinite

number of morphisms that increase the the BWT-runs of any binary word by exactly

2k. Among these, for k = 1 we have found a family of morphisms by the well-known

Thue-Morse morphism τ ≡ (ab, ba), defined as follows.

Definition 92. A binary morphism is Thue–Morse-like if it has the form τp,q ≡ (abp, baq)

for some p, q > 0.

The structure of the BWT of Thue–Morse words has been studied before and

it is well understood [20, 35]. We have generalized such results by showing how

to derive bwt(µ(w)) from bwt(w) for every Thue–Morse-like morphism µ and every

binary word w. The following lemma summarizes the effect of Thue–Morse-like

morphisms on the BWT.

Lemma 93. [44] For every binary word w such that alph(w) = {a, b}, it holds that

bwt(τp,q(w)) = b|w|b a(q−1)|w|b · bwt(w) · b(p−1)|w|a a|w|a ,

and that r(τp,q(w)) = r(w) + 2.

As a consequence of Lemma 91 and Lemma 93, we obtain the following corollary.

Corollary 94. Given an integer t ≥ 0, there exist infinite family of binary morphisms µ

such that ∆+
µ (w) = 2t and ∆×µ (w) ≤ t + 1, for every word w with |alph(w)| = 2.

Proof. Any morphism of this type is obtained from the compositions of t Thue–

Morse-like morphisms, which increase the size of the BWT by 2t runs, and as many

Sturmian morphisms desired, since each of these morphisms preserve the measure r,

and therefore ∆+
µ (w) = 2t. Moreover, since r(w) ≥ 2, we have that ∆×µ (w) = r(µ(w))

r(w) =

r(w)+2t
r(w) = 1 + 2t

r(w) ≤ t + 1.

Building binary words with any desired BWT-runs is another brick into a deeper

understanding of the measure r. As a consequence, we can extend the results by

Brlek et al. from [20] on the number of BWT-runs of words generated by iterating

the composition of the Fibonacci morphism with the Thue–Morse morphism to any

composition of Sturmian morphisms and Thue–Morse-like morphisms.

Analogously to definitions of [1], we introduce the following.
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Definition 95. Given a measure of repetitiveness λ, the additive sensitivity and multi-

plicative sensitivity for a morphism µ are respectively, the functions

ASµ(λ, n) = max
w∈Σn

λ(µ(w))− λ(w) and MSµ(λ, n) = max
w∈Σn

λ(µ(w)
λ(w)

.

One can see that, when the measure r is considered, this is equivalent to:

• ASµ(r, n) = maxw∈Σn (∆+
µ (w));

• MSµ(r, n) = maxw∈Σn (∆×µ (w)).

If it truly holds that any morphism increase the measure r by a constant value,

then for each morphism µ there would exist a k such that ASµ(r, n) ≤ k, and this

would have consequences to Question 68. However, as we have proved in [44], this

is not the case.

Lemma 96 ([44]). Let θ be the period-doubling morphism. For any positive integer k there

exist a word w such that ∆+
θ (w) > k.

Let us consider the words si = abia · ui and ei = abia · uR
i , where ui = a2k−ibai−2,

for some i > 0. The words used in the proof of Lemma 96 are obtained as wk =

(∏k
i=2 siei)ak. Note that Question 68 is still open, since θi(a) ̸= wk for all pairs i, k > 1.

Furthermore, one can notice that |wk| = Θ(k2). Thus, we obtain the following lower

bound on the sensitivity for the period doubling morphism.

Proposition 97. Let θ be the period-doubling morphism. It holds that ASθ(r, n) = Ω(
√

n).

We wonder then what properties of morphisms affect in different ways the Burrows-

Wheeler Transform.

On one hand, it would be interesting to investigate if for a binary morphism µ

with µ(a) and µ(b), there exists a k > such that ASµ(r, n) ≤ k for every n. Note in

fact that the period doubling morphism does not fall in this category (θ(b) = b2).

Experimentally, the analogous behavior of the period doubling morphism on the

BWT has been noticed for analogous morphisms having a power as image of a letter.

At the other end of the spectrum, one can investigate what properties of words

trigger the increasing effect of morphisms on the BWT. Such a study could allow to

obtain new lower bounds on the worst-case scenario sensitivities.
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Chapter 6

Applications in BWT-Runs

Bounded Space

Despite the theoretical limitations of r as a measure of repetitiveness, the Burrows-

Wheeler Transform is still at the basis of the most used tools in Bioinformatics [82,

79]. Its efficiency in the field is mostly due to the high number of repetitions that oc-

cur within the biological sequences, and after the introduction of the r-index [49],

new methods have been implemented for solving pattern matching problems in

pangenomical contexts [116, 16].

In this chapter, we present some applications of the Burrows-Wheeler Transform,

with practical usage in bioinformatics.

In Section 6.1, we describe what properties can be used to find Maximal Unique

Matches in a space proportional to r. Compared to some of the most used tools to

solve the same problem, we drastically use less space, proposing an accessible so-

lution to researchers with limited resources. Our implementation of the algorithm

is available at https://github.com/saragiuliani/mum-phinder. The work of the

thesis is part of a paper appeared during the 20th International Symposium on Ex-

perimental Algorithms (SEA 2022) [57].

In Section 6.2, we present a preliminary work on the size of the BWT for collec-

tions of sampled strings, with applications for storing and indexing biological reads.

This work has been developed during a visiting period at the University of Helsinki,

under the supervision of prof. Simon J. Puglisi.

https://github.com/saragiuliani/mum-phinder
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6.1 Computing Maximal Unique Matches with the r-Index

The alignment of sequences is one of the major tasks in bioinformatics, with applica-

tions for genome sequencing, genealogical tree building, species classification, etc.

This problem is mostly dealt by keeping track of seeds, that are substrings which can

be used as anchors for the alignment. In literature, it is typical to use maximal exact

matches (in short MEMs) as seeds of the alignment [30, 19]. Very recently, Rossi et

al. [116] designed and implemented an algorithm which computes MEMs in a space

proportional to O(r + g), where the two measures refer to size of the BWT-runs and

of a grammar representing the reference string.

Intuitively, the less occurrences of a same maximal exact match we have in a text

and in the pattern, the more likely is to get a proper alignment: this is the idea which

motivates the notion of maximal unique match (MUM), that is a maximal match that

occurs only once in both the text and the pattern. The problem of finding MUMs

is not new in literature, and different approaches have been proposed, but most of

them operate in a space linearly proportional to the size of the text [76, 96, 37]. When

huge amount of data are involved, like in a pangenomic context where hundreds of

GigaByte may be required just to represent the collection of the sequences, these

solutions are not feasible.

First, we explain the problem and introduce the notions that will be used through-

out the section. Then, we explain how to build a reusable index of a text taking

O(r + g) space, and supporting detection of maximal unique matches in time lin-

early proportional to the size of pattern. Finally, we show some experimental results

obtained on real data collections.

6.1.1 Maximal Unique Matches and Extended Matching Statistics

Given an alphabet Σ and a letter $ /∈ Σ, we denote the set Σ$ = Σ∪ {$}. Throughout

the section, we will refer to the word T ∈ Σ∗$ as text, and the word P ∈ Σ∗ as the

pattern. More in detail, we expect T = u$, for some u ∈ Σ∗. Given a text T ∈ Σn

and a pattern P ∈ Σm, we refer to any factor in P that also occurs in T as a match. A

match M in P can be defined as a pair (i, ℓ) such that M = P[i, i + ℓ− 1]. We say that

M is maximal if the match can not be extended neither on the left nor on the right,
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i.e., either i = 1 or P[i− 1, i + ℓ− 1] does not occur in T, and either i = m− ℓ+ 1 or

P[i, i + ℓ] does not occur in T.

Definition 98. Given a text T and a pattern P, a Maximal Unique Match (MUM) is a

maximal match that occurs exactly once in T and P.

Example 99. Let T = ACACTCTTACACCATATCATCAA$ be the text and P = AACC-

TAA the pattern. The factor AA is maximal in P and occurs only once in T, while it is

repeated in P at positions 1 and 6. The factor CT of P starting in position 4 is a maximal

match that occurs only once in P, but it is not unique in T. The factor CC of P starting in

position 3 is unique in both T and P, but both can be extended on the left with an A. On the

other hand, the factor P[2, 4] = T[11, 13] =ACC is a MUM.

From now on, we refer to the set of all maximal unique matches between T and P

as MUMs. Boucher et al. [17] have recently developed an algorithm to compute max-

imal exact matches (MEMs), which are the maximal matches that are not necessarily

unique neither in T nor P. Their approach consist in building an index for T, taking

O(r + g) words of space, where r is the number of runs of the BWT of T, and g is the

size of a SLP representing the text T (to recall the definition, see Subsection 2.3.2).

The main data structure taking O(r) words is the r-index, which consists in a

combination of the run-length encoding of the BWT and O(r) samples of the suffix

array in correspondence of the boundaries of the BWT-runs [49]. The construction of

the r-index and other data structures taking O(r) words of space are computed in a

space proportional to size of the parse and the dictionary obtained through the prefix-

free parsing. Since the notion of prefix-free parsing is out of the scope of this thesis,

we delegate its definition and effects to related works [18, 103]. Even though there

is not a strong theoretical literature on the size of the prefix-free parsing, the reader

should be aware that experimentally it has been shown to be extremely succinct for

highly repetitive texts.

Then, in the approach of Boucher et al. they compute in streaming the matching

statistics, for which we report the definition as given in [17].

Definition 100. The matching statistics MS of a pattern P ∈ Σm with respect to a text

T ∈ Σn
$ is an array of (position, length)-pairs MS[1, m] such that
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• P[i, i +MS[i].len− 1] = T[MS[i].pos, MS[i].pos+MS[i].len− 1];

• either i = m−MS[i].len+ 1, or P[i, i +MS[i].len] does not occur in T.

That is, MS[i].pos is the starting position in T of an occurrence of the longest prefix of P[i, m]

that occurs in T, and MS[i].len is its length.

A known property of the matching statistics is that for all i ∈ [1, m− 1], MS[i +

1].len ≥ MS[i].len− 1.

Even though the Toehold Lemma by Policriti and Prezza [110] allows the r-index

to support pattern matching queries in O(r) space, to the best of our knowledge it

does not permit all by itself to compute maximal exact matches, or the matching

statistics of the pattern P. Thus, the solution proposed by Boucher et al. [17] uses

extraO(g) words to create an index supporting LCE queries, where for a given text T,

we have that LCE(i, j) = |ℓcp(T[i, n], T[j, n])| for all i, j ∈ [1, n]. As shown later, the

computation of the matching statistics can be detected by performing LCE queries.

We do not know whether it is possible to create a O(r) space index supporting LCE

queries, thus the need for the extra O(g) space. To show how to further compute

MUMs within the same space bound, we extend the definition of MS array with an

additional information field to each entry.

Definition 101. Given a text T ∈ Σn
$ and a pattern P ∈ Σm, we define the extended

matching statistics eMS as an array of (pos, len, slen)-tuples eMS[1, m] such that

• eMS[i].pos = MS[i].pos, and eMS[i].len = MS[i].len;

• eMS[i].slen is the largest value ℓ for which there exists p ̸= eMS[i].pos such that

P[i, i + ℓ− 1] = T[p, p + ℓ− 1].

In other words, eMS[i].slen is the length of the second longest match of a prefix P[i, m] in T.

Note that eMS[i].slen ≤ eMS[i].len, for any i ∈ [1, m].

6.1.2 Checking Maximality and Uniqueness of Matches

Here we explain how to check if a match is maximal and unique in T from the eMS

array. Lemma 102 shows how to verify if a match occurs only once in T.
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Lemma 102. Given a text T ∈ Σn
$ , a pattern P ∈ Σm, and the eMS array computed

for P with respect to T, let M = P[i, i + eMS[i].len− 1] = T[eMS[i].pos, eMS[i].pos +

eMS[i].len− 1] be a maximal match between P and T. Then, M occurs exactly once in T if

and only if eMS[i].slen < eMS[i].len.

Proof. For the first direction, we assume by contradiction that M is unique in T

and that eMS[i].slen ≥ eMS[i].len. By definition, eMS[i].slen ≤ eMS[i].len, hence

we assume eMS[i].slen = eMS[i].len. By definition of eMS[i].slen there exists p ̸=

eMS[i].pos such that M = P[i, i + eMS[i].slen − 1] = T[p, p + eMS[i].slen − 1] =

T[eMS[i].pos, eMS[i].pos+ eMS[i].len− 1], that contradicts the assumption that M oc-

curs only once in the text T.

Analogously, assume that eMS[i].slen < eMS[i].len and that there exists a posi-

tion j ̸= eMS[i].pos such that T[j, j + eMS[i].len − 1] = T[eMS[i].pos, eMS[i].pos +

eMS[i].len− 1]. However, this is in contradiction with the definition of eMS[i].slen

and the assumption of eMS[i].slen < eMS[i].len, concluding the proof.

We check the maximality of a match in the pattern using an analogous approach

as in [116], that we summarize with the following Lemma.

Lemma 103. Given a text T ∈ Σn
$ , a pattern P ∈ Σm, and the eMS array computed for P

with respect to T, let M = P[i, i + eMS[i].len− 1] be a match with a text T. Then, M is a

maximal match if and only if either i = 1, or eMS[i− 1].len ≤ eMS[i].len for all i ∈ [2, m].

Proof. First we show that if M = P[iLi + eMS[i].len) is a maximal match then either

i = 0 or eMS[i− 1].len ≤ eMS[i].len. Let us assume that M is not maximal and either

i = 0 or eMS[i − 1].len ≤ eMS[i].len, hence either P[i, i + eMS[i].len] occurs in T, or

P[i − 1, i + eMS[i].len− 1] occurs in T. The former case is in contradiction with the

definition of eMS, hence P[i − 1, i + eMS[i].len − 1] occurs in T. This implies that

i > 0, and that eMS[i− 1].len = eMS[i].len + 1, in contradiction with the hypothesis

that eMS[i− 1].len ≤ eMS[i].len.

Now we show that if either i = 0 or eMS[i − 1].len ≤ eMS[i].len then M is a

maximal match. By definition of eMS[i].len, we know that either i + eMS[i].len = m,

or P[i, i+ eMS[i].len] does not occur in T, that is M cannot be extended on the right in

P. If i = 0 we can not further extend the match M on the left, hence P[1, eMS[1].len]−
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1. If i > 0, then by definition of matching statistics it holds that eMS[i − 1].len ≤

eMS[i].len+ 1. Note that if there exists a letter a ∈ Σ such that P[i− 1, i− 1+ eMS[i−

1].len− 1] = aM and aM occurs in T, then eMS[i− 1] = eMS[i]+ 1. Hence if eMS[i−

1] = eMS[i]+ 1 then it is easy to see that M is not maximal because it can be extended

on the left. Furthermore, it follows that if eMS[i − 1] ≤ eMS[i], then M cannot be

extended on the left, hence it is maximal and the thesis follows.

Let L ⊆ [1, m] be the subset of positions in P such that both Lemmas 102 and 103

hold, i.e., L contains all the positions in P where a maximal match unique in T starts.

One can notice that if a match Mi = P[i, i + eMS[i].len− 1] is a MUM, then i ∈ L.

We first show that given i ∈ L, if a match Mi is not unique in P, then the second

occurrence of Mi in P is contained in another maximal match unique in T.

Lemma 104. Given a text T ∈ Σn
$ , a pattern P ∈ Σm, and the eMS array computed for P

with respect to T, letL be the subset of positions in P such that Mi = P[i, i+ eMS[i].len− 1]

is maximal and occurs only once in T, for all i ∈ L. Then, Mi is not unique in P if and only

if there exist i′ ∈ L \ {i} and two strings u, v ∈ Σ∗ such that Mi′ = uMiv is a factor of P.

Proof. Let us assume by contradiction that such i′ does not exist, then let j /∈ L be

a position in P such that P[j, j + |Mi| − 1] = Mi. Since j /∈ L then either P[j, j +

|Mi| − 1] is not unique in T, or it is not maximal. The former case it contradicts i ∈ L

because P[j, j + |Mi| − 1] = Mi occurs twice in T. Hence, P[j, j + |Mi| − 1] occurs

only once in T and it is not maximal, therefore there exists k ∈ L such that k ≤ j and

|Mk| > |Mi|, which contradict the hypothesis.

The other direction of the proof is straightforward since by definition of Mi′ ,

either Mi occurs twice in P or it is not maximal.

The following lemma shows, for any i ∈ L, if a match Mi is unique in P by using

the eMS array.

Lemma 105. Given a text T ∈ Σn
$ , a pattern P ∈ Σm, and the eMS array computed for P

with respect to T, letL be the subset of positions in P such that Mi = P[i, i+ eMS[i].len− 1]

is maximal and occurs only once in T, for all i ∈ L. Then, Mi occurs only once in P if and

only if, for all i′ ∈ L \ {i}, either eMS[i].pos < eMS[i′].pos or eMS[i].len+ eMS[i].pos >

eMS[i′].len+ eMS[i′].pos.
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Proof. We first show that if Mi occurs only once in P then for all i′ ∈ L \ {i}, either

eMS[i].pos < eMS[i′].pos, or eMS[i].len+ eMS[i].pos > eMS[i′].len+ eMS[i′].pos. Since

L contains only positions of maximal matches unique in T, then for all for i ∈ L

we can map Mi to its occurrence in the text T[eMS[i].pos, eMS[i].pos + eMS[i].len−

1]. Since Mi occurs only once in T, by Lemma 104 we have that eMS[i′].pos =

eMS[i].pos−|u| and eMS[i′].len = eMS[i].len+ |u|+ |v|. Hence, eMS[i′].pos ≤ eMS[i].pos

and eMS[i].pos+ eMS[i].len ≤ eMS[i′].pos+ eMS[i′].len.

We now show the other direction of the implication. If given a position i ∈ L

for all i′ ∈ L \ {i}, either eMS[i].pos < eMS[i′].pos or eMS[i].len + eMS[i].pos >

eMS[i′].len + eMS[i′].pos then Mi occurs only once in P. Assuming by contradiction

that there exists a position i ∈ L such that for all i′ ∈ L \ {i}, either eMS[i].pos <

eMS[i′].pos or eMS[i].len+ eMS[i].pos > eMS[i′].len+ eMS[i′].pos and Mi does not oc-

cur only once in P, then by Lemma 104 there exist j ∈ L and two possibly empty

strings u, v such that Mj = uMiv is a factor of P. It is easy to see that eMS[j].pos =

eMS[i].pos−|u| and eMS[j].len = eMS[i].len+ |u|+ |v|. Hence, eMS[j].pos ≤ eMS[i].pos

and eMS[i].pos + eMS[i].len ≤ eMS[j].pos + eMS[j].len, in contradiction with the hy-

pothesis, concluding the proof.

We can summarize the previous lemmas in the following theorem.

Theorem 106. Given a text T ∈ Σn
$ , a pattern P ∈ Σm, and the eMS array computed for

P with respect to T, for all 0 ≤ i < m, Mi = P[i, i + eMS[i].len) is a MUM if and only if

i ∈ L and Lemma 105 holds.

Example 107. Let T = ACACTCTTACACCATATCATCAA$ be the text and P = AAC-

CTAA the pattern. In the Table 6.1, we report the values of the eMS of P with respect to

T.

i 1 2 3 4 5 6 7

P[i] A A C C T A A
eMS[i].pos 22 11 12 6 7 22 9
eMS[i].len 2 3 2 2 2 2 1

eMS[i].slen 1 2 1 2 2 1 1

TABLE 6.1: Example of extended matching statistics for the pattern
P = AACCTAA with respect to the text

T = ACACTCTTACACCATATCATCAA$.
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It is easy to check that L = {1, 2, 6}, where L contains those indices i which verify

both Lemma 102 (eMS[i].slen < eMS[i].len) and Lemma 103 (either i = 1 or eMS[i −

1].len ≤ eMS[i].len). Note that eMS[0].pos = eMS[6].pos and eMS[1].len = eMS[6].len,

and by Lemma 105 we know that P[1, 2](= P[6, 7]) is repeated in P. Since eMS[2].pos <

eMS[1].pos = eMS[6].pos, by Theorem 106 the match P[2, 4] = T[11, 13] = ACC is a

MUM.

By Lemmas 102 and 103, we can check in constant time if an index i belongs to

L. We can build L in streaming while computing the eMS array. Observe that a

match Mi = P[i, i + eMS[i].len− 1] such that i ∈ L is a MUM if and only if it is not

fully contained into another candidate, i.e. it does not exist j ∈ L \ {i} such that

(i) eMS[j].pos ≤ eMS[i].pos, and (ii) eMS[i].pos+ eMS[i].len ≤ eMS[j].pos+ eMS[j].len

(Theorem 106). Hence, if we sort the elements in L according to eMS[i].pos, starting

from L[1] can compare it with the following element, and if both factors are not

contained into the other, we store in the set MUMs the one with the smallest starting

position, and keep track of the other one. Otherwise, we simply discard the one

that is repeated and continue with the following iteration. To handle the special case

when two candidates i ̸= j ∈ L are such that T[eMS[i].pos, eMS[i].pos+ eMS[i].len−

1] = T[eMS[j].pos, eMS[j].pos + eMS[j].len− 1], we further keep track whether the

current maximal match has more occurrences. This final procedure, excluding the

building time for L that is done in streaming, takes O(|L| log |L|) time, since the

sorting of the indexes in L dominates the overall cost.

6.1.3 Computing the Second Longest Match

Now we show how we can compute eMS, extending the algorithm presented by

Boucher et al. [17] while preserving the same space-bound.

We can apply verbatim the algorithm of [17] to compute the eMS[i].pos and

eMS[i].len while we extend the algorithm to include the computation of eMS[i].slen.

The following lemma shows how to find the second longest match using the LCP

array.

Lemma 108. Given a text T ∈ Σn
$ , a pattern P ∈ Σm, and the eMS array computed for

P with respect to T, let P[i, i + eMS[i].len) = T[eMS[i].pos, eMS[i].pos + eMS[i].len) and
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q = ISA[eMS[i].pos]. Then, for all 0 ≤ q < n, eMS[i].slen = max{LCP[q], LCP[q + 1]},

where LCP[n] = 0.

Proof. Let us consider the set T = {T1 < T2 < . . . < Tn} of the lexicographically

sorted rotations of T. Then, for all i ∈ [1, m], at least one rotation of T starting

with the second longest match P[i, i + eMS[i].slen − 1] must be adjacent to Tq =

T[eMS[i].pos, n] in T . Hence, assuming q ̸= 1 and q ̸= n, eMS[i].slen is either the

LCP value between Tq−1 and Tq or between Tq and Tq+1, that are respectively LCP[q]

and LCP[q + 1]. Note that if q = n only LCP[n] is available, that is eMS[i].slen must

be LCP[n].

However, notice that storing the LCP would require O(n) words of space. What

we do with our implementation is, in fact, that we store O(r) samples of the LCP

array, in correspondence to the boundaries of the BWT-runs. With the next lemma,

we show how the remaining LCP values needed to compute the eMS array can be

retrieved either by extending the previous longest match, or via an LCE query.

Lemma 109. Given a text T ∈ Σn
$ , let LCP, SA and ISA be respectively the longest common

prefix array, suffix array, and inverse suffix array of T. Let us moreover denote with i, j the

pair of integers such that q− 1 = LF[i] and q = LF[j], for all 1 < q ≤ n. If bwt[i] ̸= bwt[j],

then LCP[q] = 0, otherwise LCP[q] = LCE(SA[i], SA[j]) + 1.

Proof. Let Tq be the q-th rotation in lexicographic order. Note that if Tq = $, then

LCP[q] = LCP[q + 1] = 0. For all 1 ≤ q < n, if Tq−1 = au and Tq = bv for some

a < b ∈ Σ and some strings u, v ∈ Σ∗, then LCP[q] = 0. On the other hand, if

Tq−1 = au and Tq = av$, then LCP[q] = 1 + lcp(u$, v$). The thesis follows by

observing that the suffixes u$ and v$ respectively correspond to Ti and Tj.

To support LCE queries, we use the Straight Line Programs defined by Gagie et

al. [48] of size g. In Figure 6.1, we show a graphical interpretation of Lemma 109.

In this example, the longest match found so far (the green bar) is the prefix of the

rotation with index q, that we know it can be extended by one position on the left

(the orange square). Instead of storing LCP[LF(w)], we can compute through an LCE

between SA[q] and SA[qp]. Note that the latter is stored since it is in correspon-

dence of the boundary of its BWT-run. Analogously, at the following step, since the
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BWT in correspondence to the second longest match pointed by LF(qp) agrees with

bwt[LF(q)] (blue squares), it follows that LCP[LF2(q)] = LCP[LF(q)] + 1.

F BWT

LCE(SA[q],SA[qp])

q

qp

LF(qp )
LF(q )

LCP[LF(q)]

FIGURE 6.1: Application of Lemma 109 to compute LCP[LF(q)] by
extending the result of the last LCE query.

We have designed an algorithm that uses the properties above mentioned, which

performances are described in the next theorem. Correctness and details of the proof

are delegated to the original work [57].

Theorem 110. Given a text T ∈ Σ∗$, we can build a data structure taking O(r + g) space

that allows to compute the set MUMs between any pattern P ∈ Σm and T in O(m · (tLF +

tLCE + tpred)) time, where tLF, tLCE, and tpred are respectively the time complexities to support

one LF, one LCE, and one predecessor query.

We want to point out that while the BWT is central to our procedure, the O(g)

words that we store are only needed for the LCE queries. Thus, our algorithm can

be plugged with any data structure supporting LCE queries, with possible trade-off

in terms of time or space.
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6.1.4 Experimental Results

We implemented our algorithm for computing MUMs and measured its perfor-

mances on real biological datasets. We performed the experiments on a desktop

computer equipped with 3.4 GHz Intel Core i7-6700 CPU, 8 MiB L3 cache. and 16 GiB

of DDR4 main memory. The machine had no other significant CPU tasks running,

and only a single thread of execution was used. The OS was Linux (Ubuntu 16.04,

64bit) running kernel 4.4.0. All programs were compiled using gcc version 8.1.0

with -O3 -DNDEBUG -funroll-loops -msse4.2 options. We recorded the runtime and

memory usage using the wall clock time, CPU time, and maximum resident set size

from /usr/bin/time.

Setup We compare our method (MUM-PHINDER) with MUMmer [96] (mummer). We

tested two versions of mummer, v3.27 [76] (mummer3) and v4.0 [96] (mummer4). We exe-

cuted mummer with the -mum flag to compute MUMs that are unique in both the text

and the pattern, -l 1 to report all MUMs of length at least 1, and -n to match only

A,C,G,and T letters. We setup MUM-PHINDER to produce the same output as mummer.

We did not consider algorithms that do not produce an index for the text that can be

queried with different patterns without reconstructing the index, e.g. the algorithm

described in Mäkinen et al. [87, Section 11.1.2]. The experiments that exceeded 16

GB of memory were omitted from further consideration.

No. seqs n (MB) n/r
1 59 1.92
2 118 3.79
4 236 7.47
8 473 14.78

16 946 29.19
32 1892 57.63
64 3784 113.49

128 7568 222.23
256 15 136 424.93
512 30 272 771.53

(A) Collections of chromosome 19.

No. seqs n (MB) n/r
1562 46 459.57
3125 93 515.42
6250 186 576.47

12 500 372 622.92
25 000 744 704.73
50 000 1490 848.29

100 000 2983 1060.07
200 000 5965 1146.24
300 000 8947 1218.82

(B) Collections of SARS-CoV2 genomes.

TABLE 6.2: Dataset used in the experiments with MUM-PHINDER.
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Datasets For querying the datasets, we used the first haplotype of chromosome

19 of the sample NA21144 from the 1000 Genomes Project, and the genome with

accession number MZ477765 from EBI’s COVID data portal [58]. For each collection

of datasets of the human chromosome 19 (chr19) dataset in Table 6.2a and for the

SARSCoV2 (sars-cov2) dataset in Table 6.2b, we report the number of sequences

(No. seqs), the length n in Megabytes (MB), and the ratio n/r, where r is the number

of runs of the BWT for each number of sequences in a collection.

Results In Figure 6.2 we show the construction and query time and space for

MUM-PHINDER and mummer. Since mummer is not able to decouple the construction

of the suffix tree from the query, for our method we report the sum of the running

times for construction and query, and the maximum resident set size of the two

steps. We observe that on chr19 mummer3 is up to 9 times faster than MUM-PHINDER,

while using up to 8 times more memory, while mummer4 is up to 19 times faster than

MUM-PHINDER, while using up to 7 times more memory. However both mummer3

and mummer4 cannot process more than 8 haplotypes of chr19 due to memory limi-

tations. MUM-PHINDER was able to build the index and query in 48 minutes for 512

haplotypes of chr19 while using less than 11.5 GB of RAM. On sars-cov2, mummer3

is up to 6.5 times faster than MUM-PHINDER, while using up to 24 times more mem-

ory, while mummer4 is up to 1.2 times slower than MUM-PHINDER, while using up to

25 times more memory. mummer3 was not able to process more than 25,000 genomes

while mummer4 were not able to query mote than 12,500 genomes of sars-cov2 due

to memory limitations.

In Figure 6.2 we also show the construction time and space for MUM-PHINDER. In

particular, we compare MUM-PHINDER with mummer3 and mummer4. For MUM-PHINDER

we report a breakdown of the construction (build) and query time and space. Note

that for MUM-PHINDER, we consider as time the sum of construction and query time,

while for memory we consider the maximum between construction and query mem-

ory. We observe that the construction time grows with the number of sequences in

the dataset, however the query time decreases while increasing the number of se-

quences in the index with a 9x speedup when moving from 1 to 512 haplotypes of

chr19. From our experiments, the more expensive routine in terms of time is related
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FIGURE 6.2: Human chromosome 19 and SARS-CoV2 genomes
dataset construction CPU time and peak memory usage.

to the number LCE queries performed, which are not executed in case of extendable

matches. Even with limited resources, from the ratio n/r in Table 6.2 we can observe

how this grows with n, remarking the efficiency of the Burrows-Wheeler Transform

in a pangenomic context.

6.2 Burrows-Wheeler Transform for Collections of Sampled

Strings

In bioinformatics, most of the problems require a substantial amount of space and

time resources, mostly due to the abundance of data. The advent of new generation

sequencing technology has indeed increased the quality of assembled genomes, as

well the size of the collected reads for assembling them. These reads usually cover

the genome multiple times, requiring greater order of space than just the reference
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sequence. Up to this moment, there is not a standard procedure to store and collect

biological reads. A first approach to the problem has been investigated by Badkobeh

et al. [4] with the LZ-77 factorization.

In this section, we focus on the problem of studying the Burrows-Wheeler Trans-

form for sampled strings from a common reference. Even though this study is at an

early stage on a simplified instance of the problem, some preliminary results suggest

the efficiency of the BWT in this context.

6.2.1 Description of the Problem

Let T ∈ Σn. Given two parameter d, m > 0 such that m ≥ 2d, let us consider the

multiset S of samples from T defined as

S =

⌊ n−m
d ⌋+1⋃
i=1

{T[i, min{i + m− 1, n}]}.

Note that this is the same setting as the one proposed by Badkobeh et al. [4]. We

rise the following question.

Question 111. Can we represent the samples in S in terms of n, r$(T), m, or d?

A trivial bound is the size of the multiset S , that is the sum of the lengths of all

samples. Since we expect n much greater than m, we have |S| = Θ( n·m
d ).

Cenzato and Liptak [25] have analyzed different variants of the Burrows-Wheeler

Transform for collections of strings. Most of these variants consist in concatenating

in a unique string S all sequences from the collection, with separator letters between

two consecutive samples. Based on their results, we have opted to build S by using

the colexicographical order of the collections [34], that is

S =
⌊ n−m

d ⌋+1

∏
i=1

(Ti$),

where Ti ∈ S is the ith sample in S taken in colexicographical order, that is Ti ≤colex

Ti+1, or equivalently TR
i ≤ TR

i+1, for all i ∈ [1, ⌊ n−m
d ⌋].

From now on, we refer with M and MS to the matrix of the lexicographically

sorted suffixes of T$ and S respectively. Moreover, we denote by UP the set of the
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shortest prefixes of the rotations inM that occur only once in T, taken in the same

order. If we assume that T is primitive, the array UP contains exactly n distinct

prefixes.

Under certain conditions, the BWT of S is strictly greater than the one for T$.

Lemma 112. Given a text T ∈ Σn, let LCP be the LCP-array for T$, and ℓ = max LCP+ 1.

If ℓ > d and m ≥ 2ℓ, then r(S) > r(T$).

Proof. If ℓ = 1 then the proof is trivial, since we would have r(S) > n = r(T$), so let

us suppose that ℓ > 0.

Let pi ∈ UP be the ith prefix from UP. One can notice that |p1| = LCP[1] + 1,

|pn+1| = LCP[n + 1] + 1, and |pi| = max{LCP[i], LCP[i + 1]}+ 1 for each i ∈ [2, n].

Let ai ∈ Σ ∪ {$} such that ai = bwt(T$)[i], for all i ∈ [1, n + 1]. Indeed, ai pi occurs

in T, for all i ∈ [1, n + 1], and it is unique by hypothesis on pi. We can prove that,

for each i ∈ [1, n], ai pi has at least an occurrence in S. In fact, the factors of T that do

not occur in S are either of the form (i) T[j, j + M− 1] with M > m, for all j ∈ [1, n],

or (ii) w[j′, j′ + m′] with j′ mod d ̸≡ 0 and m − (j′ mod d) < m′ ≤ m. Since (i)

|ai pj| ≤ ℓ+ 1 ≤ m < M, and (ii) |aj pj| ≤ ℓ+ 1 ≤ ℓ+ (ℓ− d) = 2ℓ− d ≤ m− d < m′.

In other words, ai pi has to occur as factor of some Ti ∈ S . It follows that to the ith

rotation in M we can associate at least one rotation in MS starting with the same

prefix pi and ending with the same letter ai. Then, bwt(T$) is a subsequence of bwt(S)

and the thesis follows.

The result is not surprising by itself, but it helps us to understand the structure

of the BWT of S. Let (xi, yi) be the pairs of indexes such that the range [xi, yi] of

rotations inMS starting with pi, where pi ∈ UP. From the proof of Lemma 112, we

can deduce the following result.

Lemma 113. Let T be a text, and let m, ℓ, and d verify the conditions of Lemma 112. Then,

either bwt(S)[xi, yi] = ayi−xi+1
i or bwt(S)[xi, yi] = ayi−xi

i $.

Proof. Suppose that pi ∈ UP is not prefix of any sample in S . Since ai pi is unique in

T for all i ∈ [1, n], it follows that the BWT in correspondence the rotations starting

with pi inMS consists of a runs of ai’s.

On the other hand, suppose that pi is prefix of the sample Ti ∈ S . Since the

factor $pi occurs only once in S, there must be only one occurrence of a $ sign in
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bwt(S)[xi, yi]. Note that the rotations in the range [xi, yi] are sorted according to the

distance to the next $, which is maximal when pi is prefix of a factor (at most as the

size m of the samples), and therefore bwt(S)[yi] = $.

6.2.2 Preliminary Observations and Future Developments

In general, for a random generated sequence we expect that most of the values of

the values of the LCP array to be approximately log(n). Indeed, even if m does not

surpass all values from the LCP, we still have that rle(bwt(S)[xi, yi]) = O(1), for all

i that verify the conditions of Lemma 113, which we expect to be the case for the

vast majority of rotations. Experimentally, this seems the case also for biological se-

quences, since genomes appear random but usually present long repetitions within

themselves. Moreover, for each prefix p ∈ UP longer than m, we expect this can

increase the number of BWT-runs at most by a O(p−m) additive factor.

We tested this method on a few DNA sequences of hundreds of thousands of base

pairs from the Pizza&Chili corpus [109], with different settings for the parameters m

(50, 100, 200, 400, and 500) and d (2, 4, 8, 16, 32, 64, 100), always keeping in mind the

constraint m ≥ 2d. In our experience, under this setting the size m is not relevant,

probably due to the property just mentioned, for which we expect an average length

of factors from UP of length logσ n ≈ 10 < m. On the other hand, the parameter d,

which rules over the number of samples considered, has a greater impact, but in all

the cases we never went over 3.5 times the size of the original BWT. Even though

we do not have run enough experiments to prove our thesis, it is indeed a path to

investigate: in fact, with respect to the approach of Badkobeh et al. [4], the order in

which the samples are collected does not affects the BWT.

We believe that with a further theoretical background and more experimental

results, we can show that any collection of samples (of any length, from any position)

can be bounded through the BWT in a space proportional to the size of the reference.

Moreover, we expect to obtain better result by using the optimal BWT by Bentley et

al. [10], that is the BWT for collection of strings ordered in such a way to minimize

the number of BWT-runs, and for which an implementation for computing it has

been recently made available [24].
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Chapter 7

String Attractors of Finite Words

The notion of string attractor has been recently introduced by Kempa and Prezza [66],

and it represented an outbreak in the Data Compression field.

Definition 114. A string attractor of a word w ∈ Σn is a set of γ positions Γ = {p1, . . . , pγ}

such that every factor w[i, j] has an occurrence w[i′, j′] = w[i, j] with pk ∈ [i′, j′], for some

k ∈ [1, γ].

In other words, a set Γ is a string attractor of w ∈ Σn if we can find an occurrence

of every distinct factor in w passing through a position in Γ. We say that an occur-

rence w[i, j] crosses a position p ∈ Γ if p ∈ [i, j], and symmetrically that p is crossed by

w[i, j].

Example 115. Consider the word w built over the alphabet Σ = {a,b,c,d,r}:

w = abracadabra

The set Γ∗ = {1, 2, 3, 5, 7} (the underlined positions) is a string attractor for w. In fact,

let us consider the factors that do not cross any position in Γ. One can check that these factors

are listed in the set {a, b, r, ab, br, ra, abr, bra, abra}, and all of them have another occurrence

in the w crossing a position pk ∈ Γ∗. Note that Γ∗ is a minimum string attractor: in fact,

|Γ∗| = |Σ|, and to cover all letters we need at least |Γ| ≥ |alph(w)| = |Σ|. Note that there

could be more string attractors of minimum size: in the case of w, also Γ′∗ = {1, 2, 5, 7, 10}

is a string attractor of w, and it is also minimum.

For a given word w, we denote by γ∗ the size of a smallest string attractor.

In their work, Kempa and Prezza proved that a big family of compressor schemes

can be seen as heuristic techniques for solving the same problem: finding a string
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attractor of a word. To mention a few of them: the size z of the Lempel-Ziv factoriza-

tion [81], the measure b∗ of the smallest bidirectional macro scheme [124], the measures

g∗ of the smallest grammar [70] and g∗rl of the smallest run-length grammar [102], the

BWT-runs r$ [21], and so on. The results on the above mentioned measures are sum-

marized in the following theorem [66].

Theorem 116. For any word w ∈ Σn, it holds that γ∗ ≤ min{z, b∗, g∗, g∗rl , r$}.

Moreover, for each measure X ∈ {z, b∗, g∗, g∗rl , r$}, there exists a word such that

γ∗ = o(X).

Christiansen et al. [31] showed how to build for a word w ∈ Σn a self index of size

O(γ log n
γ ). Even though the problem of finding γ∗ is, in general, NP-complete [66],

combinatorial properties of words can be used to induce information on the string

attractor or the size γ∗ [90, 112, 119], while new heuristics based on the reduction to

the MAX-SAT problem seems to return interesting approximation [6].

Indeed, as observed in the Example 115, the size of the alphabet used is a natural

lower bound. More precisely, since each position of a string attractor for a word w is

crossed by at most k distinct factors of length k, the following relationship between

γ∗ and the measure δ = maxk∈[1,n]{ pw(k)
k } can be derived [66, 31].

Theorem 117. For any word w, it holds that δ ≤ γ∗.

Kociumaka et al. [72] showed that analogous bounds to those by Christiansen et

al. can be obtained in function of δ, which can be asymptotically smaller than γ∗ [73].

Nonetheless, as it will be clear from the results of this thesis, there are properties of

string attractors that can be associated with unique properties of words.

In Section 7.1, we present a quality study on the measure γ∗. In particular, we

show how the size of a string attractor can be bounded when combinatorial opera-

tions are applied. The results from this section have appeared in [91, 90].

Next, in Section 7.2, we introduce two new notions related to the distribution of

the positions of string attractors: the leftmost measure and the span measure. All these

three measures are related among them, and similarly influenced by the factor com-

plexity. These notions will be used in the next chapters to get novel characterizations

of words. The study of these measures appeared in [112].
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7.1 Combinatorial Study of the Measure γ∗

In this section, we explore the notion of String Attractor from a combinatorial per-

spective, and observe how the measure γ∗ is perturbed by classical combinatorial

operations. Part of the results in this chapter appeared in a conference paper at the

20th edition of the Italian Conference on Theoretical Computer Science [91], and

later extended for a journal version [90].

This first result shows that, unlike the measure r, the string attractor is not af-

fected when one reads a word backwards.

Proposition 118. Let w be a word and let wR denote its reverse. Then, γ∗(w) = γ∗(wR).

Proof. Let Γ = {p1, p2, . . . , pγ | 1 ≤ pi ≤ |w|, 1 ≤ i ≤ γ} be a string attractor for w

and consider the corresponding positions ΓR = {n − pγ + 1, n − pγ−1 + 1, . . . , n −

p1 + 1} in wR. Let v be any factor of wR. Then its reverse vR is a factor of w. Since

Γ is a string attractor for w, then there exists a position pi ∈ Γ that intercepts an

occurrence of vR. Therefore an occurrence of v is intercepted by n− pi + 1 ∈ ΓR, i.e.

ΓR is a string attractor for wR. In particular if Γ is a smallest string attractor for w,

then ΓR is a smallest string attractor for wR, since otherwise we could find a smaller

string attractor for w, in contradiction with the hypothesis of minimality.

If we consider two words u, v ∈ Σ∗, with the following proposition we give an

upper bound on the size γ∗ of the concatenation, expressed in terms of the size of

the string attractors of u and v.

Proposition 119. Let u and v two words, then γ∗(uv) ≤ γ∗(u) + γ∗(v) + 1.

Proof. Let Γ∗(u) and Γ∗(v) be smallest string attractors for u and v, respectively. Then

Γ∗(u) ∪ {p + |u| | p ∈ Γ∗(v)} covers all the factors of u and v but might not cover

some of new factors that appear across the concatenation point of u and v. In this

case it is sufficient to add the last position of the prefix u (or the first position of the

suffix v) to have a string attractor for uv.

The bound from Proposition 119 is tight, as showed in the next example.

Example 120. Let u = baaaba and v = cdcccd be two words in which the positions of the

respective smallest string attractors are underlined. If we consider the concatenation uv =
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baaabacdcccd, the set underlined positions represent one of the smallest string attractors

for uv, as one can verify, having cardinality 5.

However, when the concatenation involves multiple copies of the word itself, a

stricter upper bound can be deduced.

Proposition 121. Let w a word over the alphabet Σ. Then γ∗(wn) ≤ γ∗(w) + 1. Moreover,

γ∗(wn) = γ∗(w2) for any n ≥ 2.

Proof. Let Γ∗(w) be a smallest string attractor for w. The positions of Γ∗(w) cover in

wn all the factors of w, and therefore the only factors of wn that might not be covered

are those crossing two consecutive occurrences of w. Therefore it is sufficient to add

the last position of the first (or any) occurrence of w in order to cover all these factors.

To prove that γ∗(wn) = γ∗(w2) for any n ≥ 2, we show that for any smallest string

attractor for Γ∗(wn) we can deduce a string attractor of at most the same size for w2

and the other way around. Given a smallest string attractor Γ∗(wn) with n > 2, we

can create the set ∆ = {1 + (p− 1) mod ℓ | p ∈ Γ∗(wn)}, where ℓ = |w| (note that

|∆| ≤ γ∗(wn)). Consider the set Γ = ∆ \ {p1} ∪ {p1 + ℓ}, where p1 = min ∆, i.e., Γ

contains the positions of ∆ with its first position moved to the second occurrence of

w. We now show that Γ is a string attractor for w2. All the factors u that do not have

occurrences overlapping two consecutive w’s are covered in wn by some position

p′ ∈ Γ∗(wn), i.e. p′ ∈ [i, j] where wn[i, j] = u. Since ℓ is a period of wn, it is easy to see

that w[1+ (i− 1) mod ℓ, 1+ (j− 1) mod ℓ)] = u, hence either u crosses 1+ (p′− 1)

mod ℓ in the first occurrence of w or, if 1 + (p′ − 1) mod ℓ = p1, u crosses (p1 + ℓ).

For all the factors u = w[i, ℓ] · w[1, j] that overlap two consecutive w’s, if i ≤ pγ

or j ≥ p1 (where pγ = max ∆), then u crosses pγ or (p1 + ℓ) respectively, so let us

assume i > pγ and j < p1. By construction of Γ we can deduce that u occurs also in

wn[i′, j′] with (i′ mod ℓ) ̸= (i mod ℓ) and (j′ mod ℓ) ̸= (j mod ℓ) which crosses a

position in Γ∗(wn). Given the periodicity of wn, it is easy to see that either u occurs

in w or u occurs again overlapping two consecutive w’s. In both cases u crosses one

of the positions in Γ.

Let now Γ∗(w2) be a smallest string attractor and consider the set Γ′ = Γ∗(w2) if

all of its positions lie within the second occurrence of w, otherwise Γ′ = {p + ℓ | p ∈

Γ∗(w2)}. Since wn has period ℓ, it is easy to see that the positions in Γ′ point to the
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same letters of Γ∗(w2), possibly moved in the following occurrence of w. Therefore,

all the factors of wn that are also factors of w2 are already covered. The remaining

factors are of the type u = w[i, ℓ] · wk · w[1, j], with k ∈ [1, n− 2], 1 ≤ i, j ≤ ℓ. In this

case, there is also an occurrence of u starting at the first or at the second w. Since all

the positions of Γ′ lie within the second or possibly within the third occurrence of w,

u has to cross a position in Γ′, and the thesis follows.

Analogously to Proposition 119, the bound from Proposition 121 is tight.

Example 122. Let us consider the word u = abbaab. It is easy to check that the only

smallest string attractors for u are Γ1 = {2, 4} and Γ2 = {3, 5}. In order to find a smallest

string attractor for u2 = abbaababbaab, we remark that neither Γ1 nor Γ2 (neither any

string attractor obtained from them by moving some position from the first to the second

occurrence of u) cover all the new factors that appear after the concatenation. A way to get

a smallest string attractor for u2 is to add to Γ1 or Γ2, the position corresponding either to

the end of the first occurrence of u or the beginning of the second occurrence. For instance,

Γ = {2, 4, 6} is a smallest string attractor for u2.

Nonetheless, the size γ∗(un) can be equal to γ∗(u), although different positions

for the string attractor may have to be taken.

Example 123. Let u = ababcbc be a word whose smallest string attractor is {2, 3, 5}

(the underlined letters). Then u2 = ababcbcababcbc has a string attractor {3, 6, 7} of

cardinality 3. Remark that {2, 3, 5} is not a string attractor for u2.

Although γ∗ is sensitive to the concatenation operation, the following theorem

shows that it is not a monotone measure, in the sense that there exist words w = uv

such that γ∗(u) > γ∗(w). This answers to a problem posed by [74] in a preliminary

version of a later work ([73]).

Theorem 124. The measure γ∗ is not monotone.

Proof. We show the statement by showing an example where monotonicity does not

hold. For each n > 0, let us consider w = abbbanab. In this case γ∗(w) = 3 since

by exhaustive search {2, 4, n + 5} is a smallest string attractor for w. On the other

hand it is easy to verify that {4, n + 5} is a string attractor for wb = abbbanabb, then

γ∗(wb) = 2.
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As described in the next proposition, not only the measure γ∗ is not monotone,

but the difference γ∗(u)− γ∗(un) could become arbitrarily large.

Proposition 125. For each t > 0, there exists an alphabet Σt and a word wt ∈ Σ∗t , such

that γ∗(wt)− γ∗(wn
t ) > t, for each n ≥ 2.

Proof. Let us consider m = t + 3. We can define the string wt = v1v2v3v4v5 over the

alphabet Σt = {a, b, c, d} ∪ {$1, $2, . . . , $2m−1} such that

v1 = cm−2dm−1$1,

v2 = am−1abm−1bcm−1cdm−1d,

v3 =
m−1

∏
k=2

$ka
m−kbm−1cck−1,

v4 =
m−1

∏
k=1

$m−1+kb
m−kccm−2dk,

v5 = $2m−1a
m−1bm−1c.

The positions in a smallest string attractor for wt are underlined. To prove it, note

that the factors am−1bm−1c, am−jbm−1cj, with 2 ≤ j ≤ m− 1, and bm−jcm−1dj, with

1 ≤ j ≤ m− 1, appear once in v5, v3 and v4, respectively. So, γ∗(wt) = 4m + 1. If

we consider w2
t , all the above mentioned factors occur in v5v1, and they are crossed

by the rightmost occurrence of c in v5. Moreover, every other factor that appears

in v3, v4 or v5 which does not contain any $i letter, has another occurrence that it is

crossed either by the rightmost position in v5 or by one of the underlined positions

in v2. Therefore, in order to obtain a smallest string attractor for w2
t we can remove

the rightmost positions from each block of v3 and v4. Then, γ∗(w2
t ) = 4m+ 1− (2m−

3) = 2m+ 4, and therefore γ∗(wt)−γ∗(w2
t ) = 4m+ 1− (2m+ 4) = 2m− 3 = 2t+ 3 >

t. Finally, by Proposition 121 we have γ∗(w2
t ) = γ∗(wn

t ) and the thesis hold.

A direct consequence of the Proposition 125 is that γ∗ of the concatenation can

be lower than the same measure on the words separately.

Corollary 126. There exist an alphabet Σ and words u, v ∈ Σ∗ such that γ∗(uv) <

min{γ∗(u), γ∗(v)}.
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Proof. For some t > 0, let Σt and wt ∈ Σt be the alphabet and the word from the

proof of Proposition 125 respectively. The thesis follows by considering Σ = Σt,

u = wt, and v = wt[1, m], where m ∈ [|v1v2v3|+ 1, |wt|].

If we look carefully at the definition of wt in the proof of Proposition 125, we can

deduce a similar results on the rotations of inR(wt).

Proposition 127. For each t > 0, there exists an alphabet Σt and a word wt = uv ∈ Σ∗t ,

such that γ∗(uv)− γ∗(vu) > t.

Proof. The thesis follows by considering the word wt = v1v2v3v4v5 defined in the

proof of Proposition 125 and its conjugate w′t = v2v3v4v5v1. The thesis follows by

analogous arguments.

7.2 New String Attractor based Measures

Previously in this chapter, we have shown the quality of γ∗ as a measure of repet-

itiveness. However, the size on its own is often not sufficient to understand the

structure or properties of a word. On the other hand, from the distribution of the

positions it is possible to infer other properties of words.

In this section, we introduce two new notions related to the string attractors of a

word. As it will be shown later in the thesis, these measure can be used to charac-

terize different notions of words. The first measure is the notion of span of a word,

which gives the minimum distance between the last and the first positions of any

string attractor.

Definition 128. Let w be a finite word and let G be the set of all string attractors for w. The

(string attractor) span of w is the value span(w) = minΓ∈G(max Γ−min Γ). We will also

abusively say that the quantity (max Γ−min Γ) is the span of the string attractor Γ.

Example 129. Let us consider the word w = abccabc on the alphabet Σ = {a, b, c}. One

can see that the sets Γ1 = {4, 5, 6} (underlined positions) and Γ2 = {1, 2, 4} (overlined

positions) are two suitable string attractors for w. These string attractors are of minimal size

as |Γ1| = |Γ2| = |Σ| but they have different spans. Moreover, since all of the positions of Γ1

are consecutive, it is of minimal span and therefore span(w) = 6− 4 = 2.
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The span can be used to derive an upper-bound on the number of distinct factors,

as shown below.

Proposition 130. Let w be a finite word over Σ. Then |F(w) ∩ Σn| ≤ n + span(w) for all

1 ≤ n ≤ |w|.

Proof. Let Γ be a string attractor of minimal span and write δ = min Γ and δ′ =

max Γ. Then, the interval Γ′ = [δ, δ′] contains Γ and is a string attractor for w. Since

every factor has an occurrence crossing a position in Γ′, it is possible to find all

length-n factors of w by considering a window of length n, sliding from position

max{δ− n + 1, 1} to position min{δ′, |w| − n + 1}. One can see that this interval is

of size at most δ′ − (δ− n + 1) + 1 = n + span(w). This ends the proof.

Note that this bound is tight. In fact, for the family of standard Sturmian words,

there exists a string attractor containing two consecutive positions, i.e., with span 1.

The structure of these string attractors is described in the following theorem. The

proof is delegated to the original work [90].

Theorem 131. For each w ∈ Stand with |w| ≥ 2, let η be the length of the longest palin-

dromic proper prefix of π(w), the set Γ1 = {η + 1, η + 2} or the set Γ2 = {|w| − η −

3, |w| − η − 2} is a smallest string attractor for w.

In addition, we may compare strings attractors of a given word according to their

rightmost positions. More specifically we will want the string attractor having the

smallest such position. This gives the notion of leftmost string attractors as defined

below.

Definition 132. Let w be a finite word and let G be the set of all string attractors for w.

We define a leftmost string attractor for w as a string attractor Γ ∈ G such that, for all

Γ′ ∈ G, we have max Γ ≤ max Γ′. The (string attractor) leftmost measure of w is then

lm(w) = max Γ where Γ is a leftmost string attractor.

Example 133. We resume Example 129. First, we have 4 = max Γ2 < max Γ1 = 6.

Second, the set ∆ = {1, 2, 3} is not a string attractor for w. Therefore lm(w) = 4.

Examples 129 and 133 show that for the finite word w = abccabc, these two

measures can be obtained by distinct string attractors. In fact, in this case, it is not
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possible to find a leftmost string attractor having minimal span since {2, 3, 4} is not

a string attractor.

Similarly to what we did for the span, we can use the leftmost measure to obtain

an upper-bound on the number of distinct factors.

Proposition 134. Let w be a finite word over Σ. Then |F(w) ∩ Σn| ≤ lm(w) for all 1 ≤

n ≤ |w|.

Proof. The proof follows the same lines as that of Proposition 130 by considering a

leftmost string attractor Γ, and Γ′ = [1, max Γ] instead.

In Examples 129 and 133, we can see that γ ∗ (w)− 1 ≤ span(w) ≤ lm(w)− 1. This

is a general result as shown below.

Proposition 135. Let w be an finite word. Then, γ∗(w)− 1 ≤ span(w) ≤ lm(w)− 1.

Proof. Let Γ be a string attractor of w with minimal span. It contains at most max Γ−

min Γ + 1 = span(w) + 1 elements, therefore γ∗(w) ≤ span(w) + 1.

Let Γ′ be a leftmost string attractor of w. Its span is at most max Γ′ − 1 = lm(w)−

1, therefore span(w) ≤ lm(w)− 1.

The following proposition shows how the size of the smallest string attractor,

the span and the leftmost measure of a word yield bounds on the corresponding

measures for its image under a morphism.

Proposition 136. Let φ : Σ∗ 7→ Σ′∗ be a morphism. Then, there exists K ≥ 1 which

depends only on φ such that, for every w ∈ Σ+, the following hold:

1. γ∗(φ(w)) ≤ 2γ∗(w) + K;

2. span(φ(w)) ≤ K · span(w);

3. lm(φ(w)) ≤ K · lm(w).

Proof. Consider any string attractor Γ for w. We show how one can build a valid

string attractor for φ(w) starting from Γ in two steps.

Step 1. First, we consider the factors of the images of letters, i.e., the elements

of Fφ =
⋃

a∈Σ F(φ(a)). Recall that for every letter a ∈ Σ there is at least one position

j ∈ Γ such that w[j] = a and let us denote ja such a position for the letter a. Then, for
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every a ∈ Σ we can choose any minimum string attractor Γa of φ(a) and overlay it on

the occurrence of φ(w[ja]) to cover the factors of φ(a). In other words, every element

of Fφ has an occurrence in w crossing at least a position in

T φ =
⋃
a∈Σ

{|φ(w[1, ja − 1])|+ δ : δ ∈ Γa}.

Step 2. Let us now consider the other factors of w, i.e. the elements of F =

F(φ(w)) \ Fφ. To cover these factors, we define two sets of positions. Let T f =

{|φ(w[1, j− 1])|+ 1 | j ∈ Γ} be the set of positions corresponding to the first letter of

φ(wj), where j is a position in Γ. Analogously, we define the set T l = {|φ(w[1, j])| |

j ∈ Γ} as the set of positions corresponding to the last letter of some φ(wj) with j ∈ Γ.

Let u ∈ F and let v be a factor of w of minimal length such that u is a factor of

φ(v). Observe that, by definition of F , v is of length at least 2. As v is a factor of w,

it has an occurrence crossing some position j ∈ Γ. By minimality of v, we know that

u has an occurrence crossing either the first position of φ(wj) or the last position of

φ(wj) (or both). Therefore, u crosses a position in T f or T l .

As a consequence of the previous two steps, Γ′ = T φ ∪ T f ∪ T l is a string at-

tractor for φ(w). Recall that this construction can be done starting from any string

attractor Γ of w, giving different corresponding string attractors Γ′. Now let us de-

note ℓ = maxa∈Σ |φ(a)|, that is ℓ is the longest image of a letter in Σ. To obtain the

three claimed inequalities, we now consider different string attractors Γ of w.

1. If Γ is such that |Γ| = γ∗(w), then

γ∗(φ(w)) ≤ |Γ′| ≤ |T f |+ |T l |+ |T φ| ≤ 2γ∗(w) + ∑
a∈Σ

γ∗(φ(a)).

2. If Γ is such that max Γ−min Γ = span(w), then by construction we have min Γ′ =

|φ(w[1, min Γ− 1])|+ 1 ∈ T f and max Γ′ = |φ(w[1, max Γ])| ∈ T l , and there-

fore

span(φ(w)) ≤ |φ(w[1, max Γ])| − (|φ(w[1, min Γ− 1])|+ 1)

= |φ(w[min Γ, max Γ])| − 1

≤ ℓ · (span(w) + 1).
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3. If Γ is such that max Γ = lm(w), then

lm(φ(w)) ≤ max Γ′ = |φ(w[1, max Γ])| ≤ ℓ · lm(w).

To end the proof, we can choose K = ℓ · |Σ| and the conclusion will follow for all

three cases. Note that K is independent from w.
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Chapter 8

Circular Variant of String

Attractors

Circular notions of words have been considered in different fields. Indeed, circular

words (or necklaces) have been object of several studies in Combinatorics on Words. A

very well-known family of circular words, the de Bruijn sequences, is at the basis of

very recent indexed data structures [108, 7, 9]. Also in nature we can find examples

of circular words, like the genomes of some families of viruses.

In Section 8.1 we present the notion of circular string attractor, that is a set of

positions covering all circular factors of a word. We further show some of its com-

binatorial properties, and compare the size γ∗c of a smallest circular string attractor

with the measures γ∗ and r. Most of the results from this section appeared in [90].

In Section 8.2, we show an application of circular string attractors, that is a new

characterization for Standard Sturmian words.

Finally, in Section 8.3, we present the first algorithm to check whether a set is a

circular string attractor of a string.

8.1 Circular String Attractor

Let us introduce a variant for the notion of string attractor, which further takes into

account factors that occur at the boundaries of words.

Definition 137. Let w ∈ Σ∗ and n = |w|. A set of γc positions Γc = {j1, j2, . . . jγc} ⊆

[1, n] is a circular string attractor of a word w if each circular factor of w has at least a
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circular occurrence that crosses a position of Γc. Moreover, we denote with γ∗c the size of the

smallest circular string attractor.

Example 138. Let w = abbbcaaacaaa be a word over the alphabet Σ = {a, b, c}. The

set Γ = {2, 5, 8} is a string attractor for w, since it covers any of its factors, but it is not

a circular string attractor since the circular factor (in blue) caaaa escapes from it. On the

other hand, the set Γc = {1, 4, 9} is a circular string attractor for w = abbbcaaacaaa but it

is not a string attractor. In fact, the factor aaa (in blue), fully contained in w, is covered only

if we consider its circular occurrence.

The definition above can be easily extended to circular words. For simplicity

of exposition though, we consider the notion on linear words. Despite the similar

definitions, Example 138 shows that the sets Γ and Γc can be independent, even

though in this case the sizes γ∗ and γ∗c are the same. On the other hand, we know

by Proposition 127 that γ∗ could arbitrarily increase when a conjugate of a word is

considered, while the behaviour of γ∗c is different, as it can be easily inferred from

the definition.

Proposition 139. Let w = uv be a finite word, for some u, v ∈ Σ∗. A set Γc is a circular

string attractor of w if and only if the set
⋃

i∈Γc
{i− |u| | i > |u|} ∪⋃

j∈Γc
{i+ |v| | i > |u|}

is a circular string attractor of w′ = vu.

Proof. By hypothesis, there exist u, v ∈ Σ∗ such that w = uv and w′ = vu. Let Γ∗c

be a smallest circular string attractor for w. Then, we can partition Γ∗c into two sets

Γu = {i ∈ Γ∗c | i ≤ |u|} and Γv = {i ∈ Γ∗c | i > |u|}, i.e., the sets containing

the positions of Γ∗c falling respectively in u and in v. One can notice that the set

Γ′∗ = {i− |u| | i ∈ Γv} ∪ {i + |v| | i ∈ Γu} is a circular string attractor for w′ = vu,

since it covers all the same circular factors of w. Since this procedure is symmetric

for w′, the thesis holds.

A direct consequence is the following equivalence between the measures γc of

two rotations.

Corollary 140. Let w ∈ Σ∗ be a finite word, and let w′ ∈ R(w) be a rotation of w. Then,

γ∗c (w) = γ∗c (w′).
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In the following proposition we derive an upper bound on γ∗c by considering the

minimum size of the smallest string attractor of the words in the conjugacy class.

Proposition 141. Let w a word in Σ∗. Then, γ∗c (w) ≤ γ∗(v) + 1 for each v conjugate of w.

Proof. Let Γ∗(v) be a string attractor having minimum size for v. If Γ∗(v) is also a

circular string attractor then we are done. Otherwise, there must be some strictly

circular factor that overlaps two consecutive occurrences of w which is not fully

contained in w and that is not covered by any position j ∈ Γ∗(v). Note that these

factors must cross the end and the beginning of two occurrences of w. Hence, the set

Γ∗(v)∪ {1} and Γ∗(v)∪ {n} are both circular string attractors of w.

In the previous chapter, Propositions 125 and 127 suggested that we can take ad-

vantage of circular factors to capture more repetitions within the text. The following

proposition shows that the size of a smallest circular string attractor of a word can

be arbitrarily lower than the size of a smallest string attractor of the word itself.

Proposition 142. For each t > 0, there exists an alphabet Σt and a word wt ∈ Σ∗t , such

that γ∗(wt)− γ∗c (wt) > t.

Proof. Consider the word wt = v1v2v3v4v5, as defined in the proof of Proposition 125.

From the same proof, we know that γ∗(wt) = 4m + 1, where m = t + 3. Let us

consider the rotation w′t = v2v3v4v5v1. From the proof of Proposition 127, we know

that we can build a string attractor Γ′, of size γ∗(w′t) = 2m + 4 for w′t containing

the position |w′t|. It follows that Γ′ is also a circular string attractor of w′t, and by

Proposition 141 γ∗c (wt) = γ∗c (w′t) ≤ |Γ′| = 2m + 4. Finally, γ∗(wt)− γ∗c (wt) ≥ 4m +

1− (2m + 4) = 2t + 3 > t.

On the other hand, one can verify that the notion of circular string attractor of a

word is strictly related to the notion of string attractor for a power of the word itself.

In the next lemma, we show how a string attractor of a power induces a circular

string attractor, and vice versa.

Lemma 143. Let w ∈ Σn and Γc = {j1, j2, . . . jγc} ⊆ [1, n] a set of positions in w. Then, Γc

is a circular string attractor of w if and only if Γ′ = {jk + n | jk ∈ Γc} is a string attractor

of w3.
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Proof. For the first implication, note that the positions in Γ′ correspond to the po-

sitions of Γc in the central occurrence of w. Moreover, it is easy to check that any

k-length factor u of w3 is a circular factor of w, with k = 1, 2 . . . , n. In fact, if u lies

entirely in an occurrence of w, then it is a circular factor of w as well. Otherwise,

u overlaps two consecutive occurrences of w, which is still a circular factor of w.

Moreover, as we have picked the positions in Γ′, every factor u has an occurrence

crossing a position ji ∈ Γ′, either this occurrence is fully contained in w or lies across

two consecutive w’s. For any factor v such that |v| > n, if v = w[i, n] · w · w[1, j],

with 1 ≤ i, j ≤ n, then v has an occurrence which crosses all the positions in Γ′, since

it contains the central occurrence of w in w3. Otherwise, v = w[i, n] · w[1, j], with

|w[i, n]|+ |w[1, j]| > n. Since v appears twice in w3 and w3 has period n, one of the

two occurrences of v has to cross a position ji ∈ Γ′ in the central occurrence of w.

For the other direction, note that since, Γ′ is a string attractor for w3 and, as men-

tioned above, any k-length factor u in w3 is a circular factor of w with k = 1, 2, . . . , n,

using the previous reasoning we can easily verify that Γc is a circular string attractor

for w.

Example 144. Let w = aabaacaabc be a word on the alphabet Σ = {a, b, c}. A circular

string attractor of the word w is Γc = {3, 5, 10}. In fact, every factor fully contained in w

has an occurrence crossing a position j ∈ Γ′ = {13, 15, 20}, except for u = caab and its

prefixes ca and caa. However, u also occurs between two consecutive occurrences of w:

w3 = aabaacaabc · aabaacaabc · aabaacaabc.

As we can see, u and its prefixes cross the position 20 ∈ Γ′. For what concerns any other

factor that lies in w · w but does not appear in w, note that the position 20 covers them all

too.

We can then derive the following relationship between the measures γ∗ and γ∗c

for powers of words.

Corollary 145. Let w ∈ Σ∗ be a finite word. Then, γ∗c (w) = γ∗(wn), for all integers n > 0.

Proof. Direct consequence from Proposition 127 and Lemma 143.
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In other words, a circular string attractor can not capture more information than

a normal string attractor when a power of a word is considered. On the other hand,

the size γ∗c is always preserved when a power of a word is considered, as well the

structure of the circular string attractor.

Lemma 146. Let w ∈ Σ∗ be a finite word and Γc = {p1, p2, . . . , pγc} ⊆ [1, |w|]. Then, Γc

is a circular string attractor of w if and only if, for all n > 1 and for all d ∈ [0, n− 1]γc , the

set Γ′ =
⋃

i∈[1,γc]{pi + di|w|} is a circular string attractor of wn.

Proof. For the first direction, note that since the word wn has period n, all circular

factors of length at most |w| which cross the position pi for some i ∈ [1, γc] have

another occurrence crossing the position pi + di|w|. For all the circular factors of wn

of length greater than |w|, for the same argument we can find (at least) n occurrences

through wn at distance |w|, covering the whole word, and therefore these factors can

be moved to the any occurrence of w where a position from Γ′ falls.

For the second implication, by hypothesis the set Γc is a circular string attractor

for wn. Symmetrically to the previous direction, and by Lemma 143, the factors of w

must be fully covered by Γc, and the thesis follows.

As mentioned before, the size r$ of a word is a natural upper bound for the

measure γ∗. Analogously, we show that the Toehold Lemma by [110] can be easily

extended to circular factors of words, and therefore that we can retrieve a circular

string attractor of size r from the BWT of a word.

Theorem 147. For every word w ∈ Σ∗, it holds that γ∗c (w) ≤ r(w).

Proof. We show the proof analogously to the proof of Theorem 3.9 by [66], that is we

find a circular string attractor for w of size exactly r. Let Γr be the set of positions in

correspondence to the letters at the beginning of each BWT-run. To prove that each

circular factor u of w has an occurrence (i, j) crossing at least a position in Γr, consider

the indexes I, J ∈ [1, n] such that L[I] and L[J] correspond to the occurrences of the

letters w[i] and w[j] in w. It follows that J = LFn−j[I]. Moreover, let ℓ be the length of

the circular factor u, and let [s1, e1], [s2, e2], . . . , [sℓ, eℓ] be the sequence of BWT-runs

visited in the column L while applying the LF-mapping from w[j] to w[i], i.e. L[lt, rt]

contains L[LFt−1[J]] for any t ∈ [1, ℓ]. Consider the value ∆ = min{LFt[J]− lt|t ∈
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[1, ℓ]}, that is the minimum distance between a visited letter of the BWT with the

first element of the BWT-run where it lies.

Recall that Γr = {pk|w[pk] corresponds to L[lk] for any k ∈ [1, r]}. Hence, if ∆ =

LFm[J]− lm = 0 for some m ∈ [1, ℓ], then LFm[J] = lm and the occurrence (i, j) of u

has a letter which crosses a position in Γr. Otherwise, assume ∆ = LFm[J]− lm >

0. It is easy to see that if two positions p1, p2 belong to the same BWT-run in L

then L[p2] = L[p1] + (p2 − p1). Thus, if we pick J′ = J − ∆, at any step we have

L[LFt−1[J′]] = L[LFt−1[J]] for any t ∈ [1, ℓ], which means that there exists another

circular occurrence (i′, j′) of u, where J′ = LFn−j′[I]. Since w[LFm[J′]] corresponds to

L[lm], the circular occurrence (i′, j′) contains a position from Γr.

8.2 Characterization of Standard Sturmian Words via Circu-

lar String Attractors

In this section, we show an application of circular string attractor in Combinatorics

on Words, namely a characterization of words through novel notions related to cir-

cular string attractors.

8.2.1 Circular Span

Similarly to the measure of span on linear words, let us introduce the definition of

circular span of a string attractor.

Definition 148. Let w be a finite word and let Gc(w) be the set of all circular string attractors

of w. The circular (string attractor) span of w is the value

c-span(w) = min
w′∈R(x)

ß
min

Γc∈G(w′)
(max Γc −min Γc)

™
,

that is the minimum span among the rotations of w.

Example 149. Let us consider the word w = abcabababababdab. One can see that the

set Γc = {3, 12, 13, 14} (underlined positions in w) is a circular string attractor for w.

Moreover, since the first and the last position in Γc correspond to the unique occurrence of c

and d respectively, we have that span(w) = 14− 3 = 11.
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Let us now consider the rotation w′ = dababcababababab, and the set Γ′c = {1, 6, 7, 8}

(underlined positions in w′). Also in this case Γ′c is a circular string attractor. Furthermore,

Γ′c is a circular string attractor of minimum span for w′, since the first position correspond

to the only occurrence of d, and the last is at the beginning of the first occurrence of the factor

baba. By exhaustive research, one can check that c-span(w) = max Γ′c−min Γ′c = 8− 1 =

7.

Analogously to the measure γ∗c of conjugate words, the definition of the measure

c-span directly yields the following result.

Lemma 150. For every pair of words u, v ∈ Σ∗, it holds that c-span(uv) = c-span(vu).

Similarly, we have the same bound for the power of a word.

Lemma 151. For every word w ∈ Σ∗, it holds that c-span(w) = c-span(wn), for every

n > 1.

Proof. By Lemma 146, any circular string attractor of w is a circular string attractor

for wn, thus c-span(w) ≥ c-span(wn). On the other hand, since c-span(w) < |w|, there

exists a circular string attractor Γc of minimum span for wn such that all positions

falls within an occurrence of w′ = vu, where w = uv for some u, v ∈ Σ∗. By Proposi-

tion 139, we can see that the word w′n, obtained by rotating on the left by |u| letters

the word wn, must have the same minimum span. Always by Lemma 146, the same

span holds for w′. Therefore, c-span(w) = c-span(w′) ≤ c-span(w′n) = c-span(wn), and

the thesis follows.

In the following proposition, we give a bound on the circular factor complexity

of a word w. Since pw(n) ≤ cw(n) for all finite w ∈ Σ∗, the analogous bound for pw

also holds.

Lemma 152. Let w be a finite word over Σ. Then |C(w) ∩ Σn| ≤ n + c-span(w) for all

1 ≤ n ≤ |w|.

Proof. Let Γc be a circular string attractor of some rotation w′ ∈ R(w) that minimizes

c-span(w). Clearly, the number of circular factors is the same, and therefore we can

focus on the word w′.
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Let ℓc = min Γc, and rc = max Γc. Then, the interval Γ′c = [ℓc, rc] contains Γc, and

it is a circular string attractor for w′. Since every circular factor has an occurrence

crossing a position in Γ′c, it is possible to find all length-n circular factors of w′ by

considering a circular window (i, (i + n − 1) mod |w′|) of length n, sliding either

from position ℓc− n + 1, if ℓc− n + 1 ≥ 1, or |w| − (n− ℓc)+ 1 otherwise, to position

rc. One can see that this interval is of size at rc − (ℓc − n + 1) + 1 = n + c-span(w).

This ends the proof.

8.2.2 Standard Sturmian Words and Bounded Circular Span

By refining a result stated in a previous work ([91]), we show that the notion of

circular string attractors can be used to state the main result of this section, providing

a new characterization of the conjugacy classes of powers of the standard Sturmian

words. To do so, we use the following result, proved by [15], that states that the

conjugates of standard Sturmian words are uniquely characterized by the circular

factor complexity.

Theorem 153 ([15]). Let w be a word of length n ≥ 2. The following statements are

equivalent:

1. w is a conjugate of a standard Sturmian word;

2. for k = 0, 1, . . . , n− 1, cw(k) = k + 1;

3. cw(n− 2) = n− 1 and w is primitive.

Theorem 154. Let w ∈ Σ∗ be a finite word. The word w is a conjugate of a power of a

binary standard Sturmian word if and only if c-span(w) = 1.

Proof. Let s′ = uv be a primitive standard Sturmian word such that w = (vu)p, for

some words u, v ∈ {a, b}∗, and an integer p ≥ 1. Let us start with the first implica-

tion. By combining the Theorem 14 and Theorem 147, we can find a circular string at-

tractor Γc of s′ by taking the positions of the first or the last occurrence from each run

of BWT-runs, according to whether s′ ends with ab or ba respectively. One can no-

tice that Γc consists of two consecutive positions, since it corresponds to the positions

from Theorem 131 (details in the proof from [90]). Thus, by Lemmas 146 and 150, it

follows that c-span(s′) = c-span(uv) = c-span(vu) = c-span((vu)p) = c-span(w) = 1.
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FIGURE 8.1: Circular representation of the standard Sturmian words
aba.ba.ababaababaababa.ab and ababaababaababa.ab.aba.ba.

For the other direction of the implication, let w′ be the primitive word such that

w = (w′)q, for some integer q ≥ 1. By Lemma 146, we know that c-span(w) =

c-span(w′). From Lemma 4.1 by [15], the word w′ is primitive if and only if cw(k) ≥

k + 1, for k ∈ [1, n− 1]. On the other hand, by Lemma 152, the circular factor com-

plexity of w′ can not be more than k + 1, for all k ∈ [1, |w′|]. Thus, by Theorem 153

w′ is a conjugate of a standard Sturmian word and the thesis follows.

Remark 155. It is known that each conjugacy class of standard Sturmian words exactly

contains two standard Sturmian words Xab and Xba, where X ∈ PER, for which we have

given the definition in Section 2.1. This means that each word in the conjugacy class has two

circular string attractors consisting of 2 consecutive positions, as depicted in the example in

Figure 8.1. Both couples of boxed consecutive positions represent a circular string attractor

for each word in the correspondent conjugacy class.

8.3 Checking the Attractor Property in Linear Time

The problem of finding a minimum-size string attractor for a given n-length word w

is an NP-Complete problem [66]. From the equivalence of Corollary 145, and with

the reduction that will be shown later in Lemma 161, it is possible to deduce that

the same problem is as hard as on regular string attractor. On the other hand, in

[90], [77], and [119], the size γ∗ has been studied for infinite families of words by

using combinatorial arguments. Before proving how to construct (circular) string
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attractors for infinite families of words, it is good habit to run experiments on some

words of the family, to check if the thesis fails for some counterexample.

In this section, we present two novel algorithms for checking if a set Γ is a (circu-

lar) string attractor for a word w ∈ Σn. Throughout the section, we assume that Σ is

an integer alphabet of polynomial size with respect to n. Under these conditions, the

algorithm here presented operated in O(n) time using O(n log n) bits, where n is the

length of w. Even if the bounds are the same as one of the algorithms presented by

[68], we use data structures easier to implement. First we show the properties that

these data structure verify, then we use these results to prove the correctness of the

algorithm proposed.

8.3.1 Checking the Circular Attractor Property in Linear Time

Given a word w of length n > 0, let us consider the matrixM(w) = {w1, . . . , wn} of

the rotations of w sorted in lexicographical order. For any factor u of w, we denote

with Iu the set multiset of rotations from M(w) starting with u, taken in lexico-

graphical order. To give to the reader a first look into the idea of the algorithm, let us

consider the 6th finite Fibonacci word f6 = abaababaabaab. In Figure 8.2, it is shown

the matrix of sorted rotations of f6, and for each rotation the positions of a circular

string attractor, derived by Theorem 147, are underlined. One can verify that, for

each circular factor u ∈ C( f6), the rotations having u as prefix are consecutive, and at

least one of these prefixes crosses a position of the circular string attractor. Note that

this is not a matter of chance, since each occurrence of any circular factor is a prefix

of a rotation.

If we denote with wk the kth rotation in lexicographical order, then for every

u ∈ Fact(w) we can find unique indices ℓu ≤ ru such that Iu = {wℓu , wℓu+1, . . . , wru}.

Let CA be the conjugate array of a word w, defined as:

CA[i] = j if wi = w[j, n]w[1, j− 1].
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a a b a a b a b a a b a b

a a b a b a a b a a b a b

a a b a b a a b a b a a b

a b a a b a a b a b a a b

a b a a b a b a a b a a b

a b a a b a b a a b a b a

a b a b a a b a a b a b a

a b a b a a b a b a a b a

b a a b a a b a b a a b a

b a a b a b a a b a a b a

b a a b a b a a b a b a a

b a b a a b a a b a b a a

b a b a a b a b a a b a a

FIGURE 8.2: Matrix of the sorted rotations for the finite Fibonacci
word f6 = abaababaabaab. The underlined positions correspond to
the positions of a circular string attractor Γc = {12, 13}. We underline

in the other rotations the corresponding position

Analogously, we denote by c-LCP the circular longest common prefix array, defined

as follows:

c-LCP[i] =

 0 if i = 1

|ℓcp(wi−1, wi)| otherwise
.

The following lemma summarises how to detect the indices ℓu and ru from the

c-LCP array.

Lemma 156. Let w ∈ Σn, for some n > 0. For each u ∈ C(w) \ {ε}, let 1 ≤ ℓu ≤ ru ≤ n

be the indices such that Iu = {wℓu , wℓu+1, . . . , wru}. The following holds:

1. ℓu = 1, or c-LCP[ℓu] < |u|;

2. ru = n, or c-LCP[ru + 1] < |u|;

3. c-LCP[k] ≥ |u|, for all k ∈ [ℓu + 1, ru].

Proof. For case 1., suppose ℓu > 1. By contradiction, if c-LCP[ℓu] ≥ u, then also the

rotation wℓu+1 has u as prefix, that is a contradiction by hypothesis on ℓu.

Case 2. is treated symmetrically.

Case 3. follows by observing that all the rotations in Iu are consecutive and share

the same prefix of length |u|.
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Given an ordered set Γc = {p1, p2, . . . , pγc} and a word w ∈ Σn, let succc ∈

{0, 1, . . . , n− 1}n be the array of circular distances of each position i ∈ [1, n] of w to

the next position p in Γc, that is:

succc[i] =


p1 − i if 1 ≤ i ≤ p1

pj+1 − i if pj < i ≤ pj+1, for all j ∈ [1, γc − 1]

(n− i) + p1 if pγc < i

.

Example 157. Let us consider the word w = abbabaa and the set Γc = {3, 5, 6} (the

underlined positions in w). Then, succc = {2, 1, 0, 1, 0, 0, 3}.

By Lemma 146, we know that a set Γc is a circular string attractor for the word

wn, for any n > 1, if and only if Γ′c =
⋃

p∈Γc
{(i− 1 mod |w|) + 1} is a circular string

attractor of w. Thus, we can assume that w is primitive, otherwise we can find its

root u in linear time and check whether the set Γ′c obtained as just described is a

circular string attractor of u.

Lemma 158. Let w ∈ Σn be a primitive word, and let Γ ⊆ [1, n] be a set of positions in w,

for some n > 0. Then, Γc is a circular string attractor of w if and only if, for all u ∈ C(w),

there exists i ∈ [ℓu, ru] such that succc[CA[i]] < |u|.

Proof. For the first implication, if Γc is a circular string attractor, then for each u ∈

C(w) there exists at least one occurrence that is crossed by a position p ∈ Γ. Let

i ∈ [ℓu, ru] the index of the rotation starting with such an occurrence of u. Thus, if

we project the position from Γc in the ith rotation, such a position falls at most at

distance |u|, and therefore succc[CA[i]] is at most |u| − 1.

The other direction is treated symmetrically. In fact, by contradiction, if for all

i ∈ [ℓu, ru] it holds that succc[CA[i]] ≥ |u|, then none of the occurrences of u cross a

position in Γc, and therefore it can not be a circular string attractor, contradiction.

Thus, in order to check whether a set Γc is a circular string attractor, we need to

check if, for all u ∈ C(w), there exists i ∈ [ℓu, ru] such that succc[CA[i]] < |u|. In

Algorithm 1 we describe the procedure designed. We store in a stack S the ranges of

lengths of the prefixes encountered and for which we have not found a position in Γc

crossing an occurrence yet. We then proceed by comparing in order the c-LCP with
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the succc array. We use Lemma 156 to understand if we are still in the range [ℓu, ru]

without even knowing u, but just by using the c-LCP array (line 8). Note that this is

legit since for all u, v ∈ Σ∗ it holds that [ℓuv, ruv] ⊆ [ℓu, ru], i.e., we can not leave the

range [ℓu, ru] before checking if the factor uv is covered within [ℓuv, ruv]. This implies

that the stack S will contain increasing lengths from bottom to top. The consecutive

lengths of the prefixes for which we do not have found yet an occurrence crossing a

position in Γc are inserted as a pair (s, e) in a stack S.

Algorithm 1: Algorithm for checking if a set Γc is a circular string attractor
of a word w

1 S← empty stack
2 succc ← computeCircSucc(w, Γ)
3 CA← computeConjugateArray(w)
4 c-LCP← computeCircularLongestCommonPre f ixArray(w)
5 for i ∈ [1, n] do
6 if S is not empty then
7 (s, e)← S.pop()
8 if c-LCP[i] < e then
9 return false

10 else
11 if c-LCP[i] < succc[CA[i]] then
12 if e = c-LCP[i] then
13 S.push((s, succc[CA[i]]))
14 else
15 S.push((s, e))
16 if c-LCP[i] < succc[CA[i]] then

17 S.push((c-LCP[i] + 1, succc[CA[i]]))

18 else
19 while S is not empty ∧succc[SA[i]] ≤ s do
20 (s, e)← S.pop()

21 if s < succc[CA[i]] then
22 S.push((s, min{e, succc[CA[i]]}))

23 else
24 if c-LCP[i] < succc[CA[i]] then S.push((c-LCP[i] + 1, succc[CA[i]]))

25 if S is empty then
26 return true
27 else
28 return false

We can then obtain the following.
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Theorem 159. Given a word w ∈ Σn and a set Γc ⊆ [1, n], Algorithm 1 checks whether or

not the set Γc is a circular string attractor for w in O(n) time using O(n log n) bits of space.

Proof. The conjugate array CA can be computed in linear time (see the work by [16]).

The c-LCP array can be computed in linear time from CA with analogous techniques

developed by [65], or [64]. Each pair (s, e) in the stack S can be represented in

O(log n) bits. The main loop (line 5) is executed at most n times. Since we add

at most one pair in S at each iteration of the main loop, it holds that the number of

elements in the stack is |S| = O(n), occupying at most O(n log n) bits of space. Fur-

ther, the inner loop in line 19 where we empty the stack S can be executed at most |S|

times in total. Thus, Algorithm 1 works in O(n) time using O(n log n) bits of space

and the thesis follows.

Example 160. In Figure 8.3, we show the steps of Algorithm 1 applied on the 5th finite

Fibonacci word f5 = abaababa with the set Γc = {4, 5}. The matrix of the sorted rotations

is shown to give to the reader a graphical interpretation of the procedure, however recall that

we do not use it.

The stack S is initially empty, so at the iteration i = 1 we start to fill it with the lengths

of the prefixes of the first rotation in lexicographical order that need to cross a position from

Γc. Since succc[CA[1]] = 4, this means that all prefixes of the first rotation with length

greater than 4 cross a position from Γc. On the other hand, we can not say anything yet on

the prefixes from length 1 to 4, which are a, aa, aab, and aaba. In fact, since c-LCP[1] =

0 < 4 = succc[CA[1]], we push in the stack S the pair (1, 4) (line 24), as displayed in

Subfigure 8.3a.

On the iteration i = 2, we extract from the top of the stack the ranges of lengths (1, 4),

and we compare the maximum (4) with c-LCP[2], since we want to check if there is another

occurrence of all the factors represented in the stack. Since c-LCP[2] = 4, we have another

rotation with prefix aaba, and therefore such a rotation starts by a, aa, and aab as well. In

Subfigure 8.3b, since succc[CA[2]] = 1, analogously to the previous case all prefixes longer

than 1 cross a position from Γc, and therefore it is left only a to cover, and we insert in the

stack the range (1, 1) (line 22).

Then, at the iteration i = 3 (Subfigure 8.3c), the prefix a still occurs (c-LCP[3] = 1), but

it does not cross a position from Γc (succc[CA[3]] = 6), so we extend the range from (1, 1) to
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(1, 6) and insert it in S (line 13), that is we keep track of the factors ab, aba, abaa, abaab,

and abaaba.

The algorithm proceeds in Subfigure 8.3d by shrinking the range (1, 6) to (1, 3) (line 22),

and then at the following iteration in Subfigure 8.3e the stack is emptied for the first time,

since succc[CA[5]] = 0 and the condition of line 21 is not met.

We keep following the procedure for the iterations 6, 7, and 8, respectively shown in

Subfigures 8.3f, 8.3g, and 8.3h. Since at the end of the main loop the stack is empty, each

circular factor crosses at least a position from Γc, and therefore we return true.

8.3.2 Novel Algorithm for Checking the Attractor Property

If we consider the same problem on regular string attractors, Kempa et al. [68] pre-

sented two algorithms for checking whether a set Γ is a string attractor for a word

w: the first working in O(n) time using O(n log n) bits of space, and the second in

O(n log n) time using O(n) bits of space. However, both algorithms are based on

suffix trees and other data structures supporting range-minimum queries, for which

the implementation is not trivial in all programming languages.

Here we present a novel algorithm, induced from the strategies developed in

Algorithm 1 and the following lemma, taking the same time and space complexities

as Algorithm 1.

Lemma 161. Let w ∈ Σn be a finite word and let $ /∈ Σ. A set Γ is a string attractor for w

if and only if Γ ∪ {n + 1} is a circular string attractor for w$.

Proof. Let C$(w$) denote the set of all circular factors of w$ containing the letter $.

One can observe that C(w$) = F(w) ∪ C$(w$). Indeed, F(w) ∩ C$(w$) = ∅, and the

position {n + 1} is crossed by all and only circular factors from C$(w$). Thus, the

factors to cover in w are the same as the circular factors in C(w$) \ C$(w$), and since

they are located in the same positions in both words the thesis follows.

Recall that appending a $ smaller than any other letter in Σ implies that CA = SA

and c-LCP = LCP. We can then derive the following theorem.

Theorem 162. Given a word w ∈ Σn and a set Γ ⊆ [1, n], Algorithm 2 checks whether or

not the set Γ is a string attractor for w in O(n) time using O(n log n) bits of space.
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i = 1 2 3 4 5 6 7 8

f5 = a b a a b a b a

succc = 3 2 1 0 0 6 5 4

c-LCP = 0 4 1 6 3 0 5 2

CA
→ 8 a a b a a b a b

3 a a b a b a a b

6 a b a a b a a b

1 a b a a b a b a S
4 a b a b a a b a

7 b a a b a a b a ↓
2 b a a b a b a a (1, 4)
5 b a b a a b a a

(A) i = 1

CA
8 a a b a a b a b

→ 3 a a b a b a a b

6 a b a a b a a b

1 a b a a b a b a S
4 a b a b a a b a

7 b a a b a a b a ↓
2 b a a b a b a a (1, 1)
5 b a b a a b a a

(B) i = 2

CA
8 a a b a a b a b

3 a a b a b a a b

→ 6 a b a a b a a b

1 a b a a b a b a S
4 a b a b a a b a

7 b a a b a a b a ↓
2 b a a b a b a a (1, 6)
5 b a b a a b a a

(C) i = 3

CA
8 a a b a a b a b

3 a a b a b a a b

6 a b a a b a a b

→ 1 a b a a b a b a S
4 a b a b a a b a

7 b a a b a a b a ↓
2 b a a b a b a a (1, 3)
5 b a b a a b a a

(D) i = 4

CA
8 a a b a a b a b

3 a a b a b a a b

6 a b a a b a a b

1 a b a a b a b a S
→ 4 a b a b a a b a

7 b a a b a a b a

2 b a a b a b a a

5 b a b a a b a a

(E) i = 5

CA
8 a a b a a b a b

3 a a b a b a a b

6 a b a a b a a b

1 a b a a b a b a S
4 a b a b a a b a

→ 7 b a a b a a b a ↓
2 b a a b a b a a (1, 5)
5 b a b a a b a a

(F) i = 6

CA
8 a a b a a b a b

3 a a b a b a a b

6 a b a a b a a b

1 a b a a b a b a S
4 a b a b a a b a

7 b a a b a a b a ↓
→ 2 b a a b a b a a (1, 2)

5 b a b a a b a a

(G) i = 7

CA
8 a a b a a b a b

3 a a b a b a a b

6 a b a a b a a b

1 a b a a b a b a S
4 a b a b a a b a

7 b a a b a a b a

2 b a a b a b a a

→ 5 b a b a a b a a

(H) i = 8

FIGURE 8.3: Running example of Algorithm 1 on the word f5 =
abaababa. The underlined positions in f5 correspond to the positions
of the circular string attractor Γc, and the corresponding succc and
c-LCP arrays are shown right below. Each subfigure shows one of the
8 iterations of the algorithm, and the stack S at the end of the itera-
tion. The dashed boxes surround the prefixes of the current rotation
for which we have not found an occurrence crossing a position in Γc.

The lengths of these prefixes correspond to the ranges in S.
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Proof. The correctness of Algorithm 2 is derived from its equivalence in Lemma 161

with Algorithm 1. The suffix array SA, the LCP array, and the succ array can be

computed in O(n) time using O(n log n) bits of space. Since Algorithm 2 takes the

same time and space as Algorithm 1, the thesis follows.

Algorithm 2: Algorithm for checking if a set Γ is a string attractor for a word
w

1 S← empty stack
2 Γ← Γ ∪ {n + 1}
3 SA← computeSu f f ixArray(w$)
4 succ← computesucc(w$, Γ)
5 LCP← computeLongestCommonPre f ixArray(w$)
6 for i ∈ [1, n] do
7 if S is not empty then
8 (s, e)← S.pop()
9 if LCP[i] < e then

10 return false
11 else
12 if LCP[i] < succ[SA[i]] then
13 if e = LCP[i] then
14 S.push((s, succ[SA[i]]))
15 else
16 S.push((s, e))
17 if LCP[i] < succ[SA[i]] then

S.push((LCP[i] + 1, succ[SA[i]]))

18 else
19 while S is not empty ∧succ[SA[i]] ≤ ℓ do
20 (s, e)← S.pop()

21 if s < succ[SA[i]] then
22 S.push((s, min{e, succ[SA[i]]}))

23 else
24 if LCP[i] < succ[SA[i]] then S.push((LCP[i] + 1, succ[SA[i]]))

25 if S is empty then
26 return true
27 else
28 return false

Example 163. Let us consider the word f ′ = ababaaba, that is a rotation of the word f5

from Example 160, and let us consider the set of positions Γ = {7, 8}. In Figure 8.4, the

iterations of Algorithm 2 with f ′ and Γ in input are shown. Recall that we compute the
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LCP, succ, and SA arrays for the word f ′$, and we extend Γ with the position of the $, i.e.

Γ = {7, 8, 9}.

As shown in Subfigure 8.4a, at first the stack is empty and the condition of line 24 is

not met, since LCP[1] = succ[SA[1]] = 0, and therefore nothing is added into S. The same

procedure occurs at the following iteration, in Subfigure 8.4b.

Since at the third iteration the stack is still empty, each factor that is prefix of the first two

rotations has an occurrence crossing at least a position in Γ. Since this time 1 = LCP[3] <

succ[SA[3]] = 2, we add to the stack in line 24 only the factors that have not occurred yet

(i.e. of length at least LCP[3] + 1) and that are not crossing a position in Γ (i.e. of length at

most succ[SA[3]]), and therefore we add the range (2, 2). As shown in Subfigure 8.4c, such

a range corresponds to the factor aa.

Finally, in Subfigure 8.4d, one can see that the factor aa does not occur as prefix in the

following rotations. In fact, at the iteration i = 4 Algorithm 2 checks in line 9 whether

the factor that we are looking for occurs again as prefix by comparing LCP[4] = 1 with

the maximum value from the top of the stack. Since the condition is not met, the algorithm

returns false, i.e. the factor aa is not crossed by any position in Γ, and therefore Γ is not a

string attractor.
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i = 1 2 3 4 5 6 7 8 9

f ′$ = a b a b a a b a $

succ = 6 5 4 3 2 1 0 0 0

LCP = 0 0 1 1 3 3 0 2 2

SA
→ 9 $ a b a b a a b a

8 a $ a b a b a a b

5 a a b a $ a b a b S
6 a b a $ a b a b a

3 a b a a b a $ a b

1 a b a b a a b a $
7 b a $ a b a b a a

4 b a a b a $ a b a

2 b a b a a b a $ a

(A) i = 1

SA
9 $ a b a b a a b a

→ 8 a $ a b a b a a b

5 a a b a $ a b a b S
6 a b a $ a b a b a

3 a b a a b a $ a b

1 a b a b a a b a $
7 b a $ a b a b a a

4 b a a b a $ a b a

2 b a b a a b a $ a

(B) i = 2

SA
9 $ a b a b a a b a

8 a $ a b a b a a b

→ 5 a a b a $ a b a b S
6 a b a $ a b a b a

3 a b a a b a $ a b

1 a b a b a a b a $ ↓
7 b a $ a b a b a a (2, 2)
4 b a a b a $ a b a

2 b a b a a b a $ a

(C) i = 3

SA
9 $ a b a b a a b a

8 a $ a b a b a a b

5 a a b a $ a b a b S
→ 6 a b a $ a b a b a

3 a b a a b a $ a b

1 a b a b a a b a $
7 b a $ a b a b a a (2, 2)
4 b a a b a $ a b a

2 b a b a a b a $ a

(D) i = 4

FIGURE 8.4: Running example of Algorithm 2 on the word f ′ =
ababaaba$. The underlined positions in f ′ correspond to the posi-
tions of a set Γ that we want to check whether it is a string attractor
for f ′. The corresponding succ and LCP arrays are shown right be-
low. Each subfigure shows one of the 4 iterations of the algorithm,
and the status of the stack S at the end of the iteration. The dashed
boxes surround the prefixes of the current rotation for which we have
not found an occurrence crossing a position in Γ. The lengths of these

prefixes correspond to the ranges in S.
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Chapter 9

String Attractors and Infinite

Words

In Chapter 7, we have showed some relationship of the measure γ∗ with classical

notions of complexity for finite words. Schaeffer and Shallit [119] extended the no-

tion of string attractor on infinite words by defining the string attractor profile function

sx, which counts for each n the size of the smallest string attractor for the n-length

prefix of an infinite word x. In particular, they have considered the very well-known

family of automatic words (see [2] for a reference), and showed that if the string at-

tractor profile is bounded by a constant, they can list for each prefix a smallest string

attractor with the tool Walnut [98]. Moreover, they have related the linearly recur-

rence of words with the function sx of infinite words. By Theorem 124, in general,

the function sx is not monotone.

In this chapter, we extend the link between two worlds: Data Compression and

Combinatorics on Words. We relate new bounds on the string attractor based com-

plexities with respect to classical combinatorial notions of repetitiveness.

In Section 9.1, we further investigate the relationship between string attractor

profile function with the factor complexity and the recurrence of words.

In Section 9.2, we introduce two new complexities based on the measures earlier

defined in Chapter 7: the span complexity, and the leftmost complexity. Analogously

to the function sx, the two functions return the measure span and lm for each prefix

of an infinite word. We show how these function are related to each other, and what

properties of words can be deduced from their boundedness.

Finally, in Section 9.3.1 we show how to use the span complexity to obtain a new
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characterization for Sturmian words. This result can be further extended, and cover

the more general family of quasi-Sturmian words, which are the simplest aperiodic

words after the Sturmian words.

The work of this chapter appeared in [112].

9.1 String Attractor Profile Function, Factor Complexity, and

Recurrence

In this section, we explore the growth of the size of the smallest string attractor

when considering larger and larger prefixes of an infinite word. Such an idea was

first considered in [119].

Definition 164. Let x be an infinite word. For any n ≥ 1, we denote by sx(n) the size of a

smallest string attractor for the prefix of x of length n. The function sx is called the string

attractor profile function of x.

We will show the link between the string attractor profile function and different

notions measuring the repetitiveness of factors within infinite sequences of letters.

Recall that, for a given infinite word x, the appearance function Ax returns for each

n > 0 the length of the shortest prefix of x that contains all n-length distinct factors

of x, while the factor complexity function px counts for each n > 0 the number

of distinct factors of x of length n. We start by establishing a bond between the

appearance, factor complexity, and string attractor profile functions. In particular,

it extends the result by [66] to infinite words, and shows that upper bounds on sx

induce upper bounds on px.

Theorem 165. Let x be an infinite word. For all n ≥ 1, we have px(n) ≤ n · sx(Ax(n)).

Proof. Let us consider the value Ax(n) representing the length of the smallest prefix

of x containing all the factors of x of length n. Since the alphabet is finite, the value

Ax(n) is finite. By definition sx(Ax(n)) is the size of the smallest string attractor of

the prefix of length Ax(n). Therefore, each factor of x of length n crosses at least one

element of the string attractor. Since each element of the string attractor is crossed

by at most n distinct factors of x of length n, one has px(n) ≤ n · sx(Ax(n)).
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Let zx denote the Lempel-Ziv complexity of x, that is zx = z(x[1, n]). Using the link

between string attractors and LZ77 parsings, we easily obtain an upper bound on sx

as follows.

Proposition 166. Let x be an infinite word. Then sx(n) = O
Ä

n
log n

ä
.

Proof. Using Theorem 116, we have sx(n) ≤ zx(n). Therefore, to conclude, it suffices

to use the following upper bound on zx(n) from [81]: the number of LZ-phrases

for a length-n word on an alphabet of size σ is bounded by n
(1−ϵn) logσ n , where ϵn =

2 1+logσ(logσ(σn))
logσ n .

It is possible to construct an infinite word x for which there exists a subsequence

of positive integers ni, for i ≥ 1, such that sx(ni) = Θ( ni
log ni

). For instance, such a

word x can be constructed by using a suitable sequence of de Brujin words. How-

ever, having information about the values of the string attractor profile function on a

subsequence ni does not allow us to precisely determine its behavior for the remain-

ing values of n. Therefore, we do not know whether the bound of Proposition 166 is

tight.

However, if we assume that the appearance function is linear, a better bound on

the function sx can be obtained as stated below.

Theorem 167 ([119]). Let x be an infinite word. If Ax(n) = Θ(n), then sx(n) = O(log n).

9.1.1 Examples of String Attractor Profile Functions

Here we show the behavior of the string attractor profile function of some infinite

words.

First, we provide a non-recurrent infinite word having linear complexity function

and unbounded string attractor profile function.

Example 168. Let us consider the characteristic sequence c = 1101000100000001 · · · of

the powers of 2, i.e., ci = 1 if i = 2j for some j ≥ 0, and 0 otherwise. It is easy to see that c

is aperiodic and not recurrent because the factor 11 has just one occurrence. It is known that

pc(n) and Ac(n) are Θ(n) ([2]). One can prove that sc(n) = Θ(log n) ([74, 90, 119]).

Then Example 169 shows that there exist recurrent (not uniformly) infinite words

with unbounded string attractor profile function.
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Example 169. Let µ : {0, 1}∗ → {0, 1}∗ be a 3-uniform morphism defined by µ(0) = 010

and µ(1) = 111. One can notice that the fixed point u = µ∞(0) = 010111010111111111010 · · ·

is aperiodic, and it holds that pu(n) = Θ(n). Indeed it is recurrent, but not uniformly, since

we have infinitely many runs of 1’s with unbounded length. Moreover, note that the set of

factors {013i
0 | i > 0} do not overlap among them, thus we need at least one position from

Γ for each of this factors, i.e., su is unbounded.

However, many classical infinite words in literature have a known string attrac-

tor profile function and it is bounded (or even constant). It is the case of the Thue–

Morse word [77, 119], and the period-doubling word [119], or the family of words

defined by Holub in [61], showed in the following example.

Example 170. Let us consider the following infinite word u introduced by Holub in [61] and

defined as follows. Let {ni}i≥1, be an increasing sequence of positive integers with n1 ≥ 2.

Then we define inductively the sequence (ui)i≥0 as u0 = ε, ui = ui−10(ui−11)ni ui−1. Let us

consider u = limi→∞ ui. It has been proven in [61] that u is uniformly recurrent but not

linearly recurrent. Moreover, for each i ≥ 1, u can be factorized as a product of words ui0

and ui1, i.e., u = uic1uic2uic3 · · · , where cj ∈ {0, 1}. More precisely, each occurrence of ui

starts at position that is a multiple of |ui|+ 1. By using the above properties, we can prove

that pu(n) = 2n. Furthermore, it is possible to prove that, for i ≥ 0, the set®
|ui|+ 1,

i

∑
k=0

(|uk|+ 1), 2|ui|+ 2

´
.

is a string attractor for ui+1 and a string attractor of constant size can be deduced for each

prefix of ui+1. Hence, su(n) is Θ(1).

Infinite word x px(n) Recurrence sx(n)
Period-doubling word p (Ex. 179) Θ(n) Linearly recurrent 2 [119]

Thue-Morse word t (Ex. 5) Θ(n) Linearly recurrent 4 [77]
Holub word u (Ex. 170) Θ(n) Uniformly recurrent 3

Charact. Sturmian word s (Thm. 185) Θ(n) Uniformly recurrent 2
Power of 2 charact. sequ. c (Ex. 168) Θ(n) Not recurrent Θ(log n) [73]

FIGURE 9.1: Factor complexity function px, recurrence, and string
attractor profile function sx for some infinite words.
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9.1.2 The Bounded Case

Supported by the previous subsection, it is relevant to study the family of infinite

words having bounded string attractor profile functions. Observe that we already

know the following result.

Theorem 171 ([119]). Let x be an infinite word. If x is linearly recurrent (i.e., Rx(n) =

Θ(n)), then sx(n) = Θ(1).

However, in Example 170, we have shown that there exist uniformly (and not

linearly) recurrent words for which sx is bounded. Therefore, the previous theorem

is not a characterization. In this section we gather results in this direction.

First, we analyze how the boundedness of sx structures the infinite word x and

we show that if an infinite word has its string attractor profile function bounded by

some constant value, then it has at most linear factor complexity. More precisely, we

have the following result.

Theorem 172. Let x be an infinite word. If sx = Θ(1), then either x is eventually periodic,

or x is ω-power free and px = Θ(n).

Proof. First observe that, by Theorem 165, if k is such that sx(n) < k for each n ≥ 1,

then px(n) ≤ n · k for each n ≥ 1. Therefore, the factor complexity is (at most) linear.

Towards a contradiction, let us assume now that x is aperiodic and not ω-power free.

Then there exists a factor w of x such that, for every q ≥ 1, wq is factor of x. Moreover,

x ̸= uwω for any u ∈ Σ∗, otherwise x would be eventually periodic. It follows that

there exists an increasing sequence (qj)j≥1 such that, for each j, there exist a proper

suffix sj of w, a proper prefix pj of w, and two letters aj and bj such that ajsj is not a

suffix of w, pjbj is not a prefix of w, and ajsjwqj pjbj is a factor of x. As any position

can cover at most two such factors, sx is unbounded.

Nonetheless we do not know whether Theorem 172 is a characterization or not.

This raises the following open question.

Question 173. Let x be ω-power free word such that px is linear. Is sx(n) bounded by a

constant value?
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Observe that Examples 168 and 169 do not allow to give a negative answer to the

previous question as the words are not ω-power free. As a matter of fact, tackling

a weaker version of the question, where instead x is uniformly recurrent word with

linear px, might be easier.

We have a partial converse of Theorem 172.

Proposition 174. Let x be an infinite word. If x is eventually periodic, then sx(n) = Θ(1).

Proof. Let u ∈ Σ∗ and v ∈ Σ+ such that x = uvω. It is easy to see that, for all

n ≥ 1, {1, . . . , min{n, |uv|}} is a string attractor for the prefix of length n. Therefore,

sx(n) ≤ |uv| for all n.

9.1.3 The Case of Purely Morphic Words

Some repetitiveness measures have been explored when applied to fixed points of

morphisms, or more specifically, to iterated images of a morphism. It is the case of

the number of BWT-runs in [46] and of the LZ-complexity function in [33]. Therefore,

it is natural to wonder if similar results can be obtained for the string attractor profile

function.

First we present an upper bound on the string attractor profile function of purely

morphic words.

Theorem 175. Let x = φ∞(a) be the fixed point of a morphism φ prolongable on a ∈ Σ.

Then, sx(n) = O(i), where i is such that |φi(a)| ≤ n < |φi+1(a)|.

Proof of Theorem 175. For all i ≥ 0, define ni = |φi(a)|. By Proposition 47, there exist

two constant c1, c2 ≥ 1 such that for all n ∈ [ni, ni+1), we have c1 · i ≤ zx(ni) ≤

zx(n) ≤ zx(ni+1) ≤ c2 · i + c2. Note that the second and third inequalities follow by

monotonicity of the measure z (i.e., z(u) ≤ z(uv) for all u, v ∈ Σ∗). This implies that

zx(n) = Θ(i) and the conclusion follows by Theorem 116.

In the following, we provide a finer result in the case of binary purely morphic

word.

Theorem 176. Let x = µ∞(a) be the binary fixed-point of a morphism µ : {a, b}∗ →

{a, b}∗ prolongable on a. Then, either sx(n) = Θ(1) or sx(n) = Θ(log n), and it is decidable

when the first or the latter occurs.
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Proof. If x is eventually periodic, then Proposition 174 implies that sx(n) = Θ(1).

Suppose now x is aperiodic. For morphisms defined on a binary alphabet, if x =

µ∞(a) is aperiodic, then |µi(a)| grows exponentially with respect to i (see [46]). More-

over, if µ is primitive, then by [36, Theorem 1] and [2, Theorem 10.9.4] x is linearly

recurrent, and by Theorem 171 we have that sx(n) = Θ(1). If µ is not primitive, as

summed up in [46], then only one of the following cases occurs:

1. There exist a coding τ : Σ → {a, b}+ and a primitive morphism φ : Σ∗ → Σ∗

such that x = µ∞(a) = τ(φ∞(a)) [104];

2. The word x contains arbitrarily large factors on {b}∗.

In the first case, since τ preserves the recurrence of a word and that φ∞(a) is

linearly recurrent, then x is linearly recurrent as well, and by Theorem 171 sx(n) =

Θ(1).

In the second case, one can notice that x is not ω-power free, and by Theorem 172

for every k ≥ 1 exists n′ such that sx(n) > k, for every n ≥ n′. More in detail, the

number of distinct maximal runs of b’s grows logarithmically with respect to the

length of the prefixes of x [46], i.e., sx(n) = Ω(log n). On the other hand, by Theo-

rem 175 we know that sx(n) = O(i), where i ≥ 1 is such that |µi(a)| ≤ n < |µi+1(a)|.

Since i = Θ(log n), we can further deduce an upper bound for the string attractor

profile function and it follows that sx(n) = Θ(log n). Finally, from a classification in

[46] we can decide, only from µ, if either sx(n) = Θ(1) or sx(n) = Θ(log n).

Note that the result of Theorem 176 does not contradict a possible positive an-

swer to Question 173, because the infinite words x with linear factor complexity and

such that sx(n) = Θ(log n) are not ω-power free. Moreover, the same bounds have

been obtained for a related class of words, i.e., automatic sequences, as reported in

the following theorem. In short, an infinite word x is k-automatic if and only if there

exist a coding τ : Σ → Σ and a k-uniform morphism µk such that x = τ(µ∞
k (a)), for

some a ∈ Σ ([2]).

Theorem 177 ([119]). Let x be a k-automatic infinite word. Then, either sx(n) = Θ(1) or

sx(n) = Θ(log n), and it is decidable when the first or the latter occurs.



136 Chapter 9. String Attractors and Infinite Words

In fact, Schaeffer and Shallit [119] consider a larger family of infinite words,

called automatic words, and show that, if the string attractor profile function is bounded,

it is possible to build an automaton which returns the positions of a smallest string

attractor for each prefix. However, the construction of such an automaton is done

case by case using Walnut. For some particular automatic words obtained as fixed

points of morphisms, string attractors may be found by hand. It is the case of

the Thue–Morse word t = 0110100110010110 · · · , which is the fixed point of 0 7→

01, 1 7→ 01. In [77], Kutsukake et al. show how to induce a smallest string attrac-

tor for some specific prefixes of t using the very particular structure of the word.

Their construction can be adapted to the other prefixes. One can wonder whether

the structure within morphic words can be used in a similar fashion to detect string

attractors.

9.2 Span and Leftmost Complexities

Based on these two new measures, we can define related complexity functions for

infinite words, called the span complexity and the leftmost complexity, that allow us to

obtain a finer classification of infinite words. Indeed, Examples 179 and 186 high-

light two infinite words, the period-doubling word and the Fibonacci word, which

are not distinguishable if we consider their respective string attractor profile func-

tion as they are eventually equal to 2. However, the situation is very different if we

look at how the positions within a string attractor are arranged.

Definition 178. Let x be an infinite word. The span and leftmost complexities of x are

respectively defined by spanx(n) = span(x[1, n]) and lmx(n) = lm(x[1, n]) for all n ≥ 1.

Example 179 shows the behavior of such measures for the period-doubling word.

Proposition 180 then shows the relationship between the profile function, the span

and leftmost complexities.

Example 179. Consider the period-doubling sequence pd = 101110101011 · · · , which is

the fixed point of the morphism 1 7→ 10, 0 7→ 11. It has been proven in [119] that spd(n) = 2
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for all n ≥ 1, while

spanpd(n) =


1, if 2 ≤ n ≤ 5;

2i, if 3 · 2i ≤ n < 3 · 2i+1 for some i ≥ 1.

The next result directly follows from Proposition 135.

Proposition 180. Let x be an infinite word. Then, sx(n)− 1 ≤ spanx(n) ≤ lmx(n)− 1.

As we did for the string attractor profile function, we will now focus on the case

where these new complexities are “bounded”. More specifically, we will characterize

the infinite words such that they are bounded on an infinite subsequence.

We first look at the leftmost complexity. We will use the following intermediate

result, which can be deduced from the proofs of [90, Propositions 12 and 15].

Proposition 181. Let w be a non-empty word and let u = wr, v = ws be fractional powers

of w with 1 ≤ r ≤ s. If Γ is a string attractor of u, then Γ ∪ {|w|} is a string attractor of v.

Proposition 182. Let x be an infinite word. Then there exists a constant C ≥ 1 such that

lmx(n) ≤ C for infinitely many n if and only if x is eventually periodic.

Proof. The first implication follows from Proposition 134. Indeed, for all m ≥ 1, there

exists an integer n such that lmx(n) ≤ C and x[1, n] contains all length-m factors.

Therefore, px(m) ≤ C. Using Theorem 9, this implies that x is eventually periodic.

The second implication follows from Proposition 181. Indeed, if x = uvω, then

for all n ≥ 1, {1, 2, . . . , min{n, |uv|}} is a string attractor for the word x[1, n]. There-

fore, lmx(n) ≤ |uv| for all n ≥ 1.

This result gives a new characterization of eventually periodic words. Observe

that the proof uses the well-known characterization by Morse and Hedlund (Theo-

rem 9). Note that, in the following, we will mostly use the contraposition of Propo-

sition 182.

We now look at a similar description for the span.

Proposition 183. Let x be an infinite word. If there exists a constant C ≥ 1 such that

spanx(n) ≤ C for infinitely many n, then x is eventually periodic or it is recurrent and

px(n) = n + d with d ≤ C for all large enough n.
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Proof. Let us suppose that x is aperiodic. We first show that x is recurrent. Towards

a contradiction, we assume that x is not recurrent. Therefore, there exists a factor

that only occurs once in x. Say that this occurrence ends at position k. This implies

that, for all n ≥ k, any string attractor of x[1, n] contains a position smaller than or

equal to k. As spanx(n) ≤ C for infinitely many n, then lmx(n) ≤ k + C for infinitely

many n, which contradicts Proposition 182.

We now show that x has the claimed factor complexity. For all m ≥ 1, there

exists an integer n such that spanx(n) ≤ C and x[1, n] contains all length-m factors.

By Proposition 130, we have px(m) ≤ m + C. Using Theorem 9 and as x is aperiodic,

we conclude that px(m) = m + d for all large enough m and for d ≤ C.

Note that a converse-like characterization will be given in Theorem 191.

On the other hand, for some infinite words, we know that they have maximal

span complexity, as stated in the following result.

Proposition 184. Let x be a linearly recurrent word such that px(n) = n + Ω(n). Then

spanx(n) = Θ(n).

Proof. Since x is linearly recurrent, by Remark 2, there exists an integer A such that,

for all m, the length-(Am) prefix of x contains all length-m factors of x. For all m, n

such that n ∈ [Am + 1, A(m + 1)], Proposition 130 implies that spanx(n) ≥ px(m)−

m. By assumption on the factor complexity function, we have px(m) ≥ Cm for a

constant C > 1. Therefore spanx(n) ≥ (C − 1)m ≥ (C − 1)
( n

A − 1
)
. This shows

that spanx(n) = Ω(n). But since we trivially have spanx(n) = O(n), the conclusion

follows.

Note that both the linear recurrence and the constraint on the factor complexity of

an infinite word x from Proposition 184 are required. In fact, if we consider the word

u in Example 170, from the distribution of the factors one can notice that the string

attractor in the same example is of minimum span. Thus, if the increasing sequence

{ni}i ≥ 1 needed to build u grows super-exponentially, the span complexity grows

sublogarithmically for infinite prefixes.

On the other hand, recall that any characteristic Sturmian word x has factor com-

plexity px(n) = n + 1. In the next section, we show that for this family of words it

holds that the function spanx is constant.
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9.3 The Case of Sturmian Words

In this section, we analyze properties of the string attractor profile function along

with the two new string-attractor related complexities for Sturmian words and two

related families of infinite words. On the one hand, we consider the subfamily of

characteristic Sturmian words. On the other hand, we investigate the superfamily of

quasi-Sturmian words, which can be considered the simplest generalizations of Stur-

mian words in terms of factor complexity.

9.3.1 String Attractor based Complexities for Characteristic Sturmian Words

We focus here on the family of characteristic Sturmian words, for which we can

explicitly give the string attractor profile function, the span complexity and the left-

most complexity by giving string attractors realizing these. Since we denote the

string attractor profile function by s, for simplicity of exposition we refer to a char-

acteristic Sturmian word as x, and the corresponding standard prefixes as xi.

The following result shows that each prefix of a characteristic Sturmian word has

a smallest string attractor of span 1, i.e., consisting of two consecutive positions.

Theorem 185. Consider a directive sequence (di)i≥0 with q0 ≥ 1, the corresponding se-

quence (xi)i≥0 of standard Sturmian words and the associated characteristic Sturmian word

x = limi→∞ xi.Then we have

sx(n) =


1, if n < |x2|;

2, if n ≥ |x2|;
spanx(n) =


0, if n < |x2|;

1, if n ≥ |x2|;

and

lmx(n) =


1, if n < |x2|;

|xk|, if |xk|+ |xk−1| − 1 ≤ n ≤ |xk+1|+ |xk| − 2 for some k ≥ 2.

More specifically, for all n ≥ 1, a string attractor for x[1, n] is given by

Γn =


{1}, if n < |x2|;

{|xk| − 1, |xk|}, if |xk|+ |xk−1| − 1 ≤ n ≤ |xk+1|+ |xk| − 2 for some k ≥ 2.
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Proof. We start the proof by showing the last part of the statement, i.e., we show that,

for all n ≥ 1, the given Γn is a string attractor for x[1, n]. Observe first that, if n < |x2|,

then x[1, n] = an, so {1} is directly a string attractor. For the case n ≥ |x2|, we will

need the following notations. For all k ≥ 2, using [86, Theorem 3], we factorize the

standard Sturmian word xk into xk = Ckuk where Ck is a palindrome and uk = ab if

k is even and uk = ba if k is odd. We also recall the following observation from [84,

Theorem 2.2.11]: for all k ≥ 3,

x[1, |xk|+ |xk−1| − 2] = xkCk−1 = CkukCk−1,

therefore the previous word is periodic of period |Ck−1|+ 2 = |xk−1|.

Assume now that n ≥ |x2| and let k ≥ 2 be such that |xk| + |xk−1| − 1 ≤ n ≤

|xk+1|+ |xk| − 2 (such a k exists since |x2|+ |x1| − 1 = |x2|). Since x[1, |xk+1|+ |xk| −

2] is periodic of period |xk|, then it is a fractional power of xk. Therefore, using

Proposition 181, it is enough to show that Γn = {|xk| − 1, |xk|} is a string attractor of

the length-(|xk|+ |xk−1| − 1) prefix of x, that we will denote pk.

If k = 2 or k = 3, the conclusion is direct as p2 = x2 = aq0 b and p3 = (aq0 b)q1 aaq0 .

If k ≥ 4, we use the fact that a similar result was proved for the standard Sturmian

words in [90, Theorem 22]. Namely, Γn is a string attractor for xk+1. To show that

Γn is also a string attractor for pk, we will show that w := x[|xk|, |pk|] does not occur

elsewhere in pk. Indeed, this will imply that for each factor of pk its occurrence that

was covered by Γn in xk+1 is an occurrence in pk (also covered by Γn).

Observe that, as k ≥ 3, w = cCk−1c where c is the last letter of uk and the first

letter of uk−1. Note that w is not a suffix of x[1, |pk| − 1] = xkCk−1 as xk ends with

uk = dc, d ̸= c. Therefore, if w is a factor of xkCk−1, it is followed by c since xkCk−1 is

periodic of period |xk−1| = |w|. In particular, Ck−1cc and Ck−1cd = xk−1 are factors

of xkCk−1. This implies that Ck−1c is right special and, by [84], cCk−1 is a prefix of

xk. As Ck−1c is also a prefix of xk, this implies that Ck−1 is periodic of period 1, a

contradiction as k ≥ 4. This ends the proof that w is not a factor of xkCk−1 and, with

it, the proof that Γn is a string attractor of x[1, n].

Moreover, we directly have that Γn is of minimal size and of minimal span among

the string attractors of x[1, n]. It is also a leftmost string attractor as each string



9.3. The Case of Sturmian Words 141

n 1 2 3 4 5 6 7 8
x[1, n] a ab aba abaa abaab abaaba abaabab abaababa

Γn {1} {1, 2} {1, 2} {2, 3} {2, 3} {2, 3} {4, 5} {4, 5}

TABLE 9.1: For n ∈ [1, 8], the length-n prefix of the Fibonacci word
x = abaababaabaab · · · and its leftmost string attractor Γn.

attractor of x[1, n] will contain a position greater than or equal to |xk| to cover w.

This proves the three claimed complexities.

Example 186. Consider the infinite Fibonacci word x = abaababaabaababaa · · · , which is

a characteristic Sturmian word with directive sequence (1)i≥0. In Table 9.1, for 1 ≤ n ≤ 8,

we exhibit the length-n prefixes of x and their respective leftmost string attractor Γn. The

underlined positions in x[1, n] correspond to those in Γn, while the prefixes x[1, n] for n ∈

{1, 2, 3, 5, 8} are standard Sturmian words.

While infinitely many characteristic Sturmian words have the same string at-

tractor profile function (resp., the same span complexity), the leftmost complexity

uniquely determines the characteristic Sturmian word (up to exchanging the letters

a and b, captured by the exchange morphism E).

Proposition 187. If x and y are two characteristic Sturmian words such that lmx = lmy,

then either x = y or x = E(y).

Proof. Let (qi)i≥0 and (pi)i≥0 be two directive sequences and let (xi)i≥0 and (yi)i≥0

be the corresponding sequences of standard Sturmian words. Now consider the

associated characteristic Sturmian words x and y. Without loss of generality, assume

that, up to exchanging a and b, both x and y start with the letter a (i.e., q0, p0 ≥

1). The assumption that lmx = lmy together with Theorem 185 now imply that the

sequences (|xi|)i≥0 and (|yi|)i≥0 are equal. A simple inuction shows that qi = pi for

all i, therefore x = y.

On the other hand, some prefixes of non-characteristic Sturmian words do not

admit any string attractor of span 1, as shown in the following example.

Example 188. Let x = aaaaaabaaaaaabaaaaaaab · · · be the characteristic Sturmian word

associated with the directive sequence (6, 2, . . .). Consider the non-characteristic Sturmian

word x′ such that x = aaaa · x′, hence x′ = aabaaaaaabaaaaaaab · · · . Let us consider the
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prefix x′[1, 14] = aabaaaaaabaaaa. Since b occurs only at positions 3 and 10 and the factor

aaaaaa only in x′[4, 9], the candidates as string attractor with two consecutive positions are

Γ1 = {3, 4} and Γ2 = {9, 10}. However, one can check that the factors aaab and baaaaa do

not cross any position in Γ1 and Γ2 respectively. Nonetheless, there exists a string attractor

of size 2 that does not contain two consecutive positions, i.e., Γ = {4, 10}.

9.3.2 Characterization of Sturmian and Quasi-Sturmian Words

We now turn to the families of Sturmian and quasi-Sturmian words. For each, we

provide a new characterization in terms of both the span and leftmost complexities

of the prefixes.

We start off with Sturmian words.

Theorem 189. An infinite word x is Sturmian if and only if there is no integer C ≥ 1 such

that lmx(n) < C for infinitely many n ≥ 1, and spanx(n) = 1 for infinitely many n ≥ 1.

Proof. For the first implication, let x be a Sturmian word. Since x is aperiodic, Propo-

sition 182 shows that lmx satisfies the statement. We now establish the claimed prop-

erty on spanx. As x is aperiodic and recurrent, it has infinitely many right special

prefixes. Moreover, for every such prefix v, there is a characteristic Sturmian word s

having vR as a prefix [85, Proposition 2.1.23]. Therefore, span(v) = span(vR) = 1 for

all long enough v by Theorem 185 and the proof of [90, Proposition 11].

For the other implication, consider an infinite word x satisfying the assumption.

First, it is aperiodic by Proposition 182. Moreover, by assumption, for all m ≥ 1,

there exists an integer n such that x[1, n] contains all length-m factors and spanx(n) =

1. Therefore, px(m) ≤ m + 1 by Proposition 130. The fact that x is Sturmian follows

from Theorem 9.

We conclude the section with the a novel characterization of quasi-Sturmian

words. Indeed, they are defined as follows [22]: a word x is quasi-Sturmian if there

exist integers d and n0 such that px(n) = n + d, for each n ≥ n0. The infinite words

having factor complexity n + d have been also studied in [59] where they are called

“words with minimal block growth”. To show our result, we will make use of the

following characterization of quasi-Sturmian words [22].
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Theorem 190 ([22]). An infinite word x over the alphabet Σ is quasi-Sturmian if and only

if it can be written as x = wφ(s), where w is a finite word and s is a Sturmian word on the

alphabet {a, b}, and φ is a morphism from {a, b}∗ to Σ∗ such that φ(ab) ̸= φ(ba).

The following theorem shows that constant values for the span complexity at

infinitely many points imply quasi-Sturmian words, i.e., the most repetitive infinite

aperiodic words after the Sturmian words.

Theorem 191. An infinite word x is quasi-Sturmian if and only if there is no constant

C ≥ 1 such that lmx(n) < C for infinitely many n ≥ 1 and there exist a suffix y of x and a

constant C′ ≥ 1 such that spany(n) ≤ C′ for infinitely many n ≥ 1.

Proof. For the first implication, as quasi-Sturmian words are aperiodic by Theorem 9,

lmx satisfies the statement by Proposition 182. In addition, by Theorem 190, there

exists a finite word w, a Sturmian word s, and a morphism φ such that x = wφ(s).

Consider the suffix y = φ(s). By Theorem 189, there are infinitely many integers n

such that spans(n) = 1, and by Proposition 136, there exists a constant C′ ≥ 1 such

that, for all N = |φ(s[1, n])|,

spany(N) = span(φ(s[1, n])) ≤ C′ · span(s[1, n]) = C′.

For the other implication, by Propositions 182 and 183, py(n) = n+ d with d ≤ C′

for all large enough n. Since x = wy for some finite word w, we have px(n) ≤

py(n) + |w| = n + d + |w| for all large enough n. We conclude by Theorem 9 that x

is quasi-Sturmian.
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Chapter 10

String Attractors and k-Bonacci

Like Morphisms

In this chapter, we consider the problem of computing the string attractor based

complexities for the infinite family of words that are fixed points of a k-bonacci like

morphism, a generalization of the Fibonacci morphism which can be defined for al-

phabets of any size.

In Section 10.1, we focus on the stricter and well-known family of k-bonacci

words, and show a detailed structure of the string attractor profile function, span

and leftmost complexities.

Then, in Section 10.2 we show how to generalize these results to fixed points of

k-bonacci like morphisms. As one will observe, the sting attractors for this family

of words yields an interesting relationship with standard notions from the field of

Combinatorics on Words.

Part of the material from this section will be presented at the conference Combi-

natorics on Words (WORDS 2023) [53].

10.1 String Attractor based Complexities for k-Bonacci Words

In this section, we study string attractors of prefixes of some purely morphic words

over an alphabet of size k ≥ 2, namely the so-called k-bonacci words. The case k = 2

corresponds to the famous Fibonacci word1, which is a Sturmian word and for which

1Note that in Example 186, the Fibonacci word is defined on the alphabet {a, b} to match the general
definition of Sturmian words. In this section, for the sake of simplicity, we define it on {0, 1} instead.
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string-attractor related concepts have already been studied. For k = 3, each prefix of

the Tribonacci word admits a string attractor of size at most 3 as shown in [119].

More generally, as k-bonacci words are episturmian, Dvořáková showed that each

prefix admits a string attractor of size at most k [42, Theorem 10]. However, this

result is not constructive in the sense that the string attractors are not explicitly given.

Our contribution is to provide a constructive description of a string attractor of size

at most k for each prefix. Our new approach differs from the techniques used to

obtain string attractors for the Thue–Morse word, the period-doubling word, and

standard Sturmian words, and may well extend to other purely morphic words.

Furthermore we then study the leftmost and the span complexities of the k-bonacci

words.

10.1.1 k-Bonacci Words

Let us consider an integer k ≥ 2 and the morphism µk : {0, . . . , k− 1}∗ → {0, . . . , k−

1}∗ defined by µk(i) = 0(i + 1) for all i ∈ {0, 1, . . . , k − 2} and µk(k − 1) = 0. The

infinite k-bonacci word b(k) is defined as the fixed-point b(k) = µ∞
k (0). The cases k = 2

and k = 3 correspond to the Fibonacci and Tribonacci words respectively.

Further, for all n ≥ 0, we let b(k)
n = µn

k (0) denote the nth finite k-bonacci word. We

also set b(k)
n = ε for all −k ≤ n < 0. For any n ≥ 0, we let B(k)

n = |b(k)
n | denote

the length of the nth finite k-bonacci word. The sequence (B(k)
n )n≥0 will be referred

to as the sequence of k-bonacci numbers. When the context is clear, we will drop the

superscript (k) in all of these notations.

Example 192. For k = 3, we write the first few non empty finite Tribonacci words in

Table 10.1.

n 0 1 2 3 4 5
b(3)

n 0 0 1 01 0 2 0102 01 0 0102010 0102 01 0102010010201 0102010 0102

TABLE 10.1: The first few finite Tribonacci words (b(3)
n )0≤n≤5 (some

particular decomposition is highlighted for a latter purpose, see
Proposition 193).

Another way of seeing the sequence (b(k)
n )n≥−k is the following, which can be

proven by an easy induction. See Table 10.1 for an example with k = 3.
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Proposition 193. We have

b(k)
n =


Ä

∏k
i=1 b(k)

n−i

ä
· n =

Ä
∏n

i=1 b(k)
n−i

ä
· n, if 0 ≤ n ≤ k− 1;

∏k
i=1 b(k)

n−i, if n ≥ k.

For the small values of n, we have a more precise description of b(k)
n .

Lemma 194. For all 1 ≤ n ≤ k, there exists a word un over the alphabet {0, 1, . . . , n− 2}

such that

b(k)
n =


un · (n− 1) · un · n, if 1 ≤ n ≤ k− 1;

un · (n− 1) · un, if n = k.

Moreover, un is of length B(k)
n−1 − 1 thus

B(k)
n =


2B(k)

n−1, if 1 ≤ n ≤ k− 1;

2B(k)
n−1 − 1, if n = k.

Proof. We proceed by induction on n, for any 1 ≤ n ≤ k. For the base case, one

observes that b1 = ε · 0 · ε · 1, thus we can take u1 = ε and |u1| = 0 = B0− 1. Assume

now that the claim is true for n− 1, and let us prove it for n. We have

bn = µk(bn−1) = µk(un−1)µk(n− 2)µk(un−1)µk(n− 1)

=


µk(un−1) · 0(n− 1) · µk(un−1) · 0n if 1 ≤ n ≤ k− 1

µk(uk−1) · 0(k− 1) · µk(uk−1) · 0 if n = k.

Thus, we choose un = µk(un−1)0 which is indeed over the alphabet {0, 1, . . . , n −

2}. In particular, the first occurrence of the letter n − 1 is at index |un| + 1. By

the induction hypothesis, it also coincides with the last letter of bn−1 thus |un| =

Bn−1 − 1.
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We now define two sequences of integers (Pn(k))n≥0 and (Qn(k))n≥0 linked to k-

bonacci numbers that will help us partition N. For all n ≥ 0, we set

Pn(k) =


B(k)

n , if n ≤ k;

B(k)
n + B(k)

n−k−1 − 1, otherwise;

and Q(k)
n = ∑n

i=0 B(k)
i . Observe that, if n ≥ k+ 1, then P(k)

n =
Ä

∑n−1
i=n−k−1 B(k)

i

ä
− 1 and if

n ≤ k− 1, then Q(k)
n = 2B(k)

n − 1. Moreover, if n ≥ k, B(k)
n+1 = ∑n

i=n−k+1 Bi ∈ [P(k)
n , Q(k)

n ].

Example 195. When k = 3, we obtain (P(3)
n )n≥0 = 1, 2, 4, 7, 13, 25, 47, 87, . . . and (Q(3)

n )n≥0 =

1, 3, 7, 14, 27, 51, 95, 176, . . . .

For any k ≥ 2, one can show that (Q(k)
n )n≥0 gives the lengths of palindromic

prefixes of the k-bonacci word (note that the case k = 3 gives the sequence [123,

A027084]).

Lemma 196. For all m ≥ 1, there exists at least one index n ≥ 0 such m ∈ [P(k)
n , Q(k)

n ].

Proof. Since P0 = 1 and the sequences are increasing, it suffices to show that Pn+1 ≤

Qn + 1 for all n ≥ 0. Let us assume first that 0 ≤ n ≤ k− 1. Lemma 194 implies that

Qn = ∑n
i=0 Bi = ∑n

i=0 2i = 2n+1 − 1. By Lemma 194 again, we obtain

Pn+1 =


2n+1, if 0 ≤ n ≤ k− 2;

2n+1 − 1, if n = k− 1.

The inequality Pn+1 ≤ Qn + 1 easily follows in this case. Now assume n ≥ k. We

have

Qn =
n

∑
i=0

Bi =
n−k−1

∑
i=0

Bi + Bn−k + Bn+1 > Pn+1.

10.1.2 String attractor profile function

We study the string attractor profile function of the k-bonacci word b(k), by first

looking at string attractors of small prefixes, then long ones. For all 1 ≤ m ≤ Q(k)
k−1,

we obtain a smallest string attractor of size at most k for the length-m prefix of b(k).

Proposition 197. For all 0 ≤ n ≤ k − 1, Γn = {B(k)
0 , . . . , B(k)

n } is a minimum string

attractor for b(k)[1, m] for all m ∈ [P(k)
n , Q(k)

n ].
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Proof. First, notice that, by Lemma 194, the letters at positions B0, B1, . . . , Bn are re-

spectively 0, 1, . . . , n thus, if Γn is a string attractor, it is minimum. Let us prove that

it is a string attractor for the given prefixes.

For n = 0, the interval [Pn, Qn] is the singleton {1} thus the only prefix to con-

sider is the prefix of length 1 and the conclusion is direct. Let us now assume that

the claim is true for n− 1 and let m ∈ [Pn, Qn]. As Pn = Bn and Qn = 2Bn − 1 using

Lemma 194, the word b[1, m] can be written as un+1 · n · p with un+1 = b[1, Pn) and

p a prefix of un+1. Moreover, since n ≤ k − 1, we have Qn−1 = Pn − 1 so un+1 =

b[1, Qn−1]. By the induction hypothesis, Γn−1 is a string attractor for b[1, Qn−1],

therefore Γn = Γn−1 ∪ {Bn} is a string attractor for un+1 · n. We conclude by Propo-

sition 181 that Γn is a string attractor for b[1, m].

Just as for shorter prefixes, we will use Proposition 181 to obtain strings attractors

for longer prefixes of the k-bonacci word. To that aim, we will study prefixes that are

fractional powers.

Proposition 198. For all n ≥ 0, b(k)[1, Q(k)
n ] = ∏n

i=0 b(k)
n−i. Moreover, b(k)[1, Q(k)

n ] is a

fractional power of b(k)
n .

Proof. For n = 0, we directly have b[1, Q0] = b[1, 1] = b0, so both claims hold in this

case. Assume now that the result is true for n and let us prove it for n + 1. By the

induction hypothesis, we have

µk(b[1, Qn]) = µk

Ç
n

∏
i=0

bn−i

å
=

n

∏
i=0

bn+1−i.

As b is a fixed point of µk, µk(b[1, Qn]) is a prefix of b and it is followed by the image

of a letter. Thus it is followed by a letter 0, and

b[1, Qn+1] = b

ñ
1,

n+1

∑
i=0

Bi

ô
=

Ç
n

∏
i=0

bn+1−i

å
· 0 =

n+1

∏
i=0

bn+1−i.

Moreover, since b[1, Qn] is a fractional power of bn by the induction hypothesis,

so is b[1, Qn] · a for some letter a ∈ {0, 1, . . . , k− 1}. By applying the morphism µk on

both words, we can conclude that b[1, Qn+1] = µk(b[1, Qn]) · 0 is a fractional power

of bn+1 = µk(bn).
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Using Proposition 181, we then directly have the following corollary.

Corollary 199. For all n ≥ k, if Γ is a string attractor for b(k)[1, P(k)
n ] and if B(k)

n ∈ Γ,

then Γ is a string attractor for b(k)[1, m] for all m ∈ [P(k)
n , Q(k)

n ]. In particular, Γ is a string

attractor for b(k)
n+1.

We now exhibit a minimum string attractor of size k for all long enough prefixes

of b(k).

Proposition 200. Let n ≥ k. The set Γn = {B(k)
n−k+1, . . . , B(k)

n } is a minimum string

attractor for b(k)[1, P(k)
n ].

Proof. Notice that, as Pn ≥ Bk, the word b[1, Pn] contains k different letters, which

implies that, if Γn is a string attractor, it is minimum. We prove that it is a string

attractor by induction on n ≥ k. More precisely, we prove two claims during the

induction step:

1. Γn−1 is a string attractor for bn;

2. Γn is a string attractor for b[1, Pn].

As will become clear later on, we will use the first claim to prove the second.

Let us prove the first claim. If n = k, Proposition 197 implies that Γk−1 is a string

attractor for bk since Bk = 2Bk−1 − 1 by Lemma 194. If n ≥ k + 1, by the induction

hypothesis, Γn−1 is a string attractor for b[1, Pn−1]. By Corollary 199, Γn−1 is also a

string attractor for bn.

Let us prove the second claim. Observe that, since the finite k-bonacci words

are prefixes of each others, b[1, Pn] = bnu, where u = ε if n = k or u is bn−k−1

without its last letter if n ≥ k + 1. By Proposition 181, we deduce from the previous

factorization and the first claim that Γn−1 ∪ {Bn} = Γn ∪ {Bn−k} is a string attractor

for b[1, Pn]. Thus, to prove the second claim, it remains to show that the position

Bn−k is not needed in the string attractor, i.e., the factors of b[1, Pn] that are covered

by position Bn−k are still covered by Γn. As the first position in Γn is Bn−k+1, it

suffices to consider the factor occurrences crossing position Bn−k in b[1, Bn−k+1). As

b[1, Bn−k+1) is bn−k+1 without its last letter, Proposition 193 implies that they are

occurrences in
k

∏
i=1

bn−k+1−i = bn−kbn−k−1

k

∏
i=3

bn−k+1−i.
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Note that bn−ku is a prefix of this word. We consider two cases: either the consid-

ered occurrence is entirely contained in bn−ku or it crosses position Bn−k + Bn−k−1.

Observe that, if n ≥ k + 1, these two cases are mutually exclusive.

Case 1. Since bn−k is a suffix of bn by Proposition 193, the factors having an oc-

currence in bn−ku crossing position Bn−k have an occurrence in bnu crossing position

Bn, so they are covered by Γn. See Figure 10.1.

b[1, Pn] = bn u

bn−k u

Bn−k

bn−k u

Bn

FIGURE 10.1: Case 1 in the proof of Proposition 200.

Case 2. Similarly, by Proposition 193, bn−kbn−k−1 is a suffix of bn−1 and ∏k
i=3 bn−k+1−i =

∏k−2
i=1 bn−k−1−i is a prefix of bn−k−1, so of bn−2 (again the finite k-bonacci words are

prefixes of each others). As bn−1bn−2 is a prefix of bn, we conclude that the factors

having an occurrence in b[1, Bn−k+1) crossing position Bn−k + Bn−k−1 have an oc-

currence in bn crossing position Bn−1, so they are covered by Γn. See Figure 10.2.

b[1, Pn] = bn−1 bn−2 · · · bn−k u

bn−kbn−k−1 v

Bn−k + Bn−k−1

bn−kbn−k−1 v

Bn−1

FIGURE 10.2: Case 2 in the proof of Proposition 200 with v =

∏k
i=3 bn−k+1−i.

Putting together Propositions 197 and 200 and Corollary 199 , we explicitly ob-

tain strings attractors for prefixes of the k-bonacci word.

Theorem 201. For all n ≥ 0, the set

Γn =


{B(k)

0 , . . . , B(k)
n }, if n ≤ k− 1;

{B(k)
n−k+1, . . . , B(k)

n }, if n ≥ k;
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is a minimum string attractor for b(k)[1, m], for all m ∈ [P(k)
n , Q(k)

n ]. In particular, the string

attractor profile function for b(k) is given by

sb(k)(n) =


i + 1, if B(k)

i ≤ n < B(k)
i+1 for some i ≤ k− 2;

k, if n ≥ B(k)
k−1.

Remark 202. Observe that, in the Tribonacci case, our sequence (Q(3)
n )n≥0 is related to the

sequence (Wn)n≥4 defined in [119, Theorem 6] as follows: we have Wn+3 = Q(3)
n+1 for all

n ≥ 1. Therefore, our upper bound and that of Schaeffer and Shallit [119, Theorem 6]

coincide, as well as the elements in the string attractors. However, our lower bounds are

smaller than theirs. On the other hand, the string attractors obtained for the palindromic

prefixes in [42] are different from ours. For instance, the case k = 3 is treated in [42,

Example 8].

10.1.3 Leftmost complexity

We can further prove that the string attractor from Theorem 201 is actually a leftmost

string attractor. For the purpose of the next few results, we set Q(k)
−1 = 0.

Proposition 203. The leftmost complexity of b(k) satisfies lmb(k)(m) = B(k)
n for all n ≥ 0

and m ∈ [Q(k)
n−1 + 1, Q(k)

n ].

Proof. We show that the factor b[Bn, Qn−1 + 1] does not occur in b before position

Bn. This implies that, for all m ≥ Qn−1 + 1, any string attractor of b[1, m] contains

a position at least equal to Bn and, combined with Theorem 201, proves the claimed

leftmost complexity.

The claim is direct for n = 0 as B0 = 1 = Q−1 + 1. Assume now that it is true

for n and let us prove it for n + 1. By construction, the Bn+1th letter of b is the last

letter of the image of the Bnth letter under µk, and, by Proposition 198, b[Bn+1 +

1, Qn + 1] is the image of b[Bn + 1, Qn−1 + 1], potentially followed by a letter 0 (this

occurs when b[Bn, Qn−1 + 1] ends with the letter k− 1). Therefore, each occurrence

of b[Bn+1, Qn + 1] in b is associated with the image of an occurrence of b[Bn, Qn−1 +

1]. Using the induction hypothesis, we conclude that b[Bn+1, Qn + 1] does not occur

before position Bn+1.
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10.1.4 Span complexity

For the k-bonacci words b(k), the factor complexity function is given by pb(k)(n) =

(k− 1)n+ 1. Therefore, when k ≥ 3, Proposition 184 implies that the span complexity

is linear. However, the string attractors described in Section 10.1.2 do not have the

smallest difference between their extreme positions. In what follows, we compute

the span for infinitely many prefixes and describe string attractors (of unbounded

size) having that span.

We first make the following observation which gives a lower bound on the span.

Recall that we have set Q(k)
−1 = 0.

Proposition 204. Let k ≥ 2. For all n ≥ 2, the factors b(k)[i, i + Q(k)
n−3] are distinct for all

i ∈ [B(k)
n−2 + 1, B(k)

n ].

Proof. Let us prove the result by induction on n. For n = 2, we need to consider the

letters in u = b[2, B2]. If k = 2, then u = 10 and if k ≥ 3, then u = 102 so all the

letters are indeed distinct.

Let us now assume that the claim is true for n ≥ 2 and let us prove it for n+ 1. We

proceed by contradiction and assume that there exist i, j ∈ [Bn−1 + 1, Bn+1] minimal

such that i < j and b[i, i + Qn−2] = b[j, j + Qn−2]. As Bn−1 + 1 marks the beginning

of the image of a letter in b and i and j are taken minimal, we know that the factor

u = b[i, i + Qn−2] = b[j, j + Qn−2] begins with 0. We may assume that it also does

not end with 0. Indeed, otherwise, we consider the word u = b[i, i + Qn−2 − 1] =

b[j, j + Qn−2 − 1] instead.

As the word u starts with 0, there exist i′ < j′ such that µk(b[1, i′− 1]) = b[1, i− 1]

and µk(b[1, j′ − 1]) = b[1, j− 1]. Moreover, as Qn−2 + 1 ≥ 2 and as u does not end

with a 0, it can be uniquely desubstituted (i.e., its preimage under µk is unique).

There thus exists ℓ such that b[i′, i′ + ℓ] = b[j′, j′ + ℓ] and µk(b[i′, i′ + ℓ]) = u.

As |µk(b[1, i′ − 1])| = i− 1 ∈ [Bn−1, Bn+1 − 1], we have i′ ∈ [Bn−2 + 1, Bn]. The

same holds for j′. Therefore, by the induction hypothesis, we have b[i′, i′ + Qn−3] ̸=

b[j′, j′ + Qn−3]. Let us take ℓ′ ∈ [ℓ, Qn−3 − 1] maximal such that b[i′, i′ + ℓ′] =

b[j′, j′ + ℓ′] and let us denote v = b[i′, i′ + ℓ′]. By maximality of ℓ′, v is right-special.

Moreover, the set of factors of b is stable under reversal [38, Theorem 5], i.e., the

reversal of any factor of b is also a factor. In particular, vR is a left-special factor of b.
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Furthermore, the left-special factors of b are exactly its prefixes [38, Proposition 5],

so vR is a prefix of b and also of b[1, Qn−3] as ℓ′ ≤ Qn−3 − 1. However, we have

|µk(vR)| = |µk(v)| ≥ |µk(b[i′, i′ + ℓ])| ≥ Qn−2

by definition of ℓ. This is a contradiction as, by Proposition 198, we have |µk(vR)| ≤

|µk(b[1, Qn−3])| < Qn−2.

We now describe a new string attractor for prefixes of the k-bonacci word.

Proposition 205. Let k ≥ 2. For all n ≥ 1 and for all m ∈ [Q(k)
n−1 + 1, Q(k)

n ], Γn =

{Q(k)
n−2 + 1, Q(k)

n−2 + 2, . . . , B(k)
n } is a string attractor of b(k)[1, m].

Proof. We proceed by induction on n ≥ 1. For the base case n = 1, the interval

[Q1−1 + 1, Q2] becomes [2, 3], and Γ1 = {1, 2}, so the conclusion follows.

Now assume that the result is true for n ≥ 1 and we show it also holds for n + 1.

To do so, we will use the following observation. From Proposition 198 and [3, Propo-

sition 4.4], one may prove that b[1, Qn] is a palindrome for all n ≥ −1. By the induc-

tion hypothesis, Γn is a string attractor for b[1, Qn]. As this word is a palindrome, it

also has the string attractor

ΓR
n = {Qn + 1− Bn, . . . , Qn + 1−Qn−2 − 1} = {Qn−1 + 1, . . . , Bn + Bn−1}.

In particular, Γn+1 ⊇ ΓR
n is a string attractor of b[1, Qn] when Bn+1 ≤ Qn. If Bn+1 >

Qn, then n ≤ k− 1 and Bn+1 = Qn + 1, so Γn+1 is a string attractor of b[1, Qn + 1]. In

both cases, Propositions 181 and 198 imply that Γn+1 is a string attractor of b[1, m]

for all m ∈ [Qn + 1, Qn+1].

Corollary 206. Let k ≥ 2. For all n ≥ 2 and for all m ∈ [Q(k)
n − B(k)

n−1 − B(k)
n−2, Q(k)

n ], we

have spanb(k)(m) = B(k)
n − Q(k)

n−2 − 1. In particular, for infinitely many prefixes, the bound

given by Proposition 130 is tight for well-chosen lengths of factors.

Proof. Using Propositions 204 and 130, we know that for m ≥ Bn + Qn−3, we have

spanb(m) ≥ Bn − Bn−2 − Qn−3 − 1 = Bn − Qn−2 − 1. Observe that Bn + Qn−3 =

Qn − Bn−1 − Bn−2. On the other hand, using Proposition 205, we know that for

m ∈ [Qn−1 + 1, Qn], we have spanb(m) ≤ Bn −Qn−2 − 1.



10.2. General Case of Fixed-Points of k-Bonacci-like Morphisms 155

If k ≥ 3, then Bn + Qn−3 ≥ Qn−1 + 1 so, for all m ∈ [Qn − Bn−1 − Bn−2, Qn], we

have spanb(m) = Bn−Qn−2− 1, as desired. It remains to consider k = 2. In that case,

Bn − Qn−2 − 1 = 1 for all n therefore spanb(m) ≥ 1 for all m ≤ 3 and spanb(m) ≤ 1

for all m ≤ 2. Therefore, the conclusion follows for all m ≥ 3.

Observe that, for the Fibonacci word, we once again obtain that spanb(2) = 1, as

in Theorem 185.

10.2 General Case of Fixed-Points of k-Bonacci-like Morphisms

In this section, we generalize some of the results obtained for the string attractor

profile function in Section 10.1 to the larger family of words which are fixed points

of k-bonacci like morphisms.

To do so, we first introduce in Subsection 10.2.1 some notions related to Combi-

natorics on Words that will be used throughout the chapter, and we further describe

the structure and properties of the fixed points of the k-bonacci like morphisms.

Then, in Subsection 10.2.2 we introduce definitions from the theory of Numera-

tion Systems [115], which will be used in Subsection 10.2.3 to obtain a greedy pro-

cedure to compute a string attractor of bounded size for any prefix of the words

considered.

10.2.1 k-Bonacci like Words and Morphisms

A celebrated result in combinatorics on words is that Lyndon words form a so-called

complete factorization of the free monoid.

Theorem 207 (Chen-Fox-Lyndon [29]). For every non-empty word w ∈ A∗, there exists

a unique factorization (ℓ1, · · · , ℓn) of w into Lyndon words over A such that ℓ1 ≥ ℓ2 ≥

· · · ≥ ℓn.

Several variations of Lyndon words have been considered lately: generalized

Lyndon [114], anti-Lyndon [52], inverse Lyndon [14], and Nyldon [28]. In this text,

we will use the second.

Definition 208. Let (A,≤) be a totally ordered alphabet. We let ≤− denote the inverse

order on A, i.e., b <− a if and only if a < b for all a, b ∈ A. We also let ≤− denote the
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TABLE 10.2: Construction of the sequences (un)n≥0 and (Un)n≥0 for
c = 102

n 0 1 2 3 4 5
un 0 01 012 01200 012000101 012000101012012

fact. of un 0 u1
0 · 1 u1

1u0
0 · 2 u1

2u0
1u2

0 u1
3u0

2u2
1 u1

4u0
3u2

2
Un 1 2 3 5 9 15

inverse lexicographic order which is the lexicographic order induced by ≤−. A word is

anti-Lyndon if it is Lyndon with respect to the inverse lexicographic order.

Otherwise stated, a word is anti-Lyndon if it is primitive and lexicographically

maximal among its conjugates.

Example 209. Let A = {0, 1} with 0 < 1, so 1 <− 0. The first few anti-Lyndon words,

ordered by length, are 1, 0, 10, 110, 100, 1110, 1100, and 1000.

In this section, we consider a specific family of morphisms defined as follows.

Note that they appear under the name generic k-bonacci morphisms in [115, Exam-

ple 2.11].

Definition 210. Let k ≥ 2 be an integer and let c0, . . . , ck−1 ∈ N be k parameters often

summarized in the shape of a word c = c0 · · · ck−1 ∈ Nk. The morphism µc : {0, . . . , k−

1}∗ → {0, . . . , k − 1}∗ is given by µc(i) = 0ci · (i + 1) for all i ∈ {0, . . . , k − 2} and

µc(k− 1) = 0ck−1 . For all n ≥ 0, we then define uc,n = µn
c (0) and Uc,n = |uc,n|. Moreover,

we refer with k-bonacci like morphism and k-bonacci like finite word to the morphism

µc and the words un respectively, for every k ≥ 2, n ≥ 0, and c ∈Nk.

When the context is clear, we will usually omit the subscript c in Definition 210.

Example 211. When c = 1k, we recover the k-bonacci morphism and words. For k = 3 and

c = 102, the first few iterations of the corresponding morphism µc : 0 7→ 01, 1 7→ 2, 2 7→ 00

are given in Table 10.2. Some specific factorization of the words (uc,n)n≥0 is highlighted in

Table 10.2.

The factorization presented in the previous example can be stated in general. It

gives a recursive definition of the words (uc,n)n≥0 and can be proven using a simple

induction.

Proposition 212. Given an integer k ≥ 2, let c ∈Nk, and let µc : [0, k− 1]∗ 7→ [0, k− 1]∗

and un, for all n > 0, be the associated morphism and words from Definition 210. For all
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c = c0 · · · ck−1 ∈Nk and all n ≥ 0, we have

un =


Ç

n−1

∏
i=0

uci
n−i−1

å
· n, if n ≤ k− 1;

k−1

∏
i=0

uci
n−i−1, if n ≥ k.

As a consequence of Proposition 212, the sequence (Un)n∈N respects the follow-

ing recurrence relation: if 0 ≤ n ≤ k− 1, then Un = 1 + ∑n−1
i=0 ciUn−i−1, and if n ≥ k,

then Un = ∑k−1
i=0 ciUn−i−1.

In the rest of the paper, we will assume the following working hypothesis (WH)

on c:

c = c0 · · · ck−1 ∈Nk with c0, ck−1 ≥ 1. (WH)

The condition ck−1 ≥ 1 ensures both that the recurrence relation is of order k and

that the morphism µc is non-erasing, which is a classical assumption in combina-

torics on words. Moreover, the condition c0 ≥ 1 guarantees that µc is prolongable.

Under (WH), the morphism µc has an infinite fixed point starting with 0 denoted

u := limn→∞ un.

We make the following combinatorial observation.

Remark 213. Under (WH), using Proposition 212, a simple induction shows that the letter

1 ≤ i ≤ k− 1 can only be followed by 0 and/or i + 1 (and only 0 in the case i = k− 1) in u.

10.2.2 Fun with Numeration Systems

In this subsection, specific definitions will be recalled. For the reader unfamiliar with

the theory of numeration systems, we refer to [12, Chapter 2] for an introduction and

some advanced concepts.

A numeration system (for natural numbers) can be defined as a triple S = (A, repS , L),

where A is an alphabet and repS : N → A∗ is an injective function such that

L = repS (N). The map repS is called the representation function and L is the nu-

meration language. If repS (n) = w for some integer n ∈ N and some word w ∈ A∗,

we say that w is the representation (in S) of n and we define the valuation (in S) of w

by valS (w) = n. Note that, when the context is clear, we omit the subscript S in rep

and val.
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TABLE 10.3: Illustration of the numeration system Sc for c = 102
n 0 1 2 3 4 5 6 7 8

u[0, n) ε 0 01 012 012 · 0 01200 01200 · 0 01200 · 01 01200 · 01 · 0
repSc

(n) ε 1 10 100 101 1000 1001 1010 1011

Any given prolongable morphism naturally gives rise to a numeration system

that we will call the associated Dumont-Thomas numeration system [39]. These are

based on particular factorizations of the prefixes of the fixed point. Here we give

only the definition of the for the case of morphisms treated in this chapter.

Proposition 214 ([39]). Let c satisfy (WH). For all n ∈ N, there exist unique integers

N, ℓ0, . . . , ℓN ∈ N such that ℓ0 ≥ 1, u[0, n) = uN
ℓ0 · · · uℓN

0 , and this factorization verifies

the following: uN+1 is not a prefix of u[0, n) and, for all 0 ≤ i ≤ N, uℓ0
N · · · u

ℓi−1
N−i+1uℓi+1

N−i is

not a prefix of u[0, n).

Recall that a numeration system based on a suitable sequence of integers (Un)n≥0

is called greedy when, at each step of the decomposition of any integer, the largest

possible term of the sequence (Un)n≥0 is chosen; formally, we use the Euclidean al-

gorithm in a greedy way. As the conditions on the factorization in the previous

proposition resemble that of greedy representations in numeration systems, we will

refer to it as being word-greedy.

For a given c satisfying (WH), we then let Sc denote the numeration system as-

sociated with the representation function repSc
: N → N∗ mapping n to repSc

(n) =

ℓ0 · · · ℓN , where the integers ℓ0, . . . , ℓN verify the conditions of Proposition 214 for n.

By convention, we set repSc
(0) = ε.

Example 215. Using Example 211 for c = 102, the representations of the first few integers

are given in Table 10.3. The word-greedy factorization of each prefix is highlighted in the

second row, leading to the representation of the corresponding integer in the third row.

Remark 216. If repSc
(n) = ℓ0 · · · ℓN , then n = |uℓ0

c,N · · · u
ℓN
c,0| = ∑N

i=0 ℓiUc,N−i. In other

words, valSc is given by the usual valuation function associated with the sequence (Uc,n)n∈N.

Such a system is sometimes called a positional numeration system. Note that this is not

necessarily the case for the Dumont-Thomas numeration system associated with some other

morphism.

The Dumont-Thomas numeration systems are a particular case of abstract nu-

meration systems introduced in [80]. A numeration system S = (A, rep, L) is said
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to be abstract if L is regular and rep(n) is the (n + 1)st word of L in the genealogical

order. We have the following result.

Theorem 217 (Rigo [115, Section 2.2]). Let σ : {α0, . . . , αd}∗ → {α0, . . . , αd}∗ be a

morphism prolongable on the letter α0. We define the automaton Aσ for which {α0, . . . , αd}

is the set of states, α0 is the initial state, every state is final, and the (partial) transition

function δ is such that, for each α ∈ {α0, . . . , αd} and 0 ≤ i ≤ |σ(α)| − 1, δ(α, i) is

the (i + 1)st letter of σ(α). If S = (A, rep, L) is the Dumont-Thomas numeration system

associated with σ, then L = L(Aσ) \ 0N∗ and rep(n) is the (n + 1)st word of L in the

genealogical order.

Example 218. For c = 102, the automaton Aµc of Theorem 217 is depicted in Figure 10.3

(details are left to the reader). The first few accepted words (not starting with 0) are, in

genealogical order, ε, 1, 10, 100, 101, 1000, 1001, 1010, and 1011, which indeed agree with

the representations of the first few integers in Example 215.

0 1 2

0

1 0

0, 1
FIGURE 10.3: The automaton Aµc for c = 102

As the automaton in Theorem 217 can be used to produce, for all n ≥ 0, the letter

un when reading repSc
(n) by [115, Theorem 2.24], we have the following.

Corollary 219. Let c satisfy (WH). Then the sequence u is Sc-automatic.

Similarly to what is usually done in real base numeration systems, we will let

d⋆ denote the periodization of c, that is, d⋆ = (c0 · · · ck−2(ck−1 − 1))ω. Using Theo-

rem 217, we deduce the next result.

Lemma 220. Under (WH), for all n ≥ 0, we have repSc
(Un) = 10n, the numbers having a

representation of length n + 1 are those in [Un, Un+1), and repSc
(Un+1 − 1) = d⋆[0, n]. In

particular, Un+1 − 1 = ∑n
i=0 d⋆

i Un−i.

Proof. The first claim directly follows by the definition of Sc, and the second one

by the genealogical order. The number Un+1 − 1 is then represented by the maxi-

mal length-(n + 1) word accepted by the automaton Aµc , which is the length-(n + 1)

prefix of d⋆.
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Note that, if the numeration system Sc satisfies the greedy condition, this result

follows from the characterization of numeration systems in terms of dynamical sys-

tems given by Bertrand-Mathis [13, 27]. However, even though the function repSc
is

obtained using the word-greedy factorization of prefixes of u, the numeration sys-

tem Sc is not necessarily greedy as the following example shows.

Example 221. In Example 211 for c = 102, we see that u[0, 14) = 012000101 · 012 · 01,

so repSc
(14) = 10110, while the greedy representation of 14 associated with the sequence

(Un)n∈N is 11000.

In fact, we have the following two characterizations.

Lemma 222. Let c satisfy (WH). The numeration system Sc = (A, repSc
, L) is greedy if

and only if, for all v ∈ L and for all i ≤ |v|, the suffix of length i of v is smaller than or equal

to d⋆[0, i). Moreover, we then have

L = {v = v1 · · · vn ∈N∗ \ 0N∗ | ∀ 1 ≤ i ≤ n, vn−i+1 · · · vn ≤ d⋆[0, i)}.

Proof. Let us denote S = (A′, repS , L′) the canonical greedy numeration system as-

sociated with the sequence (Un)n∈N. In particular, by uniqueness, Sc is greedy if

and only if Sc = S . As Sc is an abstract numeration system, repSc
respects the ge-

nealogical order, i.e., n ≤ m if and only if repSc
(n) ≤gen repSc

(m). So does repS

by [12, Proposition 2.3.45]. Hence, Sc = S if and only if L = L′. Moreover, for all

n ≥ 0, repS (Un) = 10n, so L and L′ contain the same number of length-n words by

Lemma 220. Thus L = L′ if and only if L ⊆ L′. The statement holds since, by [60,

Lemma 5.3] and by Lemma 220, we have

L′ = {v = v1 · · · vn ∈N∗ \ 0N∗ | ∀ 1 ≤ i ≤ n, vn−i+1 · · · vn ≤ d⋆[0, i)}.

Theorem 223. Let c = c0 · · · ck−1 ∈ Nk with c0, ck−1 ≥ 1. The numeration system Sc is

greedy if and only if c0 · · · ck−2(ck−1− 1) is lexicographically maximal among its conjugates.

Proof. Using Lemma 222 and Theorem 217, Sc is greedy if and only if, for all n ∈ N

and for all 0 ≤ i ≤ k− 1, any path ℓ0 · · · ℓn starting in State i in the automaton Aµc
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is such that ℓ0 · · · ℓn ≤ d⋆[0, n]. However, by definition of Aµc , the lexicographi-

cally biggest path of length n starting in state i is given by the prefix of length n of

(ci · · · ck−2(ck−1 − 1)c0 · · · ci−1)ω. We can therefore conclude that Sc is greedy if and

only if ci · · · ck−2(ck−1 − 1)c0 · · · ci−1 ≤ c0 · · · ck−2(ck−1 − 1) for all 0 ≤ i ≤ k− 1, i.e.,

c0 · · · ck−2(ck−1 − 1) is maximal among its conjugates.

Observe that the condition of the previous result is equivalent to the fact that

c0 · · · ck−2(ck−1 − 1) = vℓ for some anti-Lyndon v (in fact, v is the primitive root).

Example 224. Let k = 4 and c = 1011. In this case, c0c1c2(c3 − 1) = 1010 = v2 with

v = 10, which is anti-Lyndon (see Example 209). The sequence Un satisfies the recurrence

relation Un+4 = Un+3 + Un+1 + Un with initial conditions U0 = 1, U1 = 2, U2 = 3, and

U3 = 5. A simple induction shows that (Un)n∈N is in fact the sequence of Fibonacci num-

bers. Therefore the numeration system Sc corresponds to the classical Fibonacci numeration

system, which can also be obtained with the parameter c = 11.

The observation made in the previous example is more general.

Remark 225. Let c satisfy (WH). If c0 · · · ck−2(ck−1 − 1) = vℓ with v anti-Lyndon, we

define the word v′ := v1 · · · v|v|−1(v|v| + 1) (simply put, we add 1 to the last letter of v).

Then c = vℓ−1v′ is a “partial” cyclization of v′. In particular, since d⋆
c = d⋆

v′ (where the

dependence of d⋆ on the chosen parameters is emphasized via a subscript), the numeration

systems Sc and Sv′ coincide by Lemma 220.

For the reader familiar with the general theory of numerations, v′ satisfies v′i · · · v′|v| < v′

for all indices i ∈ {2, . . . , |v|}. This implies that v′ is the β-expansion dβ(1) of 1 for a simple

Parry number β [107]. Therefore, c is also a representation of 1 in base β.

Example 226. We illustrate the previous remark by resuming Example 224. We have v =

10 and v′ = 11. The corresponding simple Parry number is the Golden ratio φ. Observe

that indeed c = vv′ = 1011 is a representation of 1 in base φ.

10.2.3 Link to String Attractors

Using the results and concepts of the previous sections, we now turn to the concept

of string attractors in relation to the fixed points of the morphisms µc, c ∈ Nk. We
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recall that a string attractor of a finite word w ∈ An is a set Γ ⊆ [1, n] of positions

such that every factor of w has an occurrence crossing a position in Γ.

Example 227. The set {2, 3, 4} is a string attractor of the word 0 1 2 0 0 1. Indeed, it suf-

fices to check that the factors 0, 1 and 01 have an occurrence crossing one of the underlined

positions. No smaller string attractor exists since at least one position in the set is needed

per different letter in the word.

Given an infinite word x and any integer n ≥ 1, we let sx(n) denote the size of

a smallest string attractor for the length-n prefix of x. The function sx : n 7→ sx(n) is

called the string attractor profile function of x [119].

Warning. We would like to stress the following crucial point: in this section of the

thesis, the letters of infinite words are indexed starting from 0 while the positions in

a string attractor are counted starting at 1. This could be seen as confusing, but here

we use standard notation for infinite words in the field of Combinatorics on Word.

Where ambiguity may occur, we explicitly declare how finite words are indexed.

As we will look at prefixes of infinite words, it is natural to wonder if there is a

link between the string attractors of the finite words w and wa, where a is a letter. In

general, there is no trivial link although we have the result from Proposition 181 on

the string attractor for fractional powers.

Since the considered infinite words are the limits of the sequence (un)n∈N, we are

interested in the prefixes which are fractional powers of some un.

Definition 228. Let c satisfy (WH). For all n ≥ 0, we let qn denote the longest prefix of u

that is a fractional power of un, i.e., the longest common prefix between u and (un)ω. For all

n ≥ 0, we also let Qn = |qn|.

The words defined above have a particular structure as stated below.

Proposition 229. Let c satisfy (WH). Define a as the infinite concatenation of the longest

anti-Lyndon prefix of the word c0 · · · ck−2. Then for all n ≥ 0, qn = ua0
n ua1

n−1 · · · u
an
0 . In

particular, Qn = ∑n
i=0 aiUn−i.

Example 230. Let us pursue Example 211 for which c = 102. The first few words in (qn)n≥0

are 0, 01, 0120, 0120001, 0120001010120. The longest anti-Lyndon prefix of c0c1 = 10 is 10

itself so a = (10)ω. We can easily check that the first few qn’s indeed satisfy Proposition 229.
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Lemma 231. Let c satisfy (WH). Then c0 · · · ck−2 ≥ a[0, k− 2].

Proof. Assume the contrary and let w be the longest anti-Lyndon prefix of c0 · · · ck−2.

If |w| ≤ i ≤ k − 2 is the smallest index such that c0 · · · ci < a[0, i], then c0 · · · ci =

wℓva with v a proper prefix of w, a a letter, and va < w. So [41, Lemme 2] implies

that c0 · · · ci is an anti-Lyndon prefix of c0 · · · ck−2. As i ≥ |w|, this contradicts the

definition (maximality) of w.

We now show how the condition obtained for the greediness of the numeration

system is related to the notions we have just defined.

Proposition 232. Let c satisfy (WH). If c0 · · · ck−2(ck−1 − 1) is lexicographically maximal

among its conjugates, then d⋆[0, n] ≤ a[0, n] for all n ≥ 0.

Proof. Let w denote the longest anti-Lyndon prefix of c0 · · · ck−2. We first show that

c0 · · · ck−2(ck−1− 1) ≤ a[0, k− 1]. If it is not the case, there exist ℓ ≥ 1, a proper prefix

u of w, a letter a and a word v such that c0 · · · ck−2(ck−1 − 1) = wℓuav and ua > w.

Then uavwℓ > c0 · · · ck−2(ck−1 − 1), so c0 · · · ck−2(ck−1 − 1) is not maximal among

its conjugates. This is a contradiction. Therefore we have c0 · · · ck−2(ck−1 − 1) ≤

a[0, k− 1]. By Lemma 231, we get c0 · · · ck−2 = a[0, k− 2] and ck−1 − 1 ≤ ak−1.

We now prove that d⋆[0, n] ≤ a[0, n] for all n ≥ 0. If ck−1 − 1 < ak−1, then the

conclusion is direct. If ck−1− 1 = ak−1, then c0 · · · ck−2(ck−1− 1) is a fractional power

of w so there exist ℓ ≥ 1 and u a proper prefix of w such that c0 · · · ck−2(ck−1 − 1) =

wℓu. Let us write w = uv. If u ̸= ε, we then have that c0 · · · ck−2(ck−1 − 1) = wℓu =

u(vu)ℓ < uwℓ as w is anti-Lyndon thus strictly greater than its conjugates. This

contradicts the assumption that c0 · · · ck−2(ck−1− 1) is maximal among its conjugates.

Therefore, u = ε and c0 · · · ck−2(ck−1 − 1) is a (natural) power of w. We conclude that

a = d⋆, which ends the proof of the first item.

Proposition 233. Let c satisfy (WH). If c0 · · · ck−2(ck−1 − 1) is lexicographically maximal

among its conjugates, then Un+1 − 1 ≤ Qn for all n ≥ 0.

Proof. Let us show the claim by contraposition. So assume that there exists an integer

n such that Un+1 − 1 > Qn. Thus qn = ua0
n · · · uan

0 is a proper prefix of u[0, Un+1 − 1).

By Lemma 220, repSc
(Un+1 − 1) = d⋆[0, n], so d⋆

0 is the largest exponent e such that

ue
n is a prefix of u[0, Un+1 − 1). This implies that d⋆

0 ≥ a0. Moreover, if a0 = d⋆
0 , the
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same argument implies that d⋆
1 is the largest exponent e such that ud⋆

0
n ue

n−1 is a prefix

of u[0, Un+1 − 1). In both cases, we have d⋆
0d⋆

1 ≥ a0a1. We may iterate the reasoning

to obtain d⋆[0, n] ≥ a[0, n]. As qn is a proper prefix of u[0, Un+1 − 1), the inequality

cannot be an equality. This contradicts Proposition 232, which ends the proof.

We will now prove that, under the conditions of the previous result, we can de-

scribe string attractors of every prefix of u using the elements of (Un)n∈N. For n ∈N,

we let Γn denote {U0, . . . , Un} if 0 ≤ n ≤ k− 1, {Un−k+1, . . . , Un} otherwise. We also

define Pn by Un if 0 ≤ n ≤ k− 1, Un + Un−k+1 −Un−k − 1 otherwise.

The next lemma directly follows from Proposition 233 and the definition of Pn.

Lemma 234. Let c satisfy (WH). If c0 · · · ck−2(ck−1 − 1) is maximal among its conjugates,

then Pn ≤ Un+1 − 1 ≤ Qn for all n ∈N.

To simplify the statement of the following theorem, we set Γ−1 = ∅.

Theorem 235. Let c = c0 · · · ck−1 ∈ Nk with c0, ck−1 ≥ 1 and c0 · · · ck−2(ck−1 − 1)

maximal among its conjugates. Fix an integer n ≥ 0. If m ∈ [Un, Qn], then Γn−1 ∪ {Un}

is a string attractor of u[0, m). Furthermore, if m ∈ [Pn, Qn], then Γn is a string attractor

of u[0, m). In particular, su(n) ≤ k + 1 for all n ≥ 1.

Proof. Let us simultaneously prove the two claims by induction on n. If n = 0, then

1 ≤ m ≤ c0, so u[0, m) = 0m and the conclusion directly follows for both claims.

Assume now that the claims are satisfied for n− 1 and let us prove them for n. By

Lemma 234 and the induction hypothesis, Γn−1 is a string attractor of u[0, Un − 1).

This implies that Γn−1 ∪ {Un} is a string attractor of un so, by Proposition 181 and by

definition of Qn (Definition 228), of u[0, m) for all m ∈ [Un, Qn]. This ends the proof

of the first claim.

Let us now prove the second claim. Observe that, using Proposition 181, it

suffices to prove that Γn is a string attractor of u[0, Pn). If 0 ≤ n ≤ k− 1, then

Γn = Γn−1 ∪ {Un} so we can directly conclude using the first claim. Thus assume

that n ≥ k. Then by the first claim, Γn ∪ {Un−k} = Γn−1 ∪ {Un} is a string attractor

of u[0, Pn). Therefore, it remains to show that the position Un−k is not needed in the

string attractor. In other words, we prove that the factors of u[0, Pn) that have an
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occurrence crossing position Un−k (and no other position of Γn ∪ {Un−k}) have an-

other occurrence crossing a position in Γn. More precisely, we show that they have

an occurrence crossing position Un. To help the reader with the proof, we illustrate

the situation in Figure 10.4.

As the smallest position in Γn is Un−k+1, we need to consider the factor occur-

rences crossing position Un−k in u[0, Un−k+1 − 1). So, if we write u[0, Pn) = unw, it

is sufficient to show that un−k is a suffix of un and that w′ := u[Un−k, Un−k+1 − 1) is

a prefix of w. Observe that

|w| = Pn −Un = Un−k+1 −Un−k − 1 (10.1)

by definition of Pn, so |w′| = |w|. We will actually show that w′ = w.

u[0, Pn) =

un w

un−k

Un−k

w′

Un−k+1

un−k w′

Un

FIGURE 10.4: Representation of the proof of the second claim of The-
orem 235. As we warned the reader before, elements in a string at-
tractor are indexed starting at 1 (in red), while indices of letters in u

start at 0.

The fact that un−k is a suffix of un is a direct consequence of Proposition 212 as

ck−1 ≥ 1 by assumption. To prove that w′ = w, we first make the following observa-

tion: Proposition 212 again implies that un is followed by uc0−1
n uc1

n−1 · · · u
ck−1
n−k+1 in u.

Since un−k+1 is a prefix of all the words un−k+1, . . . , un−1, the word un is in particular

followed by un−k+1 in u. As |w| ≤ Un−k+1 by Equation (10.1), this implies that w is a

prefix of un−k+1, so also of u. To conclude with the claim, it is then enough to show

that w′ is also a prefix of u. To prove this, we will use the numeration system Sc and

consider two cases.

First, assume that n− 2k + 1 ≥ 0. By definition of w′ and by Proposition 212, w′

is a prefix of v := uc0−1
n−k · · · u

ck−1
n−2k+1. Define the word x = (c0 − 1)c1 · · · ck−10n−2k+1.

If it begins with 0’s, we consider instead the word obtained by removing the lead-

ing 0’s. Note that x corresponds to a factorization of v into the words un−k, . . . , u0.

As c0 · · · ck−2(ck−1 − 1) is maximal among its conjugates by assumption, x is in the

numeration language by Lemma 222. By definition of Sc, x is the Dumont-Thomas

factorization of v, implying that v is a prefix of u.
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Second, if n − 2k + 1 < 0, then we conclude in a similar way by considering

v = uc0−1
n−k · · · u

cn−k
0 and x = (c0 − 1)c1 · · · cn−k instead.

The morphisms studied in Theorem 235 are associated with Parry numbers in

the following way: there exists a simple Parry number β with dβ(1) = c0 · · · ck−1

such that either c = dβ(1), or c = (c0 · · · ck−2(ck−1 − 1))ℓdβ(1) for some ℓ ≥ 1.

Theorem 235 implies that for some values of c (e.g., c = 211), we even have

su(n) ≤ k for all n ≥ 1 and it is optimal for large n as every position in Γn covers a

different letter (this can be proved using a simple induction).

Observe that the bounds given in the previous theorem are not necessarily tight.

For example, if c = 23, then Γ2 = {3, 9} is a string attractor of the length-9 prefix

u[0, 9) = 001001000, while P2 = 10. This is also the case for the k-bonacci morphisms

(c = 1k) where better bounds are provided in the firs section.
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Chapter 11

Conclusions

In this thesis, we presented a qualitative study as repetitiveness measures on the

measure r that counts the number of BWT-runs and the size γ∗ of a smallest string

attractor. Among the different measures considered in literature, the interest for r

and γ∗ is driven by two different reasons. The first one concerns the multitude of

applications that the BWT has in Data Compression and Bioinformatics. The study

on the notion of string attractor on the other hand, is more related to its ability to

capture different properties of words in a very compact space.

For the measure r, in Chapter 3 we have extended the knowledge on its relation-

ship with (circular) bispecial factors. Even though the upper bound is similar to the

one proposed in [8], here we have presented the first lower bound in terms of the

classical notions from Combinatorics on Words. We have also tested the sensitivity

of the measure r to single bit operations on words, and proved that a bit-catastrophe

can happen, that is r(w) = ω(r(w′)), for some words w and w′ such that ed(w, w′) = 1.

Furthermore, we have extended the lower bound on the additive sensitivity of r

from Ω(log n) to Ω(
√

n), reaching the same bounds of other measures considered by

Akagi et al. [1].

Nonetheless, the contexts in which the Burrows-Wheeler Transform is mainly

used confirms its efficiency on highly repetitive dataset. For binary purely morphic

words, we have showed in Chapter 4 that we can not have more than a logarithmic

number of BWT-runs, and in Chapter 5 we have measured the effect that a single

application of some families of morphisms may have on any word. Indeed, it is

worth investigating other relationships with properties of words, in order to find

new artefacts aimed to maximize its efficiency.
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In Chapter 7, we have presented the first combinatorial analysis on the measure

γ∗ of the smallest string attractor. The computability is in general a difficult task,

and its non-monotone property complicates the case even when a solely insertion is

considered. However, we have obtained multiple characterization based on string

attractors through combinatorial arguments: standard Sturmian words via circular

span in Chapter 8, and in Chapter 9 eventually periodic words via leftmost complex-

ity, and infinite Sturmian and quasi-Sturmian words via span complexity. Finally, in

Chapter 10 we have linked the notion of string attractor to other properties and no-

tions typical from the Combinatorics on Words field.

To conclude, we believe that the concept of plain text repetitiveness, which is vague

and open to different interpretations, is not something that can be uniquely repre-

sented by a number. Nonetheless, having a good approximated measure of "what

we perceive repetitive", and that is easy to compute, is indeed useful. From this

point of view, the measure δ probably outperform all the other definitions given so

far in this thesis, especially since it possible to build indexes in a space proportional

to their size. On the other hand, the notion of string attractor has proved to be able

to capture some of these repetitiveness shades, more than δ (there are words that are

indistinguishable by δ), and more than the other compressor-based measures (in a

space asymptotically smaller). We wonder if there are other facets of string attractors

that can be related to other properties of words.

11.1 Future Directions of Research

As possible future investigations, on the measure r we aim to find what properties

of words trigger an increase and/or a decrease in the BWT-runs. This may help

us to solve the open problems in the gaps left on the sensitivities of the measure r.

Moreover, a deeper understanding on the relationship between properties of words

and applications of morphisms may lead to new bounds between the BWT-runs

and the size of L or NU-systems, expanding our knowledge in the field of Data

Compression. Moreover, we set as goal to keep investigating on the study of r for

collection of samples, with particular applications in pangenomics.
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For string attractors, it is legit wonder if they hide other properties of words. For

instance, we wonder if the size of the set of all minimum (or minimal) string attractor

G ′ ⊆ G of a word can denote in a symmetrical way the degree of repetitions in a

text. Finally, on infinite words we aim to solve the open question on the sufficient

conditions to have a bounded string attractor profile function. We further intend

to understand if it is possible to build a smallest string attractors for the prefixes

of purely morphic words, by using combinatorial arguments that relies on common

and shared properties.
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