93 research outputs found

    INTRODUCING AN OPTIMAL QCA CROSSBAR SWITCH FOR BASELINE NETWORK

    Get PDF
    Crossbar switch is the basic component in multi-stage interconnection networks. Therefore, this study was conducted to investigate performance of a crossbar switch with two multiplexers. The presented crossbar switch was simulated using quantum-dot cellular automata (QCA) technology and QCA Designer software, and was studied and optimized in terms of cell number, occupied area, number of clocks, and energy consumption. Using the provided crossbar switch, the baseline network was designed to be optimal in terms of cell number and occupied area. Also, the number of input states was investigated and simulated to verify accuracy of the baseline network. The proposed crossbar switch uses 62 QCA cells and the occupied area by the switch is equal to 0.06µm2 and its latency equals 4 clock zones, which is more efficient than the other designs. In this paper, using the presented crossbar switch, the baseline network was designed with 1713 cells, and occupied area of 2.89µm2

    NOVEL SINGLE LAYER FAULT TOLERANCE RCA CONSTRUCTION FOR QCA TECHNOLOGY

    Get PDF
    Quantum-dot Cellular Automata (QCA) technology has become a promising and accessible candidate that can be used for digital circuits implementation at Nanoscale, but the circuit design in the QCA technology has been limited due to fabrication high-defect rate. So, this issue is an interesting research topic in the QCA circuits design. In this study, a novel 3-input Fault Tolerance (FT) Majority Gate (MG) is developed. Accordingly, an efficient 1-bit QCA full adder is developed using the developed 3-input MG. Then, a new 4-bit FT QCA Ripple Carry Adder (RCA) is developed based on the proposed 1-bit FT QCA FA. The developed circuits are implemented in the QCADesigner tool version 2.0.3. The results indicate that the developed QCA circuits provide advantages compared to other QCA circuits in terms of double and single cell missing defect, area and delay time

    Quantum Dot Cellular Automata Check Node Implementation for LDPC Decoders

    Get PDF
    The quantum dot Cellular Automata (QCA) is an emerging nanotechnology that has gained significant research interest in recent years. Extremely small feature sizes, ultralow power consumption, and high clock frequency make QCA a potentially attractive solution for implementing computing architectures at the nanoscale. To be considered as a suitable CMOS substitute, the QCA technology must be able to implement complex real-time applications with affordable complexity. Low density parity check (LDPC) decoding is one of such applications. The core of LDPC decoding lies in the check node (CN) processing element which executes actual decoding algorithm and contributes toward overall performance and complexity of the LDPC decoder. This study presents a novel QCA architecture for partial parallel, layered LDPC check node. The CN executes Normalized Min Sum decoding algorithm and is flexible to support CN degree dc up to 20. The CN is constructed using a VHDL behavioral model of QCA elementary circuits which provides a hierarchical bottom up approach to evaluate the logical behavior, area, and power dissipation of the whole design. Performance evaluations are reported for the two main implementations of QCA i.e. molecular and magnetic

    Computer Architectures Using Nanotechnology

    Get PDF

    A Generalized Space-Efficient Algorithm for Quantum Bit String Comparators

    Full text link
    Quantum Bit String Comparators (QBSC) operate on two sequences of n-qubits, enabling the determination of their relationships, such as equality, greater than, or less than. This is analogous to the way conditional statements are used in programming languages. Consequently, QBSCs play a crucial role in various algorithms that can be executed or adapted for quantum computers. The development of efficient and generalized comparators for any nn-qubit length has long posed a challenge, as they have a high-cost footprint and lead to quantum delays. Comparators that are efficient are associated with inputs of fixed length. As a result, comparators without a generalized circuit cannot be employed at a higher level, though they are well-suited for problems with limited size requirements. In this paper, we introduce a generalized design for the comparison of two nn-qubit logic states using just two ancillary bits. The design is examined on the basis of qubit requirements, ancillary bit usage, quantum cost, quantum delay, gate operations, and circuit complexity, and is tested comprehensively on various input lengths. The work allows for sufficient flexibility in the design of quantum algorithms, which can accelerate quantum algorithm development

    Implementation of Binary to Gray Code Converters in Quantum Dot Cellular Automata

    Get PDF
    Quantum dot cellular automaton (QCA) are dominant nanotechnology which has been used extensively in digital circuits and systems. It is a promising alternative to complementary metal–oxide–semiconductor (CMOS) technology with many enticing features such as high-speed, low power consumption and higher switching frequency than transistor based technology. The code converters are the basic unit for transformation of data to execute arithmetic processes. In this paper, QCA based 2-bit binary-to- gray; 3-bit binary-to-gray and 4-bit binary-to-gray code converter have been proposed. The proposed design reduces the number of cells, area and raises switching speed. The simulations are completed using QCADesigner and Microwindlite tool which is widely used for simulation and verification

    A thermally aware performance analysis of quantum cellular automata logic gates

    Get PDF
    The high-performance digital circuits can be constructed at high operating frequency, reduced power dissipation, portability, and large density. Using conventional complementary-metal-oxide-semiconductor (CMOS) design process, it is quite difficult to achieve ultra-high-speed circuits due to scaling problems. Recently quantum dot cellular automata (QCA) are prosed to develop logic circuits at atomic level. In this paper, we analyzed the performance of QCA circuits under different temperature effects and observed that polarization of the cells is highly sensitive to temperature. In case of the 3-input majority gate the cell polarization drops to 50% with an increase in the temperature of 18 K and for 5 input majority gate the cell polarization drops more quickly than the 3-input majority. Further, the performance of majority gates also compared in terms of area and power dissipation. It has been noticed that the proposed logic gates can also be used for developing simple and complex and memory circuits

    VLSI IMPLEMENTATION OF AREA AND POWER OPTIMIZED QUANTUM DOT CELLULAR AUTOMATA COMPARATOR

    Get PDF
    Quantum-dot cellular automata (QCA) are a conspicuous technology suitable for the development of ultra-dense-low-power high-performance digital circuits. Efficient solutions have recently been proposed for several arithmetic circuits, such as adders, multipliers, and comparators. In this paper area and power optimized QCA comparator is presented for developing a 32bit full comparator. It is able to achieve lower area and power consumption. With respect to existing counterparts the comparators proposed here exhibit significantly higher speed and reduced overall area and power. The structures proposed in provide higher computational capabilities, and circuits able to separately recognize all the three possible conditions i.e., a = b, a > b, and a < b. The new strategy has been exploited in the design of two different comparator architectures and for several operands word lengths. The proposed scheme, we deal with 32-bit numbers with less number of resources unlike conventional comparators, which leads to the realization of low power and area efficient comparator

    IMPLEMENTATION OF QCA COMPARATOR ARCHITECTURE FOR POWER CRITICAL APPLICATIONS

    Get PDF
    Quantum-dot cellular automata (QCA) are an attractive emerging technology suitable for the development of ultra-dense-low-power high-performance digital circuits. Efficient solutions have recently been proposed for several arithmetic circuits, such as adders, multipliers, and comparators. Nevertheless, since the design of digital circuits in QCA still poses several challenges, novel implementation strategies and methodologies are highly desirable. This paper proposes a new design approach oriented to the implementation of binary comparators in QCA. New formulations of basic logic equations required to perform the comparison function are proposed. The new strategy has been exploited in the design of two different comparator architectures and for several operands word lengths. With respect to existing counterparts, the comparators proposed here exhibit significantly higher speed and reduced overall area. The proposed scheme, we deal with 32-bit numbers with less number of resources unlike conventional comparators, which leads to the realization of low power and area efficient comparator. This comparator can be widely used in central processing units (CPUs) and microcontrollers

    AN OPTIMIZED AREA AND DELAY PARALLEL PREFIX TREE METHODOLOGY FOR QUANTUM-DOT CELLULAR AUTOMATA

    Get PDF
    Quantum-dot cellular automata (QCA) are a conspicuous technology suitable for the development of ultra-dense-low-power high-performance digital circuits. Efficient solutions have recently been proposed for several arithmetic circuits, such as adders, multipliers, and comparators. In this paper area and power optimized QCA comparator is presented for developing a 32bit full comparator. It is able to achieve lower area and power consumption. With respect to existing counterparts the comparators proposed here exhibit significantly higher speed and reduced overall area and power. The structures proposed in provide higher computational capabilities, and circuits able to separately recognize all the three possible conditions i.e., a = b, a > b, and a < b. The new strategy has been exploited in the design of two different comparator architectures and for several operands word lengths. The proposed scheme, we deal with 32-bit numbers with less number of resources unlike conventional comparators, which leads to the realization of low power and area efficient comparator. This comparator can be widely used in central processing units (CPUs) and microcontrollers
    corecore