17,324 research outputs found

    Improved scaling of Time-Evolving Block-Decimation algorithm through Reduced-Rank Randomized Singular Value Decomposition

    Full text link
    When the amount of entanglement in a quantum system is limited, the relevant dynamics of the system is restricted to a very small part of the state space. When restricted to this subspace the description of the system becomes efficient in the system size. A class of algorithms, exemplified by the Time-Evolving Block-Decimation (TEBD) algorithm, make use of this observation by selecting the relevant subspace through a decimation technique relying on the Singular Value Decomposition (SVD). In these algorithms, the complexity of each time-evolution step is dominated by the SVD. Here we show that, by applying a randomized version of the SVD routine (RRSVD), the power law governing the computational complexity of TEBD is lowered by one degree, resulting in a considerable speed-up. We exemplify the potential gains in efficiency at the hand of some real world examples to which TEBD can be successfully applied to and demonstrate that for those system RRSVD delivers results as accurate as state-of-the-art deterministic SVD routines.Comment: 14 pages, 5 figure

    Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics

    Get PDF
    Quantum computing is powerful because unitary operators describing the time-evolution of a quantum system have exponential size in terms of the number of qubits present in the system. We develop a new "Singular value transformation" algorithm capable of harnessing this exponential advantage, that can apply polynomial transformations to the singular values of a block of a unitary, generalizing the optimal Hamiltonian simulation results of Low and Chuang. The proposed quantum circuits have a very simple structure, often give rise to optimal algorithms and have appealing constant factors, while usually only use a constant number of ancilla qubits. We show that singular value transformation leads to novel algorithms. We give an efficient solution to a certain "non-commutative" measurement problem and propose a new method for singular value estimation. We also show how to exponentially improve the complexity of implementing fractional queries to unitaries with a gapped spectrum. Finally, as a quantum machine learning application we show how to efficiently implement principal component regression. "Singular value transformation" is conceptually simple and efficient, and leads to a unified framework of quantum algorithms incorporating a variety of quantum speed-ups. We illustrate this by showing how it generalizes a number of prominent quantum algorithms, including: optimal Hamiltonian simulation, implementing the Moore-Penrose pseudoinverse with exponential precision, fixed-point amplitude amplification, robust oblivious amplitude amplification, fast QMA amplification, fast quantum OR lemma, certain quantum walk results and several quantum machine learning algorithms. In order to exploit the strengths of the presented method it is useful to know its limitations too, therefore we also prove a lower bound on the efficiency of singular value transformation, which often gives optimal bounds.Comment: 67 pages, 1 figur

    Optimized Decimation of Tensor Networks with Super-orthogonalization for Two-Dimensional Quantum Lattice Models

    Full text link
    A novel algorithm based on the optimized decimation of tensor networks with super-orthogonalization (ODTNS) that can be applied to simulate efficiently and accurately not only the thermodynamic but also the ground state properties of two-dimensional (2D) quantum lattice models is proposed. By transforming the 2D quantum model into a three-dimensional (3D) closed tensor network (TN) comprised of the tensor product density operator and a 3D brick-wall TN, the free energy of the system can be calculated with the imaginary time evolution, in which the network Tucker decomposition is suggested for the first time to obtain the optimal lower-dimensional approximation on the bond space by transforming the TN into a super-orthogonal form. The efficiency and accuracy of this algorithm are testified, which are fairly comparable with the quantum Monte Carlo calculations. Besides, the present ODTNS scheme can also be applicable to the 2D frustrated quantum spin models with nice efficiency

    Quantum Recommendation Systems

    Get PDF
    A recommendation system uses the past purchases or ratings of nn products by a group of mm users, in order to provide personalized recommendations to individual users. The information is modeled as an m×nm \times n preference matrix which is assumed to have a good rank-kk approximation, for a small constant kk. In this work, we present a quantum algorithm for recommendation systems that has running time O(poly(k)polylog(mn))O(\text{poly}(k)\text{polylog}(mn)). All known classical algorithms for recommendation systems that work through reconstructing an approximation of the preference matrix run in time polynomial in the matrix dimension. Our algorithm provides good recommendations by sampling efficiently from an approximation of the preference matrix, without reconstructing the entire matrix. For this, we design an efficient quantum procedure to project a given vector onto the row space of a given matrix. This is the first algorithm for recommendation systems that runs in time polylogarithmic in the dimensions of the matrix and provides an example of a quantum machine learning algorithm for a real world application.Comment: 22 page

    A literature survey of low-rank tensor approximation techniques

    Full text link
    During the last years, low-rank tensor approximation has been established as a new tool in scientific computing to address large-scale linear and multilinear algebra problems, which would be intractable by classical techniques. This survey attempts to give a literature overview of current developments in this area, with an emphasis on function-related tensors

    Easy implementable algorithm for the geometric measure of entanglement

    Full text link
    We present an easy implementable algorithm for approximating the geometric measure of entanglement from above. The algorithm can be applied to any multipartite mixed state. It involves only the solution of an eigenproblem and finding a singular value decomposition, no further numerical techniques are needed. To provide examples, the algorithm was applied to the isotropic states of 3 qubits and the 3-qubit XX model with external magnetic field.Comment: 9 pages, 3 figure

    Tensor Numerical Methods in Quantum Chemistry: from Hartree-Fock Energy to Excited States

    Get PDF
    We resume the recent successes of the grid-based tensor numerical methods and discuss their prospects in real-space electronic structure calculations. These methods, based on the low-rank representation of the multidimensional functions and integral operators, led to entirely grid-based tensor-structured 3D Hartree-Fock eigenvalue solver. It benefits from tensor calculation of the core Hamiltonian and two-electron integrals (TEI) in O(nlogn)O(n\log n) complexity using the rank-structured approximation of basis functions, electron densities and convolution integral operators all represented on 3D n×n×nn\times n\times n Cartesian grids. The algorithm for calculating TEI tensor in a form of the Cholesky decomposition is based on multiple factorizations using algebraic 1D ``density fitting`` scheme. The basis functions are not restricted to separable Gaussians, since the analytical integration is substituted by high-precision tensor-structured numerical quadratures. The tensor approaches to post-Hartree-Fock calculations for the MP2 energy correction and for the Bethe-Salpeter excited states, based on using low-rank factorizations and the reduced basis method, were recently introduced. Another direction is related to the recent attempts to develop a tensor-based Hartree-Fock numerical scheme for finite lattice-structured systems, where one of the numerical challenges is the summation of electrostatic potentials of a large number of nuclei. The 3D grid-based tensor method for calculation of a potential sum on a L×L×LL\times L\times L lattice manifests the linear in LL computational work, O(L)O(L), instead of the usual O(L3logL)O(L^3 \log L) scaling by the Ewald-type approaches
    corecore