101 research outputs found

    Quantum Image Processing and Its Application to Edge Detection: Theory and Experiment

    Full text link
    Processing of digital images is continuously gaining in volume and relevance, with concomitant demands on data storage, transmission and processing power. Encoding the image information in quantum-mechanical systems instead of classical ones and replacing classical with quantum information processing may alleviate some of these challenges. By encoding and processing the image information in quantum-mechanical systems, we here demonstrate the framework of quantum image processing, where a pure quantum state encodes the image information: we encode the pixel values in the probability amplitudes and the pixel positions in the computational basis states. Our quantum image representation reduces the required number of qubits compared to existing implementations, and we present image processing algorithms that provide exponential speed-up over their classical counterparts. For the commonly used task of detecting the edge of an image, we propose and implement a quantum algorithm that completes the task with only one single-qubit operation, independent of the size of the image. This demonstrates the potential of quantum image processing for highly efficient image and video processing in the big data era.Comment: 13 pages, including 9 figures and 5 appendixe

    An edge detection method using outer totalistic cellular automata

    Get PDF
    A number of Cellular Automata (CA)-based edge detectors have been developed recently due to the simplicity of the model and the potential for simultaneous removal of different types of noise in the process of detection. This paper introduced a novel edge detector using Outer Totalistic Cellular Automata. Its performance has been compared with other recently developed CA-based edge detectors, in addition to some classic methods, through testing images from a public library. Visual and quantitative measurement of similarity with manually marked correct edges confirmed the superiority of the proposed method over conventional and state-of-the-art CA-based edge detectors

    The Analysis Of Visual Motion: From Computational Theory To Neuronal Mechanisms

    Get PDF

    Segmentation of neuroanatomy in magnetic resonance images

    Get PDF
    Segmentation in neurological Magnetic Resonance Imaging (MRI) is necessary for volume measurement, feature extraction and for the three-dimensional display of neuroanatomy. This thesis proposes several automated and semi-automated methods which offer considerable advantages over manual methods because of their lack of subjectivity, their data reduction capabilities, and the time savings they give. Work has concentrated on the use of dual echo multi-slice spin-echo data sets in order to take advantage of the intrinsically multi-parametric nature of MRI. Such data is widely acquired clinically and segmentation therefore does not require additional scans. The literature has been reviewed. Factors affecting image non-uniformity for a modem 1.5 Tesla imager have been investigated. These investigations demonstrate that a robust, fast, automatic three-dimensional non-uniformity correction may be applied to data as a pre-processing step. The merit of using an anisotropic smoothing method for noisy data has been demonstrated. Several approaches to neurological MRI segmentation have been developed. Edge-based processing is used to identify the skin (the major outer contour) and the eyes. Edge-focusing, two threshold based techniques and a fast radial CSF identification approach are proposed to identify the intracranial region contour in each slice of the data set. Once isolated, the intracranial region is further processed to identify CSF, and, depending upon the MRI pulse sequence used, the brain itself may be sub-divided into grey matter and white matter using semiautomatic contrast enhancement and clustering methods. The segmentation of Multiple Sclerosis (MS) plaques has also been considered. The utility of the stack, a data driven multi-resolution approach to segmentation, has been investigated, and several improvements to the method suggested. The factors affecting the intrinsic accuracy of neurological volume measurement in MRI have been studied and their magnitudes determined for spin-echo imaging. Geometric distortion - both object dependent and object independent - has been considered, as well as slice warp, slice profile, slice position and the partial volume effect. Finally, the accuracy of the approaches to segmentation developed in this thesis have been evaluated. Intracranial volume measurements are within 5% of expert observers' measurements, white matter volumes within 10%, and CSF volumes consistently lower than the expert observers' measurements due to the observers' inability to take the partial volume effect into account

    A METHOD FOR DENOISING IMAGE CONTOURS

    Get PDF
    The edge detection techniques have to compromise between sensitivity and noise. In order for the main contours to be uninterrupted, the level of sensitivity has to be raised, which however has the negative effect of producing a multitude of insignificant contours (noise). This article proposes a method of removing this noise, which acts directly on the binary representation of the image contours

    Image Segmentation of Bacterial Cells in Biofilms

    Get PDF
    Bacterial biofilms are three-dimensional cell communities that live embedded in a self-produced extracellular matrix. Due to the protective properties of the dense coexistence of microorganisms, single bacteria inside the communities are hard to eradicate by antibacterial agents and bacteriophages. This increased resilience gives rise to severe problems in medical and technological settings. To fight the bacterial cells, an in-detail understanding of the underlying mechanisms of biofilm formation and development is required. Due to spatio-temporal variances in environmental conditions inside a single biofilm, the mechanisms can only be investigated by probing single-cells at different locations over time. Currently, the mechanistic information is primarily encoded in volumetric image data gathered with confocal fluorescence microscopy. To quantify features of the single-cell behaviour, single objects need to be detected. This identification of objects inside biofilm image data is called segmentation and is a key step for the understanding of the biological processes inside biofilms. In the first part of this work, a user-friendly computer program is presented which simplifies the analysis of bacterial biofilms. It provides a comprehensive set of tools to segment, analyse, and visualize fluorescent microscopy data without writing a single line of analysis code. This allows for faster feedback loops between experiment and analysis, and allows fast insights into the gathered data. The single-cell segmentation accuracy of a recent segmentation algorithm is discussed in detail. In this discussion, points for improvements are identified and a new optimized segmentation approach presented. The improved algorithm achieves superior segmentation accuracy on bacterial biofilms when compared to the current state-of-the-art algorithms. Finally, the possibility of deep learning-based end-to-end segmentation of biofilm data is investigated. A method for the quick generation of training data is presented and the results of two single-cell segmentation approaches for eukaryotic cells are adapted for the segmentation of bacterial biofilm segmentation.Bakterielle Biofilme sind drei-dimensionale Zellcluster, welche ihre eigene Matrix produzieren. Die selbst-produzierte Matrix bietet den Zellen einen gemeinschaftlichen Schutz vor äußeren Stressfaktoren. Diese Stressfaktoren können abiotischer Natur sein wie z.B. Temperatur- und Nährstoff\- schwankungen, oder aber auch biotische Faktoren wie z.B. Antibiotikabehandlung oder Bakteriophageninfektionen. Dies führt dazu, dass einzelne Zelle innerhalb der mikrobiologischen Gemeinschaften eine erhöhte Widerstandsfähigkeit aufweisen und eine große Herausforderung für Medizin und technische Anwendungen darstellen. Um Biofilme wirksam zu bekämpfen, muss man die dem Wachstum und Entwicklung zugrundeliegenden Mechanismen entschlüsseln. Aufgrund der hohen Zelldichte innerhalb der Gemeinschaften sind die Mechanismen nicht räumlich und zeitlich invariant, sondern hängen z.B. von Metabolit-, Nährstoff- und Sauerstoffgradienten ab. Daher ist es für die Beschreibung unabdingbar Beobachtungen auf Einzelzellebene durchzuführen. Für die nicht-invasive Untersuchung von einzelnen Zellen innerhalb eines Biofilms ist man auf konfokale Fluoreszenzmikroskopie angewiesen. Um aus den gesammelten, drei-dimensionalen Bilddaten Zelleigenschaften zu extrahieren, ist die Erkennung von den jeweiligen Zellen erforderlich. Besonders die digitale Rekonstruktion der Zellmorphologie spielt dabei eine große Rolle. Diese erhält man über die Segmentierung der Bilddaten. Dabei werden einzelne Bildelemente den abgebildeten Objekten zugeordnet. Damit lassen sich die einzelnen Objekte voneinander unterscheiden und deren Eigenschaften extrahieren. Im ersten Teil dieser Arbeit wird ein benutzerfreundliches Computerprogramm vorgestellt, welches die Segmentierung und Analyse von Fluoreszenzmikroskopiedaten wesentlich vereinfacht. Es stellt eine umfangreiche Auswahl an traditionellen Segmentieralgorithmen, Parameterberechnungen und Visualisierungsmöglichkeiten zur Verfügung. Alle Funktionen sind ohne Programmierkenntnisse zugänglich, sodass sie einer großen Gruppe von Benutzern zur Verfügung stehen. Die implementierten Funktionen ermöglichen es die Zeit zwischen durchgeführtem Experiment und vollendeter Datenanalyse signifikant zu verkürzen. Durch eine schnelle Abfolge von stetig angepassten Experimenten können in kurzer Zeit schnell wissenschaftliche Einblicke in Biofilme gewonnen werden.\\ Als Ergänzung zu den bestehenden Verfahren zur Einzelzellsegmentierung in Biofilmen, wird eine Verbesserung vorgestellt, welche die Genauigkeit von bisherigen Filter-basierten Algorithmen übertrifft und einen weiteren Schritt in Richtung von zeitlich und räumlich aufgelöster Einzelzellverfolgung innerhalb bakteriellen Biofilme darstellt. Abschließend wird die Möglichkeit der Anwendung von Deep Learning Algorithmen für die Segmentierung in Biofilmen evaluiert. Dazu wird eine Methode vorgestellt welche den Annotationsaufwand von Trainingsdaten im Vergleich zu einer vollständig manuellen Annotation drastisch verkürzt. Die erstellten Daten werden für das Training von Algorithmen eingesetzt und die Genauigkeit der Segmentierung an experimentellen Daten untersucht

    Navigation of mobile robots using artificial intelligence technique.

    Get PDF
    The ability to acquire a representation of the spatial environment and the ability to localize within it are essential for successful navigation in a-priori unknown environments. This document presents a computer vision method and related algorithms for the navigation of a robot in a static environment. Our environment is a simple white colored area with black obstacles and robot (with some identification mark-a circle and a rectangle of orange color which helps in giving it a direction) present over it. This environment is grabbed in a camera which sends image to the desktop using data cable. The image is then converted to the binary format from jpeg format using software which is then processed in the computer using MATLAB. The data acquired from the program is then used as an input for another program which controls the robot drive motors using wireless controls. Robot then tries to reach its destination avoiding obstacles in its path. The algorithm presented in this paper uses the distance transform methodology to generate paths for the robot to execute. This paper describes an algorithm for approximately finding the fastest route for a vehicle to travel one point to a destination point in a digital plain map, avoiding obstacles along the way. In our experimental setup the camera used is a SONY HANDYCAM. This camera grabs the image and specifies the location of the robot (starting point) in the plain and its destination point. The destination point used in our experimental setup is a table tennis ball, but it can be any other entity like a single person, a combat unit or a vehicle

    Developing 3D novel edge detection and particle picking tools for electron tomography

    Get PDF
    corecore