8,533 research outputs found

    A Quantum-Classical Network for Beat-Making Performance

    Get PDF
    In recent years, quantum computing has emerged as the next frontier in computational and information technologies. Even though it has found potential applications in solving complex problems in fields such as chemistry, machine learning, and cryptography, among other fields, there has been little research conducted on its applications for music and acoustic technologies. This paper will discuss the use of a quantum internet protocol in the context of networked music performance in which quantum computing could play a role in processing musical data via a cloud-based music software application. We also propose an example model for a beat-making performance network using a smart music playlist application deployed on a simulated quantum internet. In the proposed system design and architecture, several beat-makers located remotely from each other are connected live over a simulated quantum internet in a distributed networked music performance. Each beat-maker node transmits and receives audio sample time slices of beat patterns from one another to use in their local performances. This model provides a proof of concept for implementing quantum algorithms, standards, and protocols in music software and network applications when a quantum internet becomes available

    Quantum Key Distribution (QKD) and Commodity Security Protocols: Introduction and Integration

    Full text link
    We present an overview of quantum key distribution (QKD), a secure key exchange method based on the quantum laws of physics rather than computational complexity. We also provide an overview of the two most widely used commodity security protocols, IPsec and TLS. Pursuing a key exchange model, we propose how QKD could be integrated into these security applications. For such a QKD integration we propose a support layer that provides a set of common QKD services between the QKD protocol and the security applicationsComment: 12Page

    Quantum Communication Technology

    Full text link
    Quantum communication is built on a set of disruptive concepts and technologies. It is driven by fascinating physics and by promising applications. It requires a new mix of competencies, from telecom engineering to theoretical physics, from theoretical computer science to mechanical and electronic engineering. First applications have already found their way to niche markets and university labs are working on futuristic quantum networks, but most of the surprises are still ahead of us. Quantum communication, and more generally quantum information science and technologies, are here to stay and will have a profound impact on the XXI century
    • …
    corecore