1,485 research outputs found

    Predicting Skin Permeability by means of Computational Approaches : Reliability and Caveats in Pharmaceutical Studies

    Get PDF
    © 2019 American Chemical Society.The skin is the main barrier between the internal body environment and the external one. The characteristics of this barrier and its properties are able to modify and affect drug delivery and chemical toxicity parameters. Therefore, it is not surprising that permeability of many different compounds has been measured through several in vitro and in vivo techniques. Moreover, many different in silico approaches have been used to identify the correlation between the structure of the permeants and their permeability, to reproduce the skin behavior, and to predict the ability of specific chemicals to permeate this barrier. A significant number of issues, like interlaboratory variability, experimental conditions, data set building rationales, and skin site of origin and hydration, still prevent us from obtaining a definitive predictive skin permeability model. This review wants to show the main advances and the principal approaches in computational methods used to predict this property, to enlighten the main issues that have arisen, and to address the challenges to develop in future research.Peer reviewedFinal Accepted Versio

    Skin Sensitisation (Q)SARs/Expert Systems: from Past, Present to Future

    Get PDF
    This review describes the state of the art of available (Q)SARs/expert systems for skin sensitisation and evaluates their utility for potential regulatory use. There is a strong mechanistic understanding with respect to skin sensitisation which has facilitated the development of different models. Most existing models fall into one of two main categories either they are local in nature, usually specific to a chemical class or reaction chemical mechanism or else they are global in form, derived empirically using statistical methods. Some of the published global QSARs available have been recently characterised and evaluated elsewhere in accordance with the OECD principles. An overview of expert systems capable of predicting skin sensitisation is also provided. Recently, a new perspective regarding the development of mechanistic skin sensitisation QSARs so-called Quantitative Mechanistic Modelling (QMM) has been proposed, where reactivity and hydrophobicity, are used as the key parameters in mathematically modelling skin sensitisation. Whilst hydrophobicity can be conveniently modelled using log P, the octanol-water partition coefficient; reactivity is less readily determined from chemical structure. Initiatives are in progress to generate reactivity data for reactions relevant to skin sensitisation but more resources are required to realise a comprehensive set of reactivity data. This is a fundamental and necessary requirement for the future assessment of skin sensitisation.JRC.I.3-Toxicology and chemical substance

    Review of Data Sources, QSARs and Integrated Testing Strategies for Skin Sensitisation

    Get PDF
    This review collects information on sources of skin sensitisation data and computational tools for the estimation of skin sensitisation potential, such as expert systems and (quantitative) structure-activity relationship (QSAR) models. The review also captures current thinking of what constitutes an integrated testing strategy (ITS) for this endpoint. The emphasis of the review is on the usefulness of the models for the regulatory assessment of chemicals, particularly for the purposes of the new European legislation for the Registration, Evaluation, Authorisation and Restriction of CHemicals (REACH), which entered into force on 1 June 2007. Since there are no specific databases for skin sensitisation currently available, a description of experimental data found in various literature sources is provided. General (global) models, models for specific chemical classes and mechanisms of action and expert systems are summarised. This review was prepared as a contribution to the EU funded Integrated Project, OSIRIS.JRC.I.3-Consumer products safety and qualit

    Modeling skin sensitization potential of mechanistically hard-to-be-classified aniline and phenol compounds with quantum mechanistic properties

    Get PDF
    Background: Advanced structure-activity relationship (SAR) modeling can be used as an alternative tool for identification of skin sensitizers and in improvement of the medical diagnosis and more effective practical measures to reduce the causative chemical exposures. It can also circumvent ethical concern of using animals in toxicological tests, and reduce time and cost. Compounds with aniline or phenol moieties represent two large classes of frequently skin sensitizing chemicals but exhibiting very variable, and difficult to predict, potency. The mechanisms of action are not well-understood. Methods: A group of mechanistically hard-to-be-classified aniline and phenol chemicals were collected. An in silico model was established by statistical analysis of quantum descriptors for the determination of the relationship between their chemical structures and skin sensitization potential. The sensitization mechanisms were investigated based on the features of the established model. Then the model was utilized to analyze a subset of FDA approved drugs containing aniline and/or phenol groups for prediction of their skin sensitization potential. Results and discussion: A linear discriminant model using the energy of the highest occupied molecular orbital (εHOMO) as the descriptor yielded high prediction accuracy. The contribution of εHOMO as a major determinant may suggest that autoxidation or free radical binding could be involved. The model was further applied to predict allergic potential of a subset of FDA approved drugs containing aniline and/or phenol moiety. The predictions imply that similar mechanisms (autoxidation or free radical binding) may also play a role in the skin sensitization caused by these drugs. Conclusions: An accurate and simple quantum mechanistic model has been developed to predict the skin sensitization potential of mechanistically hard-to-be-classified aniline and phenol chemicals. The model could be useful for the skin sensitization potential predictions of a subset of FDA approved drugs

    A Similarity Based Approach for Chemical Category Classification

    Get PDF
    This report aims to describe the main outcomes of an IHCP Exploratory Research Project carried out during 2005 by the European Chemicals Bureau (Computational Toxicology Action). The original aim of this project was to develop a computational method to facilitate the classification of chemicals into similarity-based chemical categories, which would be both useful for building (Q)SAR models (research application) and for defining chemical category proposals (regulatory application).JRC.I-Institute for Health and Consumer Protection (Ispra

    Development of a Decellularized Hydrogel Composite and its Application in a Novel Model of Disc-associated Low Back Pain in Female Sprague Dawley Rats

    Get PDF
    Chronic low back pain is a global socioeconomic crisis compounded by an absence of reliable, curative treatments. The predominant pathology associated with chronic low back pain is degeneration of intervertebral discs in the lumbar spine. During degeneration, nerves can sprout into the intervertebral disc tissue and be chronically subjected to inflammatory and mechanical stimuli, resulting in pain. Pain arising from the intervertebral disc, or disc-associated pain, is a complex, multi-faceted disorder which necessitates valid animal models to screen therapeutics and study pathomechanisms of pain. While many research teams have created animal models of disc degeneration, the translation of these platforms to disc-associated pain models has been limited by an absence of chronic pain-like behavior. Further, the few models which measure disc-associated pain-like phenotypes have been established in mice, which are not amenable to surgical treatment procedures due to their small size. This deficiency drives the need for a new model of disc-associated pain where pain-like behavior is measurable and intervertebral discs are large enough for surgical procedures. These criteria promote rats as the optimal platform for a disc-associated model of chronic low back pain. Herein, a rat model of disc-associated pain is described that displays chronic pain-like behavior, overt disc degeneration, and nerve sprouting in the intervertebral disc. In addition to the model, a novel method for measuring disc degeneration real-time, non-invasively, is delineated which exhibits remarkable precision and accuracy. Finally, a next generation treatment, derived from decellularized, porcine nucleus pulposus tissue is described which is injectable, thermally fibrillogenic, and cytocompatible. In the rat model of disc-associated pain, this biomaterial restores degenerated disc volume and dramatically decreases pain-like behavior. In summary, this dissertation describes the development of a method for quantifying degeneration real-time, establishes a rat model of disc-associated pain, and successfully treats disc-associated pain in this model with a next-generation biomaterial. Advisor: Rebecca Wach

    QSAR models of human data can enrich or replace LLNA testing for human skin sensitization

    Get PDF
    An example of structural transformation of human skin sensitizers into various non-sensitizers based on interpretation of QSAR models
    • …
    corecore