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Abstract

Skin sensitization is a major environmental and occupational health hazard. Although many 

chemicals have been evaluated in humans, there have been no efforts to model these data to date. 

We have compiled, curated, analyzed, and compared the available human and LLNA data. Using 

these data, we have developed reliable computational models and applied them for virtual 

screening of chemical libraries to identify putative skin sensitizers. The overall concordance 

between murine LLNA and human skin sensitization responses for a set of 135 unique chemicals 

was low (R = 28-43%), although several chemical classes had high concordance. We have 

succeeded to develop predictive QSAR models of all available human data with the external 

correct classification rate of 71%. A consensus model integrating concordant QSAR predictions 

and LLNA results afforded a higher CCR of 82% but at the expense of the reduced external dataset 

coverage (52%). We used the developed QSAR models for virtual screening of CosIng database 

and identified 1061 putative skin sensitizers; for seventeen of these compounds, we found 

published evidence of their skin sensitization effects. Models reported herein provide more 

accurate alternative to LLNA testing for human skin sensitization assessment across diverse 

chemical data. In addition, they can also be used to guide the structural optimization of toxic 

compounds to reduce their skin sensitization potential.
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INTRODUCTION

Allergic contact dermatitis (ACD) is a prevalent occupational and environmental disease 

with high impact on individual working ability and quality of life.1 ACD is caused by topical 

exposure to chemical allergens2 and their abundance in commerce demands that hazardous 

chemicals must be identified and replaced by “greener”, i.e., safer, alternatives.3,4 The 

adverse outcome pathway (AOP) of ACD is characterized by two phases: induction and 

elicitation of the immune response.2,5 After a chemical gains access to the viable epidermis, 

the first phase is initiated by chemical binding to skin proteins/peptides to form an 

immunogenic complex. The second phase is an inflammatory process mediated by allergen-

specific T cells.5,6

Skin sensitization is commonly evaluated in humans using the human repeated insult patch 

test and its variations.7–11 The human maximization test12,13 was designed to be a sensitive 

assay, where the “maximization step” produces slightly irritated skin. In most countries, 

these methods face both ethical issues and scientific validity and are only used as to confirm 

safe doses.14,15

In parallel, common animal tests for skin sensitization include the guinea pig maximization 

test16 and the murine local lymph node assay (LLNA);17 the latter is regarded as the 

preferred in vivo test for evaluating skin sensitization within REACH18 and by various 

regulatory agencies, such as UK Health and Safety Executive19 and US EPA20. In this assay, 

skin sensitization is evaluated by quantifying lymphocyte proliferation, which is correlated 

with the extent of sensitization after a repeated exposure to a sensitizing substance. A 

variation of this assay, named the reduced local lymph node assay (rLLNA), was later 

proposed and found to reduce the number of animals used for testing by almost 40%.21,22 

The LLNA showed good overall correlation with human skin sensitization.23–27 However, 

some studies have shown that LLNA EC3 (the dose that produces the stimulation index of 

three, the threshold for a positive response) values failed in several cases to predict human 

skin sensitization potency.28,29

Animal tests have been forbidden for cosmetic ingredients in Europe since 2009, followed 

by the ban on the sale of cosmetics tested in animals after March 2013 anywhere in the 

world.30 Some reports have further questioned the use of animals in the evaluation of human 

safety with respect to both ethical concerns and scientific relevance.31,32 Although animal 

testing is still considered crucial to the evaluation of chemical safety33, toxicity testing in the 

21st century is moving toward greater understanding of the disease pathways at multiple 

biological levels, so as to develop alternative methods.34–36 Several in vitro tests have been 

proposed, but a single test most likely will not be able to predict human skin sensitization.37 

A recent analysis made by a group of experts revealed that in chemico and in vitro assays 

correctly identified most of the compounds requiring activation, despite some divergence 
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between the assays.38 This reinforces the importance of applying integrated testing strategies 

(ITS) to address multiple key steps of the adverse outcome pathway.39,40

Quantitative Structure-Activity Relationship (QSAR) modeling is a major computational 

approach used in medicinal chemistry and toxicology to design novel bioactive compounds 

or evaluate chemical safety, respectively. This approach employs statistical or machine 

learning techniques to establish predictive correlations between intrinsic chemical properties 

(chemical descriptors) and measured bioactivity or toxicity and the resulting models are used 

to forecast the respective target properties of novel or untested componds.41,42 Several 

studies have generated computational models to predict skin sensitization based on 

LLNA.43–61 As we have alluded to in our recent papers,62,63 most published QSAR models 

are not compliant with the best practices on model development and validation,41,64 and thus 

their reliability for assessing chemically-induced skin sensitization is not assured.

In an attempt to address the skin sensitization AOP, a few groups have built local QSAR 

models using mechanistic information.59,60 The biological mechanism of skin sensitization 

is very well defined, and there are several substructures associated with this defined 

mechanism of action.38 However, these models were built using small datasets owing to the 

small size of publicly available data and the high number of compounds lacking protein 

binding alerts for skin sensitization. For instance, Nandy and Roy56 developed regression-

based QSAR models for skin sensitization; however, these models were built using a small 

dataset of 51 compounds that resulted in the limited model applicability domain. Another 

recent study compared two structural alert-based systems to predict skin sensitization 

(QSAR Toolbox and Toxtree) with LLNA and human data.65 The authors found that 

structural alerts could predict human data better than LLNA, concluding that in silico 

models should be preferably developed using human data. While we agree with this overall 

conclusion, we have also shown recently66 that structural alerts do not serve as reliable 

predictors as they typically select toxic compounds accurately, but often identify very large 

numbers of false positives. Nevertheless, one might benefit from the use of structural alerts 

to build models and some interesting and innovative approaches have been proposed. A 

recent study58 reported hybrid models that used structural alerts along with chemical 

descriptors. The model accuracy was 93%, with sensitivity of 98% and specificity of 85% 

for 269 chemicals. Another study proposed a hierarchical model where skin permeability is 

evaluated using Monte Carlo simulations, chemical reactive centers are determined with 

expert rules, and protein reactivity is predicted by the means of quantum-mechanical 

modeling.61 The authors reported conspicuously impressive results for predicting skin 

sensitization of an external set mostly composed by LLNA, Buehler’s test, and GMPT data: 

sensitivity as high as 87%, specificity as high as 100%, and balanced accuracy of 93%, 

which exceeded the reported67 concordance of 89% between LLNA and GMPT.

The challenge of rationally designing environmental chemicals lacking skin sensitization 

effects resonates strongly with the subject of green chemistry68 that has been gaining broad 

attention as part of chemical toxicology.69–71 Computational methods represent an attractive 

approach for the design of safer chemicals.72–75 Besides high accuracy, it is also critical that 

computational models predict biological effects of chemicals that are most relevant to human 

health. To the best of our knowledge, there have been no reports on the computational 
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modeling of human skin sensitization data, which has the potential to increase the accuracy 

of early chemical evaluation, especially when used in combination with other strategies.40,76 

Considering the need to design safer compounds that would be less prone to induce skin 

sensitization, and the difficulty in obtaining human data, the aims of this study were to 

analyze the concordance between the results of human tests and LLNA and develop robust 

and predictive QSAR models for skin sensitization based on human data. We further 

endeavored to benchmark the performance of QSAR vs. LLNA in predicting human skin 

sensitization and analyze the performance of QSAR vs. LLNA on clusters of structurally 

similar compounds to identify which approach is more efficient for various chemotypes.

MATERIALS AND METHODS

Datasets

Human skin sensitization (Dataset A)—The dataset used in this study was retrieved 

from the Appendix C, Annex III-2 of ICCVAM Test Method Evaluation Report: The 

Usefulness And Limitations of the Murine Local Lymph Node Assay For Potency 

Categorization Of Chemicals Causing Allergic Contact Dermatitis In Humans.28 This 

dataset has been revised and expanded by scientists from the Integrated Laboratory Systems 

(http://www.ils-inc.com/). All the corrections are highlighted in the electronic 

supplementary information (ESI) (ESI-A-Data_predictions.xlsx). For instance, tests for 

(chloro)methylisothiazolinone were actually done for its mixture with 

methylisothiazolinone, i.e., for Kathon; therefore, these entries have been changed to 

Kathon. Additionally, some tests were previously combined (they used the same 

concentration, but different vehicles) and have now been separated. The dataset originally 

consisted of 302 chemical records (every record refers to a chemical compound but because 

of the presence of duplicates, several records could describe the same compound) and 

associated human data. Skin sensitization potential was based on human DSA05 data (dose 

per skin area that produces a positive response in 5% of the tested population), since it has 

been shown to correspond best with the LLNA EC3 value, compared against no observed 

effect level (NOEL) or lowest observed effect level (LOEL) values.28

After curation, 135 unique substances were kept for this study. This list contained 26 

inorganics or mixtures that were used for comparison with the LLNA (see the Analysis of 

structural duplicates section) but were not included in the modeling set because chemical 

descriptors could not be computed for such substances. Given the complexity of skin 

sensitization and the lack of additional data, we decided to keep compounds with both 

positive and negative results as skin sensitizers due to the weight of evidence of the data, 

since most of the conflicts were dose-related. The modeling set contained the remaining 109 

compounds (63 sensitizers and 46 non-sensitizers) with defined chemical structure.

Murine skin sensitization (Dataset B)—ICCVAM (2011) provided LLNA data for the 

135 unique substances present in the human dataset that was described above (Dataset A). 

However, we obtained LLNA data from a larger database compiled by the National 

Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological 

Methods (NICEATM).77 This source contained information for 1,060 LLNA tests. After 
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curation, all the LLNA data for the 135 unique substances present in the human dataset 

(Dataset A) were compiled. Only 109 of them have defined chemical structures and thus 

were used for the comparison of QSAR and LLNA in predicting human data.

CosIng database—CosIng is the European Commission database that includes 

information on cosmetic substances and ingredients (http://ec.europa.eu/growth/tools-
databases/cosing/). We retrieved 5166 records, and after curation, 3964 unique chemical 

compounds were used for virtual screening. The initial analysis of the CosIng database 

revealed 76 chemicals already present in our modeling set including 38 sensitizers and 38 

non-sensitizers. Thus, we have applied our QSAR models to predict the human skin 

sensitization potential for the remaining 3850 compounds.

Data curation

Chemical structures were retrieved from either Chemicalize (http://www.chemicalize.org/), 
ChemSpider (http://www.chemspider.com/), or SciFinder (https://scifinder.cas.org) 

databases using the Chemical Abstracts Service (CAS) registry numbers and chemical 

names. Chemicals were not considered for modeling or virtual screening if their structures 

were not available, but the respective biological data were used to analyze the concordance 

between human and LLNA results. The datasets were thoroughly curated according to the 

workflows developed by our group78–80. Briefly, structural normalization of specific 

chemotypes, such as aromatic and nitro groups, was performed using ChemAxon 

Standardizer (v. 15.10.12.0, ChemAxon, Budapest, Hungary, http://www.chemaxon.com). 

Inorganic salts, organometallic compounds, and mixtures were also removed. After 

structural standardization, the duplicates were identified using ISIDA Duplicates81 and HiT 

QSAR82.

Concordance analysis of human vs. LLNA data

Concordance analysis of LLNA vs. human data was conducted to verify the relevance of the 

LLNA to human outcomes. Compounds that were tested in both assays were analyzed in 

three different ways: binary (sensitizer vs. non-sensitizer; 109 compounds); multiclass 

(strong/extreme sensitizer, weak/moderate sensitizer, and non-sensitizer; 109 compounds); 

and continuous scales (the concentration in mol/m2; 52 compounds). All compounds were 

divided into several classes according to their potency in different assays. When using 

LLNA EC3 data, three classes were defined: strong/extreme sensitizers had LLNA EC3 less 

or equal to 2%; weak/moderate sensitizers had LLNA EC3 between 2% and 100%; and 

compounds with no EC3 values were defined as non-sensitizers. For human data, strong/

extreme sensitizers were defined as compounds with DSA05 less or equal to 500 mol/m2; 

weak/moderate sensitizers had DSA05 values above 500 mol/m2; and compounds with no 

DSA05 values were defined as non-sensitizers. We then compared quantitative potency data 

for human and LLNA assays to detect the level of concordance. For this analysis, eleven 

human sensitizers were excluded, either because it was not possible to calculate the molar 

concentration (mixtures), or a compound was a non-sensitizer in LLNA.
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Cheminformatics approaches

Cluster analysis—Chemical clusters were generated by the Sequential Agglomerative 

Hierarchical Non-overlapping method implemented in the ISIDA/Cluster software.81 

Briefly, the software generates a dendrogram of the parent-child relationships between 

clusters and a heat map of the proximity matrix colored according to the pairwise chemical 

similarity between compounds. This method was applied to check the structural diversity of 

compounds in the dataset and to identify possible structure-activity relationships rules and 

trends in success/failure of predicting human skin sensitization by QSAR models and 

LLNA.

Molecular descriptors—GUSAR uses a combination of three types of descriptors: 

whole-molecule descriptors, QNA (Quantitative Neighborhoods of Atoms) descriptors83 and 

“biological” descriptors84 which represent multiple bioactivity predictions by the PASS 

(Prediction of Activity Spectra of Substances) software.85

QNA descriptors are defined by two functions, P and Q. The values for P and Q for each 

atom i are calculated as:

(1)

(2)

where the k are all other atoms in the molecule and

(3)

Here IP is the ionization potential and EA is the electron affinity for each atom, and C is the 

connectivity matrix for the molecule. Two-dimensional Chebyshev polynomials are used for 

approximating the functions P and Q over all atoms of the molecule.86

The whole-molecule descriptors used in GUSAR are topological length, topological volume, 

lipophilicity, number of positive charges, number of negative charges, number of hydrogen 

bond acceptors, number of hydrogen bond donors, number of aromatic atoms, molecular 

weight, and number of halogen atoms.84,87

The PASS biological descriptors are calculated using the PASS algorithm84, which predicts a 

wide range of biological outcomes including transporter protein binding, gene expression 

activities, and various mechanisms of action, totaling ~ 6400 “biological activities” at a 

mean prediction accuracy threshold of at least 95%. The output from PASS is the probability 

for each predicted outcome that the compound will be active (Pa), and the probability that it 
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will be inactive (Pi). The difference between these two values (Pa−Pi) for a randomly 

selected subset of the predicted activities constituted a molecular descriptor.

RBF-SCR algorithm—In the RBF-SCR algorithm, the descriptors are weighted during 

the calculation of the radial basis functions (RBF) by the coefficients obtained from self-

consistent regression (SCR). These coefficients reflect the contribution of each particular 

descriptor (variable) to the final equation for the given activity. The higher the absolute value 

of the coefficient, the greater its contribution. Self-consistent regression is implemented as a 

regularized least-squares method that can be formulated as:

(4)

where a is the vector of regression coefficients, n is the number of objects, yi is the response 

value of the ith object, m is the number of independent variables, xik is the value of the kth 

independent variable of the ith object, ak is the kth value of the regression coefficients, and vk 

is the kth value of the regularization parameters.

Thus, RBF-SCR can be expressed as the equation:

(5)

where a is taken from equation 4.

The RBF-SCR algorithm uses linear radial basis functions because they allow for modeling 

of diverse training sets with a high level of dissimilarity between the set’s objects. Thus, the 

salient features of the RBF-SCR method are: (a) the weights for each descriptor vector used 

for the calculation of RBF are based on that descriptor’s importance for the given activity as 

determined by SCR, and (b) linear basis functions are used for better description of diverse 

data sets.88

QSAR modeling—Binary QSAR models were developed and rigorously validated 

according to the best practices of QSAR modeling.64 Some QSAR models were developed 

with RBF-SCR algorithm (see previous section) implemented in the GUSAR software.89 We 

have followed a 5-fold external cross-validation procedure for the estimation of model’s 

predictive power.41 Here the full set of compounds with known experimental activity was 

divided into five subsets of equal size (external folds) using modified Kennard-Stone 

algorithm.90 For each fold, we selected ten models with the highest Correct Classification 

Rate (CCR, computed as the average of sensitivity and specificity of the model). Then, the 

models that passed the Y-randomization test91 were applied to the external set compounds to 

predict their experimental properties. Applicability domain (AD) is an important 

characteristic of any QSAR model.92,93 Herein, AD was estimated using three different 

approaches: similarity, leverage, and accuracy assessment. Since in GUSAR several internal 
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models are developed for each fold, a compound is considered to be within the AD if it is 

found within it for at least one model.88 Once the predictivity of the developed models was 

validated, they were applied to predict the skin sensitization potential of the ingredients used 

in cosmetic products, retrieved from the CosIng database on January 26, 2016 (http://

ec.europa.eu/growth/tools-databases/cosing/). The developed QSAR models are available in 

the ESI (ESI-B-Human_Skin_Sens_QSAR).

ChemoText Analysis—An in-house tool called ChemoText94 was used to validate the 

skin sensitization potential of "hits" identified by QSAR modeling. ChemoText is a graph 

database that is used to extract Medical Subject Headings (MeSH terms) and PubMed article 

IDs from MEDLINE (2015 version; 25 million articles). ChemoText, implemented as a web 

server (http://chemotext.mml.unc.edu/), analyzes MEDLINE to extract MeSH terms that 

define diseases, proteins, and chemicals. ChemoText is used to find instances in published 

scientific abstracts indexed in MEDLINE/PubMed where certain MeSH terms co-occur, i.e., 
are mentioned together in the abstract. MeSH terms associated with skin sensitization, 

namely "Dermatitis, Occupational", "Dermatitis, Contact", "Dermatitis, Allergy", were 

queried in ChemoText for co-occurring chemical names. If a "hit" (chemical) and a skin 

sensitization MeSH term were found to co-occur in an abstract, then the PubMed article ID 

was obtained. The skin sensitization potential of the chemical "hit" was then manually 

verified by inspection of the corresponding full-text article.

RESULTS AND DISCUSSION

Analysis of structural duplicates

Human skin sensitization (Dataset A)—Almost 50% of compounds from Dataset A 

(62 out 135) were associated with multiple records (numbering from two to twelve). The 

number of records and the outcome of all assays for these 62 compounds is shown in ESI 

(Table S1, ESI-C-Clusters_and_Tables.docx). Only 28 substances out of 62 had concordant 

outcomes for all the records. We were over-cautious to avoid any toxicant being considered 

as non-toxic; thus, all the compounds with at least one record labeling the compound as a 

sensitizer were considered sensitizers, according to the weight of evidence approach adapted 

to risk assessment95 and lack of additional data in the literature. Thus, 50 of the 62 

substances were considered to be sensitizers. Several compounds with more than five 

records (e.g., hydroxycitronellal, phenylacetaldehyde, and cinnamyl alcohol,) had large 

divergence between annotations, revealing the lack of concordance among the available data 

from the human tests. It is known that there can be large inter-individual differences in 

response to a chemical exposure. However, since expected no-effect sensitization levels 

(NESILs) are determined at a dose below the sensitization threshold, much of this variability 

is already taken into account 96. Despite this high variability, we modeled these data (see 

QSAR modeling section) and analyzed the predictions for these compounds when they were 

in the external folds. Four substances (ylang ylang, oakmoss, treemoss, and 

(chloro)methylisothiazolinone [Kathon]) out of 34 compounds with divergent annotations 

(and thus considered as sensitizers) were mixtures excluded from the analysis. Interestingly, 

22 of 30 remaining sensitizer compounds were predicted as sensitizers.
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Murine skin sensitization (Dataset B)—The murine skin sensitization dataset had 653 

records for the 135 compounds from Dataset A. We found that only 19 of the 76 compounds 

with multiple records (from 2 to 44) had a discordance between annotations (see Table S2 in 

ESI). Even though some compounds had divergent annotations, they usually represented a 

small fraction of the total number of records. This is in agreement with earlier studies that 

LLNA has a low inter-laboratory variance.62,97,98 In general, variability was higher when 

different vehicles are used.99,100

Human vs. LLNA data analysis

There is a common understanding that LLNA results correlate with human skin sensitization 

potential and, therefore, LLNA has been regarded as a reliable method to predict whether a 

chemical is expected to be a sensitizer or not.28,101 We decided to repeat the analysis made 

by ICCVAM several years ago (2011)28 but considering compounds with defined chemical 

structure only (removing mixtures and inorganics) in order to analyze the structure-activity 

relationship trends. We conducted the analysis at three levels: binary (sensitizer vs. non-

sensitizer); multi-class potency (strong/extreme sensitizer, weak/moderate sensitizer, and 

non-sensitizer); and continuous potency (using the concentration in mol/m2 for 52 

sensitizers). Table 1 shows the confusion matrix reflecting the level of concordance between 

human and LLNA binary data. The accuracy of using LLNA results to predict human data is 

estimated to have the Correct Classification Rate (CCR) of 63%, sensitivity of 83%, positive 

predictive value (PPV) of 67%, specificity of 43%, and negative predictive value (NPV) of 

65%. The Pearson’s correlation (R) between qualitative data for these two endpoints was 

28% only.

All compounds were divided into several classes according to their potency as described 

above in the Methods section. As can be seen in Table 2, among 46 human non-sensitizers, 

24 were identified as weak and two as strong sensitizers in LLNA. Ten human weak 

sensitizers were non-sensitizers in LLNA, while 29 compounds were weak and four 

compounds were strong sensitizers. One strong human sensitizer is non-sensitizer, while 

twelve are weak and seven are strong sensitizers in LLNA. The Pearson’s correlation (R) 

between the multiclass data was 43% only.

A relative potency was compared for all compounds that were sensitizers for both human 

and LLNA. List of figure captions

Figure 1 shows the distribution of sensitizers of human DSA05 vs. LLNA EC3, both 

expressed in (mol/m2). The coefficient of determination (R2) for the 52 sensitizers was very 

low (R2=0.05). Removing three outliers (lilial, pyridine, and phenyl benzoate), as shown in 

List of figure captions

Figure 1 B, provided no significant improvement (R2=0.08).

The high DSA05 values for lilial (164.48 mol/m2), pyridine (51.96 mol/m2), and phenyl 

benzoate (26.5 mol/m2) indicate that they are weak sensitizers.28 For lilial, the LOEL of 

29,528 μg/cm2 (14.48 mol/m2) was also the NOEL in a separate test with fewer subjects. 

Thus, testing more subjects elicited an infrequent sensitization response for lilial. Two 
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additional tests at lower concentrations, with NOEL of 3,750 μg/cm2 (1.84 mol/m2) and 

4,125 μg/cm2 (2.02 mol/m2), yielded no sensitizing effects. ICCVAM (2011) reports one test 

each for pyridine and phenyl benzoate with LOELs of 34,483 μg/cm2 (43.65 mol/m2) and 

9,448 μg/cm2 (4.77 mol/m2), respectively. The high DSA05 values for these substances 

reflect the fact that there are low sensitization rates in the tested populations at relatively 

high doses. This seems to be related to the high inter-individual variability of human tests.96

Cluster analysis

In this section, we present the detailed analysis of most interesting clusters of structurally 

similar chemicals. A complimentary analysis is available in the ESI (ESI-C-

Clusters_and_Tables.docx). The dataset used in this study was small (109 chemicals) but 

structurally diverse. The main goal of the cluster analysis was to identify small groups of 

structurally similar compounds, assess whether all chemicals within each cluster have, as 

expected, similar skin sensitization effect, same mechanism of action, and compare the 

predictive performance of LLNA and QSAR models for these compounds. Compounds were 

clustered using ISIDA fragment descriptors and the hierarchical algorithm of ISIDA/Cluster 

as described in the Methods section. The resulting dendrogram and the associated distance 

matrix for Dataset A are shown in Figure 2. The dendrogram revealed 23 clusters containing 

3-8 structurally similar compounds each. The information about all 23 clusters including 

chemical names, SMILES, associated QSAR predictions, and LLNA and human test 

outcomes is available in the ESI (ESI-D-Clusters.pdf). The summary of clusters showing the 

number of compounds correctly predicted by QSAR and LLNA with respect to the human 

data is shown in Table 4.

Three clusters (Clusters 17, 14, and 9, see Table 5) were of the particular interest because all 

compounds in these clusters belonged to the same chemical class. The three 

aminoglycosides (neomycin, streptomycin, and kanamycin) present in Cluster 17 were 

human sensitizers accurately predicted by QSAR but they produced a false negative 

response in LLNA. Cluster 14 contained four damascone derivatives. All compounds in this 

cluster were non-sensitizers in humans except for δ-damascone, which was the only 

compound mispredicted by both our models and LLNA. All of its highly similar analogs 

(damascone, trans-α-damascone, and trans-β-damascone) were non-sensitizers, which 

explains why the QSAR model produced a false negative response for this compound. It 

should be noted that this chemical is described as “may cause sensitization by skin contact” 

(http://www.thegoodscentscompany.com/data/rw1006961.html) so its classification as a 

sensitizer may be inconclusive. Cluster 9 is formed by terpenes. It has been shown that 

terpenes are not allergenic themselves, but they oxidize when in contact with air to produce 

allergenic compounds.102 Thus, the potency of skin sensitization depends on how much 

oxidation impurities terpenes contain. This fact explains why QSAR models have confusing 

predictions for this chemical class.

LLNA also has a high disagreement with human data for non-sensitizers present in Cluster 

1. All the non-sensitizers were correctly predicted by QSAR, although one of the non-

sensitizers (resorcinol) has been recently labeled as a sensitizer. This compound is used at 

high levels in hair dyes and skin preparations, but is not considered dangerous, since it has 
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low frequency of human sensitization. Benzyl alcohol (sensitizer) also had wrong 

concordance with LLNA and it was mispredicted by QSAR. Similar to outliers in previous 

sections, benzyl alcohol as a high DSA05 of 48.67 μg/cm2 (45.06 mol/m2) and a NOEL of 

5,906 μg/cm2 (5.47 mol/m2). The very low skin sensitization potency may be the reason for 

wrong prediction by our QSAR model. LLNA also showed a poor concordance for non-

sensitizers in Clusters 3 and 8 (mispredicted all four and three compounds, respectively). 

LLNA failed to predict all of the cinammyl derivatives in Cluster 8; α-amylcinnamyl alcohol 

was the only human sensitizer and the only compound mispredicted by QSAR.

LLNA has shown full concordant response with human data in six out of 23 clusters 

(Clusters 10, 12, 13, 18, 19, and 21). Out of these six clusters, only Cluster 10 (terpenoids) 

and Cluster 21 (short-chain alcohols), had more than three compounds belonging to the 

same chemical class. LLNA showed higher predictivity of human data then QSAR for all of 

these clusters except 18. LLNA also predicted all the three coumarins in Cluster 6 correctly, 

while QSAR failed to predict 3,4-dihydrocoumarin (human sensitizer). The non-sensitizer 6-

methylcoumarin was correctly predicted by both QSAR and LLNA. In our previous study,62 

the initial data source21 labeled coumarin as non-sensitizer. In a newer report used in the 

present work,28 a positive LLNA response was reported for coumarin, although the original 

reference103 showed that pure coumarin does not induce skin sensitization in mice and it is 

also well tolerated in humans. In our previous analysis,62 3,4-dihydrocoumarin was the only 

LLNA sensitizer within the cluster of coumarins. Further investigation suggested that 3,4-

dihydrocoumarin is a prohapten, i.e., it requires a biotransformation to cause skin 

sensitization.104

QSAR and LLNA in the prediction of human skin sensitization

The statistical characteristics of QSAR models are summarized in Table 3. QSAR models 

were built using QNA, biological, and whole-molecule descriptors combined with radial 

basis function interpolation and self-consistent regression.88 We selected ten best models for 

each fold; these included only QNA and whole-molecule descriptors such as logP, 

topological length of the molecule, etc. No biological descriptors were selected. Consensus 

QSAR models presented higher predictivity of human data than LLNA. Although LLNA 

had both higher sensitivity (83% vs. 65%) and NPV (69% vs. 61%), the developed QSAR 

models outperformed LLNA in terms of overall accuracy, i.e., CCR (71% vs. 63%), PPV 

(79% vs. 67%), and specificity (76% vs. 43%).

Despite many efforts in the last decade toward the development of alternative methods for 

evaluating skin sensitization potential of chemicals,62,105–110 LLNA is still considered 

essential for the evaluation of skin sensitization potency in compounds that lack human 

data.101 Although the results obtained both in a recent study29 and in this work have shown 

that in certain cases LLNA does not correlate well with human potency, it certainly 

contributes valuable information towards skin sensitization categorization.28 On the other 

hand, due to the prohibition of animal tests for cosmetics research in Europe, there is a 

strong need to develop alternative test methods.

Overall, the results presented in Table 3 show that our models could predict human skin 

sensitization with higher overall accuracy than LLNA. Notably, very high sensitivity but 
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very low specificity implies that LLNA merely classifies the majority of molecules as 

sensitizers. Although the high sensitivity of this test is important from a point of view of 

regulatory precaution, it may ultimately lead to the withdrawal of many potentially useful 

and harmless compounds from the development because of false sensitization alerts. At the 

same time, one can see that developed QSAR models have high CCR to predict skin 

sensitization of new compounds lacking LLNA data or containing the chemotypes for which 

LLNA fails (see Cluster analysis section).

The ultimate goal of any method for evaluating skin sensitization is to provide an accurate 

assessment of the potential risk of a chemical with respect to human safety.111 Due to the 

high inter-individual variability of human tests, multiple sources of exposure must be 

evaluated for quantitative risk assessment of skin sensitization.96 It has been shown that 

consensus prediction typically affords models of higher accuracy.91,112,113 Thus, we decided 

to combine QSAR predictions and LLNA assessment to predict human skin sensitization. 

Under this scenario, only cases when QSAR and LLNA agreed with each other were 

considered; cases when QSAR and LLNA had contradictory outcomes were treated as 

inconclusive and were discarded, leading to a coverage of 52% (see Table 3). Although the 

combined model could make predictions for only about half of all compounds, the 

prediction accuracy was much higher, i.e., CCR increased from 71 to 82%.

These results reveal that concordant predictions by LLNA and QSAR of the human skin 

sensitization are of the highest confidence, but at the expense of the reduced coverage, i.e., 
the models could not provide estimates for all compounds of interest. Nevertheless, our 

studies suggest that for the most reliable but conservative assessment, the consensus 

approach should be used preferably. However, when the entire chemical dataset of interest 

needs to be assessed for potential human skin sensitization effects, the QSAR models built 

with the currently available human data should be chosen over LLNA for the higher 

accuracy. Our models could be used in combination with other strategies, as proposed 

earlier.40,76 Considering the small size of the data, it was not feasible to build local models 

based on the mechanism of action. Nevertheless, it has been shown that, usually, there are no 

improvements in model accuracy when using local over global QSAR models.114,115 Thus, 

the QSAR model presented here affords a powerful alternative to current animal and in vitro 

approaches for assessing skin sensitization effect of chemicals in human.

Structural optimization of chemicals

Cheminformatics analyses can be used to determine structural features associated with 

toxicity in order to design new compounds with improved properties, e.g., less toxic.66 In 

the spirit of molecular design oriented by green chemistry, we illustrate herein an example of 

structural optimization for reduced toxicity, using experimental data and predictions derived 

from the developed models (Figure 3). Starting from phenyl benzoate, a known human skin 

sensitizer, several structurally similar compounds, most likely sharing the same properties of 

interest, could be revealed by clustering, and then evaluated for skin sensitization potential 

using QSAR. As can be seen in Figure 3, all chosen structurally similar chemicals were 

predicted to be non-sensitizers and thus could serve as a potential alternative to phenyl 

benzoate. In this example, three compounds similar to phenyl benzoate have human and 
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LLNA data (benzyl salicylate, benzyl cinnamate, and benzyl benzoate). All three 

compounds are non-sensitizers in humans and yet they show false positive results in LLNA. 

Despite lacking both human and LLNA data, the remaining compounds shown in Figure 3 

were predicted as non-sensitizers based on structurally similarity and QSAR modeling 

results. Next, through structural interpretation of the QSAR model and clustering, one can 

propose that the toxic potential of phenyl benzoate could be reduced through an increase of 

the linker length to the benzene rings and/or an addition of a hydroxyl group in the ortho-

position on the benzene ring. Phenyl benzoate acts as an acyl transfer agent, reacting with 

the sulfur of the cysteine residues. The proposed modifications may result in less reactive 

compounds because they lead to a reduced partial charge on the carbon atom of the 

carboxylate group, which hinders the expulsion of the oxygen from the tetrahedral 

intermediate.116 This hypothesis is supported by the analysis of the atomic contributions 

derived by the interpretation of the developed models (Figure 4). These contributions are 

illustrated by different colors: red – increasing the sensitization potential; blue – decreasing 

the sensitization potential; and green – no significant contribution. Green arrows represent 

higher confidence of the prediction. This higher confidence is caused by the absence of 

fragments that increase the sensitization potential. Other proposed compounds contain such 

fragments; however, their collective contribution is overpowered by the negative 

contributions of other fragments resulting in the absence of the sensitization potential for 

respective molecules. As seen from Figure 4, the carbon of the carboxylate is slightly darker 

for benzyl salicylate and benzyl benzoate, and much greener for benzyl cinnamate, 

indicating that this atom was predicted to have lower influence on the skin sensitization 

potential than the same carbon of phenyl benzoate. In other compounds, although the carbon 

of carboxylate was predicted to positively contribute to the activity, the contributions of the 

structural neighborhood into the sensitization potential is much lower than in phenyl 

benzoate. This analysis provides another evidence that structural alerts alone are not 

sufficient to flag a compound as toxic.66 This information could be used for designing new 

compounds preserving the specific desired properties of phenyl benzoate but removing its 

skin sensitization action.

Virtual screening of ingredients found in cosmetic products

We applied the developed QSAR models to the European Commission database for 

information on cosmetic substances and ingredients (CosIng) in order to identify possible 

skin sensitizers. Using the QSAR model developed with GUSAR, 1061 compounds were 

predicted as sensitizers. Since CAS numbers of chemicals in the CosIng database may 

correspond to mixtures, we regenerated all possible names and CAS numbers for the curated 

database. Using ChemoText,94 we queried three MeSH terms associated with skin 

sensitization (see Methods) for instances when CosIng "hits" predicted by QSAR models 

were mentioned in the literature. We confirmed 17 chemicals as skin sensitizers (see Table 

S3 in ESI). It should be noted that not all chemicals/chemical names are indexed in 

MEDLINE. Therefore, many possible "hits" could not be verified using ChemoText. The list 

containing all the predicted sensitizers is available in Supplemental Materials.
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CONCLUSIONS

We have collected and curated the largest publicly available dataset of 135 substances (109 

defined chemical structures) tested in both LLNA and human assays. We have conducted a 

variability and concordance analysis between human and LLNA data using substances with 

multiple test results. This analysis showed that human data have higher variability than the 

LLNA data and that the concordance between human and LLNA was relatively low (CCR = 

28-43%; see Table 1 and Table 2).

We have developed validated and externally predictive QSAR models for skin sensitization 

using the available human data and benchmarked their performance in comparison with 

LLNA results. Our skin sensitization models, compared to LLNA, showed lower sensitivity 

(65% vs. 83%), but higher CCR (71% vs. 63%) and much higher specificity (76% vs. 43%). 

The analysis of positive prediction values showed that our models had a higher probability 

(79 % vs. 67%) to predict new sensitizers correctly. More importantly, the conservative 

combination of QSAR and LLNA (i.e., only for compounds with concordant predictions by 

both methods) outperformed each of the contributing approaches by up to 11% as evaluated 

by CCR or PPV but at the expense of significantly reduced (by nearly 50%) chemical 

coverage. Thus, our results confirm the importance of combining experimental and 

computational methods for most accurate conservative assessment of chemical safety for 

humans but also suggest that QSAR models built with human data afford significantly 

higher accuracy of predicting human effects than murine LLNA.

We have employed hierarchical clustering to examine if similar chemicals also have similar 

human sensitization data as generally expected. Indeed, for some clusters, the expected trend 

was observed, but there were also inconsistencies, which could be explained by inter-

individual differences in the human data. For three largest clusters of similar compounds 

(aminoglycosides, damascones, and terpenes), LLNA showed poor concordance with human 

data, whereas QSAR predictions were highly accurate (Table 4). Both LLNA and QSAR 

showed almost random prediction accuracy for terpenes, which could be explained by the 

known facts that the skin effects are caused by metabolites of these compounds rather than 

by compounds themselves.

In summary, the analysis conducted in this study was important to benchmark advantages 

and drawbacks of both LLNA and QSAR models to predict the human skin sensitization 

effects of chemicals with the available data. Our models could be employed for identifying 

putative sensitizers as the first step of a multi-tiered testing strategy. For instance, virtual 

screening of the CosIng database including 3,964 chemicals with the QSAR models built in 

this study identified 1061 potential skin sensitizers that may be candidates for targeted 

testing. The ChemoText search of additional sensitization data in the scientific literature 

identified 17 new sensitizers that were absent in our dataset. All were predicted as sensitizers 

by our QSAR model serving as additional proof of model accuracy. Note that LLNA data for 

the same compounds were unavailable, which is another illustration of the advantages of 

QSAR models, that require the knowledge of chemical structure only, over LLNA. Further 

efforts are needed to identify additional high-quality human data by both more pervasive 

literature and digital sources search of substances with known effect on human or by 
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additional experimental testing. Rebuilding our models with additional data will increase 

their predictive power and reliability. Summarizing, our findings provide a strong argument 

in favor of using in silico models as a strong alternative to both animal and human testing for 

skin sensitization. All curated datasets, predictions, chemical clusters, and the models 

developed in this study have been made publicly available in the ESI. GUSAR is a 

proprietary software; thus, one should purchase it in order to develop or execute our model. 

However, we will make and share predictions free of charge for any compound of interest 

upon request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Human DSA05 vs. LLNA EC3 for all 53 sensitizers (y = 0.3111x + 0.8259; R² = 0.08) – Left 

Panel; and 50 sensitizers (y = 1.4383x + 2.961; R² = 0.05) remained after exclusion of three 

outliers (lilial, pyridine, and phenyl benzoate) – Right Panel.
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Figure 2. 
Results of cluster analysis of 109 compounds with human skin sensitization data. (A) 

Heatmap and (B) dendrogram of the distance matrix, both colored according to structural 

similarity (blue/violet = similar; yellow/red = dissimilar).
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Figure 3. 
Example of structural transformation of human skin sensitizer phenyl benzoate into various 

non-sensitizers using developed models.
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Figure 4. 
Example of interpretation of QSAR models visualized as color-coding according to atom 

contributions in change of sensitization potential: red – sensitization increase; blue – 

sensitization decrease; green – no significant contribution. Green arrows represent higher 

confidence of the prediction. This information helps to guide structural transformation of 

human skin sensitizer phenyl benzoate into various non-sensitizers (see Figure 3).
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Table 1

Human vs. LLNA experimental outcomes for 109 compounds with defined chemical structure.

HUMAN

Non-sensitizer Sensitizer Total

LLNA
Non-sensitizer 20 11 31

Sensitizer 26 52 78

Total 46 63 109
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Table 2

Human vs. LLNA multi-class annotation of experimental results for 109 compounds with defined chemical 

structure.

HUMAN

Non-sensitizer Weak Strong Total

LLNA

Non-sensitizer 20 10 1 31

Weak 24 29 12 65

Strong 2 4 7 13

Total 46 43 20 109
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Table 3

Statistical characteristics of LLNA results vs. external QSAR predictions (5-fold external cross-validation) for 

predicting human skin sensitization.

Model CCR Sensitivity PPV Specificity NPV Coverage

QSAR model 0.71 0.65 0.79 0.76 0.61 1.00

LLNA result 0.63 0.83 0.67 0.43 0.65 1.00

Combined (QSAR + LLNA) 0.82 0.88 0.90 0.76 0.72 0.52
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Table 4

Summary of cluster analysis showing the number of compounds correctly predicted by QSAR and LLNA 

when compared to the human data.

Sensitizers Non-sensitizers

Cluster Human
data QSAR LLNA

data
Human

data QSAR LLNA
data

1 4 2 3 4 4 1

2 4 4 3 2 0 2

3 2 1 2 4 4 0

4 5 3 4 0 - -

5 3 2 3 4 3 2

6 4 1 4 2 2 1

7 4 2 3 2 2 2

8 1 0 1 3 3 0

9 3 1 2 1 0 0

10 3 2 3 1 1 1

11 2 2 2 2 0 1

12 3 1 3 1 1 1

13 3 2 3 1 1 1

14 2 0 1 5 5 0

15 1 0 1 2 1 1

16 0 - - 3 1 2

17 3 3 0 0 - -

18 3 3 3 0 - -

19 5 5 5 1 0 1

20 3 3 3 2 1 1

21 1 0 1 4 4 4

22 3 3 3 0 - -

23 1 1 0 2 2 0

Total 63 41 53 46 35 21
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Table 5

Human data vs. LLNA results vs. external QSAR predictions within selected chemical clusters
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