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Abstract 

 
This review describes the state of (Q)SARs/expert systems for skin sensitisation from the early work on 

structural alerts to the evolvement of QSAR models through to the development of a mechanistically 

based QSARs. The review considers the merits of the different approaches with particular focus on their 

applicability for potential regulatory use. There is a strong mechanistic understanding with respect to skin 

sensitisation which has facilitated the development of a wide range of models. The majority of the 

existing models fall into one of two main categories – either they are local in nature, typically specific to 

a chemical class or else they are global in form, derived empirically using statistical methods. Several of 

the published global QSARs have been recently characterised and evaluated in accordance with the 

OECD principles. There are also several expert systems capable of predicting skin sensitisation, these are 

briefly described. Recently, a new perspective regarding the development of mechanistic skin 

sensitisation QSARs so-called Quantitative Mechanistic Modelling (QMM) was proposed, where 

reactivity and hydrophobicity, are used as the key parameters in mathematically modelling skin 

sensitisation. This approach appears to be the most promising means of deriving robust and 

mechanistically interpretable models that are of value in a regulatory context. Hydrophobicity can be 

conveniently modelled using log P, the octanol-water partition coefficient. This is readily determined 

from chemical structure. No such surrogate for reactivity exists, rate constants are best derived from 

experimental studies. Initiatives are in progress to generate reactivity data for reactions relevant to skin 

sensitisation but more resources are required to realise a comprehensive set of reactivity data. This is a 

fundamental and necessary requirement for the future assessment of skin sensitisation. A framework of 

how information from using RAI approaches can be used in the evaluation of skin sensitisation is 

described. 
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Introduction 

 
Under the European Union (EU) Registration, Evaluation and Authorisation of CHemicals (REACH) 

programme, all chemicals produced or imported > 1 tonnes per annum (tpa) in the EU need to be assessed 

for human and environmental hazards. If conducted by means of the present data requirements/test 

strategy, this assessment will use a huge number of test animals and will be neither resource nor time 

efficient. REACH calls for an increased use of alternatives such as in vitro methods, (quantitative) 

structure-activity relationships ((Q)SARs) and chemical grouping approaches to help in the assessment of 

chemicals (see Annex XI of (EC, 2006)).  

 

Allergic contact dermatitis is a significant environmental and occupational health concern. Workers and 

consumers being sensitised are a major problem for individuals, for employers and for marketing certain 

products. Consequently there exists an important need to identify chemicals that have the potential to 

cause skin sensitisation accurately (Steiling et al., 2001; Kimber et al., 2002; Kimber and Dearman, 

2003). In REACH, sensitising potential needs to be assessed for chemicals above the 1 tonne threshold 

according to Annex VII (EC, 2006). No in vitro replacement is currently available, nor expected to be 

ready in the near future (Basketter et al., 2005; Jowsey et al., 2006).  

 

(Quantitative) structure-activity relationships ((Q)SARs) do show promise but regulators have scarcely 

used human health (Q)SARs in decision making under existing European Union (EU) legislation. Since 

the publication of the REACH White paper in 2001, several activities were initiated to increase 

acceptance of (Q)SARs. The first of these included a Workshop organised by European Chemical 

Industry Council (CEFIC)/The International Council of Chemical Associations (ICCA) in Setubal, 

Portugal in 2002 (Jaworska et al., 2003) which identified a number of principles for evaluating the 

validity of (Q)SARs. These were then evaluated by the Organisation for Economic Co-operation and 

Development (OECD) (as part of the Ad hoc group for (Q)SARs) and are now referred to as the ‘OECD 

principles’ which read as follows:  

 

“To facilitate the consideration of a (Q)SAR model for regulatory purposes, it should be associated with 

the following information: 

- a defined endpoint 

- an unambiguous algorithm 

- a defined domain of applicability 

- appropriate measures of goodness-of-fit, robustness and predictivity 

- a mechanistic interpretation, if possible 
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The principles have been summarised briefly in an OECD publication (OECD, 2004). A preliminary 

guidance document on the characterisation of (Q)SARs was then written (Worth et al., 2005), the basis of 

which was used in the development of the recently finalised OECD Guidance document on (Q)SAR 

Validation (OECD, 2007).  

 

The guidance developed to date, describes how (Q)SAR models may be evaluated in accordance with the 

OECD principles and to an extent what best practice should be when developing new (Q)SAR models. A 

major challenge remains to identify available (Q)SARs for the wide range of endpoints that will need to 

be assessed under REACH and to highlight which show greatest promise for hazard and risk assessment 

purposes. Some efforts to address this need were undertaken as part of the REACH Interim Strategy 

through a number of REACH Implementation Projects (RIPs) (http://ecb.jrc.it/REACH) (in particular RIP 

3.3). In addition, there have been a number of publications where existing (Q)SAR models have been 

characterised and evaluated in accordance with the OECD principles – examples include those for skin 

sensitisation (Aptula et al., 2006; Roberts et al., 2007a), acute aquatic toxicity (Vracko et al., 2006; Pavan 

et al., 2006), estrogenicity (Saliner et al., 2006; Liu et al., 2006), percutaneous penetration (Bouwman et 

al., 2006) as well as mutagenicity and carcinogenicity (OECD, 2004). 

This review paper aims to describe what (Q)SARs including expert systems are currently available for 

skin sensitisation and to illustrate which of these might be of potential value in a regulatory setting. An 

overview of skin sensitisation, its mechanism and the current testing methods are provided as 

background.  

 

Biological Mechanisms of Skin Sensitisation 

 
Skin sensitisation (also called delayed contact hypersensitivity, contact hypersensitivity, contact allergy or 

allergic contact dermatitis) is the process following epicutaneous application of a substance to the skin 

which results in a T-cell mediated immunological response specific for the substance. Skin sensitisation 

involves two phases, an induction and elicitation phase.  

 

During induction, the sensitising chemical penetrates the stratum corneum to the viable epidermis and 

binds to skin proteins/peptides to create an immunogenic complex. This complex is then recognised and 

processed by Langerhans Cells (LCs) in the epidermis. Upon exposure to the immunogenic complex, the 

LCs begin a maturation process in which the LCs internalise and process the immunogenic complex to a 

form that will be recognised by T-cells. These cells then migrate from the epidermis to the lymph nodes 
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where they present the modified immunogenic complex to naïve T-cells with receptors that are able to 

specifically recognise the immunogenic moiety and are stimulated to proliferate and circulate throughout 

the body.  

 

Upon subsequent exposure to the same sensitiser, protein binding and processing of the immunogenic 

complex by the LCs occurs after which the immunogenic complex is recognised by circulating T-cells 

triggering a cascade of biochemical and cellular processes which produce the clinical sensitisation 

response i.e. elicitation. (Basketter et al., 1995; Kimber and Dearman, 2003; Smith Pease, 2003). 

 
Chemical Mechanisms of Skin Sensitisation 

 
Landsteiner and Jacobs (1936) first explored the issue of why some chemicals trigger this chain of events 

and others did not. This was followed up by others (e.g Dupuis and Benezra, 1982) from which the 

electrophilic theory of covalent interaction between chemical sensitisers and skin proteins was 

hypothesised. For effective sensitisation, a chemical must either be inherently protein reactive or be 

converted (chemically or metabolically) to a protein reactive species. Chemicals that are unable to 

associate effectively with proteins will fail to stimulate an immune response. There are various types of 

electrophile-nucleophile reactions such as Michael-type reactions; SN2 reactions; SNAr reactions; 

acylation reactions and Schiff-base formation. These have been described with reference to skin 

sensitisation by a number of workers including Payne and Walsh, (1999), Smith Pease (2003), Gerner et 

al., (2004), Dimitrov et al., (2005a) and more recently by Aptula and Roberts, (2006).  

 
Skin sensitisation predictive testing: in vivo methods  

 

Currently, animal tests are the only means of definitely assessing skin sensitisation for regulatory 

purposes. For many years, guinea pigs were the species of choice for predictive sensitisation tests. Two 

types of tests were developed; adjuvant tests in which sensitisation is potentiated by the injection of 

Freund’s Complete Adjuvant (FCA) and non adjuvant tests. OECD Test Guideline 406 (OECD, 1992) 

describes these tests as the Guinea Pig Maximisation Test (GPMT) and the Buehler test respectively. In 

the GPMT, a test substance is regarded as a sensitiser when at least 30% of the animals show a positive 

response (EEC, 1967). In the Buehler test, a test substance is regarded as a sensitiser when at least 15% of 

the animals show a positive response (EEC, 1967).  

 

The test of first choice under REACH for skin sensitisation is the Local Lymph Node Assay (LLNA) as 

described in OECD Test guideline No. 429 (OECD, 2002). The LLNA is based upon the characteristics 

of induced proliferative responses in draining lymph nodes following topical exposure of chemicals to 
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mice. The endpoint is the stimulation index (SI), which gives a ratio of thymidine incorporation in lymph 

nodes from dosed animals compared to the incorporation in lymph nodes from vehicle-treated control 

animals. The test is positive when the stimulation index (SI) is greater than 3 for any of the dose 

concentrations. The EC3 value, interpolated from the dose response curve, is the effective concentration 

of the test substance required to produce a threefold increase in the stimulation index compared to 

vehicle-treated controls. It can be used as a quantitative measure of the relative sensitising potency. 

Further information describing the derivation and the use of the EC3 in risk assessment can be found 

elsewhere (Basketter et al., 1996; Basketter et al., 1999; Basketter et al., 2000; Basketter et al., 2002; 

Gerberick et al., 2000; Kimber et al., 2003; Basketter et al., 2003).  

 
Data from other in vivo tests, such as the mouse ear swelling test (MEST) or human studies (Human 

Repeat Insult Patch Test (HRIPT) and (Human Maximisation Test (HMT)) may also be useful in 

evaluating skin sensitizers. More information can be found in Basketter et al., (2005) and cited references.  

 

Regulatory classifications 

Under existing EU legislation, substances and preparations are classified as sensitising and assigned the 

symbol ‘Xi’, the indication of danger ‘Irritant’ and the risk phrase R43 if practical experience shows the 

substance or preparation to be capable of inducing a sensitisation by skin contact in a substantial number 

of persons, or where there are positive results from animal tests.  

 

Under the forthcoming Globally Harmonised System (GHS) of Classification and Labelling of chemicals, 

substances will be classified as contact sensitisers (Category 1) if there is evidence in humans that the 

substance can induce sensitisation by skin contact in a substantial number of persons, or if there are 

positive results from an appropriate animal test 

(http://www.unece.org/trans/danger/publi/ghs/ghs_welcome_e.html). 

These types of regulatory classification are important considerations when trying to relate the modelled 

endpoints within (Q)SAR models to their subsequent regulatory application. 

 
Sources of Skin sensitisation data 

Systematic development of comprehensive databases designed to assist in the detection or prediction of 

skin sensitisation potential of chemicals was first started over 30 years ago. Notable amongst the early 

efforts were those by Ziegler (INPRET – Information on Predictive Tests) (Ziegler et al., 1989) and CSC 

Associated (CADES – Contact Allergens Database Evaluation Systems) (Sigman et al., 1994).  
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Other datasets include Cronin and Basketter, (1994) who published the results of over 270 in vivo skin 

sensitisation tests obtained in the same laboratory (mainly from the guinea pig maximisation test). A 

compilation of summary (animal and human) data for a range of chemicals was included in Smith and 

Hotchkiss, (2001). A larger database of animal and human studies for 1034 compounds has been 

described by Graham et al., (1996) though the dataset is not present in this manuscript. The BgVV list of 

264 chemicals was compiled and evaluated by a group of experts including dermatologists from 

universities and representatives of the chemical industry and from regulatory authorities that was 

established by the German Federal Institute for Health Protection of Consumers and Veterinary Medicine 

(BgVV) in 1985 (Schlede et al., 2003). Data from the literature on substances with documented contact 

allergenic properties in humans (from clinical data and experimental studies) and from animal 

experiments were evaluated resulting in a publication where chemicals were listed as belonging to one of 

3 categories (A-C) where Category A represented significant contact allergens, B a solid based indication 

for contact allergenic potential and C insignificant or questionable contact allergenic potential.  

A large number of data have been published for the local lymph node assay including full test results for 

106 chemicals by Ashby et al., (1995), data for 41 chemicals (Gerberick et al., 2004a), EC3 values for 93 

chemicals (Estrada et al., 2003) and full data for 211 chemicals (Gerberick et al., 2005).  

 

(Quantitative) Structure-Activity Relationship models and expert systems 

 
A number of different approaches and philosophies are used to develop (Q)SAR models and expert 

systems. In the area of skin sensitisation, available published (Q)SAR models fall into one of two main 

categories; either they are chemical class based/mechanism-based (local models) or they are derived 

empirically using statistical approaches (global models). Some of the available SARs are chemical class 

based whereas others are mechanistically based and some of these have been encoded into expert systems 

(Payne and Walsh, 1994; Barratt et al., 1994a).  

 

True mechanism-based QSARs take the form of an equation relating toxicity and physicochemical 

parameters, derived mathematically from the known mechanism of action, and by applying established 

principles of chemistry and physics. For the purposes of this review, we shall define these mechanism-

based QSARs as Quantitative Mathematical Models (QMMs).  

 

An empirical QSAR (quantitative structure-activity relationship) is an equation relating (a) quantitative 

parameter(s) derived from chemical structure to a quantitative measure of biological activity. This type of 

QSAR model is typically derived by applying statistical approaches firstly to select appropriate 
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descriptors from a large pool of calculated parameters and secondly to derive an algorithm (e.g. through 

using linear regression).  

 

Expert systems are built upon experimental toxicity results with rules derived from the data. The rules are 

either based on statistical inference and take the form of QSARs, else they are based on expert judgment 

(i.e. knowledge based) and take the form of SARs describing reactive chemistry or they are based on a 

combination of these two approaches, i.e. hybrids. Examples include TOPKAT (TOxicity Prediction 

Komputer Assisted Technology) and M-CASE (Computer-Automated Structure Evolution) which are 

both statistically based, Derek for Windows (DfW) and Hazard Expert which are knowledge based and 

TIssue MEtabolism Simulator for Skin Sensitisation (TIMES-SS) which is a hybrid. 

 

Whilst previous reviews have been conducted for skin sensitisation, (see Karol et al., (1999); Bashir and 

Maibach, (2000) and Rodford et al., (2003) as examples), this review aims to provide both a historical 

overview and a proposal for how skin sensitisation (Q)SARs could be more widely applied in a regulatory 

context bearing in mind some of the main challenges ahead.   

 
Published SARs  

2200 test results were extracted from Contact Dermatitis and used to derive and encode 63 structural 

alerts for skin sensitisation in the Structure-Activity tree (SAT) as developed by Benezra et al., (1985). 

Despite much internet searching, no further information as to the current existence of SAT or its 

associated database PROPHET (Rindone and Kush, 1980) has been found. 

 

A number of simple correlative studies relating sensitising potency to chemical properties (e.g. chain 

length, substitution position, reactivity) for a range of chemical series have been undertaken by Hausen 

and co-workers. Examples studied included gallates (Hausen and Beyer, 1992), coumarins (Hausen and 

Beyer, 1989), sesquiterpene lactones (Hausen and Schmalle, 1985), benzoquinones (Cremer et al., 1987), 

napthoquinones (Schulz et al., 1977), Primin (2-methoxy-6-pentyl-1,4-benzoquinone) analogues (Hausen 

et al., 1995) and nonterpenoid and diterpenoid phenanthrenequinones (PACs) (Hausen et al., 2003). 

 

Rao et al., (1981) evaluated various chemical groups for their skin sensitisation potential in the guinea 

pig. Chemicals with a proven capability to cause skin sensitisation included sulphur containing 

compounds: thienyl iodonium salts, sulphones, thiomethane sulphonates, nitrogen containing compounds: 

amines, acetanilides, diisocyanate, pyridines and piperidine derivatives. Positive responses also occurred 

with benzyl chlorides, some halo-methyl and hydroxyl-methyl diphenyloxides, some phosphoric acid 

derivatives and some epoxide containing structures. The structural features mimic those in systems such 
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as DfW. Nonetheless a re-evaluation taking into account likely reaction chemistry might be useful to 

establish whether this information sheds any new insights to help refine the domains established in Aptula 

et al., (2005a).  

 

A set of structural alerts based on the structural requirements for reactivity with skin proteins assessed 

from existing experimental skin sensitisation data were defined by Payne and Walsh, (1994). The alerts 

were classified as far as possible according to anticipated reaction mechanism and included: alkylating 

agents (haloalkanes activated towards nucleophilic reactions by conjugation with unsaturated groups. 

Other examples included dialkyl sulphonates, dialkyl sulphates and epoxides); arylating agents 

(nucleophilic substitution at an appropriately activated aromatic centres); acylating/sulphonating agents 

(e.g. phenyl esters); Michael addition electrophiles and precursors, thiol exchange compounds, free 

radical generators and metabolism to reactive electrophiles. The structural alerts devised were then tested 

using a set of 93 chemicals with published skin sensitisation taken from the European Community’s New 

Substances Regulations. The insights and findings were incorporated into the expert system DfW 

(LHASA Ltd, Leeds, UK) where possible. 

 

Ashby et al., (1995) suggested broad structural activity relationships (SARs) for 106 chemicals tested in 

the LLNA. The 73 sensitisers were grouped into six main classes – potential electrophiles after 

metabolism (e.g. epoxide formers and aromatic nitro/amino compounds), electrophiles, Michael reactive 

agents (e.g. alpha,beta-unsaturated esters, amides and aldehydes), benzoylating agents (e.g. benzoyl 

chloride and phthalic anhydrides, phenyl esters and phenyl benzoates), ionic chemicals (e.g. acid groups 

such as carboxylic or sulphonic acids) and miscellaneous agents. The electrophiles were further 

segregated into eight major subgroups – alkyl halides, sulphonates, sulphates, nitrosoamides and 

nitrosoguanidines, aromatic alkyl halides, aromatic alkylating agents, acylating agents, miscellaneous 

including isothiocyanate groups and strained lactones. Miscellaneous agents included compounds 

containing a sulphur atom that might participate in a disulphide bond formation with sulphydryl (-SH 

groups). Whilst Ashby et al., (1995) went some way toward a mechanism-based classification, their 

groupings were part based on structural criteria, and part based on reaction mechanistic domains. A re-

evaluation (Roberts et al., 2007b) was subsequently conducted with respect to reaction mechanisms as 

defined in Aptula et al., (2005a).   

 

Zinke et al., (2002) evaluated the 40 original DfW structural alerts published in Barratt et al., (1994a) 

against the database developed in the German Federal Institute for Health Protection of Consumers and 

Veterinary Medicine (BgVV). The evaluation revealed eight could be used without any further refinement 

whereas ten of the alerts were thought to need further specifications or refinements in order to avoid false 
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positive predictions. There were insufficient substances to evaluate a further 10 of the alerts and for the 

remaining 12 structural alerts no comparative result could be obtained as these rules did not fire for any of 

the examined chemicals.  

 

Gerner et al., (2004) derived two sets of new structural alerts using a regulatory database (hence 

unavailable) of sensitisers; 15 rules for directly acting sensitisers and 3 rules for chemicals that were 

sensitisers following metabolic activation.  The alerts are extensively documented and proposed as being 

suitable for regulatory use. The predictivity rates of the rules were found to be reasonably high and the 

rules were substantiated with examples from the BgVV list now held at the BfR. The rules developed 

include those for hydrazines, hydrazonium salts and precursors, acid halides, aromatic sulphinic acids, 

acid anhydrides whereas the rules developed for the pro-haptens included catechols, resorcinols and 

hydroquinones, their precursors and diamines.  

 
 
Statistical QSAR Models 

Statistical QSAR models are those developed empirically by application of various statistical methods to 

sets of biological data and structural, topological and/or geometrical information descriptors. Often 

known as global QSARs, they are purported to be able to make predictions for a wide range of chemicals, 

covering a wide range of different mechanisms of action. A number have been reported in the recent 

literature of which some have been analysed in more detail in accordance with the OECD principles (see 

Roberts et al., (2007a) as an example). 

 
Probably the first global models for sensitisation were those developed by Magee and Hostynek, (1994, 

1997). They investigated the feasibility of deriving models for fragrance allergens using classification and 

ranking approaches. They developed a statistical discriminant QSAR model based on a dataset of 72 

chemicals – comprising 36 sensitisers and 36 non-sensitisers. The model was based on a combination of 

continuous transport/binding descriptors and dichotomous descriptors reflecting protein reactivity by a 

count of toxophores. Molar refraction (MR), polarisable molecular volume were used to model transport 

whereas London forces in non-specific binding, PL, the lipophilic contribution of Log P (which models 

the interaction of compounds with proteins and membranes) were continuous descriptors used to model 

binding properties. In addition, the number of Hydrogen Bond Acceptors (HBA) and Hydrogen Bond 

Donors (HBD) as well as a number of substructures; ICOOR (simple aliphatic esters and models esterase 

degradation), ICONJ (conjugated olefins activated by groups that cause Michael addition of SH and 

NH2), IX (reactive aliphatic or aromatic halides), IArOH (easily metabolised phenols to reactive 

quinines), IArNH2 (easily metabolised anilines to reactive quinines), IOH (easily oxidised primary 

alcohols to reactive aldehydes), IUNIQ (strong nucleophiles or unusual reactive electrophiles), IPOS 
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(Michael reactants, Reactive Nucleophiles and Electrophiles) were all used to model protein reactivity. In 

these discriminant models, predicted sensitisers were those scoring a value greater than 0.5, non-

sensitisers scored below 0.5, and values between 0.4-0.6 were designated as indeterminate (i.e. no 

prediction was possible). Early evaluation studies found the discriminating power to be of the order of 79-

88% correct classification where non-sensitisers were predicted somewhat better than sensitisers. The 

resulting model took the form (Equation (1)): 

 

Classification score = 0.0116MR-0.161PL+0.0498HBA-0.129HBD-

0.284ICOOR+0.57ICONJ+0.16IX+0.596IArOH+0.503IArNH2+0.207IOH+0.512 IUNIQ+0.118   

      (1)       

N = 70 (2 outliers) R2 = 0.75 s = 0.275 F = 15.81 

The classification model was unable to predict 12 chemicals (i.e. indeterminate), for the 62 remaining 

chemicals, the model predicted 57 correctly (92% concordance). The model overall performed better on 

non-sensitisers (12/12, 100% specificity) than on sensitisers (45/50, 90% sensitivity). 

 

The second of these discriminant models was a rank model based on a set of 89 chemicals using largely 

the same descriptors. The method of ranking was based on non, weak, moderate and strong responses 

where a numerical scale corresponded to the classification of potency scores. These scale was a 

modification of the Magnusson-Kligman scale. The specificity was 60% (9/15) and sensitivity 95% 

(56/59) with an overall 88% (65/74) model performance. The final model (Equation (2)) is given below. 

Ranking score = 0.0294MR-0.281PL-0.0960HBA-0.207HBD-

0.409ICOOR+0.547IOH+0.519IX+1.375IPOS+1.39IQUIN+1.7 (2) 

           

N= 29 (non), N=18 (weak), N=15 (moderate), N=26 (strong) 

N = 88 R2 = 0.726 s = 0.68 F = 23 

 

Cronin and Basketter, (1994) used stepwise discriminant analysis on a set of 259 chemicals (mostly tested 

in the GPMT in the spirit of the OECD guidelines) to produce a 14 parameter model for the prediction of 

sensitisation. 12 of the 14 descriptors in the final model were structural features associated with reactivity. 

The other two descriptors were the Shannon index (Dearden et al., 1988) which considers a measure of 

molecule size (and in turn is probably related to penetration) and the difference in HOMO and LUMO 

energies, thought to be related to reactivity (a large difference between HOMO and LUMO energies 

implies high stability and thus low reactivity (Zhou and Parr, 1990) – the sensitisers in this dataset did 

indeed have lower energy differences). The model predicted 82.6% of compounds correctly after cross-

validation but had a tendency to predict non-sensitisers better than sensitisers (88% correctly predicted 
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c.f. 76%). Phenols and acetate derivatives were predicted poorly in particular. The concluding remarks of 

the authors was that structural alerts might have been a better means of identifying potential sensitisation 

hazard as the statistical model was poor at discriminating between the two classes. Whilst the compiled 

dataset included potency classifications (Barratt et al., 1994a) for the GPMT, the statistical model was 

only trained to discriminate between presence and absence of sensitisation hazard.  

 

Devillers (2000) used the dataset of (Cronin and Basketter, 1994) to derive a neural network model 

relating the same 14 descriptors to sensitisation outcome. A three-layer feed forward neural network 

trained by the back-propagation algorithm previously described (Devillers, 1996; Rumelhart et al., 1986) 

was used on a training set of 242 chemicals and a test set of 17 chemicals. After more than 200 trials, the 

optimal architecture and parameters of the ANN were determined. The total percentage of correct 

classifications was 89.19% (cf. 82.6% in Cronin and Basketter, 1994). This model does appear to be 

better in terms of its predictive performance though there are notable tradeoffs - greater complexity in 

terms of the modelling approach used; non-linear v.s. linear and a lack of transferability. These tradeoffs 

are not insurmountable in terms of demonstrating scientific validity as evidenced in Vracko et al., (2006) 

but since Devillers’ (2000) primary aim was to demonstrate the utility of the neural network approach in 

discriminating between sensitisers and non-sensitisers rather than trying to predict sensitisation potential 

or its underlying mechanism, the performance statistics alone would perhaps be insufficient to select this 

model over another simpler one. 

 

Federowicz et al., (2004) developed a logistic regression model that related nDB (number of double 

bonds), C-003 (number of CHR3 molecular subfragments), GATS6M (autocorrelation coefficient) and 

HATS6m (GETAWAY descriptor) to LLNA data (comprising 25 sensitisers and 29 non-sensitisers taken 

from (Ashby et al., 1995; Haneke et al., 2001). The Dragon software (Talete srl, Milan, Italy) was used to 

calculate 1024 descriptors. The statistical analysis was carried out using SAS 8.2 statistical package. 

Overall, 420 out of the 1024 descriptors were found to be statistically significant at the p-level of 0.05. 

Four main classes of descriptors were chosen; Radial Distribution Function descriptors which are based 

on the distance distribution in the geometrical representation of the molecule, topological descriptors 

which are based on molecular graphs as a source of different probability distributions to which 

information theory definitions are applied, GETAWAY class descriptors (Todeschini and Consonni, 

2000) which try to match the three dimensional molecular geometry provided by the molecular influence 

matrix and atom relatedness by molecular topology with chemical information by using different atomic 

weight schemes and BCUT, a class of molecular descriptors defined as eigenvalues of a modified 

connectivity matrix (Burden, 1989; Burden, 1997). The descriptors were chosen to have an association 

with sensitisation activity but the relevance of these descriptors to mechanism was not explained in the 
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article. The QSAR predicted 83% of the responses correctly based on the training set of compounds and 

79% in a cross validated test set. A characterisation of this model with respect to the OECD principles is 

described in Roberts et al., (2007a) where the lack of plausible mechanistic rationale is scrutinised in 

particular. 

 

Using an augmented dataset of chemicals tested in the LLNA taken from the ICCVAM dataset (Haneke 

et al., 2001) of 209 chemicals, Fedorowicz et al., (2005) then developed logistic regression models using 

a subset of 178 organic chemicals. Three organic chemicals (sodium lauryl sulphate, benzalkonium 

chloride and streptozotocin) were removed from the dataset citing possible interference between skin 

sensitisation and skin irritation responses.  The resulting dataset comprised 132 sensitisers and 46 non-

sensitisers. Of the same dataset, 105 chemicals had guinea pig data, 82 sensitisers and 23 non-sensitisers. 

262 descriptors were calculated using Cerius 2 software (Accelrys Inc, San Diego, CA, USA), 1204 

descriptors were calculated with Dragon 2.1 software (Talete srl, Milan, Italy) and a further 747 with 

MolconnZ software (eduSoft, LC, Ashland, VA, USA). After removal of repeated and constant variables, 

1777 descriptors were left. Stepwise logistic regression was used to select descriptors from the set of 1777 

descriptors generated. The following models based on LLNA and GPMT datasets respectively were 

derived (Equations (3) and (4)):  

 

Logistic regression model outcome (Guinea pig) = 9.53-2.01Hmax – 19.9(R3e+)-15.8(R3u+) – 

12.9HATS1u  (3) 

           

Logistic regression model outcome (LLNA) = 15.2 – 0.345Hy + 0.351Gmin-7.76RARS-4.09BELe1-

0.259Dipole  (4) 

           

The molecular descriptors were not interpreted at a molecular structure level but their definitions were: 

Hmax maximum H electrotopological state; R3e+ maximal autocorrelation of Lag3/weighted y atomic 

Sanderson electronegativities; R3u+ maximal autocorrelation of lag 3/unweighted; HATS1u leverage 

weighted autocorrelation of lag 1/unweighted; Hy hydrophilic factor; Gmin minimum E state; RAR R 

matrix average row sum; BELe1 lowest eigenvalue, no. of Burden matrix/weighted by atomic Sanderson 

electronegativities; Dipole dipole moment. 

 

The descriptors underpinning the guinea pig model suggested polarity and hydrogen bonding were 

important factors in skin sensitisation whereas polarity, charge distribution and lipophilicity were 

associated with the LLNA model.  
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Both models produced correct responses of greater than 80%. Their sensitivity values were greater than 

94% though their specificities were very low. This was attributed to the unbalanced datasets, in that there 

was a 3:1 ratio of sensitisers to non-sensitisers in the LLNA dataset and a 4:1 ratio in the guinea pig 

dataset. If the cutoffs in the specificity and sensitivity curves were changed, a better classification 

performance was feasible. This in itself showed how sensitive the logistic modelling approach was to the 

size and structure of the dataset.  

 

The model performances were additionally compared with DfW (Version 6, LHASA Ltd, Leeds, UK) and 

Topkat (Version 6.2, Accelrys Inc, San Diego, CA, USA). The first QSAR model based on guinea pig 

data only was compared with DfW and Topkat. The second model based on LLNA data only was 

compared with DfW (since Topkat is based entirely on guinea pig data).  

 

The logistic regression models were shown to perform better (in terms of their correct classification) than 

the two expert systems, DfW and Topkat. The performances were 73.3% for Topkat, 82.9% for DfW and 

87.6% (guinea pig data logistic regression model). The LLNA logistic regression model gave a correct 

classification of 83.2% compared with 73% for DfW. 

 

As a followup to publications by Federowicz et al., (2004) and  Federowicz et al., (2005), Li et al., (2005) 

used random forest and classification tree modelling methods to develop models to predict skin 

sensitisation activity. The same dataset of 178 organic chemicals taken from the ICCVAM report (Haneke 

et al., 2001) was used as the training set. This dataset comprised 131 sensitisers and 47 non-sensitisers. 

262 molecular descriptors were then calculated using Cerius 2 (Accelrys Inc, San Diego, CA, USA), 1204 

Dragon (Talete srl, Milan, Italy) descriptors were calculated as well as 747 descriptors using MolConnZ 

(eduSoft, LC, Ashland, VA, USA). After removal of duplicates and constants, 1380 descriptors remained. 

A random forest technique and a standard classification technique were then used to develop models. A 

classification tree with 4 descriptors was developed with a very high sensitivity of 99.2% but a very low 

specificity of 34%. The descriptors in this model were Atype C3 (count of atom types CHR3), nsssCH 

(count of atom types), SsssCH (sum of atom type E-state), Hy (Hydrophilic factor). 

 

A random forest approach was then deployed firstly using all available 1380 descriptors, before half of 

those descriptors with the lowest importance were dropped from the model.  The remaining descriptors 

were used as the input set for the formation of a new random forest and so on until only a few descriptors 

remained in the model. This could be further fine tuned using a backward elimination procedure using the 

penultimate random forest such that a minimum of two descriptors remained in the final model. Models 

were created with 10, 7 and 5 descriptors. The sorts of descriptors found in these models included 
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minimum E state (Gmin), Hmaxpos (maximum H E-state), R4e+, R maximal autocorrelation of Lag 

4/weighted by Sanderson electronegativities, sum of delta-I values (sumdelI), SEigp (eigenvalue sum 

from polarisability weighted distance matrix. The best model reported was the random forest with 10 

descriptors.  At a threshold of 0.7, the specificity was 83% and the sensitivity was 84%.  

 

In addition to classifying chemicals as active or inactive, the random forest approach was also exploited 

to provide a proximity measure defined as “the probability of assigning two chemicals to the same node”. 

A hierarchical clustering was performed to group chemicals according to this index. This was applied to 

the 10-descriptor Random forest model to give some insights into how the random forests combined 

structurally similar chemicals and how these shared similar molecular patterns were associated with skin 

sensitisation activity. A number of groups emerged from the clustering routine including halogeno 

derivatives, simple phenyl derivatives, structurally diverse surfactant like chemicals, alkyl and aliphatic 

acid halides and polycyclic aromatic hydrocarbons, aldehydes, ether, methylene and peroxide or lactone 

groups, aliphatic halides, catechols, low weight highly hydrophobic chemicals with 4-8 carbon atoms in 

their structures, surfactants with long hydrophobic aliphatic chain of 18-19 carbon atoms etc. A detailed 

interpretation of each of these groups was not performed by the authors. However, the random forest 

approach had largely separated sensitisers from non-sensitisers and each group was made up of 

structurally similar chemicals. 

 
Estrada et al., (2003) performed a linear discriminant analysis relating topological descriptors to skin 

sensitisation data as measured in the LLNA. The topological descriptors are so-called TOPS-MODE 

descriptors or topological substructural molecular design. These descriptors are spectral moments of a 

bond matrix weighted for different physicochemical properties and raised to different power (in this case, 

the bond matrix was raised to an order of 15). The 6 weighting properties were lipophilicity, 

polarisability, polar surface area, molar refractivity, atomic charges and van der Waals radii. A set of 93 

diverse chemicals and their associated LLNA EC3 values were collated. The EC3 values were categorised 

into bands of potency (Basketter et al., 2002). A chemical with an EC3 value less than 1% was defined as 

strong sensitiser, one with an EC3 between 1 and 10%, moderate, 10-30% weak, 30-50% extremely weak 

and greater than 50% non-sensitising. These classifications were further amalgamated into two groups. 

The 93 compounds were divided at random into a test set (15 compounds) and training set (78 

compounds). A two model classification system was then developed; the first model discriminated 

strong/moderate sensitisers (EC3<10%) (class 1) from all other chemicals. The second model 

differentiated weak sensitisers (10%<EC3<30%) (class 2) from non-sensitising/extremely weak 

sensitisers (EC3>30%) (class 3). Model 1 was able to correctly classify 80% of the 75 compounds in class 

1. Thirty-one of the 39 strong/moderate sensitisers were correctly predicted. Eight compounds were 

predicted to be false negatives. Three compounds were found to be statistical outliers and one compound 
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from class 2/3 could not be classified by Model 1 (Equation (5)). This resulted in a 80% (28/35) correct 

classification.  

 

Class1 model = (1.331*µ1H) - (0.00598*µ4H) + (0.0078*µ2PS) -(0.00021366*µ3PS) + 

(0.0755*µ1MR) + (0.0319*µ2MR) - (0.0011133*µ5Pol) - (2.3797*µ1Ch) + (0.1547*µ3Ch) + 

(0.00425*µ6Ch) + (2.0932*µ1vDW) - (0.8683*µ2vDW) + 0.7954    (5) 

Wilks - lamba = 0.61  F = 3.39  D2 = 2.52  p<0.0007 

 

36 compounds were used to develop Model 2. 80.5% of the training set compounds in Model 2 (Equation 

(6)) were predicted correctly: 29 were classified correctly and the other seven were false positives. The 

overall correct classification of this model was 80.26%.  

 

Class2 model = (0.946*µ1H) - (0.00468*µ7H) - (0.894*µ1PS) + (0.1004*µ2PS) - (0.0024*µ3PS) 

+ (0.0057*µ3Pol) - (1.429*µ1Ch) + (0.0053*µ8Ch) - (0.00111*µ9Ch) - 5.309    

 (6) 

Wilks - lamba = 0.38  F = 4.63  D2 = 8.76  p<0.001 

 

A dataset of 15 compounds unseen by the model and with available skin sensitisation data were taken 

from other available existing public sources formed the basis of the external validation set to test the 

robustness and predictivity of model 1. Owing to the inavailability of further data, an external validation 

was carried out only for Model 1. All but one of the strong/moderate sensitisers were classified correctly. 

Since the validation set was not designed rigorously, this good performance might well have been on the 

basis of chance. No assessment of the representativeness of the external test set relative to the training set 

was conducted at the time. The importance of representativeness of test sets relative to training sets is 

linked to the issues of applicability domain that are described within the OECD principles (OECD, 2004; 

OECD, 2007). This has been the subject of much debate (Netzeva et al., 2005; Jaworska et al., 2005) and 

scientific research has been undertaken to develop such approaches (see Dimitrov et al., 2005b; Nikolova-

Jeliazkova and Jaworska, 2005).  

 

The descriptors in these two models do appear quite complex although a mechanistic interpretation is 

possible for each of the descriptors in turn. Factors such as lipophilicity, polar surface area, van der Waals 

radii may model partition related effects in skin sensitisation whereas as the parameters such as charges 

and polarisability may relate to the reactivity or electrophilicity of the chemicals. Subsequent work in 

(Roberts et al., 2007b) has re-evaluated the extent to which descriptors such as charges and polarisability 

are able to model electrophilicity per se. Modelling reactivity remains a challenge (Schultz et al., 2006) 
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and formed one of the rationales for conducting the work as described in Aptula et al., (2006). This will 

be discussed in more detail later. 

 

The unique feature of the TOPS-MODE descriptors is that in addition to using the whole descriptors for 

QSAR modelling, local spectral moments for each of the bonds could also be calculated. These enabled 

features which contribute positively or negatively to skin sensitisation to be identified, leading to 

structural rules or alerts that could be later embedded into expert systems such as DfW. Examples of 

structural rules derived in this way are discussed in both Estrada et al., (2003) and Estrada et al., (2004). 

In Roberts et al., (2007a) these insights were thoroughly assessed (e.g. Alkyl halides, Alkyl alkane 

sulphonates, Aromatic nitro compounds, 3-Methyl-1,2,5-thiadiazole-1,1-dioxide (MPT), 

Hydroxylamines, Clotrimazole) and some of the proposed insights were thought to be based on erroneous 

arguments.  

 

Miller et al., (2005) collected a set of 87 LLNA data and after removal of 20 outliers (the basis for 

removal being the poor fit between calculated and experimental EC3 values) 67 chemicals were analysed: 

50 as a training set and 17 as a test set. EC3 values as w/v percent concentrations were used as the 

dependent variable. Several hundred descriptors were calculated using CODESSA (Comprehensive 

Descriptors for Structural and Statistical Analysis (Codessa), Semichem, Inc.: Shawnee Misson, KS, 

USA). These descriptors may be categorised as being topological, constitutional, geometric, electrostatic, 

thermodynamic and quantum chemical in nature. A heuristic algorithm (not further described in the 

paper) was used to derive several correlations from these descriptors. The best model was selected based 

on the statistical parameters (R2, adjusted R2, F test etc) as well as on whether there was a “chemical 

sense of the descriptors for the understood mechanism of sensitisation”. The aim of the QSAR developed 

was that it should cover a broad range of structures, including halogenated and aromatic compounds, 

alcohols, aldehydes and ketones. Compounds “with iodine, sulphur and anhydride rings, adjacent ketones 

and alkene aldehydes which are not Michael reactants” were cited as being outside the scope the QSAR. 

These 20 compounds were removed from the training set on the basis of a poor fit between calculated and 

experimental values.  The resulting QSAR (Equation (7)) derived was: 

 

EC3 = 9.16 FPSA2ESP + 4.29 EHOMO-LUMO - 45.89 (7)     

N = 50 R2 = 0.773 R2 adj = 0.763 RCV = 0.738 F = 79.9 

where 

FPSA2ESP – fractional positively charged surface area descriptor based on electrostatic potential charge 

(though to be related to partition) 
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EHOMO-LUMO – is the energy gap between Highest Occupied Molecular Orbital (HOMO) and Lowest 

Unoccupied Molecular Orbital (LUMO) (thought to be associated with reactivity) 

The performance for the test set of 17 chemicals was expressed in terms of R2 (R2 = 0.877 where 14 

chemicals out of the 17 chemicals were correctly predicted). On account of biological variability of the 

EC3 values, “a bin selection method” was then used to classify compounds into one of three categories; 

strong, moderate and weak. These were defined as: Strong, EC3 < 6 %; moderate 6 % < EC3 < 13 %; 

weak EC3 >13 %. These cutoffs were chosen to balance the number of chemicals that fell into the strong 

and moderate categories. The bin selection method was found to predict 44 out of 50 training set 

chemicals correctly. Use of the EC3 (as a weight percentage) rather than a molar basis EC3 appears to be 

a flawed choice. It disguises the fact that the model is poor at discriminating within a given category. For 

example with N-Methyl-N'-nitrosourea, the literature value is 0.05 and the predicted value is 3.27, a 

residual of 3.22 which appears to be a reasonable agreement. A comparison on the basis of molar EC3 

reveals the prediction to be underestimating the potency by a factor of 65. In addition, had the proposed 

category boundaries for the LLNA been used as defined in (Kimber et al., 2003), than the QSAR model 

would have been shown to perform much less favourably. Further evaluation of this model has been 

described extensively in Roberts et al., (2007a).  

 

A support vector machine (SVM) (Benables and Smith, 2003) was used to develop a nonlinear binary 

classification model for skin sensitisation for a diverse set of 131 organic compounds tested in the LLNA.  

Six descriptors were selected by stepwise forward discriminant analysis (LDA) from a starting set of 282 

CODESSA molecular descriptors. These six descriptors were thought to reflect the mechanistic relevance 

to skin sensitisation (though this was not explained in the paper) and were used as inputs of the SVM 

model. The descriptors were Relative number of Nitrogen atoms, Gravitation index, Kier and Hall index, 

YZ Shadow, Maximum partial charge for a C atom, Maximum 1-electron reactivity index for a C atom. 

The nonlinear model developed from SVM (89.77% correct classification) algorithm outperformed the 

LDA (correct classification 79.55%) (Ren et al., 2006). 

 

The feasibility of using 4D fingerprints derived from a methodology called 4D molecular fingerprint 

similarity analysis was investigated to develop QSAR models for skin sensitisation (Li et al., 2006). An 

early version of the LLNA dataset published in Gerberick et al., (2005) comprising data on 219 chemicals 

was sorted into 3 categories; non-weak sensitisers (101 chemicals), moderate sensitisers (72 chemicals) 

and strong-extreme sensitisers (46 chemicals). The moderate sensitisers were removed to create a 

separation gap and the other two classes were retained to develop a model to discriminate between them. 

Ten non-weak and 5 strong-extreme sensitisers were randomly chosen to be the test set. The remaining 

training set comprised 91 non-weak chemicals and 41 strong-extreme sensitisers. Models were initially 



� 22 

investigated using discriminant analysis and partial least square discriminant analysis techniques but the 

performance of these models were as low as 67% accuracy. Two other statistical techniques namely 

logistic regression and partial least square coupled with logistic regression were then applied to generate 

categorical models to differentiate between sensitisers and non-sensitisers.  

The 4D fingerprints are eigenvalues of molecular similarity eigenvectors determined for a molecule from 

its set of absolute molecular similarity main distance dependent matrices. The descriptors aim to encode 

information about the composition of a chemical, its size, shape and conformational flexibility. 720 

descriptors were calculated in total. Two QSARs both composed of nine 4D-fingerprints were built using 

stepwise linear logistic regression on both standardised and unstandardised descriptors. The model 

(Equation (8)) using standardised descriptors is given below. 

 

Logit(P) = -1.745 + 1.119∈3(hbd,aro) + 2.686∈12(hs,aro) – 0.9722∈18(all,all) + 1.654∈2(np,p-)-

0.9936∈2(all,all)-0.8841∈1(p-,hbd) – 3.966∈19(hs,all)+1.466∈54(all,all)+1.388∈39(all,all)  (8) 

 

The performance scores were invariant to the standardisation state of the descriptors. The performance 

scores ranged from 79.5-85.6% accuracy, 68.3-78% sensitivity and 80.2-93.4% specificity for the training 

sets depending on the classification cut offs. Cross validation accuracies varied between 77.3%-78%. 

 

A stepwise logistic regression was then performed where 266 significant descriptors were picked from the 

original 720 descriptors resulting in Equation (9). Here the performance scores were similar with 

accuracy varying between 79.5-88.6%, sensitivity at 80.5% and specificity between 79.1-92.3% again 

depending on the classification cut off used. Cross validation accuracies varied between 75.8%-80.3%. 

 

Logit(P) = -1.576 + 2.877∈3(hbd,aro) + 1.387∈12(hs,aro) – 4.911∈18(all,all) + 1.017∈2(np,p-)-

0.7601∈2(all,all)-0.9919∈12(hs,hs) + 4.589∈15(np,np)-1.890∈2(np,hbd)+0.8954∈2(hs,p+) + 

0.6735∈3(np,hba) (9) 

 

Although the classification accuracies of equations (9) and equation (8) were similar, the latter QSAR 

model was deemed to be a better model by virtue of its more favourable goodness of fit statistics and 

because it had fewer descriptors (9 vs. 10). 

An interpretation of the descriptors used in equation (8) was conducted to rationalise what role they 

played in sensitisation mechanism. ∈2(np,p-), ∈3(hbd,aro), ∈12(hs,aro) all with positive regression 

coefficients suggested that non-polar and aromatic atoms of a molecule would increase the lipophilicity 

and hence promote absorption into the skin thus modelling the “penetration” hurdle in skin sensitisation. 

The covalent interaction between chemical and protein was thought to be encapsulated in fingerprints 



� 23 

∈2(np,p-) and ∈3(hbd,aro) since atom types p- and hbd are indicative of the polarity and hydrogen 

extraction behaviour of the molecule. The positive regression coefficients of np and p- descriptors may 

indicate that an increase in a molecular polarity corresponded to an increase in reactivity and the 

probability that the molecule may be a strong-extreme skin sensitiser. The ∈1(p-,hbd) descriptor may 

indicate a need for a particular spatial distribution p- and hbd atom types over a molecule in the process of 

sensitisation. Since this descriptor had the smallest regression coefficient, it was thought that it might 

actually be a correction term. The significant 4D fingerprints in equation (8) including ∈2(all,all), 

∈18(all,all) and the correction terms ∈39(all, all) , ∈54(all,all) and ∈19(hs, all) were thought to capture 

the important role that molecular shape, size and steric interactions play in skin sensitisation. It was 

further postulated that since the regression coefficients of ∈2(all,all) and ∈18(all,all) were negative 

whereas ∈39(all,all) and ∈54(all,all) were positive, a medium sized molecule might have the highest 

probability of being a non-weak sensitiser whereas a large molecule with 54 or more atoms was most 

likely to be a strong-extreme sensitiser. 

 

A model was also developed using partial least square coupled with logistic regression.  The best model 

(Equation (10)) derived was as follows 

 

Logit(P) = -3.564 0.498xscr4+0.407xscr4+0.636xscr5+0.513xscr8+0.415xscr10+0.7xscr13+0.882xscr20 

  (10) 

 

 

Where xscrith denoted the ithPLS component extracted from the 720 non-scaled 4D fingerprints. The 

performance scores for equation (10) were actually more impressive than for equation (8) (Accuracy 

90.2-97% vs. 79.5-85.6%, Sensitivity 85.4-95.1% vs. 68.3-78%, Specificity 90.2%-97.8% vs. 80.2-93.4% 

and Cross validated accuracies between 87.1-89.4% vs. 77.3-78%. Equation (10) also had a higher 

goodness of fit, predictive power and contained fewer descriptors. Equation (8) was thought to be more 

stable to variations in cut off classifications and its descriptors could be more readily interpreted. No 

mechanistic insights were offered by the authors for equation (10) since the PLS component factors being 

linear combinations of the original 4D fingerprints were more difficult to interpret. 

 

The models developed appeared to be able to differentiate between weak-non chemicals and strong-

extreme sensitisers reasonably well but no prediction of potential moderate sensitisers could be made. The 

fingerprint descriptors used lack physical meaning and are extremely difficult to interpret in terms of skin 

sensitisation mechanism.   
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Statistical QSARs covering several mechanistic domains have become a growth area recently. Whilst 

some have high predictive rates, they often lack a sound mechanistic basis. The majority of these QSARs 

use selections from the same set of published LLNA data (Gerberick et al., 2005) suggesting an over 

emphasis on applying new statistical techniques or descriptors rather than trying to rationalise the 

underlying skin sensitisation mechanism. As a consequence, of the models described here; their 

application is thought to be best limited to screening. 

 
Expert systems 

According to the definition proposed in Dearden et al., (1997), "An expert system for predicting toxicity 

is considered to be any formalised system, not necessarily computer-based, which enables a user to obtain 

rational predictions about the toxicity of chemicals. All expert systems for the prediction of chemical 

toxicity are built upon experimental data representing one or more toxic manifestations of chemicals in 

biological systems (the database), and/or rules derived from such data (the rulebase)." Expert systems can 

also be characterised according to the nature of the rules in their rulebase. The systems that are available 

for the prediction of skin sensitisation comprise knowledge-based systems (e.g. Derek for Windows 

(DfW)), statistical systems (e.g. TopKat, MCASE) and hybrid of the two (e.g. Tissue Metabolism 

Simulator (TIMES)).  

 

Knowledge-based systems 
Derek for Windows (DfW) is a knowledge-based expert system created with knowledge of structure-

toxicity relationships and an emphasis on the need to understand mechanisms of action and metabolism 

(Sanderson and Earnshaw, 1991). It is marketed and developed by LHASA Ltd (Leeds, UK) a not-for-

profit company and educational charity (http://www.lhasalimited.org/index.php). 

Within DfW, there are 361 alerts covering a wide range of toxicological endpoints. An alert consists of a 

toxicophore, a substructure known or thought to be responsible for the toxicity alongside associated 

literature references, comments and examples. The skin sensitisation knowledge base in DfW was 

initially developed in collaboration with Unilever in 1993 using its historical database of guinea pig 

maximisation test (GPMT) data for 294 chemicals (Barratt et al., 1994a; Barratt et al., 1994b). Common 

reaction mechanisms (e.g. acylating agents, akylating agents, Michael electrophiles, aldehydes etc) were 

identified following grouping the chemicals in potency categories – strong sensitisers (70% - 100%), 

moderate sensitisers (30-70%), weak sensitisers (up to 30%), and non sensitisers 0%. For the purposes of 

deriving structural alerts, chemicals were grouped on the basis of these reaction mechanisms or by 

empirical derivation. Forty structural alerts were extracted from the groups including acid halides, acid 

azides, sulphonyl halides, phenyl esters, isocyanates, epoxides. Payne and Walsh, (1994) also identified 

reaction mechanisms to propose a set of alerts that could be incorporated into DfW which they evaluated 
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using a set of 93 chemicals. The DfW knowledge base is under constant development as new chemical 

insights and data become available. In Barratt and Langowski, (1999) the predictive ability of the 

sensitisation rules were assessed by processing 84 chemicals in the list of contact allergens issued by the 

German Federal Institute for Health Protection of Consumers (BgVV). The exercise helped to identify 

refinements and new rules (organic hydroperoxides, hydroxylamine and precursors, photoallergens) for 

incorporation into DfW. Suggestions for improvements have also come from work by Zinke et al., (2002), 

Gerner et al., (2004) and Langton et al., (2006). The current version (version 9.0.0) contains sixty-four 

alerts for skin sensitisation. 

 

Statistical Expert Systems 
Toxicity Prediction by Komputer Assisted Technology (TOPKAT) 

(http://www.accelrys.com/products/topkat/) marketed by Accelrys Inc (San Diego, USA) comprises two 

sets of sensitisation models that were developed originally by Enslein et al., (1997). Guinea pig 

maximisation data for 315 chemicals was assembled from published collections in Contact Dermatitis and 

from the dataset published by Cronin and Basketter, (1994). The data was then scaled according to classes 

defined by Barratt et al., (1994b). Two sets of models were developed: one for aromatics (excluding 

chemicals with one-benzene ring) and the other for aliphatics and chemicals with one-benzene ring. A 

variety of descriptors (Enslein et al., 1994; Gombar and Enslein, 1995) were computed for the chemicals 

selected, and stepwise two-group discriminant analysis was used to identify relevant descriptors to build 

the models. The descriptors consisted of electronic attributes as embodied in electrotopological state 

values (Hall et al., 1991) on 1 and 2-atom fragments; transport attributes represented by the counts of the 

1 and 2-atom fragments, topological kappa descriptors (Gombar and Jain, 1987; Kier, 1986) and 

molecular symmetry indices (Gomber and Jain, 1987), bulk attributes as calculated from molecular 

weight and atom size-corrected E values. The first set of models discriminated between non-sensitisers 

and sensitisers, the second set of models resolved the potency: weak/moderate vs. strong. In the first set 

of models, a computed probability greater than 0.7 indicated that a chemical was a predicted sensitiser 

whereas a probability below 0.30 signified a chemical to be a predicted non-sensitiser. In the 

weak/moderate vs. strong sensitiser model, a probability of 0.7 or more indicated a predicted strong 

sensitiser whereas a probability below 0.30 indicated a predicted weak or moderate sensitiser. For both 

models, probability values between 0.30 and 0.70 referred to an indeterminate region where a prediction 

was not reliable. An optimum prediction space (OPS) algorithm was also incorporated into the model to 

ensure predictions were made only for chemicals within the model domain. This domain check comprised 

two steps, whether the chemical belonged to the structural fragment and descriptor space of the model as 

well as a similarity analysis to extract to compare similar compounds by reference to the QSTR similarity 
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distance and their associated predicted and experimental GPMT data. The present version of TOPKAT 

(Version 6.2) has been supplemented with data for a 20 chemicals (Accelrys, 2002). 

 

CASE methodology and all its variants (e.g. MCASE, CASETOX) were developed by Klopman and 

Rosenkranz (Klopman, 1984; Klopman, 1992; Rosenkranz and Klopman, 1995). There are more than 180 

modules covering various areas of toxicology and pharmacology endpoints including skin sensitisation 

currently marketed by MultiCASE Inc. (Cleveland, Ohio, US). The CASE approach uses a probability 

assessment to determine whether a structural fragment is associated with toxicity. To achieve this, 

molecules are split into structural fragments up to a certain path length. Probability assessments determine 

whether fragments significantly promote or inhibit toxicity. To create models, structural fragments are 

incorporated into a regression analysis. The MCASE modules available for skin sensitisation are 

described further in primary articles (Graham et al., 1996; Gealy et al., 1996; Johnson et al., 1997).  

 

The original model developed was that by Graham et al., (1996) who applied the MultiCASE approach to 

a large database of chemicals causing allergic contact dermatitis (ACD) compiled from reports of animal 

and human studies. These reports were identified through a search on Medline from 1966-1994 and 

included primary articles and monographs prepared by RIFM and information from Aron Products Inc 

Chemicals so long as the certain criteria was met namely: an epicutaneous exposure to the chemical was 

used during the challenge phase of test and an in vivo dermal reaction was observed e.g. erythema, the 

dose used for challenge was non-irritating, the purity of the chemical was known, control animals were 

used in the study and found to be unresponsive to the challenge dose, in human testing at least 3 cases had 

to have been cited. In addition, the chemical tested had to have a carbon chain length of greater than one 

and all chemicals had to be non-metals. The total database consisted of a total of 1024 chemicals of which 

317 were classified as sensitisers, 22 had marginal activity and 695 were inactive. MCASE identified 49 

biophores consisting of nitrogen double bonded to a carbon or nitrogen, substituted aromatic structures, 

thiol and disulfide containing fragments and electrophilic moieties. Modulators of each biophore which 

either augmented or decreased potency included additional structural fragments, 2D distance descriptors 

as well as physicochemical parameters (HOMO, LUMO, MW and Log P). Internal evaluation of the 

database revealed a sensitivity of 99.6% and specificity of 99.4%.  

 

Further work was undertaken by Gealy et al., (1996), though the primary purpose of this study was to 

evaluate the utility of clinical case report data. The original database (from Graham et al., 1996) was 

supplemented with additional case report studies to result in a total of 1170 chemicals – 447 actives, 28 

marginal and 695 inactives. An additional condition to those stipulated in the previous study was that for 

a chemical to be classified as a non-sensitiser, it had to have been tested in either a human or guinea pig 
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maximisation test and yield no response in at least 10 guinea pigs or 20 human subjects. A series of 

different MultiCASE models were developed using subsets (learning sets) of the database as training sets 

with differing stringency requirements as far as how much or how little clinical case report data was 

included. In the most stringent subset, all clinical case report data was excluded. The model performances 

were then compared in order to assess the value of including case report data. The predictive ability of the 

models was similar for all models regardless of the learning subsets. The predictions remained fairly 

constant for all learning sets producing a mean sensitivity of approximately 64% and mean specificity of 

92%. However the specificity of the learning set model which included only one or two case reports did 

have a lower mean specificity (85%) when compared with the other learning sets suggesting that it is best 

to exclude isolated clinical case reports when modelling ACD.  

 

In Johnson et al., (1999), human activity data compiled from the literature on 458 compounds was used to 

develop CASE/MCASE models. Chemicals were selected if standard human maximisation tests (HMT) 

had been performed or if three or more case reports of positive patch tests were cited. The dataset was 

split equally between 229 sensitisers and 229 non sensitisers. In reality there were a total of 695 inactives. 

Three test models were created first with different non overlapping subsets of 229 chemicals and the 

resulting structural alerts identified were the same in each case. One model was then selected at random 

to continue the evaluation. Each chemical in this model was assigned a potency based on the 

concentration of chemical used for the challenge dose and in HMTs, on the sensitisation rate. This was 

then used to predict the likelihood of 238 gas phase air pollutants compounds to be sensitisers. 21 of the 

238 chemicals were predicted to be contact allergens with potencies ranging from mild to very strong. 

The compounds came from chemical classes including chlorinated aromatics and chlorinated 

hydrocarbons, N-containing compounds, phenols and alkenes. The emission rates or measured airborne 

concentrations as an indication of extent of use together with the predicted sensitising potencies provided 

an efficient means of prioritising which organic compounds detected as gas phase air pollutants merited 

experimental sensitisation testing. 

The (Q)SAR estimates for the MCASE skin sensitisation model are included in the Danish Environmental 

Protection Agency (EPA)’s (Q)SAR Database which is hosted as on the European Chemicals Bureau 

(ECB) website http://ecb.jrc.it/QSAR/.  

 

Hybrid Expert Systems 
The TImes MEtabolism Simulator platform used for predicting Skin Sensitisation (TIMES-SS) is a hybrid 

expert system that was developed by the Laboratory of Mathematical Chemistry (University of Bourgas, 

Bulgaria) using funding and data from a Consortium comprising Industry (ExxonMobil, Procter and 

Gamble, Unilever) and a Regulatory Agency (Danish Environmental Protection Agency). TIMES-SS 
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aims to encode structure toxicity and structure metabolism relationships through a number of 

transformations simulating skin metabolism and interaction of the generated reactive metabolites with 

skin proteins. The skin metabolism simulator mimics metabolism using 2D structural information. 

Metabolic pathways are generated based on a set of 236 hierarchically ordered principal transformations 

including spontaneous reactions and enzyme catalysed reactions (phase I and II). The covalent reactions 

with proteins are described by 47 alerting groups. The associated mechanisms are in accordance with the 

existing knowledge on electrophilic interaction mechanisms of various structural functionalities. The 

integral model is essentially based on a set of submodels, associated with each of the reactive groups. 

Some of these reactions are additionally underpinned by mechanistically based 3D-QSARs to predict the 

intrinsic reactivity of compounds that have substructural features associated with reactivity. These 3D-

QSAR models depend on both the structural alert and the rate of skin sensitisation. Steric effects around 

the active site, molecular size, shape, solubility, lipophilicity and electronic properties are all taken into 

account. These models may involve combinations of molecular descriptors which trigger the alerting 

group (Dimitrov et al., 2005a; Dimitrov et al., 2005b). Recently an external validation activity was 

undertaken whereby data were generated for 40 new chemicals in the Local Lymph Node Assay (LLNA) 

and then compared with predictions made by TIMES-SS. The results were promising with an overall 

good concordance (83%) between experimental and predicted values (Patlewicz et al., 2007a; Roberts et 

al., 2007c)  

 
Overall there are reasonable prospects for the development and improvement of expert systems such as 

DfW, TIMES-SS but further refinement of their underlying rules is still required (Patlewicz et al., 2007a, 

b). Owing to the limited accessibility of training datasets, applicability domains not always being well 

established, or mechanistic interpretability being unclear; it is proposed that whilst expert systems can 

play a valuable role in evaluating skin sensitisation; their use should be restricted to the provision of 

supporting information as part of an overall weight of evidence assessment. 

 
Local QSAR Models  

Roberts and Williams, (1982) developed the first mathematical model of the in vivo alkylation process, 

known as the Relative Alkylation Index (RAI) model which quantified the degree of carrier alkylation 

with sensitisation potential. The model can be summarised as follows: 

• The carrier protein is in a lipid environment (e.g. cell membrane) which is washed by a polar fluid 

(e.g. lymph or blood) 

• Alkylation kinetics are first order. 
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Based on these assumptions, rate equations were set up for alkylation and disappearance of the test 

compound from the system (by alkylation and partition into the polar fluid) and from these the RAI was 

derived.  

 

RAI = log(kD/P+P2)     (11) 

where k is the alkylation rate constant measured against a standard nucleophile, D is the molar dose and P 

is the partition coefficient measured between a standard polar/non polar solvent e.g. log P. In its most 

general form the RAI, an index of the relative degree of carrier protein haptenation, is expressed as: 

RAI = log D + a logk + b log P    (12) 

 

Thus the degree of haptenation increases with increasing dose D of sensitiser, with increasing reactivity 

(as quantified by the rate constant or relative rate constant k for the reaction of the sensitiser with a model 

nucleophile) and with increasing hydrophobicity. 

 

The RAI model has been used to evaluate a wide range of different datasets of skin sensitising chemicals. 

It has in particular served well for the development of QSARs for small sets of structurally similar 

chemicals – i.e. local models which are chemical class specific. Examples include primary alkyl bromides 

(Basketter et al., 1992), sultones (Roberts and Williams, 1982), acrylates (Roberts, 1987), sulfonate esters 

(Roberts and Basketter, 2000), urushiol analogues (Roberts and Benezra, 1993), aldehydes and diketones 

(Roberts et al., 1999; Patlewicz et al., 2001; Roberts and Patlewicz, 2002) amongst others. A selection of 

these examples are described in more detail. 

 
The RAI approach has withstood the test of time and evolved in light of greater understanding of the 

chemical processes and mechanisms underpinning skin sensitisation and now the modeling approach has 

found itself to be applicable to groups of chemicals that are related by virtue of their similarity to 

chemical mechanism rather than merely just their structural similarity.  

 

In Basketter et al., (1992), LLNA pEC3 values (the log of the molar EC3 concentration) were found to 

correlate with a quadratic function of log P, for a series of linear primary alkyl bromides from C4 up until 

C18. Log P values were calculated by the computerised Hansch and Leo method (1979), Clog P 

(CLOGP™ program version 4.0, Biobyte Corp., 201 West 4th St. Suite 204, Claremont, USA). The 

correlation equation was obtained by multiple linear regression of pEC3 against log P and (log P)2. EC3 

values are usually determined from dose response plots though the exact details of how the EC3 values 

were obtained were not described. Two compounds, 1-bromobutane and 1-bromohexane, classed as non-

sensitisers, were not included in the regression. The regression equation (13) reported was: 
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pEC3 = 1.61 log P – 0.09 (log P) 2 – 7.4   (13) 

N = 9 R = 0.97 s = 0.11 F = 50.0 

 

In this set, the longest chain lengths demonstrated decreased sensitisation activity rather in the manner of 

what is termed an overload effect. The dose response data for the individual bromoalkanes showed that in 

each case (except for C4) the sensitising activity increased with concentration. This supported the 

argument that none of the bromoalkanes were in fact in the overload region where activity would be 

inversely related to dose but that skin penetration was becoming rate-determining. A reanalysis has been 

conducted by Aptula and Roberts (unpublished, 2006) where it was proposed that it would have been 

better to have treated C4 and C6 as negative outliers (rationalisable in terms of penetration becoming a 

sensitisation-determining factor) and to do the regression for the remaining compounds using only the log 

P descriptor. 

 

In Roberts and Basketter, (1990), hybrid dose-response/QSAR regression analyses were performed for 

guinea pig sensitisation and cross-challenge data on a series of alkyl alkanesulphonates and 

alkenesulphonates. Sensitisation responses were correlated with RAIi and RAIc, these being the Relative 

Alkylation Indices corresponding to induction and challenge respectively. In Roberts and Basketter, 

(1997) further sensitisation and cross-challenge data were compared against predictions from the 

equations developed in Roberts and Basketter, (1990). The TES value was obtained by summing the 

erythema scores for each animal. RAI values were calculated from the dose D (ppm units divided by 

MW), calculated (manually by the Hansch and Leo method (1979)) log P values and log k values which 

are taken as 1.48 for methyl alkanesulphonates and 0 for higher alkyl alkanesulphonates, by the formula: 

 

RAI = log k + log D + 0.48log P   (14) 

 

 

Where RAI values model the degree of covalent binding of the sensitiser to carrier protein.  

The dataset on which the quantitative analyses were based consisted of compounds of general formula 

RSO3R’ where the Rs are alkyl or alkenyl. By current thinking as described in Aptula et al., (2005a), this 

dataset would now be expressed as the domain of non-ionic SN2 electrophiles with at least one H-polar 

substituents. 

 

The equation given in the paper was: 

 

PR = 2.24 RAIi – 0.36RAIi2 + 0.54RAIc + 2.23  (15) 
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N = 27 R2 = 0.81 s = 0.48 F =33.1 

 

PR is the probit value corresponding to TES. 

The negative RAIi2 term models the overload effect. 

 

Whilst a regression, this was not a “pure” QSAR as 27 data points come from 6 compounds. In the 

external validation presented in Roberts and Basketter, (1997), extra chemicals were tested and cross-

challenges were performed. Results of these cross-challenges, in which animals sensitised to one 

compound were challenged with a different compound were presented. No statistical measurements were 

given, but predicted values were compared against the observed values. The results were quite good, 

particularly when log P values of the two compounds involved in cross-challenges were similar. Where 

there were large differences, the sensitisations responses were overpredicted.  

 

In Roberts and Basketter, (2000), a 20-point hybrid dose-response/QSAR regression analysis was 

performed for LLNA data on a series of six alkyl alkanesulphonates and alkenesulphonates. Sensitisation 

responses were correlated with the RAI, corresponding to the single dose used in the LLNA. EC20 was 

deemed a more appropriate basis for the potency index than EC3 because of the potential large 

extrapolation errors with the latter. Using pEC20 as the dependent variable, regression analysis against 

RAI gave a six-point QSAR. RAI values were calculated with a negative log P coefficient, based on the 

concept that, for the compounds studied, stratum corneum penetration was negatively correlated with log 

P and was sensitisation determining. The SI value was obtained by the standard protocol, and its use to 

estimate EC20 values was clearly explained. RAI values were calculated from the dose D (ppm units 

divided by MW), calculated (manually by the Hansch and Leo method (1979)) log P values and log krel 

values which are taken as 1.48 for methyl alkanesulphonates and 0 for higher alkyl alkanesulphonates, by 

the formula: 

 

RAI = log C + 2 log krel - 0.5 log P  (16) 

 

 

where C is the concentration, in ppm moles, applied topically. RAI values model the degree of covalent 

binding of the sensitiser to carrier protein. This is different from the RAI formula used in the guinea pig 

study for the same compounds (in Roberts and Basketter, 1990; 1997), where the log P coefficient was 

positive.  

RSP (relative sensitisation parameter) was calculated in the same way as RAI and used as the independent 

variable for the regression.  
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Based on more recent insights (Roberts et al., 2007b), the domain would be potentially defined as non-

ionic SN2 electrophiles with at least one H-polar substituent and with log P not less than 5.49 (below 

which value at some point the log P dependence will change from negative to positive).  

 

The dataset on which the quantitative analyses were based consisted of compounds of general formula 

RSO3R’ where the Rs are alkyl or alkenyl.  

 

The hybrid dose-response/QSAR equation was: 

 

log SI = 0.39 (±0.05) RAI + 0.69 (±0.08)  (17) 

N = 20 R2 = 0.930 s = 0.15 F = 240 

 

note: ± figures are 95% confidence limits, based on 2 standard deviations 

 

The “pure QSAR” equation was: 

 

pEC20 = 0.74 (±0.06) RSP – 0.61 (±0.14)  (18) 

N = 6 R2 = 0.994 s = 0.10 F = 702 

 

note: ± figures are 95% confidence limits, based on 2 standard deviations 

 

No external validation was performed owing to lack of suitable test data.  

 

20 SNAr electrophiles, whose GP skin sensitisation test results were reported by Landsteiner and Jacobs 

(1936) on a +/- basis, were analysed using calculated reactivity descriptors to discriminate between 

positive and negatives. In the original paper by Landsteiner and Jacobs, (1936) used an experimental 

reactivity descriptor, namely observation or not of reaction with aniline under defined experimental 

conditions.  

In Roberts, (1996) the calculated descriptors were based on Hammett and Taft substituent constants 

(Perrin et al., 1981); in Mekenyan et al., (1997) they were based on molecular orbital (MO) parameters. 

The resulting Discriminant Analysis (DA) equation was used to predict sensitisation potential of a further 

set of seven SNAr electrophiles. The analyses undertaken in these papers gave very good internal 

performance in terms of discriminating 100% between active and inactive chemicals. In Roberts, (1996) 
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seven chemicals were all predicted correctly and Mekenyan et al., (1997) the six additional compounds 

were all predicted correctly.  

 

A set of 4 alpha, beta-diketones were tested in the murine local lymph node assay (LLNA) and a RAI 

QSAR developed using Taft substituent constants for the reactive carbonyl group as the electrophilicity 

parameter. Whilst there was only 4 compounds, a QSAR/dose response relationship could be derived. The 

equation was  

Log(T/C) = 0.5RAI + 0.24  (19) 

N = 11 R2 = 0.963 s = 0.09 F = 235 

            

where RAI values were calculated using the relationship RAI = Log D + RP + 0.5 Log P 

Here D is the % concentration applied divided by the molecular weight, Log P is the partition coefficient 

and RP is the reactivity parameter. The RP was defined as the sum of the Taft σ* constants for the 2 

groups attached to the most electron deficient carbonyl group (Roberts et al., 1999). 

 

Patlewicz et al., (2001) evaluated a selection of 17 aldehydes (13 sensitising and 4 non-sensitising) all of 

which possessed a benzene ring. The sensitising compounds were classified as strong, moderate and weak 

on the basis of in vivo data (GPMT and LLNA). Based on a detailed consideration of the mechanistic 

chemistry, it was found possible to classify each of the aldehydes in accordance with the reactivity of 

their carbonyl groups. The four subcategories were termed aryl-substituted aliphatic, aryl, aryl with 

special features that could undergo metabolism and alpha, beta-unsaturated aldehydes. Aryl substituted 

aldehydes were those likely to undergo a Schiff base formation with a primary amine. Aryl aldehydes 

comprised those compounds where the aldehyde functionality was directly attached the benzene ring. 

Aryl aldehydes with special features included vanillin and ethyl vanillin where the presence of the 

additional features enhanced the sensitisation potency. Alpha,beta-unsaturated aldehydes were thought to 

all be able to utilise the conjugated double bond to act via Michael addition.  

 

Using the LLNA data available for the 5 alpha, beta-unsaturated aldehydes, a RAI QSAR was developed 

relating the log of the molar EC3 value (pEC3) to the Taft σ* substituent of the alkyl group on the α 

carbon which modelled reactivity. The following equation was derived using linear regression. 

pEC3 = 0.99σ* + 1.50  (19) 

N = 5 R2 = 0.998 s = 0.018 F = 1181 
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The good correlation derived reaffirmed the belief of the authors that consideration of probable reaction 

mechanisms was a necessary requirement when attempting to relate chemical structure to skin 

sensitisation rather than merely exploring structural similarity. 

 

The ideas and insights derived in Patlewicz et al., (2001) became the starting point for further work in 

Patlewicz et al., (2002). Here the reaction chemistry principles were evaluated further by development of 

QSARs specific for Michael addition and Schiff base fragrance aldehydes. The following regression 

equations were developed: 

pEC3 = 0.536 + 0.168LogP + 0.488Rσ* + 1.313 R’σ*  (20) 

N = 9, R2= 0.741 s = 0.184 F = 4.77 

 

pEC3 = 0.245 + 0.278LogP + 0.862Rσ*  (21) 

N = 12, R2= 0.825 s = 0.712 F = 21.26 

 

The σ* values taken from Perrin et al., (1981) were used to model the electrophilic reactivity of the 

carbonyl group. Here R’σ* and Rσ* reflect the Taft constants for the substituents on the alpha and beta 

carbons.  

 

Patlewicz et al., (2003) continued with the theme of reaction chemistry and sought to investigate the 

extent of applicability of the Schiff base QSAR developed in Patlewicz et al., (2002) and whether it could 

be applied for the diketones evaluated in Roberts et al., (1999). The study was prompted since one of the 

aldehydes tested in Patlewicz et al., (2002), glyoxal (a 1,2-dial) was found to fit the QSAR model well. 

This also suggested that the site of attack, i.e. the electrophilic centre for the diketones tested in Roberts et 

al., (1999) was contrary to what had been previously proposed. Accordingly the QSAR was modified to 

the following;  

Log (T/C) = 0.60RAI + 0.23  (23) 

N = 11 R2= 0.944 s = 0.11 F = 152.1 

            

This modified QSAR equation was then used to calculate the pEC3 for four 1,4-diketones, whereupon a 

good agreement was found. These findings inferred that both aldehydes and 1,2-diketones sensitise via 

the same rate determining step forming Schiff bases. A new regression equation was developed for the 

combined set of compounds which took the form of:  

pEC3 = 0.16 + 0.32 LogP +0.96σ*  (24) 

N = 16 R2= 0.873 s = 0.18 F = 44.5 
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The final paper in this series of work was an evaluation of the predictive power of the QSARs developed 

in Patlewicz et al., (2002) with an additional set of compounds. LLNA data was generated on 10 newly 

selected compounds that contained a carbonyl group. The data demonstrated that the existing QSARs 

were fairly accurate but still required improvement. The new data was used to form two new equations.  

 

The new QSAR for Michael addition aldehydes was:  

pEC3 = 0.55 + 0.14LogP + 0.51Rσ*(β) + 1.07R’σ*(α)  (25) 

N = 13 R2= 0.73 R2adj = 0.64 s = 0.2695 F = 8.16 

            

For the Michael addition QSAR, agreement was fair. Where there discrepancies e.g. trans-2-methyl-2-

butenal [497-03-0], 5-methyl-2-phenyl-2-hexenal [21834-92-4] and β-phenyl cinnamic aldehyde [13702-

35-7] being overpredicted; plausible rationalisations in terms of reaction chemistry were proposed.  

The agreement for the newly tested Schiff base compounds appeared poorer. The two 1,2-diketones tested 

were poorly estimated by the model but this was rationalised on account of the resonance effects of the 

benzene rings. Two aromatic aldehydes with strong withdrawing groups were poorly predicted but the 

finding helped to refine the scope of the “aryl aldehyde” group as defined in Patlewicz et al., (2001); thus 

not even a p-NO2 group diminished the resonance effect sufficiently to lead to significant sensitisation 

potential. In contrast, hexanal [66-25-1] and methyl pyruvate [600-22-6] were well predicted, the latter 

supporting the premise that other carbonyl-containing compounds in addition to aldehydes reacted in the 

same way and hence the QSAR model was applicable for these types of chemicals also. The pEC3 values 

of these two compounds were then combined into a new QSAR which took the form of. 

pEC3 = 0.17 + 0.93σ* + 0.30LogP  (26) 

N=14 R²= 0.87 R²adj= 0.85 s = 0.165 F =37.7 

 

The knowledge generated from this work and previous publications was subsequently incorporated as 

refined rules in DfW (Langton et al., 2006). 

 
 
Quantitative Mechanistic Models (QMM) 

Up until recently RAI skin sensitisation QSARs, had only been developed for closely related sets of 

chemicals (e.g. sulphonate esters, saturated sultones) and it had been considered that the RAI model was 

only applicable for such closely related data sets. This view started to change following work on 

aldehydes and ketones but the term “reaction chemistry domains” or “mechanistic applicability domains” 

was not described until Aptula et al., (2005a). Here a data set of 41 LLNA EC3 values for a diverse range 

of compounds, which had been selected for internal consistency (Gerberick et al., 2004a) were analysed. 
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Compounds had been classified (Gerberick et al., 2004a) according to chemical class, e.g. ketone, 

aliphatic aldehyde, halogenated compound etc., with no clear relationship between structure and 

sensitisation potential. The work here re-classified the compounds into reaction mechanistic applicability 

domains, i.e. grouping according to the mechanisms whereby the compounds could react with 

nucleophiles. Each domain contained a diversity of structures, related by their common reaction 

chemistry rather than by common structural features. Within the domains it was also possible to rank the 

compounds in order of reactivity, applying established mechanistic organic chemistry principles, and in 

this way find clear trends within each domain of sensitisation potential increasing with increasing 

reactivity. The major reaction mechanistic applicability domains identified were: Michael-type addition 

domain; SN2 domain; SNAr domain; acylation domain; Schiff-base domain. Included in the Michael-type 

domain were pro-Michael acceptors, these being compounds which are not themselves Michael-reactive 

but are easily converted (e.g. by in vitro or in vivo oxidation to Michael acceptors). There was also an 

“unreactive” domain; compounds in this domain are expected to be non-sensitisers. Whilst these are not 

the only mechanistic applicability domains, they did provide a foundation to underpin skin sensitisation 

with sound reaction chemistry principles.  

 

The conceptual framework in the area of reactive toxicity came about during the 1st Knoxville workshop, 

organised by Schultz and Veith in May 2005, (Schultz et al., 2006). The framework, which is described in 

detail in Schultz et al., (2006) outlined a number of sequential events – starting from the chemical to 

metabolism to an array of so-called molecular initiating events through to biological effects and final 

adverse outcomes. Chemical reactivity was thought to be the key molecular initiating event. From this 

starting point, it was clear that the mechanistic ability of chemicals to initiate these events was linked to 

the similar mechanism of action and this became the central reference when looking at similar chemicals 

thus many effects could be attributed to reactive toxicity. Approaches to encode reactivity such as using 

heats of reaction (Magee, 2000), an activation index (Aptula et al., 2005b), Taft coefficients (Perrin, 

1981)) or experimental measures of reactivity of chemicals with model nucleophiles could be then used as 

correlates to a variety of toxic effects including skin sensitisation.  

 

The insights derived in Aptula et al., (2005a) and the discussions from Knoxville (Schultz et al., 2006) 

were subsequently generalised in Aptula and Roberts, (2006) culminating in a set of rules based on 

organic reaction mechanistic principles with particular emphasis on reactive toxicity. The rules were 

exemplified using the protein binding reaction mechanisms associated with skin sensitisation, in part to 

provide a set of guidelines for the domain classification of reactive toxicants as well as to outline an in 

chemico approach for determining the relevant chemical properties required for toxicity. The rules 

themselves have subsequently been used to help evaluate the dataset (Ashby et al., 1995) in Roberts et al., 
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(2007b). Early efforts in realising the in chemico approach came from investigating the correlation 

between thiol reactivity and LLNA for a set of Michael acceptors (Aptula et al., 2006). The thiol 

reactivity index was based on glutathione (GSH), pEC(50) thiol (EC(50) being defined as the 

concentration of the test substance which gave a 50% depletion of free thiol under standard conditions) in 

combination with a measure of cytotoxicity (pIGC(50)) to Tetrahymena pyriformis (TETRATOX). Thiol 

reactivity was found to discriminate sensitizers from non-sensitizers according to the rule: pEC(50) 

thiol>-0.55 indicating that the compound would be a skin sensitiser. However, because of metabolic 

activation a pEC(50) thiol<-0.55 does not necessarily mean that the compound will be a non-sensitiser. 

Excess toxicity to T. pyriformis (i.e. the extent of toxic potency over that expected by non-polar narcosis) 

was determined in order to assess biological reactivity. The best discrimination based on excess toxicity 

in the TETRATOX assay was given by the "rule": excess toxicity>0.50 indicating that the compound 

would be a skin sensitiser. These approaches became more powerful (23 of the 24 compounds were 

predicted correctly) when used in combination. The approach was promising but not the definitive answer 

since thiol reactivity is only one measure of the ability of chemicals to form adducts with proteins. Efforts 

in measuring protein reactivity in vitro is a field rapidly gaining momentum, other groups (such as 

Gerberick et al., 2004b) have been investigating approaches using a glutathione tripeptide or three 

synthetic peptides containing cysteine, lysine or histidine residues. In Gerberick et al., (2004b), the 

reactivity of 38 chemicals with varying skin sensitising potencies were investigated. The results revealed 

a correlation between skin sensitising potency and depletion of glutathione and binding with the lysine 

and cysteine synthetic peptides. Further work by Gerberick et al. has since been undertaken (2007). 

 

A number of publications on the skin sensitisation of aldehydes and ketones have already been presented. 

The work described in Roberts et al., (2006) reanalysed the data from Patlewicz et al., (2004) with the 

aim of developing a new mechanistic QMM for Schiff bases. A QSAR was derived relating reactivity and 

hydrophobicity to the log of the molar EC3 (pEC3) where reactivity was modelled by Σσ*, the sum of the 

Taft σ* substituent constants for the two groups attached to the carbonyl group.  

 

A final QSAR based on 16 compounds (11 aliphatic aldehydes, 1 α-ketoester and 4 α,� -diketones) was 

developed. 

pEC3 = 1.12(±0.07) Σσ* + 0.42(±0.04) log P - 0.62(±0.13)  (27) 

N = 16 R2 = 0.952 R2adj = 0.945 s = 0.12 F = 129.6 

 

The predictive performance of this QSAR was then explored across the wider Schiff Base mechanistic 

applicability domain, using further LLNA data for 1,3-dicarbonyl compounds taken from (Gerberick et 

al., 2005b). 



� 38 

Two of the 1,3-dicarbonyl compounds of the further test set were classed as non-sensitisers (EC3 not 

reached at 40%). One of these was calculated to have EC3 = 59%; the other was calculated to have an 

EC3 = 39%. For the remaining seven 1,3-dicarbonyl compounds, the agreement between calculated  and 

observed pEC3 values was good.  

 
The RAI models have been shown to be robust, well characterised and mechanistically interpretable thus 

could play a strong role in the assessment of skin sensitisation as standalone tools. They are however 

limited in terms of their coverage. Considerable efforts would need to be invested in generating a 

database of reactivity data which would enable the rules in Aptula and Roberts, (2006) to be refeind and 

for new models covering the remaining domains to be developed. 

 
Conclusions 

There is clearly a very strong mechanistic understanding of skin sensitisation, which we have tried to 

summarise in the early part of this paper. Most published skin sensitisation QSARs have fallen into one of 

two main categories: either they are mechanistically model based RAI QSARs, typically of high statistical 

quality but applicable to a narrow range of closely related structures or they are “statistical” QSARs 

which aim to be global in their applicability, are variable in their successes, insufficiently characterised 

(as evidenced in (Roberts et al., 2007a; Patlewicz et al., 2007b) and lacking in real mechanistic insight.  

The covalent hypothesis continues to be the most promising way of developing mechanistically based 

robust QSARs. The reaction chemistry concepts recently outlined in Aptula et al., (2005a) and Schultz et 

al., (2006) have changed the perspective regarding RAI QSARs. These QSARs are actually more widely 

applicable than originally thought. Clear chemistry-activity trends can be seen within mechanistic 

applicability domains leading to robust mechanistic based QSAR models (or as defined earlier QMMs 

e.g. Roberts et al., 2006) as well as new insights for inclusion into expert systems such as TIMES-SS and 

DfW. These QMMs use reactivity and hydrophobicity as the key parameters in mathematically modelling 

skin sensitisation. Whilst hydrophobicity can be conveniently modelled using log P, the octanol-water 

partition coefficient; reactivity is less readily determined from chemical structure. Initiatives are in 

progress to generate reactivity data for reactions relevant to skin sensitisation but more resources are 

required to realise a comprehensive set of reactivity data (Gerberick et al., 2004b, Gerberick et al., 2007, 

Schultz et al., 2006, Aptula et al., 2006). This data is a necessary requirement to facilitate the derivation 

of an in silico reactivity index. It also serves as a surrogate piece of information to undertake for 

mechanistic read across evaluations. More details on this approach can be found in Roberts et al., 

(2007d). 
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Disclaimer 

Any views in this report belong to the authors, and do not necessarily represent formal views or positions 

of the European Commission or its Joint Research Centre.  
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Abstract  
This review describes the state of (Q)SARs/expert systems for skin sensitisation from the early work on 
structural alerts to the evolvement of QSAR models through to the development of a mechanistically based 
QSARs. The review considers the merits of the different approaches with particular focus on their 
applicability for potential regulatory use. There is a strong mechanistic understanding with respect to skin 
sensitisation which has facilitated the development of a wide range of models. The majority of the existing 
models fall into one of two main categories – either they are local in nature, typically specific to a chemical 
class or else they are global in form, derived empirically using statistical methods. Several of the published 
global QSARs have been recently characterised and evaluated in accordance with the OECD principles. 
There are also several expert systems capable of predicting skin sensitisation, these are briefly described. 
Recently, a new perspective regarding the development of mechanistic skin sensitisation QSARs so-called 
Quantitative Mechanistic Modelling (QMM) was proposed, where reactivity and hydrophobicity, are used 
as the key parameters in mathematically modelling skin sensitisation. This approach appears to be the 
most promising means of deriving robust and mechanistically interpretable models that are of value in a 
regulatory context. Hydrophobicity can be conveniently modelled using log P, the octanol-water partition 
coefficient. This is readily determined from chemical structure. No such surrogate for reactivity exists, rate 
constants are best derived from experimental studies. Initiatives are in progress to generate reactivity data 
for reactions relevant to skin sensitisation but more resources are required to realise a comprehensive set 
of reactivity data. This is a fundamental and necessary requirement for the future assessment of skin 
sensitisation. A framework of how information from using RAI approaches can be used in the evaluation of 
skin sensitisation is described. 
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