37 research outputs found

    Lower bound for the quantum capacity of a discrete memoryless quantum channel

    Get PDF
    We generalize the random coding argument of stabilizer codes and derive a lower bound on the quantum capacity of an arbitrary discrete memoryless quantum channel. For the depolarizing channel, our lower bound coincides with that obtained by Bennett et al. We also slightly improve the quantum Gilbert-Varshamov bound for general stabilizer codes, and establish an analogue of the quantum Gilbert-Varshamov bound for linear stabilizer codes. Our proof is restricted to the binary quantum channels, but its extension of to l-adic channels is straightforward.Comment: 16 pages, REVTeX4. To appear in J. Math. Phys. A critical error in fidelity calculation was corrected by using Hamada's result (quant-ph/0112103). In the third version, we simplified formula and derivation of the lower bound by proving p(Gamma)+q(Gamma)=1. In the second version, we added an analogue of the quantum Gilbert-Varshamov bound for linear stabilizer code

    Entanglement-assisted quantum error-correcting codes over arbitrary finite fields

    Get PDF
    We prove that the known formulae for computing the optimal number of maximally entangled pairs required for entanglement-assisted quantum error-correcting codes (EAQECCs) over the binary field hold for codes over arbitrary finite fields as well. We also give a Gilbert-Varshamov bound for EAQECCs and constructions of EAQECCs coming from punctured self-orthogonal linear codes which are valid for any finite field.Supported by the Spanish Ministry of Economy/FEDER: grants MTM2015-65764-C3-1-P, MTM2015-65764-C3-2-P, MTM2015-69138-REDT and RYC-2016-20208 (AEI/FSE/UE), the University Jaume I: grant UJI-B2018-10, Spanish Junta de CyL: grant VA166G18, and JSPS Grant No. 17K06419

    Concatenated Quantum Codes Constructible in Polynomial Time: Efficient Decoding and Error Correction

    Full text link
    A method for concatenating quantum error-correcting codes is presented. The method is applicable to a wide class of quantum error-correcting codes known as Calderbank-Shor-Steane (CSS) codes. As a result, codes that achieve a high rate in the Shannon theoretic sense and that are decodable in polynomial time are presented. The rate is the highest among those known to be achievable by CSS codes. Moreover, the best known lower bound on the greatest minimum distance of codes constructible in polynomial time is improved for a wide range.Comment: 16 pages, 3 figures. Ver.4: Title changed. Ver.3: Due to a request of the AE of the journal, the present version has become a combination of (thoroughly revised) quant-ph/0610194 and the former quant-ph/0610195. Problem formulations of polynomial complexity are strictly followed. An erroneous instance of a lower bound on minimum distance was remove

    On Steane-Enlargement of Quantum Codes from Cartesian Product Point Sets

    Get PDF
    In this work, we study quantum error-correcting codes obtained by using Steane-enlargement. We apply this technique to certain codes defined from Cartesian products previously considered by Galindo et al. in [4]. We give bounds on the dimension increase obtained via enlargement, and additionally give an algorithm to compute the true increase. A number of examples of codes are provided, and their parameters are compared to relevant codes in the literature, which shows that the parameters of the enlarged codes are advantageous. Furthermore, comparison with the Gilbert-Varshamov bound for stabilizer quantum codes shows that several of the enlarged codes match or exceed the parameters promised by the bound.Comment: 12 page

    Dualities and identities for entanglement-assisted quantum codes

    Get PDF
    The dual of an entanglement-assisted quantum error-correcting (EAQEC) code is the code resulting from exchanging the original code\u27s information qubits with its ebits. To introduce this notion, we show how entanglement-assisted repetition codes and accumulator codes are dual to each other, much like their classical counterparts, and we give an explicit, general quantum shift-register circuit that encodes both classes of codes. We later show that our constructions are optimal, and this result completes our understanding of these dual classes of codes. We also establish the Gilbert-Varshamov bound and the Plotkin bound for EAQEC codes, and we use these to examine the existence of some EAQEC codes. Finally, we provide upper bounds on the block error probability when transmitting maximal-entanglement EAQEC codes over the depolarizing channel, and we derive variations of the hashing bound for EAQEC codes, which is a lower bound on the maximum rate at which reliable communication over Pauli channels is possible with the use of pre-shared entanglement. © 2013 Springer Science+Business Media New York

    Quantum Error-Control Codes

    Full text link
    The article surveys quantum error control, focusing on quantum stabilizer codes, stressing on the how to use classical codes to design good quantum codes. It is to appear as a book chapter in "A Concise Encyclopedia of Coding Theory," edited by C. Huffman, P. Sole and J-L Kim, to be published by CRC Press

    Low-complexity quantum codes designed via codeword-stabilized framework

    Full text link
    We consider design of the quantum stabilizer codes via a two-step, low-complexity approach based on the framework of codeword-stabilized (CWS) codes. In this framework, each quantum CWS code can be specified by a graph and a binary code. For codes that can be obtained from a given graph, we give several upper bounds on the distance of a generic (additive or non-additive) CWS code, and the lower Gilbert-Varshamov bound for the existence of additive CWS codes. We also consider additive cyclic CWS codes and show that these codes correspond to a previously unexplored class of single-generator cyclic stabilizer codes. We present several families of simple stabilizer codes with relatively good parameters.Comment: 12 pages, 3 figures, 1 tabl
    corecore