2,910 research outputs found

    Quantum Error Correction beyond the Bounded Distance Decoding Limit

    Full text link
    In this paper, we consider quantum error correction over depolarizing channels with non-binary low-density parity-check codes defined over Galois field of size 2p2^p . The proposed quantum error correcting codes are based on the binary quasi-cyclic CSS (Calderbank, Shor and Steane) codes. The resulting quantum codes outperform the best known quantum codes and surpass the performance limit of the bounded distance decoder. By increasing the size of the underlying Galois field, i.e., 2p2^p, the error floors are considerably improved.Comment: To appear in IEEE Transactions on Information Theor

    The Road From Classical to Quantum Codes: A Hashing Bound Approaching Design Procedure

    Full text link
    Powerful Quantum Error Correction Codes (QECCs) are required for stabilizing and protecting fragile qubits against the undesirable effects of quantum decoherence. Similar to classical codes, hashing bound approaching QECCs may be designed by exploiting a concatenated code structure, which invokes iterative decoding. Therefore, in this paper we provide an extensive step-by-step tutorial for designing EXtrinsic Information Transfer (EXIT) chart aided concatenated quantum codes based on the underlying quantum-to-classical isomorphism. These design lessons are then exemplified in the context of our proposed Quantum Irregular Convolutional Code (QIRCC), which constitutes the outer component of a concatenated quantum code. The proposed QIRCC can be dynamically adapted to match any given inner code using EXIT charts, hence achieving a performance close to the hashing bound. It is demonstrated that our QIRCC-based optimized design is capable of operating within 0.4 dB of the noise limit

    Entanglement-assisted quantum turbo codes

    Get PDF
    An unexpected breakdown in the existing theory of quantum serial turbo coding is that a quantum convolutional encoder cannot simultaneously be recursive and non-catastrophic. These properties are essential for quantum turbo code families to have a minimum distance growing with blocklength and for their iterative decoding algorithm to converge, respectively. Here, we show that the entanglement-assisted paradigm simplifies the theory of quantum turbo codes, in the sense that an entanglement-assisted quantum (EAQ) convolutional encoder can possess both of the aforementioned desirable properties. We give several examples of EAQ convolutional encoders that are both recursive and non-catastrophic and detail their relevant parameters. We then modify the quantum turbo decoding algorithm of Poulin et al., in order to have the constituent decoders pass along only "extrinsic information" to each other rather than a posteriori probabilities as in the decoder of Poulin et al., and this leads to a significant improvement in the performance of unassisted quantum turbo codes. Other simulation results indicate that entanglement-assisted turbo codes can operate reliably in a noise regime 4.73 dB beyond that of standard quantum turbo codes, when used on a memoryless depolarizing channel. Furthermore, several of our quantum turbo codes are within 1 dB or less of their hashing limits, so that the performance of quantum turbo codes is now on par with that of classical turbo codes. Finally, we prove that entanglement is the resource that enables a convolutional encoder to be both non-catastrophic and recursive because an encoder acting on only information qubits, classical bits, gauge qubits, and ancilla qubits cannot simultaneously satisfy them.Comment: 31 pages, software for simulating EA turbo codes is available at http://code.google.com/p/ea-turbo/ and a presentation is available at http://markwilde.com/publications/10-10-EA-Turbo.ppt ; v2, revisions based on feedback from journal; v3, modification of the quantum turbo decoding algorithm that leads to improved performance over results in v2 and the results of Poulin et al. in arXiv:0712.288

    Sparse Graph Codes for Quantum Error-Correction

    Full text link
    We present sparse graph codes appropriate for use in quantum error-correction. Quantum error-correcting codes based on sparse graphs are of interest for three reasons. First, the best codes currently known for classical channels are based on sparse graphs. Second, sparse graph codes keep the number of quantum interactions associated with the quantum error correction process small: a constant number per quantum bit, independent of the blocklength. Third, sparse graph codes often offer great flexibility with respect to blocklength and rate. We believe some of the codes we present are unsurpassed by previously published quantum error-correcting codes.Comment: Version 7.3e: 42 pages. Extended version, Feb 2004. A shortened version was resubmitted to IEEE Transactions on Information Theory Jan 20, 200

    Numerical Techniques for Finding the Distances of Quantum Codes

    Get PDF
    We survey the existing techniques for calculating code distances of classical codes and apply these techniques to generic quantum codes. For classical and quantum LDPC codes, we also present a new linked-cluster technique. It reduces complexity exponent of all existing deterministic techniques designed for codes with small relative distances (which include all known families of quantum LDPC codes), and also surpasses the probabilistic technique for sufficiently high code rates.Comment: 5 pages, 1 figure, to appear in Proceedings of ISIT 2014 - IEEE International Symposium on Information Theory, Honolul

    Numerical and analytical bounds on threshold error rates for hypergraph-product codes

    Get PDF
    We study analytically and numerically decoding properties of finite rate hypergraph-product quantum LDPC codes obtained from random (3,4)-regular Gallager codes, with a simple model of independent X and Z errors. Several non-trival lower and upper bounds for the decodable region are constructed analytically by analyzing the properties of the homological difference, equal minus the logarithm of the maximum-likelihood decoding probability for a given syndrome. Numerical results include an upper bound for the decodable region from specific heat calculations in associated Ising models, and a minimum weight decoding threshold of approximately 7%.Comment: 14 pages, 5 figure

    Concatenated Quantum Codes Constructible in Polynomial Time: Efficient Decoding and Error Correction

    Full text link
    A method for concatenating quantum error-correcting codes is presented. The method is applicable to a wide class of quantum error-correcting codes known as Calderbank-Shor-Steane (CSS) codes. As a result, codes that achieve a high rate in the Shannon theoretic sense and that are decodable in polynomial time are presented. The rate is the highest among those known to be achievable by CSS codes. Moreover, the best known lower bound on the greatest minimum distance of codes constructible in polynomial time is improved for a wide range.Comment: 16 pages, 3 figures. Ver.4: Title changed. Ver.3: Due to a request of the AE of the journal, the present version has become a combination of (thoroughly revised) quant-ph/0610194 and the former quant-ph/0610195. Problem formulations of polynomial complexity are strictly followed. An erroneous instance of a lower bound on minimum distance was remove

    Tensor Networks and Quantum Error Correction

    Full text link
    We establish several relations between quantum error correction (QEC) and tensor network (TN) methods of quantum many-body physics. We exhibit correspondences between well-known families of QEC codes and TNs, and demonstrate a formal equivalence between decoding a QEC code and contracting a TN. We build on this equivalence to propose a new family of quantum codes and decoding algorithms that generalize and improve upon quantum polar codes and successive cancellation decoding in a natural way.Comment: Accepted in Phys. Rev. Lett. 8 pages, 9 figure

    Resilience to time-correlated noise in quantum computation

    Full text link
    Fault-tolerant quantum computation techniques rely on weakly correlated noise. Here I show that it is enough to assume weak spatial correlations: time correlations can take any form. In particular, single-shot error correction techniques exhibit a noise threshold for quantum memories under spatially local stochastic noise.Comment: 16 pages, v3: as accepted in journa
    • …
    corecore