660 research outputs found

    Quantum Algorithms for Weighing Matrices and Quadratic Residues

    Get PDF
    In this article we investigate how we can employ the structure of combinatorial objects like Hadamard matrices and weighing matrices to device new quantum algorithms. We show how the properties of a weighing matrix can be used to construct a problem for which the quantum query complexity is ignificantly lower than the classical one. It is pointed out that this scheme captures both Bernstein & Vazirani's inner-product protocol, as well as Grover's search algorithm. In the second part of the article we consider Paley's construction of Hadamard matrices, which relies on the properties of quadratic characters over finite fields. We design a query problem that uses the Legendre symbol chi (which indicates if an element of a finite field F_q is a quadratic residue or not). It is shown how for a shifted Legendre function f_s(i)=chi(i+s), the unknown s in F_q can be obtained exactly with only two quantum calls to f_s. This is in sharp contrast with the observation that any classical, probabilistic procedure requires more than log(q) + log((1-e)/2) queries to solve the same problem.Comment: 18 pages, no figures, LaTeX2e, uses packages {amssymb,amsmath}; classical upper bounds added, presentation improve

    Quantum computing classical physics

    Get PDF
    In the past decade quantum algorithms have been found which outperform the best classical solutions known for certain classical problems as well as the best classical methods known for simulation of certain quantum systems. This suggests that they may also speed up the simulation of some classical systems. I describe one class of discrete quantum algorithms which do so--quantum lattice gas automata--and show how to implement them efficiently on standard quantum computers.Comment: 13 pages, plain TeX, 10 PostScript figures included with epsf.tex; for related work see http://math.ucsd.edu/~dmeyer/research.htm

    A feasibility approach for constructing combinatorial designs of circulant type

    Get PDF
    In this work, we propose an optimization approach for constructing various classes of circulant combinatorial designs that can be defined in terms of autocorrelations. The problem is formulated as a so-called feasibility problem having three sets, to which the Douglas-Rachford projection algorithm is applied. The approach is illustrated on three different classes of circulant combinatorial designs: circulant weighing matrices, D-optimal matrices, and Hadamard matrices with two circulant cores. Furthermore, we explicitly construct two new circulant weighing matrices, a CW(126,64)CW(126,64) and a CW(198,100)CW(198,100), whose existence was previously marked as unresolved in the most recent version of Strassler's table

    Quantum algorithm for the Boolean hidden shift problem

    Get PDF
    The hidden shift problem is a natural place to look for new separations between classical and quantum models of computation. One advantage of this problem is its flexibility, since it can be defined for a whole range of functions and a whole range of underlying groups. In a way, this distinguishes it from the hidden subgroup problem where more stringent requirements about the existence of a periodic subgroup have to be made. And yet, the hidden shift problem proves to be rich enough to capture interesting features of problems of algebraic, geometric, and combinatorial flavor. We present a quantum algorithm to identify the hidden shift for any Boolean function. Using Fourier analysis for Boolean functions we relate the time and query complexity of the algorithm to an intrinsic property of the function, namely its minimum influence. We show that for randomly chosen functions the time complexity of the algorithm is polynomial. Based on this we show an average case exponential separation between classical and quantum time complexity. A perhaps interesting aspect of this work is that, while the extremal case of the Boolean hidden shift problem over so-called bent functions can be reduced to a hidden subgroup problem over an abelian group, the more general case studied here does not seem to allow such a reduction.Comment: 10 pages, 1 figur

    The geometry of quantum learning

    Full text link
    Concept learning provides a natural framework in which to place the problems solved by the quantum algorithms of Bernstein-Vazirani and Grover. By combining the tools used in these algorithms--quantum fast transforms and amplitude amplification--with a novel (in this context) tool--a solution method for geometrical optimization problems--we derive a general technique for quantum concept learning. We name this technique "Amplified Impatient Learning" and apply it to construct quantum algorithms solving two new problems: BATTLESHIP and MAJORITY, more efficiently than is possible classically.Comment: 20 pages, plain TeX with amssym.tex, related work at http://www.math.uga.edu/~hunziker/ and http://math.ucsd.edu/~dmeyer

    On the Complexity of Decomposable Randomized Encodings, Or: How Friendly Can a Garbling-Friendly PRF Be?

    Get PDF

    Quantum Algorithms for Some Hidden Shift Problems

    Get PDF
    Almost all of the most successful quantum algorithms discovered to date exploit the ability of the Fourier transform to recover subgroup structures of functions, especially periodicity. The fact that Fourier transforms can also be used to capture shift structure has received far less attention in the context of quantum computation. In this paper, we present three examples of "unknown shift" problems that can be solved efficiently on a quantum computer using the quantum Fourier transform. For one of these problems, the shifted Legendre symbol problem, we give evidence that the problem is hard to solve classically, by showing a reduction from breaking algebraically homomorphic cryptosystems. We also define the hidden coset problem, which generalizes the hidden shift problem and the hidden subgroup problem. This framework provides a unified way of viewing the ability of the Fourier transform to capture subgroup and shift structure
    • …
    corecore