Concept learning provides a natural framework in which to place the problems
solved by the quantum algorithms of Bernstein-Vazirani and Grover. By combining
the tools used in these algorithms--quantum fast transforms and amplitude
amplification--with a novel (in this context) tool--a solution method for
geometrical optimization problems--we derive a general technique for quantum
concept learning. We name this technique "Amplified Impatient Learning" and
apply it to construct quantum algorithms solving two new problems: BATTLESHIP
and MAJORITY, more efficiently than is possible classically.Comment: 20 pages, plain TeX with amssym.tex, related work at
http://www.math.uga.edu/~hunziker/ and http://math.ucsd.edu/~dmeyer