60 research outputs found

    A novel symbolization technique for time-series outlier detection

    Get PDF
    The detection of outliers in time series data is a core component of many data-mining applications and broadly applied in industrial applications. In large data sets algorithms that are efficient in both time and space are required. One area where speed and storage costs can be reduced is via symbolization as a pre-processing step, additionally opening up the use of an array of discrete algorithms. With this common pre-processing step in mind, this work highlights that (1) existing symbolization approaches are designed to address problems other than outlier detection and are hence sub-optimal and (2) use of off-the-shelf symbolization techniques can therefore lead to significant unnecessary data corruption and potential performance loss when outlier detection is a key aspect of the data mining task at hand. Addressing this a novel symbolization method is motivated specifically targeting the end use application of outlier detection. The method is empirically shown to outperform existing approaches

    Automatic Detection and Compression for Passive Acoustic Monitoring of the African Forest Elephant

    Full text link
    In this work, we consider applying machine learning to the analysis and compression of audio signals in the context of monitoring elephants in sub-Saharan Africa. Earth's biodiversity is increasingly under threat by sources of anthropogenic change (e.g. resource extraction, land use change, and climate change) and surveying animal populations is critical for developing conservation strategies. However, manually monitoring tropical forests or deep oceans is intractable. For species that communicate acoustically, researchers have argued for placing audio recorders in the habitats as a cost-effective and non-invasive method, a strategy known as passive acoustic monitoring (PAM). In collaboration with conservation efforts, we construct a large labeled dataset of passive acoustic recordings of the African Forest Elephant via crowdsourcing, compromising thousands of hours of recordings in the wild. Using state-of-the-art techniques in artificial intelligence we improve upon previously proposed methods for passive acoustic monitoring for classification and segmentation. In real-time detection of elephant calls, network bandwidth quickly becomes a bottleneck and efficient ways to compress the data are needed. Most audio compression schemes are aimed at human listeners and are unsuitable for low-frequency elephant calls. To remedy this, we provide a novel end-to-end differentiable method for compression of audio signals that can be adapted to acoustic monitoring of any species and dramatically improves over naive coding strategies

    Classical communication over a quantum interference channel

    Get PDF
    Calculating the capacity of interference channels is a notorious open problem in classical information theory. Such channels have two senders and two receivers, and each sender would like to communicate with a partner receiver. The capacity of such channels is known exactly in the settings of very strong and strong interference, while the Han-Kobayashi coding strategy gives the best known achievable rate region in the general case. Here, we introduce and study the quantum interference channel, a natural generalization of the interference channel to the setting of quantum information theory. We restrict ourselves for the most part to channels with two classical inputs and two quantum outputs in order to simplify the presentation of our results (though generalizations of our results to channels with quantum inputs are straightforward). We are able to determine the exact classical capacity of this channel in the settings of very strong and strong interference, by exploiting Winter\u27s successive decoding strategy and a novel two-sender quantum simultaneous decoder, respectively. We provide a proof that a Han-Kobayashi strategy is achievable with Holevo information rates, up to a conjecture regarding the existence of a three-sender quantum simultaneous decoder. This conjecture holds for a special class of quantum multiple-access channels with average output states that commute, and we discuss some other variations of the conjecture that hold. Finally, we detail a connection between the quantum interference channel and prior work on the capacity of bipartite unitary gates. © 2012 IEEE

    On Information Plane Analyses of Neural Network Classifiers -- A Review

    Full text link
    We review the current literature concerned with information plane analyses of neural network classifiers. While the underlying information bottleneck theory and the claim that information-theoretic compression is causally linked to generalization are plausible, empirical evidence was found to be both supporting and conflicting. We review this evidence together with a detailed analysis of how the respective information quantities were estimated. Our survey suggests that compression visualized in information planes is not necessarily information-theoretic, but is rather often compatible with geometric compression of the latent representations. This insight gives the information plane a renewed justification. Aside from this, we shed light on the problem of estimating mutual information in deterministic neural networks and its consequences. Specifically, we argue that even in feed-forward neural networks the data processing inequality need not hold for estimates of mutual information. Similarly, while a fitting phase, in which the mutual information between the latent representation and the target increases, is necessary (but not sufficient) for good classification performance, depending on the specifics of mutual information estimation such a fitting phase need not be visible in the information plane.Comment: 12 pages, 3 figures; accepted for publication in IEEE Transactions on Neural Networks and Learning Systems. (c) 2021 IEE
    • …
    corecore