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Abstract—The detection of outliers in time series data is a
core component of many data-mining applications and broadly
applied in industrial applications. In large data sets algorithms
that are efficient in both time and space are required. One area
where speed and storage costs can be reduced is via symbolization
as a pre-processing step, additionally opening up the use of an
array of discrete algorithms. With this common pre-processing
step in mind, this work highlights that (1) existing symbolization
approaches are designed to address problems other than outlier
detection and are hence sub-optimal and (2) use of off-the-
shelf symbolization techniques can therefore lead to significant
unnecessary data corruption and potential performance loss
when outlier detection is a key aspect of the data mining
task at hand. Addressing this a novel symbolization method
is motivated specifically targeting the end use application of
outlier detection. The method is empirically shown to outperform
existing approaches.

Keywords-outlier detection; preprocessing; symbolization;
quantization; optimization; time series; data mining

I. INTRODUCTION

Time series are an increasingly prevalent form of mass
dataset, due in no small part to the upsurge in human be-
havioural data that is now being recorded in an unparalleled
fashion in the form of transactional logs. Growing proportions
of our daily lives are being logged and recorded, with such
data then being leveraged to provide useful insights into a vast
array of problems. One important class of such problems is
outlier detection.

Outlier detection within temporal data finds application in a
vast range of application areas, with examples including: the
detection of changes in the stock market; electronic system
diagnostics; biological data analysis; and behavioural pattern
analysis [1], [2], [3], [4]. Numerous problem definitions, meth-
ods and algorithms have been developed in reference to outlier
detection, and the field of uncovering outlying realizations in
sets of time series remains an active area of research. However,
the pre-processing of time series data is a key step at the heart
of many practical implementations of time series analysis. One
such pre-processing step is the symbolization or quantization
of time series: this process describes the mapping of a continu-
ous value domain onto an arbitrarily fine discrete domain, thus
reducing the complexity of time series representation. Such a
technique is routinely employed for a wide variety of reasons,
with examples including the addressing of computational

and/or storage constraints (particularly true in data sets of
significant size1), noise reduction, interpretation enhancement
or to allow the application of algorithms designed specifically
for discrete domains [6], [7], [8], [9], [10].

Due in part to the extensive use of symbolization, it is
often thought of as a solved problem. However, recently this
has been called into question in the general case of time
series comparison [11]. That work highlighted two factors: 1.
a range of symbolization methods may be characterized by the
objective/error function that they seek to minimize; 2. none of
the objective functions used by state-of-the-art quantizers were
optimal in the broad area of time series comparisons (with that
work going on to present an alternative method).

In this paper we evaluate the effectiveness of such quantizers
in the area of outlier detection. We similarly note that this
is an application area where no optimized strategy currently
exists, nor is it clear which of the range of existing techniques
available is most effective. Focusing on distance based outlier
detection and using a definition for outlier detection that is
commonly seen in the context of time series [12], [1]), we
reconsider the objective functions of existing symbolization
methods and show that they are all suboptimal with respect to
the task of outlier detection.

Based on this analysis we then motivate and present an
alternative symbolization method tailored specifically for out-
lier detection. Finally, we provide an extensive empirical
evaluation on four real world datasets, evaluating the proposed
approach compared to five existing approaches. In addition to
providing a basis of comparison for the proposed approach,
this evaluation provides a comparative evaluation as to the
utility of existing approaches under such a task (currently
only limited comparative evaluation exists). In concluding we
highlight the comparative validity of these approaches leading
to clear recommendations for practitioners.

II. BACKGROUND

A. Outlier detection via Anomaly Scores

In this work we take an explicit focus on the detection
of outlying time series. Given a set of time series, T , we

1For example quantising to 8 symbols can provide a ten or more fold
reduction in storage costs (3 bits per data point vs the typical 32) and the use
of symbolized indexing schemes has been shown to enable the indexing of
time series numbering into the billions [5]
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aim to determine the subset, S ⊂ T , whose elements can
be deemed as anomalous. Each individual time series is
considered in its entirety2 to be either ‘conforming’ (i.e.
following some pre-determined notion of expected behaviour)
or ‘nonconforming’. For this task we use the definition of
outlying behaviour provided by Chandola et al. [12], whose
conception of nonconformity is based upon a time series’
anomaly score, which is defined as follows:

Definition 1: The anomaly score of a data instance is
defined as the distance to its kth nearest neighbour in a given
dataset.

Armed with this definition the subset of outliers in our
dataset can be obtained by specifying an anomaly score
threshold, γ and identifying those time series whose scores
exceed this threshold. More formally, given a dataset of time
series indexed by the natural numbers, T = {T1, T2, . . . , TN},
each individual time series, Ti = 〈ti1, ti2, . . .〉 can be attributed
an anomaly score, A(Ti|T ). These scores allow us to define
the subset of outliers in the dataset as:

S = {Ti ∈ T |A(Ti|T ) ≥ γ} (1)

A time series anomaly score reflects the distance between
itself and it’s kth nearest neighbour. To determine this for
every time series requires an exhaustive series of distance
comparisons across the whole dataset - and this reflects a
significant computational challenge, especially as the cardi-
nality of T increases. Symbolization of time series prior to
construction of a distance matrix is hence a popular way of
trying to deal with this problem and make processing tractable.

However, there is an important issue here - it has been
shown that when time series are symbolized, the method
selected can have a significant impact on the veracity of time
series comparisons [11]. Given the role such comparisons play
in anomaly detection, there is therefore also a danger that the
choice of the symbolization technique negatively impacts on
the veracity of the sets of outliers being identified.

B. Symbolization

As discussed in [11], symbolization can be summarized as
a problem of finding an m−level scalar quantizer Q(x). Here
Q(x) is a zero-memory nonlinear mapping that takes a real
valued scalar input, x, and maps it to one of m values based
on which of the m quantization intervals contains the input.
Note that while we focus on a quantizer that is both uni-variate
and memory-less, the outcomes of this work are applicable to
many extensions such as multivariate quantizers and/or those
utilising temporal dependencies [11].

2We note that there also exists a parallel stream of research that considers
the detection of outlying subsequences within time series (as discussed in the
recent survey by [1]). While the analysis in this paper could be extrapolated
to intra-series anomaly detection, this problem domain is not explicitly
considered here.

Formally, if B0 = −∞ and Bm =∞, then.

(2)Q(x) =


q1 B0 < x ≤ B1

q2 B1 < x ≤ B2

...
qm Bm−1 < x ≤ Bm

where the symbolization of a time series Ti = 〈ti1, ti2, . . .〉
involves the repeated application of the quantizer to each point
in the time series:

Q̂(Ti) = 〈Q(ti1), Q(ti2), . . .〉 (3)

The problem of learning a quantizer is then as follows: given
some data and an error/objective function, to find the symbol
values (i.e. the set of qi values) and boundary values (the
set of Bi values) that minimize that objective function. Thus,
the optimal quantizer is found by solving the optimization
problem:

argmin
Q

E(T , Q) (4)

where the error/objective function, E(T , Q), is reflecting the
divergence between all of the original time series that ex-
ist in our dataset, T and their respective quantized forms,
Q = 〈Q̂(T1), Q̂(T2), . . . , Q̂(TN )〉. The merits of any given
quantizer can only be assessed by how well suited it is to some
problem - and consequently how well the objective function
used corresponds to the requirements of that problem.

Unlike, say, time series reconstruction, the derivation of a
tractable objective function that is optimal for outlier detection
is a non-trivial task. In such a scenario a desirable function is
one that is 1. able to preserve the discriminative information
that exists in rare values; and 2. also able to preserve the
accuracy of commonly occurring comparisons. If this balance
is not correctly established, the value to outlier detection that
is gained in emphasising the distances between the rare values
(which is, after all, what makes an outlier and outlier), will
be lost because of errors that accrue due to neglecting the
importance of commonly compared value ranges. Addressing
this we motivate and present an adaption of the underlying
cost function within the recently proposed ICE symbolization
method [11]. Our evaluation of both the method proposed
in this work in conjunction with a comparative evaluation of
existing techniques highlights a large variance in the relative
utility of these approaches with regard to outlier detection, but
also demonstrates the superiority of the proposed method.

The rest of the paper is structured as follows. In the
following section, §II-C, we consider existing symbolization
techniques noting that from a theoretic perspective the optimal
choice is unclear. Subsequently in section §III we motivate
and present our novel extension of the ICE symbolization
technique explicitly considering the outlier detection task
described in section §II-A. Following this in §IV we present
a comparative empirical study of the effectiveness of both
the proposed and existing quantization methods based upon
four real world time series datasets, reporting in §V the



impact to these of using: time series of different lengths;
differing number of symbols being quantized to; and varying
parametrisations to the outlier detection algorithm. Finally in
§VI we provide a discussion of the results and conclude with
practical recommendations.

C. Existing Symbolization methods

As previously noted, a number of methods for quantizing
time series have been proposed in the literature - yet none
have specifically addressed the end goal of detecting outlying
time series. In this section we provide a concise overview
of several prevalent symbolization methods. Each method is
motivated by a different purpose, and while some are provably
optimal for their original goal none can be considered optimal
with respect to detecting outlying behaviour.

1) Uniform quantization (UNI): Uniform quantization is
the simplest form of time series quantization, taking into
account only the range of values contained in the time series
rather than their distributions. A uniform quantizer (UNI)
simply splits the value domain into m equal regions, where
m is the desired number of symbols. The midpoint of any
given region is the new value assigned to any points that fall
within its boundaries. Note that while this approach does learn
a quantizer Q(x), it does not explicitly optimize an objective
function nor consider the distance between the original and
symbolized versions of time series.

By not considering the frequency by which symbols occur,
UNI favours neither commonly occurring data points (as per
MOE, SAX and MSE below) nor commonly compared data
points (ICE) at the expense of representing rare data points.
In contrast to other methods, however, this agnostic view
comes at the expense of over-representation of both unused
and unimportant portions of the value domain.

2) Minimal reconstruction error (MSE): Common within
the fields of information theory and signal processing, a
minimal reconstruction error quantizer (MSE) [13] seeks to
split the value domain into m regions while simultaneously
reducing the reconstruction error between the original time
series and its symbolized version. If the error is defined as the
mean squared distance between each, the objective function in
the context of equation 4 can be formulated as:

E(T , Q) =
∑
Ta∈T

n∑
i=1

(tai −Q(tai))
2 (5)

As argued in [11], MSE does not take into account how
often comparisons are made between symbols, nor adjust its
quantization to optimally maintain pairwise distances between
time series. By only considering time series in isolation, MSE
focuses on accurately representing those values that occur
frequently. While MSE will in some ways attempt to better
model outlying values if their magnitude is large enough, it
will still favour a more accurate representation of common data
points at the expense of rare values that may provide valuable
discriminative information.

3) Maximum Output Entropy (MOE): A Maximum output
entropy (MOE) quantizer [14] maximises the average mutual
information between the original and symbolized versions of
the time series. Maximum entropy occurs when the probability
of a value being found in a time series is uniformly distributed
- this means that MOE tries to find symbols boundaries that
result in a quantized version of the dataset where each symbol
occurs an equal number of times. I.e. given each value x
occurring in the dataset’s time series, P (B0 < x ≤ B1) =
P (B1 < x ≤ B2) · · · = P (Bm−1 < x ≤ Bm) = 1/m.

An MOE quantizer hence represents regions of the value
domain which exhibit the greatest frequency with more detail,
while assigning coarse approximations to regions those that
rarely crop up. Similarly to MSE or ICE, an MOE quantizer
may therefore plausibly reduce the amount of discriminative
information available to detect outliers. Moreover, the concen-
trated focus on small but high frequency portions of the value
domain may provide no help in trying to preserve the overall
distance between two time series. If the large, distinguishing
differences between time series are due to the less frequent
but more extreme values which exist in the dataset MOE
will neglect them - MOE’s focus on information rather than
distance means that it may well perform less effectively than
quantizers such as MSE and ICE which do take distance into
account.

4) Symbolic Aggregation Approximation embedded quan-
tizer (qSAX): Symbolic Aggregation Approximation (SAX) is
a commonly used symbolic time series representation [15].
SAX and its variants (such as extended SAX [16], iSAX [5],
iSAX 2.0 [17]) symbolize not only the value domain, but also
the time dimension as well as providing an efficient indexing
mechanism. The SAX representation supports any arbitrary
underlying quantizer [17, pg. 59], however in this work we
compare against the original authors’ [15] choice - an MOE
quantizer that assumes a normal distribution over the value
domain rather than using the actual empirical distribution of
the data (we henceforth denote this approach as qSAX).

5) Independent Comparison Error (ICE): The most re-
cently presented symbolization strategy is Independent Com-
parison Error (ICE) [11]. ICE considers all possible pairwise
comparisons between the time series in the training set. It
seeks to minimize, not reconstruction error, but instead the loss
in accuracy of the distances between time series. Specifically:

E(T , Q) =
∑

∀Ta,Tb∈T

|δ(Ta, Tb)− δ(Q̂(Ta), Q̂(Tb))| (6)

where δ(Ta, Tb) is the distance between time series Ta
and Tb and δ(Q̂(Ta), Q̂(Tb)) is the distance between the two
quantized time series Q̂(Ta), Q̂(Tb).

To achieve this ICE makes a computational concession
assuming the pointwise comparisons between values occur
independently of the time series in which they occur. Thus,
ICE seeks to minimize the comparison error between data
points as if, for each pairwise time series comparison, the per-
time-point comparisons had been thrown into a single bucket.
The more times that two points would have been compared, the



more accurately that pairwise distance will be reflected. This,
however, is at the expense of comparisons less often made.
Therefore, while initially one may think ICE is ideally suited
to outlier detection due to its focus on optimizing comparison
fidelity, the deliberate loss of rare discriminative information
(which is what tend to identify outliers) in favour of preserving
the fidelity of more common comparison makes the overall
effectiveness of this approach less clear in this context.

6) Other quantizers: Other quantizers proposed in the
literature seek to minimize objective functions specific to
their individual problem spaces, utilising additional application
specific knowledge. Examples include: perceptual distance
quantizers which leverage labelled binary data to symbolize
in order to maximise a binary discrimination task [18] and
quantizers focusing on maximising quantities such as temporal
stability [19] or human perception [20]. Being application
specific, unlike the other quantizers detailed, these are not
directly applicable to the generalized outlier detection problem
considered here.

III. A NOVEL SYMBOLIZATION FOR ANOMALY DETECTION

Notably, the detection of an anomalous time series as de-
fined in section II-A is based on pairwise comparisons between
time series. As previously noted, however, optimizing compar-
ison fidelity directly encourages the representation of common
values over rare values, obscuring the discriminative features
of any anomalous time series. Acknowledging the need for a
better balance between the maintenance of comparison fidelity
(to prevent comparison error from common values dwarfing
any differences contributed by true anomalous values) and
the preservation of rare values, this work presents a modified
version of the ICE symbolization approach [11]. Specifically
we propose the use of a monotonic transformation function to
systematically dampen the error contribution of frequent point-
wise symbol comparison pairs within the objective function
relative to those compared less frequently.

Such an approach systematically refines the representation
of values involved in infrequent comparisons at the expense
of a coarser representation of values often compared. The
use of a monotonic transformation function ensures that such
alterations are relative, with more common values always
contributing more error and subsequently obtaining a finer
grained representation. As previously discussed, this is desir-
able in order to ensure that comparison fidelity in general is
maintained and the error introduced from the poor represen-
tation of common comparisons does not mask the differences
contributed by the rare comparisons that are indicative of
anomalous time series.

Specifically, in [11] the objective function of ICE was
defined as the measure of the comparison between all time
series:

E(T , Q) =
∑

∀Ta,Tb∈T

|δ(Ta, Tb)− δ(Q̂(Ta), Q̂(Tb))| (7)

In order to provide a tractable implementation the distance
function, δ(·, ·), was set to the L1 norm and the assumption

made that the distance between two time series is well ap-
proximated by the sum of the absolute point-wise comparison
errors. The resultant objective function was:

(8)ICE(T , Q)=

∫∫ ∞
−∞
P (x, y) ||x−y|−|Q(x)−Q(y)|| dx dy

where P (x, y) denotes the probability of a comparison
between values x, y over all pairwise time series.

It is this objective function that we extend in this work. Let
Γ(·) denote an arbitrary monotonic transformation function.
Then the new objective function proposed in this work is:

E(T , Q)=

∫∫ ∞
−∞

Γ(P (x, y))∫∫∞
−∞ Γ(P (x, y))

||x−y|−|Q(x)−Q(y)|| dx dy

(9)

where the introduced denominator
∫∫∞
−∞ Γ(P (x, y)) renor-

malizes the probability function after the monotonic transform.
In order to adjust the aforementioned trade-off between

rarely occurring comparisons and common comparisons such
a transform must be a non-constant monotonic transform and
reduce the probability of highly probable comparisons to a
larger degree than those comparisons with low probability. To
this end functions of the form:

Γ(·, ·) = (·, ·) 1
x (10)

are proposed. x acts to control the relative re-weighting of
common comparisons probabilities versus infrequent ones.
This effectively parametrises the algorithms propensity to
provide a finer grained symbolization, and therefore better rep-
resent, values that appear infrequently in comparisons versus
those that commonly occur. In this work we set x = 2. The
resultant objective function, denoted Anomaly Comparison
Error (ACE) is:

ACE(T , Q)=

∫∫ ∞
−∞

√
P (x, y)∫∫∞

−∞

√
P (x, y)

||x−y|−|Q(x)−Q(y)|| dx dy

(11)

This can implemented as a symbolizer under a framework
based upon simulated annealing, and using the same algorith-
mic approach as ICE3. Such a solution maintains the trivial
O(m2) complexity to check a solution within the simulated
annealing (recall that m is the number of output symbols
produced by the quantizer, and is assumed to be relatively

3For full details of this algorithmic approach please see [11]. We adapt the
ICE algorithm to allow the efficient implementation of ACE by simply re-
placing the use of P (x, y) in that algorithm with the transformed comparison
weighting: √

P (x, y)∫∫∞
−∞

√
P (x, y)

This change modifies the derived function the algorithm uses for pre-
computation (denoted as φ(a, b, qij)) in [11]) to:

φACE(a, b, qij) =

∫ a

−∞

∫ b

−∞

√
P (x, y)∫∫∞

−∞
√
P (x, y)

||x− y| − qij | dx dy

All of the other algorithm’s aspects remain the same.



small). As with ICE, a potential bottleneck when computing
ACE is in pre-computing the joint probability of comparing
any two symbols, P (x, y). However, as noted in [11] this can
be alleviated, if required, by accurately approximating P (x, y)
via random sampling of a sufficiently large number of time
series4 based on standard statistical techniques.

IV. EMPIRICAL EVALUATION

The impact of symbolization on outlier detection tasks has
seen limited attention. As such the empirical evaluation has
two aims, the first to empirically evaluate the comparative
utility of all quantization methods detailed in §II-C and the
second to evaluate the novel symbolizer presented in this work.

In order to empirically evaluate the comparative utility of
the quantization methods with respect to outlier detection
as defined in section §II-A we first present an evaluation
framework. Recall that:
• the outlier detection problem of interest is the detection of

a set of anomalous entities within a large dataset of N time
series, T = 〈T1, T2, . . . , TN 〉.

• the anomaly score of a time series, Ti is defined as the
distance between Ti and its kth nearest neighbour.

• an anomalous time series is defined as a time series, Ti
where A(Ti|T ) ≥ γ and γ is an application specific
parameter.
Given a fixed number of symbols m and a quantizer Q̂(·),

we define the set of outliers, S, as those items in the dataset
that are anomalous, as per equation 1. However, we can form
an equivalent set of outliers, Sq , for the quantized version of
the dataset against which to assess performance in the context
of outlier detection. One way to do this would be to observe
the intersection between S and Sq for a given value of γ.
The higher the intersection of these two sets the better the
performance, and if the sets are identical then our quantization
has functioned perfectly in the context of outlier detection.

However, if we use the same threshold value for γ in both
instances skewed results may occur - γ represents a distance
value between two data points and quantization can arbitrarily
affect the range over which the pairwise distances are repre-
sented. This means that a significantly different number of time
series may be identified as outliers in each case. Therefore,
it was found preferable to select a different threshold value
for the quantized dataset, γq , that ensured the exact same
number of time series, p, were viewed as outliers in both cases.
Therefore, if we define:

Sq = {Ti ∈ T |A(Q̂(Ti)|T ) ≥ γq} (12)

where the value for γq is selected such that:

|S|= |Sq|= p (13)

In our experiments we can then vary the value of p to assess
the impact of each quantizer over different threshold values,
given it is a monotonic function of γ. In practice, since the

4The GPU implementation used can easily compute the joint probability
distribution from tens of thousands of randomly sampled time series.

datasets are of different sizes, we consistently evaluate the
definition of an outlier by setting p = β × |T | and vary β.

A. Method

The five quantizers identified in section II-C and the pro-
posed approach, ACE, were compared over four real world
datasets. Three additional parameters of interest were varied
with investigated values are shown in parentheses:
• the number of symbols (m ∈ {8, 16, 24})
• anomaly score definitions (k ∈ {1, 10})
• outlier definition (β ∈ {0.5%, 1%, 5%, 10%)
Each run involved fixing m, k and β. All of the raw time

series were ranked according to their anomaly score for the
given value of k, in order to produce a ground truth based on
distance to nearest neighbour.

Rankings were then also produced for symbolized versions
of the time series based on the given m value, iterating
through each of the quantizers being assessed. Performance
of a quantizer could then assessed by: 1. selecting the
p = β|T | time series with the highest anomaly scores that
it produced; and 2. determining the intersection of that set
with the p time series with the highest scores that the ground
truth produced. The performance of the quantizer, qPerf, is
therefore formally defined as:

qPerf =
|S ∩ Sq|
|S|

(14)

This statistic may be interpreted as the true positive rate
of a binary classifier with a label of outlier being the target
class. Reporting other statistics such as the specificity does not
provide any additional information since, by definition, each
method is restricted to identifying the same number of outliers
(with their performance differing only in which instances are
identified as outliers).

Within each run the above procedure was repeated 15 times
by redrawing a set of time series randomly from the data set of
interest, resulting in 15 qPerf scores per symbolization method
for the given set of parameters. The mean of these 15 scores
was then taken and tabulated indicating the expected perfor-
mance of the symbolization method. Pairwise paired t-tests
were then conducted between the best performing method and
all others, correcting for multiple comparisons via the Holm
procedure. Within the tabulated results the best performing
method per run is highlighted in bold along with any other
method for which no statistically significant difference was
observed (p > 0.05).

B. Datasets

The four datasets used in our experiments were selected
to represent a range of application areas. Brief descriptions
of each are provided below. In all cases repeated random
re-sampling was done in order to draw fifteen samples for
statistical significance testing, with sample sizes adjusted
depending on the base data size.



Smart Meter Electricity data (ELEC): A data set
containing over 6435 time series of building energy
usage sampled at 30 minute intervals. In total the
dataset contains over 400, 000 weeks worth of data.
The distribution of the combined temporal samples
was typically log-normal. Time series lengths of 336
(one week) were considered. The data is from The
Commission for Energy Regulation (CER), Electricity
Customer Behaviour Trial5. The sampling procedure
consisted of randomly selecting an individual and
then randomly selecting a week from their data. This
procedure was repeated to draw 10,000 time series per
sample.

80 Million Tiny Images (IMGS): The second type of real
world data considered was a subset of the 80 Million
Tiny Image dataset as detailed in [21]6. Following the
work of [17] in evaluating time series, we convert
each image to a colour histogram with 256 bins. These
histograms can be considered as time series with a length
of 256 and the same techniques and evaluation applied.
For this experiment a dataset of the first million images
was considered. The sampling procedure for this dataset
simply consisted of random sampling, with each sample
consisting of 10,000 randomly drawn time series.

Retail Transactions (RETAIL): A transactional dataset
from a large UK retailer. The data set consisted of
66,000 individuals, with each individual represented as
a time series of with a length of 121, with points within
the time series representing consecutive tri-weeks for a
period of just over seven years. Each point in the time
series corresponded to an individual’s spend for that
month. For each sample 4,000 time series were drawn at
random from the 66,000 data instances within the set.

Hourly Ozone levels (OZONE): Hourly Ozone levels
recorded at different sites across the US between 2000
and 2015. From the data weekly time series were formed.
Only weeks without missing data were kept resulting
in 127,085 weeks of data. For each sample 5,000 time
series were drawn at random. The data is available via
the EPA website7.

V. RESULTS

Results for each of our experimental datasets (ELEC, IMGS,
RETAIL and OZONE) are shown in a set of Tables I - IV
respectively. The results for each dataset are comprised of six
tables (labelled a - f) arranged in a 3x2 grid. Each row shows
the results for the dataset when symbolized to either 8, 16 or 24
symbols. The columns distinguish the choice of anomaly score
definition used (k). In each individual table the proportion
of outliers correctly identified is shown (cell value) for each

5http://www.ucd.ie/issda/data/commissionforenergyregulationcer/
6Available from http://horatio.cs.nyu.edu/mit/tiny/data/index.html
7http://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/download files.html

0.5% 1% 5% 10%
ACE 0.84 0.89 0.91 0.92
ICE 0.61 0.62 0.79 0.86

qSAX 0.17 0.24 0.47 0.63
UNI 0.64 0.62 0.57 0.60
MSE 0.79 0.82 0.88 0.91
MOE 0.09 0.15 0.36 0.53

(a) Number of Symbols: 8, k = 1

0.5% 1% 5% 10%
ACE 0.85 0.87 0.92 0.94
ICE 0.61 0.63 0.77 0.84

qSAX 0.19 0.24 0.47 0.63
UNI 0.69 0.65 0.60 0.63
MSE 0.78 0.82 0.89 0.91
MOE 0.09 0.12 0.35 0.53

(b) Number of Symbols: 8, k = 10

0.5% 1% 5% 10%
ACE 0.93 0.93 0.96 0.96
ICE 0.72 0.79 0.91 0.94

qSAX 0.25 0.29 0.56 0.69
UNI 0.79 0.77 0.75 0.76
MSE 0.88 0.91 0.94 0.95
MOE 0.23 0.28 0.55 0.68

(c) Number of Symbols: 16, k = 1

0.5% 1% 5% 10%
ACE 0.92 0.93 0.96 0.97
ICE 0.72 0.77 0.89 0.93

qSAX 0.26 0.35 0.58 0.70
UNI 0.83 0.80 0.79 0.79
MSE 0.87 0.90 0.95 0.95
MOE 0.23 0.31 0.57 0.69

(d) Number of Symbols: 16, k = 10

0.5% 1% 5% 10%
ACE 0.95 0.96 0.97 0.97
ICE 0.81 0.88 0.94 0.96

qSAX 0.27 0.36 0.60 0.72
UNI 0.87 0.84 0.81 0.81
MSE 0.93 0.94 0.96 0.97
MOE 0.27 0.39 0.62 0.73

(e) Number of Symbols: 24, k = 1

0.5% 1% 5% 10%
ACE 0.95 0.96 0.97 0.98
ICE 0.81 0.87 0.93 0.96

qSAX 0.33 0.42 0.61 0.71
UNI 0.88 0.87 0.86 0.85
MSE 0.94 0.93 0.96 0.97
MOE 0.37 0.48 0.63 0.72

(f) Number of Symbols: 24, k = 10

TABLE I: Results: RETAIL. Time series length: 121.
Bold: best performing (statistically inseparable, p > 0.05)
method(s).

symbolization method (rows) as the outlier definition (β) is
varied.

Across all methods results show a minimal impact of
varying k, and expected increases in performance as β and
the number of symbols are increased. Between the methods
themselves the results indicate the proposed approach in
general out-performs or equals all other methods (in 76% of
cases) or is within a relatively small error margin (< 5% in
20.8.% of cases, ≥ 5% in 3.1% of cases). In contrast, the
next two best performing methods, MSE and UNI, achieved
the highest or equal highest score only 38.5% and 30.2%
of the time respectively. Notably when under-performing the
approaches did so with a greater margin. Specifically MSE
under-performed by a error margin ≥ 5% in 28.1% of the
cases. UNI perform worse again under-performing by a error
margin ≥ 5% in 42.7% of the cases. Of the remaining
methods, ICE performed significantly better on average than
MOE and SAX but compared to ACE showed mediocre
performance.

VI. DISCUSSION

A. Top performers: ACE, MSE and UNI

The results show the general superiority of ACE com-
pared to all other approaches. The improved performance of
ACE in the general case shows the value of optimizing the
symbolization process specifically with outlier detection in
mind. That ACE did not achieve outright superiority over all
parameterisations highlights the complexity of designing an
objective function that adequacy sets the trade-off between
the representation of uncommon discriminative values over
common values. Notably, and importantly in practice, ACE



0.5% 1% 5% 10%
ACE 0.93 0.92 0.92 0.90
ICE 0.70 0.79 0.93 0.94

qSAX 0.11 0.16 0.53 0.73
UNI 0.84 0.81 0.86 0.73
MSE 0.89 0.91 0.94 0.93
MOE 0.05 0.05 0.24 0.50

(a) Number of Symbols: 8, k = 1

0.5% 1% 5% 10%
ACE 0.97 0.95 0.95 0.93
ICE 0.70 0.88 0.96 0.95

qSAX 0.09 0.14 0.53 0.76
UNI 0.91 0.88 0.92 0.76
MSE 0.95 0.95 0.97 0.95
MOE 0.04 0.05 0.23 0.49

(b) Number of Symbols: 8, k = 10

0.5% 1% 5% 10%
ACE 0.97 0.97 0.97 0.96
ICE 0.90 0.92 0.97 0.97

qSAX 0.15 0.24 0.65 0.81
UNI 0.94 0.92 0.89 0.88
MSE 0.96 0.97 0.97 0.97
MOE 0.10 0.15 0.49 0.71

(c) Number of Symbols: 16, k = 1

0.5% 1% 5% 10%
ACE 0.98 0.98 0.98 0.97
ICE 0.92 0.96 0.98 0.98

qSAX 0.11 0.19 0.67 0.84
UNI 0.97 0.95 0.93 0.91
MSE 0.98 0.98 0.99 0.98
MOE 0.08 0.12 0.49 0.73

(d) Number of Symbols: 16, k = 10

0.5% 1% 5% 10%
ACE 0.99 0.99 0.98 0.97
ICE 0.96 0.96 0.98 0.98

qSAX 0.17 0.28 0.71 0.84
UNI 0.96 0.96 0.91 0.89
MSE 0.98 0.98 0.98 0.98
MOE 0.14 0.23 0.64 0.80

(e) Number of Symbols: 24, k = 1

0.5% 1% 5% 10%
ACE 0.99 0.99 0.99 0.98
ICE 0.96 0.98 0.99 0.98

qSAX 0.13 0.21 0.73 0.86
UNI 0.98 0.97 0.93 0.91
MSE 0.99 0.99 0.99 0.99
MOE 0.10 0.18 0.66 0.83

(f) Number of Symbols: 24, k = 10

TABLE II: Results: ELEC. Time series length: 336. Bold: best
performing (statistically inseparable, p > 0.05) method(s).

0.5% 1% 5% 10%
ACE 0.86 0.82 0.72 0.68
ICE 0.63 0.58 0.72 0.76

qSAX 0.02 0.06 0.28 0.39
UNI 0.78 0.73 0.28 0.21
MSE 0.81 0.80 0.79 0.79
MOE 0.01 0.02 0.09 0.15

(a) Number of Symbols: 8, k = 1

0.5% 1% 5% 10%
ACE 0.80 0.84 0.80 0.75
ICE 0.60 0.66 0.70 0.76

qSAX 0.00 0.01 0.19 0.31
UNI 0.76 0.84 0.55 0.36
MSE 0.72 0.79 0.81 0.83
MOE 0.00 0.01 0.06 0.12

(b) Number of Symbols: 8, k = 10

0.5% 1% 5% 10%
ACE 0.93 0.92 0.88 0.85
ICE 0.75 0.82 0.84 0.84

qSAX 0.02 0.09 0.36 0.48
UNI 0.86 0.80 0.71 0.49
MSE 0.88 0.90 0.89 0.88
MOE 0.01 0.03 0.17 0.25

(c) Number of Symbols: 16, k = 1

0.5% 1% 5% 10%
ACE 0.89 0.91 0.93 0.91
ICE 0.72 0.73 0.83 0.85

qSAX 0.00 0.02 0.24 0.40
UNI 0.91 0.89 0.81 0.74
MSE 0.86 0.89 0.92 0.92
MOE 0.00 0.01 0.11 0.20

(d) Number of Symbols: 16, k = 10

0.5% 1% 5% 10%
ACE 0.95 0.95 0.92 0.90
ICE 0.88 0.89 0.90 0.91

qSAX 0.04 0.10 0.39 0.51
UNI 0.91 0.87 0.74 0.72
MSE 0.92 0.93 0.92 0.92
MOE 0.01 0.05 0.24 0.33

(e) Number of Symbols: 24, k = 1

0.5% 1% 5% 10%
ACE 0.93 0.95 0.95 0.95
ICE 0.79 0.83 0.90 0.92

qSAX 0.00 0.03 0.27 0.43
UNI 0.94 0.93 0.83 0.81
MSE 0.91 0.92 0.95 0.94
MOE 0.00 0.01 0.16 0.26

(f) Number of Symbols: 24, k = 10

TABLE III: Results: IMGS. Time series length: 336. Bold: best
performing (statistically inseparable, p > 0.05) method(s).

was significantly more consistent in its performance compared
to its closest competitors, UNI and MSE over the datasets
investigated.

Between MSE and UNI, MSE performed better than UNI
except within the OZONE dataset. While the values com-
prising the time series within all datasets have a distribution
somewhat positively skewed, compared to the other dataset
the distribution of values in the OZONE dataset is more
evenly distributed. As such since there are more common
values. In such a case, by minimizing the reconstruction error

0.5% 1% 5% 10%
ACE 0.80 0.81 0.85 0.85
ICE 0.25 0.34 0.60 0.71

qSAX 0.13 0.23 0.48 0.62
UNI 0.82 0.78 0.75 0.73
MSE 0.46 0.53 0.70 0.76
MOE 0.15 0.22 0.48 0.62

(a) Number of Symbols: 8, k = 1

0.5% 1% 5% 10%
ACE 0.82 0.85 0.88 0.88
ICE 0.24 0.32 0.58 0.70

qSAX 0.13 0.19 0.46 0.60
UNI 0.86 0.85 0.81 0.81
MSE 0.50 0.55 0.73 0.79
MOE 0.12 0.19 0.46 0.59

(b) Number of Symbols: 8, k = 10

0.5% 1% 5% 10%
ACE 0.89 0.89 0.91 0.91
ICE 0.54 0.62 0.79 0.86

qSAX 0.28 0.37 0.62 0.75
UNI 0.93 0.91 0.90 0.89
MSE 0.83 0.83 0.86 0.87
MOE 0.29 0.38 0.63 0.75

(c) Number of Symbols: 16, k = 1

0.5% 1% 5% 10%
ACE 0.90 0.91 0.93 0.93
ICE 0.54 0.60 0.80 0.87

qSAX 0.25 0.33 0.61 0.74
UNI 0.94 0.95 0.93 0.93
MSE 0.85 0.85 0.88 0.89
MOE 0.26 0.34 0.61 0.74

(d) Number of Symbols: 16, k = 10

0.5% 1% 5% 10%
ACE 0.91 0.93 0.93 0.93
ICE 0.88 0.88 0.91 0.92

qSAX 0.37 0.45 0.69 0.81
UNI 0.95 0.95 0.93 0.93
MSE 0.89 0.90 0.90 0.90
MOE 0.37 0.46 0.70 0.82

(e) Number of Symbols: 24, k = 1

0.5% 1% 5% 10%
ACE 0.92 0.94 0.94 0.94
ICE 0.89 0.89 0.92 0.94

qSAX 0.33 0.41 0.68 0.80
UNI 0.95 0.97 0.95 0.96
MSE 0.89 0.92 0.92 0.93
MOE 0.34 0.43 0.70 0.81

(f) Number of Symbols: 24, k = 10

TABLE IV: Results: OZONE. Time series length: 168.
Bold: best performing (statistically inseparable, p > 0.05)
method(s).

MSE systematically under-represents the rare discriminating
values to a greater degree in order to better represent the
larger number of common ones. In contrast, UNI uses a fixed
resolution across the value domain maintaining a relatively
finer grained resolution for the rare values compared to MSE
for the OZONE dataset. However, in other datasets this is a
significant drawback. By not allocating more symbols at a
finer resolution for commonly occurring values, more subtle
but more frequently occurring differences are removed with
the error generated quickly dwarfing the correctly measured
difference due to the more accurately represented rare values.

The lack of adaption to the data in UNI also presents itself
as an issue for concern as the definition of an outlier is relaxed.
Across all symbolization methods results generally exhibit the
intuitive behaviour of increased performance as the definition
of an outlier is relaxed (increase in β). Notably, however,
such performance does not hold for the UNI method, with
performance observed to decrease in Table III (a) and (b) as
β increased from 1 − 10%. While perhaps not immediately
obvious such behaviour is understandable. Note that the ex-
pectation for an increase in performance as β increases comes
from the split between outliers and non-outliers being based
on separating off a larger outliers group, which will typically
be based on more and more common differences (values)
which the majority of symbolization strategies are designed
towards. However, this is not the case for UNI and as such the
expectation for improvement with increased β is unfounded.

Investigating this further the study for the RETAIL dataset
with k = 1, m = 8 was re-run with all possible values
for β computed. The results, shown in Figure 1, confirm
the aforementioned expectation that the majority of methods



Fig. 1: RETAIL dataset, k = 1, m = 8. β varied over all
possible parameters up to the degenerate case where all data
is considered outliers (β = 100%). Note that only the very left
most part of the graph would be considered as representing
outlier detection under typically definitions.

exhibit increased performance as the definition of an outlier
is relaxed with the exception of UNI. The results lend further
evidence against the use of the UNI symbolization approach.
Similar figures were plotted for the other datasets with similar
results which are omitted due to space constraints.

B. Average performance of ICE

While sharing a similar theoretic underpinning to ACE, ICE
performed significantly worse, under-performing to both MSE
and UNI as well as ACE. While one might expect ICE to
perform better due to the focus on maximising an objective
function based on comparisons (which plays a large role under
the definition of an outlier considered in this work), the results
empirically demonstrates the previously discussed side effect
of such an optimization - that optimizing comparison fidelity
directly encourages the representation of common values over
rare values. Since rare values are required to distinguish
outliers, this re-enforces the argument that there is no one
optimal symbolization strategy.

C. Weak performance of MOE and qSAX

Overall, MOE and qSAX consistently performed the worst.
The poor performance of MOE and qSAX is perhaps not
unsurprising. As noted in section II-C, the optimization of
the MOE representation only takes into account the resultant
symbol counts. As such MOE favours the representation of
common values over rare ones without any consideration
for the significant loss of information that would bring in
distinguishing a time series from all the other in the original
value domain. Based on the same underlying principle but
assuming a normal distribution of the time series’ values,
qSAX’s similarly poor performance is also not unexpected.
Clearly that the closer the data distribution is to being normal
the more the method will inhered the drawbacks present in

MOE. Note, however, if the assumption of normality is not
satisfied it does not mean that one would expect qSAX to
perform well as it would be random chance whether the
important areas of the value domain were well represented
(represented with high detail) or not.

VII. CONCLUSION

Embedded in many applications of outlier detection, sym-
bolization is a common form of pre-processing in time series
data, enabling less computational resources to be used and
enabling the application of discrete algorithms. Taking the
often used definition of an outlier as one with an unusually
large distance to any other data instances we note that while
numerous symbolization techniques have been proposed none
are guaranteed to be optimal within this problem domain.
Noting this, a non-trivial symbolization approach directly
considering the application of outlier detection was proposed.
Additionally providing an analysis of the relative and absolute
performance of existing methods for which performance is
non-obvious, an set empirical experiments was undertaken on
four real world datasets. The empirical results show the superi-
ority of the proposed approach and highlight a stark difference
in the resultant ability to correctly determine outliers between
different methods. Such results highlight the significant impact
the choice of quantizer makes in real world applications.

The results suggest that the proposed approach, ACE, is
able to consistently achieve a higher accuracy in identifying
time series outliers than other methods using less resources
(number of symbols) and therefore should be preferred in the
general case. Depending on the dataset MSE or UNI may be
appropriate, however, the wrong choice can have significant
practical implications degrading performance by over 30%
compared to ACE (e.g. MSE: Table IV (a), UNI: Table I
(b)). In clear second place was the minimum reconstruction
error (MSE) quantizer. Results indicate that while a uniform
symbolization may be tempting due to its simplicity it should
be avoided with the approach showing a drop of at least 5%
accuracy in nearly half the parameterizations examined. Often,
however, this was much greater, up to 47%. Finally, while not
surprising, we note that the quantizer within the often used
SAX time series representation (or subsequent iSAX, or iSAX
2.0 representations) should not be used, with the approach
significantly under-performing to ACE, MSE or UNI over all
datasets and parameterizations. This should not deter the use of
such representation, but if such representations are used then
the quantizer within these representations should be replaced
with a more suitable quantizer such as ACE.
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