74,460 research outputs found

    A literature review of analytical techniques for materials characterisation of painted textiles - Part 2: spectroscopic and chromatographic analytical instrumentation

    Get PDF
    Part Two of this Literature Review of analytical techniques for materials characterisation of painted textiles focusses on the application of vibrational and x-ray spectroscopic and chromatographic techniques used in the analysis of painted textiles to inform understanding of their materials, methods of making and degradation. The principles of detection methods, technique limitations and advantages, and how they complement each other, are explained and advances in techniques applicable in the study of painted textiles are discussed, such as mapping in Fourier transform infrared spectroscopy and Raman, surface-enhanced resonance Raman spectroscopy, and secondary ion mass spectrometry. Most informative work relating to painted textiles comes from close collaboration between conservators and scientists in interpreting findings and this literature review provides a useful starting point to further develop the capabilities of analytical techniques to enhance the study and conservation of painted textiles

    Mobile spectroscopic instrumentation in archaeometry research

    Get PDF
    Mobile instrumentation is of growing importance to archaeometry research. Equipment is utilized in the field or at museums, thus avoiding transportation or risk of damage to valuable artifacts. Many spectroscopic techniques are nondestructive and micro-destructive in nature, which preserves the cultural heritage objects themselves. This review includes over 160 references pertaining to the use of mobile spectroscopy for archaeometry. Following a discussion of terminology related to mobile instrumental methods, results of a literature survey on their applications for cultural heritage objects is presented. Sections devoted to specific techniques are then provided: Raman spectroscopy, X-ray fluorescence spectrometry, Fourier transform infrared spectroscopy, laser-induced breakdown spectroscopy, and less frequently used techniques. The review closes with a discussion of combined instrumental approaches

    Optimum spectral window for imaging of art with optical coherence tomography

    Get PDF
    Optical Coherence Tomography (OCT) has been shown to have potential for important applications in the field of art conservation and archaeology due to its ability to image subsurface microstructures non-invasively. However, its depth of penetration in painted objects is limited due to the strong scattering properties of artists’ paints. VIS-NIR (400 nm – 2400 nm) reflectance spectra of a wide variety of paints made with historic artists’ pigments have been measured. The best spectral window with which to use optical coherence tomography (OCT) for the imaging of subsurface structure of paintings was found to be around 2.2 μm. The same spectral window would also be most suitable for direct infrared imaging of preparatory sketches under the paint layers. The reflectance spectra from a large sample of chemically verified pigments provide information on the spectral transparency of historic artists’ pigments/paints as well as a reference set of spectra for pigment identification. The results of the paper suggest that broadband sources at ~2 microns are highly desirable for OCT applications in art and potentially material science in general

    Optical coherence tomography for vulnerability assessment of sandstone

    Get PDF
    Sandstone is an important cultural heritage material, in both architectural and natural settings, such as neolithic rock art panels. The majority of deterioration effects in porous materials such as sandstone are influenced by the presence and movement of water through the material. The presence of water within the porous network of a material results in changes in the optical coherence tomography signal intensity that can be used to monitor the wetting front of water penetration of dry porous materials at various depths. The technique is able to detect wetting front velocities from 1 cm s_1 to 10~6 cms-1, covering the full range of hydraulic conductivities likely to occur in natural sandstones from pervious to impervious. © 2013 Optical Society of America

    Methods of visualisation

    Get PDF
    • …
    corecore