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ABSTRACT

For the 3D characterisation on a (sub)micron scale of the pore structure of natural stones
as well as for the study of their weathering processes, both 3D structural and chemical
composition and distribution of pores and minerals are important. These characteristics
can be obtained through traditional research techniques (including optical microscopy,
SEM, laboratory experiments, etc.) and through highly advanced techniques like high-
resolution X-ray CT; after acquisition, the fusion of all this data can provide a better
insight in the weathering phenomena occurring in geomaterials.

At the Sedimentary Geology and Engineering Geology group of UGent, X-ray CT
technology is applied in the study of geomaterials and is one of the group’s main
research topics for already more than 15 years. The group acted as co-founder of the
‘Centre for X-ray Tomography’ (UGCT, UGent), of which the developed flexible high-
resolution X-ray CT (HRXCT) scanners and software tools are being used for the 3D
characterization of geomaterials, for fluid-flow monitoring inside porous materials and
for the study of weathering phenomena of geomaterials. For geologists, who normally
work with optical microscopy and scanning electron microscopy to study geomaterials,
CT offers an important research tool since it allows to provide information on the 3D
structure of the scanned samples as well as limited information on their chemical
composition in a non-destructive way. Scanned samples can afterwards always be
analyzed by the more traditional research techniques, like optical microscopy and
scanning electron microscopy combined with EDX (SEM-EDX), in order to connect the
3D data from the X-ray scanners with the 2D chemical and structural information from
microscopy techniques. Additionally, thanks to close collaboration with the research
group ‘X-ray microspectroscopy and imaging’ (headed by Prof. Laszlo Vincze, Ghent
University), XRF imaging at a micro- and nanoscale level is integrated in the 3D study
of geomaterials and their weathering phenomena. Previous experiments (Cnudde et al.,
2009; Boone et al, in press) convincingly demonstrated the added value of the link
between both techniques for the characterization and understanding of the behaviour of
geomaterials submitted to changing external conditions. The use of two powerful and
complementary “state-of-the-art” techniques combined with information obtained from
optical microscopy and SEM-EDX, traditionally used for characterisation, allows to
determine and assess structural information and chemical element distributions in 3D in
geomaterials and this with a spatial resolution better than 1 micrometer. In this extended
abstract some recent case-studies will be discussed.
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EXPERIMENTS

High-resolution X-ray CT for 3D petrography of ferruginous sandstone for an
investigation of building stone decay

Diestian (Belgian Neogene, Tertiary) ferruginous sandstone has been used as the
dominant building stone for civil and religious constructions in the Hageland (region in
east-central Belgium). Like all rocks, this stone type is sensitive to weathering. Case
hardening was observed in combination with blackening of the exterior parts of the
dressed stones. In order to determine the 3D petrography and to identify the structural
differences between the exterior and interior parts, X-ray computed tomography (figure
1) was used in combination with more traditional research techniques like optical
microscopy and scanning electron microscopy (SEM).

Fig. 1. Reconstructed cross-section after X-ray CT scanning of ferruginous sandstone. Left: detail of
the superficial crust; right: section of the non-weathered stone.

The 3D characterization of the ferruginous sandstone was performed with a high-
resolution X-ray CT scanner (HRXCT) (Vlassenbroeck et al., 2007) in combination
with the flexible 3D analysis software Morpho+ (Brabant et al., in press), which
provides the necessary petrophysical parameters of the scanned samples in 3D. Besides
providing the required 3D parameters like porosity, pore-size distribution, grain size,
grain orientation and surface analysis, the results of the 3D analysis can also be
visualized which enables to understand and interpret the analysis results in a
straightforward way. More information on the study of ferruginous sandstone for an
investigation of building stone decay can be found in Cnudde et al. (in press).

4D characterization and quantification of micro-structural weathering processes
inside porous materials

Porous materials, like natural building stones, deteriorate when they are exposed to
changing weathering conditions and pollution. In order to evaluate rocks used as
building material, several characterisation (petrographic analysis, determination of
porosity, pressure resistance, etc.) and durability tests (freeze-thaw resistance, thermal
shock resistance, etc.) are mandatory. Their significance lies in the predictability of the
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stone’s weathering conditions or resistance under known external conditions. After the
induced weathering tests, the stone’s new physical properties are evaluated with regard
to their initial conditions. There thus exists a registration of both the initial ‘fresh or
pristine’ rock’s situation before the test and the final ‘failed’ situation at the end of the
test series. However, most of those evaluations are based on visual inspection or indirect
registration of the internal micro-structural reorganization. The knowledge of those
micro-structural weathering processes are of prime importance to understand the
deterioration of the stone in its entirety. Internal quantification of dynamic processes
still remains difficult with standard destructive analysis tools. For that purpose, in this
study non-destructive high resolution X-ray CT is combined with image analysis to
visualize, characterize and quantify different deterioration processes. Here examples of
gypsum crystallization, pressure test and freeze-thaw test are given.

Gypsum crystallization in limestones and in calcareous sandstones

Gypsum crystallization on natural building stones due to sulphatation processes is a
well-known and widely described phenomenon in deterioration studies (e.g. Torok,
2008; Fronteau et al., 2010). The gaseous SO, of the polluted environment reacts with
the carbonate of the stone, resulting into gypsum (CaS04.2H,0) crystallization on the
surface and inside the porous structure of the material. Pore analysis by means of X-ray
computed tomography in addition to traditional characterisation methods such as optical
petrography and water impregnation porosimetry can provide an indication on the
controls of this sulphatation processes (De Kock et al., 2009). Furthermore, X-ray
computed tomography proves to be a powerful tool to study the sulphatation process
itself. In order to obtain quantitative information on porosity and pore structure changes
before, during and after sulphatation, the process should be monitored on the same
sample. As the pore structure of a rock type can be very heterogeneous, control of the
pore structure on sulphatation can be very complex. As most conventional research
techniques like optical microscopy or scanning electron microscopy are destructive,
porosity changes before, during and after crystallization processes are difficult to
monitor because samples have to be destroyed to allow observation.

Seems

~
Fig. 2. Reconstructed volume after HRXCT scanning of Ledian (Belgian Eocene, Tertiary) calcareous
sandstone before weathering (left) and after exposure to an acid environment (right).
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With the aid of non-destructive high-resolution X-ray computed tomography various
types of porous limestones and calcareous sandstones could be investigated before,
during and after in vitro-induced gypsum crystallization processes. Besides the
visualization of the gypsum crystallization itself (figure 2), also quantitative information
on porosity and pore structure changes could be obtained. For each stone type, radial
porosity, open and closed pore structure, partial porosity and distribution of equivalent
and maximum opening of the pores has been calculated with the software program
Morpho+.

Pressure test

After applying uniaxial pressure on a natural building stone, reorganisation of the
internal structure might be possible. High resolution X-ray computed high tomography
enables to measure and quantify those internal changes. The green structure on the left
in figure 3 corresponds with the micro-cracks induced by the pressure test in a Noyant
Fine limestone (French Eocene, Tertiary). The pore structure not affected by the micro-
cracks (i.e. the ‘isolated porosity’) is coloured red (right figure). If a micro-crack affects
an interconnected pore network, the whole network is considered as being influenced by
the micro-crack and thus rendered green. Therefore, the term ‘micro-crack porosity’
would be more appropriate. Visualization of both types of pore structures thus provides
an excellent overview of the stones’ internal behaviour under increasing external
pressure.

Fig. 3. Reconstructed volumes of the Noyant Fine limestone after a pressure test. On the left figure, the
induced micro-crack and interconnected micro-crack porosity is visualised. On the right figure, the
isolated, not affected pore structure is given.

The distinction between the micro-crack porosity and the surrounding but not affected
pore structure is obtained on the basis of the ratio of the equivalent diameter to the
maximum opening, calculated in Morpho+. The micro-crack porosity will have a large
equivalent diameter but a small maximum opening (sphericity << 1), while the original
pores will be more spherical (sphericity < 1). Besides visualization, the micro-crack
porosity and the amount of isolated porosity have also been determined with Morpho+.
HRXCT not only makes it possible to visualize the internal reorganization but also
offers the possibility to calculate the ratio of the crack density and the isolated but not
affected pore structure.
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Freeze-thaw cycle

Another durability test is the freeze-thaw cycle test. Before and after the
experiment the stone’s situation is evaluated by visual inspection, mass weighting
and/or sound speed propagation. With the aid of HRXCT, intermediate stages
during the process can be investigated and quantified, by which the aperture and
the evolution of the micro-cracks could be visualized in three dimensions and
calculated. The material loss after the last cycle could be evaluated by taking into
account constant scan, reconstruction and threshold parameters and also the same
volumes of interest. Clearly, HRXCT combined with image analysis contributes to
better insights into the characterization and durability assessment of natural
building stones. The complex processes of deterioration are recorded in a non-
destructive way and finally 4D quantitative data has been obtained. Figure 4
presents the disintegration of a foraminifer (unicellular organism with a calcareous
skeleton) inside the Noyant Fine limestone due to systematic freezing and thawing.

Fig. 4. Disintegration of a foraminifer in the Noyant Fine limestone. Left: before weathering, after 1
freeze-thaw cycle, after 2 cycles, after 3 cycles and after 4 freeze-thaw cycles (right).

Building stone provenance studies

Even though sedimentary building stones from a given region or a specific geological
setting are often classified under the same name, petrophysical properties may differ due
to facies differences between several depositional locations. This has implications for
cultural heritage conservation and archaeological studies. Both bear a need for the
knowledge of a stone’s provenance (i.e. excavation site). For the conservation of our
cultural heritage, a stone selected for renovation and restoration works must resemble
the original stone type as much as possible from both an aesthetical and a technical
point of view. The stone properties which define this aesthetical and technical aspect
may vary between various excavation sites; so insights in a stone’s provenance are
helpful. For archaeological research, it is even more crucial to know the exact origin of
stone artefacts or building stones in ancient monuments. They provide information on
the activities during certain historical periods, trade and/or migration routes,
equipment,... Provenance studies of natural building stones and artefacts might be done
with the aid of optical petrography and chemical analysis. In addition, 3D quantitative
image analysis by means of X-ray CT gathered data is a freshly-explored, useful tool.
The possibility of quantifying dense minerals in sedimentary rocks, mineral-specific
grain-sizes and grain parameters, porosity, etc. (figure 5) allows to build up quantitative
datasets for different outcrop locations. This can be used to compare possible
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provenance areas for a given stone type, as being done for the Flemish ‘fieldstone’, e.q.
Behiels (2010).

Fig. 5. Examples of 2D cross-sections gained by X-ray CT (slices) of two fieldstone samples with
similar macroscopic appearances. Left: fieldstone from outcrop in Beernem; right: fieldstone from
outcrop in Flobecq.

3D petrography using combined micro-CT and micro-XRF measurements on ore
mineralization

The detailed description of the mineral content and textures within rocks is usually
done by optical microscopy on thin or polished sections and with other more modern
techniques such as scanning electron microscopy (SEM) and X-ray fluorescence (XRF).
These techniques provide detailed information about the mineral phases in a 2D plane of
the rock, but a full distribution of the mineral phases in 3D is often hard to attain or
deduct. High-resolution X-ray CT (HRXCT) makes it possible to visualize the different
structures in the rock in 3D in a non-destructive manner. Although the HRXCT
visualization technique is based upon the atomic number and the density of the
components in the rock, no direct chemical information about these components is
provided. This makes it often hard to clearly identify and analyze the different mineral
phases in the rock. However by combining conventional 2D analysis techniques with
3D visualization techniques, it is possible to acquire a complete 3D identification and
description of the different mineral phases and textures in the rock sample.

In this case study a sample of an ore mineralization from the Harz Mountains (northern
Germany) was analyzed. A cylindrical sample with a diameter of 10 mm was scanned
using HRXCT. Based upon the attenuation coefficient, 4 different types of components
could clearly be separated in the resulting 3D image. Chemical information was added
by analyzing the top and bottom surface of the sample using uXRF surface mapping. In
this surface analysis 5 different mineral phases could be identified: i) a highly Cu-rich
phase occurring in veins that is identified as malachite (Cu,CO3(OH),), ii) a rounded
mineral phase rich in Cu, Fe and S (chalcopyrite CuFeSy), iii) a Si-rich phase (quartz
Si0y), iv) a sparse Ba-rich phase (barite BaSO,) and v) a Fe-rich ground mass. The
UXRF mappings were then matched with the top and bottom slices of the 3D HRXCT
image. This demonstrated that the 2 types of components with the lowest attenuation
coefficient corresponded to the quartz and the Fe-rich ground mass. The 4™ and highly
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attenuating component matched with the barite and the 3™ type of component
corresponded to both the malachite and the chalcopyrite mineral phases. Due to the
same attenuation coefficient of malachite and chalcopyrite, these mineral phases could
not be separated based purely upon their attenuation coefficient or their gray value.
However based upon the texture of the mineral phases (i.e. rounded for the chalcopyrite
and vein-like for the malachite), the different minerals could be separated in the 3D
HRXCT image using the Morpho+ analysis software. Different parameters like
distribution, size and form could be analyzed for each mineral. Figure 5 shows the 3D
visualization of the ore sample with the different mineral phases. This case study clearly
illustrates the potential of combining different analysis techniques with HRXCT for 3D
petrographic analysis.

Fig. 6. Distribution of various mineral phases in an ore mineralisation. With ascending attenuation
coefficient: quartz (blue), Fe-rich ground mass (grey), malachite (green), chalcopyrite (yellow) and
barite (red).

CONCLUSION

By combining traditional research techniques with high-resolution X-ray CT, a fourth
dimension to the study of geomaterials can be obtained. Besides structural analysis of
these materials, also monitoring of changes of their internal behavior can be performed.
With the access to this powerful technique a new specialization field in geology
becomes emerging, adding important information and insights to the study of
geomaterials.
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