252 research outputs found

    SCAR: Power Side-Channel Analysis at RTL-Level

    Full text link
    Power side-channel attacks exploit the dynamic power consumption of cryptographic operations to leak sensitive information of encryption hardware. Therefore, it is necessary to conduct power side-channel analysis for assessing the susceptibility of cryptographic systems and mitigating potential risks. Existing power side-channel analysis primarily focuses on post-silicon implementations, which are inflexible in addressing design flaws, leading to costly and time-consuming post-fabrication design re-spins. Hence, pre-silicon power side-channel analysis is required for early detection of vulnerabilities to improve design robustness. In this paper, we introduce SCAR, a novel pre-silicon power side-channel analysis framework based on Graph Neural Networks (GNN). SCAR converts register-transfer level (RTL) designs of encryption hardware into control-data flow graphs and use that to detect the design modules susceptible to side-channel leakage. Furthermore, we incorporate a deep learning-based explainer in SCAR to generate quantifiable and human-accessible explanation of our detection and localization decisions. We have also developed a fortification component as a part of SCAR that uses large-language models (LLM) to automatically generate and insert additional design code at the localized zone to shore up the side-channel leakage. When evaluated on popular encryption algorithms like AES, RSA, and PRESENT, and postquantum cryptography algorithms like Saber and CRYSTALS-Kyber, SCAR, achieves up to 94.49% localization accuracy, 100% precision, and 90.48% recall. Additionally, through explainability analysis, SCAR reduces features for GNN model training by 57% while maintaining comparable accuracy. We believe that SCAR will transform the security-critical hardware design cycle, resulting in faster design closure at a reduced design cost

    Soft Error Analysis and Mitigation at High Abstraction Levels

    Get PDF
    Radiation-induced soft errors, as one of the major reliability challenges in future technology nodes, have to be carefully taken into consideration in the design space exploration. This thesis presents several novel and efficient techniques for soft error evaluation and mitigation at high abstract levels, i.e. from register transfer level up to behavioral algorithmic level. The effectiveness of proposed techniques is demonstrated with extensive synthesis experiments

    Cyber-security for embedded systems: methodologies, techniques and tools

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Toward Reliable, Secure, and Energy-Efficient Multi-Core System Design

    Get PDF
    Computer hardware researchers have perennially focussed on improving the performance of computers while stipulating the energy consumption under a strict budget. While several innovations over the years have led to high performance and energy efficient computers, more challenges have also emerged as a fallout. For example, smaller transistor devices in modern multi-core systems are afflicted with several reliability and security concerns, which were inconceivable even a decade ago. Tackling these bottlenecks happens to negatively impact the power and performance of the computers. This dissertation explores novel techniques to gracefully solve some of the pressing challenges of the modern computer design. Specifically, the proposed techniques improve the reliability of on-chip communication fabric under a high power supply noise, increase the energy-efficiency of low-power graphics processing units, and demonstrate an unprecedented security loophole of the low-power computing paradigm through rigorous hardware-based experiments

    LLM for SoC Security: A Paradigm Shift

    Full text link
    As the ubiquity and complexity of system-on-chip (SoC) designs increase across electronic devices, the task of incorporating security into an SoC design flow poses significant challenges. Existing security solutions are inadequate to provide effective verification of modern SoC designs due to their limitations in scalability, comprehensiveness, and adaptability. On the other hand, Large Language Models (LLMs) are celebrated for their remarkable success in natural language understanding, advanced reasoning, and program synthesis tasks. Recognizing an opportunity, our research delves into leveraging the emergent capabilities of Generative Pre-trained Transformers (GPTs) to address the existing gaps in SoC security, aiming for a more efficient, scalable, and adaptable methodology. By integrating LLMs into the SoC security verification paradigm, we open a new frontier of possibilities and challenges to ensure the security of increasingly complex SoCs. This paper offers an in-depth analysis of existing works, showcases practical case studies, demonstrates comprehensive experiments, and provides useful promoting guidelines. We also present the achievements, prospects, and challenges of employing LLM in different SoC security verification tasks.Comment: 42 page

    Flexible Hardware-based Security-aware Mechanisms and Architectures

    Get PDF
    For decades, software security has been the primary focus in securing our computing platforms. Hardware was always assumed trusted, and inherently served as the foundation, and thus the root of trust, of our systems. This has been further leveraged in developing hardware-based dedicated security extensions and architectures to protect software from attacks exploiting software vulnerabilities such as memory corruption. However, the recent outbreak of microarchitectural attacks has shaken these long-established trust assumptions in hardware entirely, thereby threatening the security of all of our computing platforms and bringing hardware and microarchitectural security under scrutiny. These attacks have undeniably revealed the grave consequences of hardware/microarchitecture security flaws to the entire platform security, and how they can even subvert the security guarantees promised by dedicated security architectures. Furthermore, they shed light on the sophisticated challenges particular to hardware/microarchitectural security; it is more critical (and more challenging) to extensively analyze the hardware for security flaws prior to production, since hardware, unlike software, cannot be patched/updated once fabricated. Hardware cannot reliably serve as the root of trust anymore, unless we develop and adopt new design paradigms where security is proactively addressed and scrutinized across the full stack of our computing platforms, at all hardware design and implementation layers. Furthermore, novel flexible security-aware design mechanisms are required to be incorporated in processor microarchitecture and hardware-assisted security architectures, that can practically address the inherent conflict between performance and security by allowing that the trade-off is configured to adapt to the desired requirements. In this thesis, we investigate the prospects and implications at the intersection of hardware and security that emerge across the full stack of our computing platforms and System-on-Chips (SoCs). On one front, we investigate how we can leverage hardware and its advantages, in contrast to software, to build more efficient and effective security extensions that serve security architectures, e.g., by providing execution attestation and enforcement, to protect the software from attacks exploiting software vulnerabilities. We further propose that they are microarchitecturally configured at runtime to provide different types of security services, thus adapting flexibly to different deployment requirements. On another front, we investigate how we can protect these hardware-assisted security architectures and extensions themselves from microarchitectural and software attacks that exploit design flaws that originate in the hardware, e.g., insecure resource sharing in SoCs. More particularly, we focus in this thesis on cache-based side-channel attacks, where we propose sophisticated cache designs, that fundamentally mitigate these attacks, while still preserving performance by enabling that the performance security trade-off is configured by design. We also investigate how these can be incorporated into flexible and customizable security architectures, thus complementing them to further support a wide spectrum of emerging applications with different performance/security requirements. Lastly, we inspect our computing platforms further beneath the design layer, by scrutinizing how the actual implementation of these mechanisms is yet another potential attack surface. We explore how the security of hardware designs and implementations is currently analyzed prior to fabrication, while shedding light on how state-of-the-art hardware security analysis techniques are fundamentally limited, and the potential for improved and scalable approaches

    Directing greybox fuzzing to discover bugs in hardware and software

    Full text link
    Computer systems are deeply integrated into our daily routines such as online shopping, checking emails, and posting photos on social media platforms. Unfortunately, with the wide range of functionalities and sensitive information stored in computer systems, they have become fruitful targets for attackers. Cybersecurity ventures estimate that the cost of cyber attacks will reach $10.5 trillion USD annually by 2025. Moreover, data breaches have resulted in the leakage of millions of people’s social security numbers, social media account passwords, and healthcare information. With the increasing complexity and connectivity of computer systems, the intensity and volume of cyber attacks will continue to increase. Attackers will continuously look for bugs in the systems and ways to exploit them for gaining unauthorized access or leaking sensitive information. Minimizing bugs in systems is essential to remediate security weaknesses. To this end, researchers proposed a myriad of methods to discover bugs. In the software domain, one prominent method is fuzzing, the process of repeatedly running a program under test with “random” inputs to trigger bugs. Among different variants of fuzzing, greybox fuzzing (GF) has especially seen widespread adoption thanks to its practicality and bug-finding capability. In GF, the fuzzer collects feedback from the program (e.g., code coverage) during its execution and guides the input generation based on the feedback. Due to its success in finding bugs in the software domain, GF has gained traction in the hardware domain as well. Several works adapted GF to the hardware domain by addressing the differences between hardware and software. These works demonstrated that GF can be leveraged to discover bugs in hardware designs such as processors. In this thesis, we propose three different fuzzing mechanisms, one for software and two for hardware, to expose bugs in the multiple layers of systems. Each mechanism focuses on different aspects of GF to assist the fuzzing procedure for triggering bugs in hardware and software. The first mechanism, TargetFuzz, focuses on producing an effective seed corpus when fuzzing software. The seed corpus consists of a set of inputs serving as starting points to the fuzzer. We demonstrate that carefully selecting seeds to steer GF towards potentially buggy code regions increases the bug-finding capability of GF. Compared to prior works, TargetFuzz discovered 10 additional bugs and achieved 4.03× speedup, on average, in the total elapsed time for finding bugs. The second mechanism, DirectFuzz, adapts a specific variant of GF for software fuzzing, namely directed greybox fuzzing (DGF), to the hardware domain. The main use case of DGF in software is patch testing where the goal is to steer fuzzing towards recently modified code region. Similar to software, hardware design is an incremental and continuous process. Therefore, it is important to prioritize testing of a new component in a hardware design rather than previously well-tested components. DirectFuzz takes several differences between hardware and software (such as clock sensitivity, concurrent execution of multiple code fragments, hardware-specific coverage) into account to successfully adapt DGF to the hardware domain. DirectFuzz relies on coverage feedback applicable to a wide range of hardware designs and requires limited design knowledge. While this increases its ease of adoption to many different hardware designs, its effectiveness (i.e., bug-finding success) becomes limited in certain hardware designs such as processors. Overall, compared to a state-of-the-work hardware fuzzer, DirectFuzz covers specified targets sites (e.g., modified hardware regions) 2.23× faster. Our third mechanism named ProcessorFuzz relies on novel coverage feedback tailored for processors to increase the effectiveness of fuzzing in processors. Specifically, ProcessorFuzz monitors value changes in control and status registers which form the backbone of a processor. ProcessorFuzz addresses several drawbacks of existing works in processor fuzzing. Specifically, existing works can introduce significant instrumentation overhead, result in misleading guidance, and have lack of support for widely-used hardware languages. ProcessorFuzz revealed 8 new bugs in widely-used open source processors and identified bugs 1.23× faster than a prior work
    corecore