62 research outputs found

    Graphite nodules features identifications and damaging micromechanims in ductile irons

    Get PDF
    Ductile irons mechanical properties are strongly influenced by the metal matrix microstructure and on the graphite elements morphology. Depending on the chemical composition, the manufacturing process and the heat treatments, these graphite elements can be characterized by different shape, size and distribution. These geometrical features are usually evaluated by the experts visual inspection, and some commercial softwares are also available to assist this activity. In this work, an automatic procedure based on an image segmentation technique is applied: this procedure is validated not only considering spheroidal graphite elements, but also considering other morphologies (e.g. lamellae)

    modeling the influence of stress triaxiality on the failure strain of nodular cast iron microstructures

    Get PDF
    Abstract In this study the fracture behavior of different cast iron microstructures subjected to tensile loading under different triaxialities is simulated by a finite element, 3-D Reference Volume Element approach. Three ferritic/pearlitic heterogeneous matrixes are considered which are representative of the class material grades for strength and ductility. Isotropic ductile and shear damage models are considered for the matrix constituents as concurrent damage mechanisms at the microscale, while graphite nodules are considered as voids acting as stress concentrators. Numerical results confirm experimental findings about local strain distribution and damage accumulation, and reproduce the engineering macroscopic behavior. The stress triaxiality is found to play a strong effect on the failure strain, extending the potentialities of this RVE modeling approach

    High-quality nodule analysis in spheroidal graphite cast iron using X-ray micro-computed tomography

    Get PDF
    This work is a continuation of the studies presented in a recent paper by the authors, where a methodology to obtain different nodule quality categories in spheroidal graphite cast iron, was proposed. In this study, an exhaustive analysis of the highest-quality graphite nodules was performed. The experimental methodology involves X-ray micro-computed tomography analysis and digital image post-processing of the high-quality graphite nodule population. Furthermore, different subpopulations were selected, following a nodular size criterion. The procedure involves the evaluation and comparison of the sphericity and compactness distributions and the distances between neighbouring nodules by using ad-hoc image processing software. The results reveal the complementary nature of the sphericity and compactness parameters, which allow classifying, with great accuracy, different nodular quality categories of spheroidal graphite cast iron. Additionally, new viewpoints about the nodular morphology study and the distribution of quality nodules in the metallic matrix was provided, which could be extended to other heterogeneous materials

    Analysis of acoustic emission entropy for damage assessment of pearlitic ductile cast irons

    Get PDF
    The paper shows the preliminary results of uniaxial tension tests on a pearliticDuctile Cast Iron (DCI) by using the Acoustic Emission (AE) technique as wellas the Scanning Electron Microscope (SEM) analysis. The experimental testsdemonstrate the damage initiation and evolution occurring within the graphitenodules produce AE activity. The evaluation of the Shannon Entropy of theAE data is found to promising for the assessment of DCIs

    Characterisation of the damaging micromechanisms in a pearlitic ductile cast iron and damage assessment by acoustic emission testing

    Get PDF
    The damaging micromechanisms in a pearlitic (EN-GJS700-2) Ductile Cast Iron (DCI) are investigated by means of Scanning Electron Microscope (SEM) analysis and Acoustic Emission (AE) testing. Monotonic uniaxial tensile tests are performed on microtensile specimens under strain control. SEM analysis is applied under in-situ conditions by means of a tensile holder. The multiple damaging micromechanisms are identified, and their evolution along with the mechanical response is characterised. The traditional AE features are found to be qualitatively correlated to the onset of the fracture damage over the elastic behaviour. The Information Entropy of the AEs evaluated according to both Shannon and Kullback-Leibler formulations is proven to be well correlated to the ongoing damage, and the incipient failure. Tentative failure criteria are finally proposed. The assessment approach is found to be promising for structural health monitoring purposes

    Microstructure-based RVE modeling of the failure behavior and LCF resistance of ductile cast iron

    Get PDF
    In this work the failure behavior of ductile cast iron microstructure subjected to tensile and low-cycle fatigue loadings is simulated by a 3-D, FE Reference Volume Element approach. A fully ferritic matrix is considered as representative of the low-hardness, high-ductility material class of nodular cast irons. Plastic flow potential rule, ductile and low cycle fatigue damage models are implemented at the micro-scale for the matrix constituent in conjunction with nonlinear cyclic hardening laws, and periodic boundary conditions are imposed over the RVE at the meso-scale. Different values of triaxiality are imposed. Numerical results confirm experimental findings of the behavior at the meso-scale and correctly predict the LCF lifetime, driving the interpretation of inner strain distribution, voids interaction and triaxiality effects on failure mechanisms

    Graphite nodules features identifications and damaging micromechanims in ductile irons

    Get PDF
    Ductile irons mechanical properties are strongly influenced by the metal matrix microstructure and on the graphite elements morphology. Depending on the chemical composition, the manufacturing process and the heat treatments, these graphite elements can be characterized by different shape, size and distribution. These geometrical features are usually evaluated by the experts visual inspection, and some commercial softwares are also available to assist this activity. In this work, an automatic procedure based on an image segmentation technique is applied: this procedure is validated not only considering spheroidal graphite elements, but also considering other morphologies (e.g. lamellae)

    Micromechanical Simulation of Fatigue in Nodular Cast Iron

    Get PDF
    In the present thesis, fatigue behavior of nodular cast iron (NCI) is investigated using micromechanical simulations. An elastic-plastic porous material experiences an increase in a void volume fraction with each cycle of loading. This is called void ratchetting. The hypothesis of this thesis is to explain the fatigue failure of NCI using void ratchetting mechanism. The strain-life, stress-life, notch support effect, and fatigue crack growth are studied using the micromechanical simulations. In all these studies, matrix material is defined as an elastic-plastic with isotropic/kinematic hardening. No damage law is used to define material degradation. The axisymmetric cell model is developed to study strain-life and stress-life approaches for fatigue. The cell model is subjected to cyclic loading and cycle by cycle simulations are carried out until failure. The failure of the cell model is defined based on the drop in the macroscopic response of the cell model. The notch support effect is investigated using a 2D plane strain model within stress-life concept. From the simulation results, strain-life and stress-life curves are extracted, and they are in qualitative and quantitative agreement with experimental data collected from literature. The fatigue crack growth is studied using a micromechanical cell model under small scale yielding conditions. The graphite particles are considered as voids, and they are resolved discretely in fracture process zone. The region outside of the fracture process zone is considered as a homogenized medium. When positive alternating loads are applied, ligaments in the fracture process zone show ratchetting behavior, which is responsible for an effective fatigue crack growth. This mechanism is relevant for the fatigue crack growth in NCI. The 2D plane strain boundary layer model is able to predict the effect of load ratio on threshold for the fatigue crack growth and the fatigue crack growth rate. The fatigue crack growth rate curves obtained from the simulations are compared with experimental data. It is essential to note that the void ratchetting (plastic collapse of the intervoid ligaments) is a crucial mechanism in NCI and more focus should be given to this mechanism as it is simple to implement and gives satisfying simulation results

    Classification of ductile cast iron specimens: A machine learning approach

    Get PDF
    In this paper an automatic procedure based on a machine learning approach is proposed to classify ductile cast iron specimens according to the American Society for Testing and Materials guidelines. The mechanical properties of a specimen are strongly influenced by the peculiar morphology of their graphite elements and useful characteristics, the features, are extracted from the specimens’ images; these characteristics examine the shape, the distribution and the size of the graphite particle in the specimen, the nodularity and the nodule count. The principal components analysis are used to provide a more efficient representation of these data. Support vector machines are trained to obtain a classification of the data by yielding sequential binary classification steps. Numerical analysis is performed on a significant number of images providing robust results, also in presence of dust, scratches and measurement noise
    • …
    corecore