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Abstract 

In this study the fracture behavior of different cast iron microstructures subjected to tensile loading under different triaxialities is 
simulated by a finite element, 3-D Reference Volume Element approach. Three ferritic/pearlitic heterogeneous matrixes are 
considered which are representative of the class material grades for strength and ductility. Isotropic ductile and shear damage 
models are considered for the matrix constituents as concurrent damage mechanisms at the microscale, while graphite nodules are 
considered as voids acting as stress concentrators. Numerical results confirm experimental findings about local strain distribution 
and damage accumulation, and reproduce the engineering macroscopic behavior. The stress triaxiality is found to play a strong 
effect on the failure strain, extending the potentialities of this RVE modeling approach. 
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1. Background and motivation 

The variety of industrial applications of ductile cast irons (DCI) indicates that this class of materials is still attractive 
due to performances, machinability and formability, and overall cost benefits. Nodular or spheroidal DCI due their 
large use also to the large set of properties offered, that are directly related to the ferritic/pearlitic microstructure, 
Davis (1996), and that range from very ductile and high impact toughness grades, i.e. the EN-GJS-350, to high strength 
and hardness grades, as the EN-GJS-900.  
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Nomenclature 

a Mean half interparticle spacing 
G graphite volume fraction 
F ferrite volume fraction 
N nodule count 
dG nodule average diameter 
Kti elastic stress concentration factor along the i-direction, i = 1, 2, 3 
σ0 yield stress 
A, B parameters of Johnson-Cook hardening law 
n  hardening exponent 
Κi parameters of ductile damage model, i = 1, 2, 3 
p first stress invariant (hydrostatic pressure) 
q second stress invariant (equal to von Mises equivalent stress, eq) 
η local stress triaxiality inside the RVE (η = -p/q) 

 D
pl

 equivalent plastic strain at the onset of damage in ductile criterion 
S

pl  equivalent plastic strain at the onset of damage in shear criterion 

 f
pl

 equivalent strain at failure 
S shear stress ratio 
ks material shear damage parameter 
ωD, D damage variables 
l RVE size 
LEL Finite element characteristic length 
c index of particle clustering 
Σij stresses at the meso-scale 
T stress triaxiality at the meso-scale 
 f

pl  RVE failure strain 

 f
pl

 RVE failure displacement 

 
Since many decades, the DCI peculiar structure motivated the study of plasticity and damage, with the aim of 

optimizing the material performance and of calibrating a relatively new class of material damage models. 
Experimental studies have been done at the macroscopic level to relate microstructural features on ductility and static 
or fatigue strength, see for example Bradley et al. (1990), Tartaglia et al. (2000), Hafiz (2001), Nicoletto et al. (2002), 
Collini et al. (2005), Gonzaga et al. (2009), Lacaze et al. (2016). Here, the matrix composition, heat treatment and 
graphite shape and spacing, are correlated to the desired mechanical properties. On the simulation side instead, starting 
from the work by Needleman (1987, 1991), DCI structure served as field for the development of new plasticity-based 
models of damage, in which strain localization phenomena are induced by the inherent stress concentrators, i.e. the 
graphite nodule cavities, and failure occurs for the nucleation, growth and coalescence of those cavities. A 
comprehensive review of the modeling strategies can be found in Hütter et al., 2015. The interaction between closely 
spaced particles on the kinetics of the damage mechanism is also studied, see for example Guillermer-Neel et al. 
(2000), and an attempt is made to define quantitative parameters accounting for the free path between the nodules, or 
by applying a critical void volume fraction concept. We can group these approaches into “simulation of the behavior 
at the micro- to mesoscopic scale”. 

Nevertheless, not all the observable phenomena are fully understood yet. For example, peculiar configurations of 
the heterogeneous microstructure makes it possible to find a brittle fracture of the ductile phase, and, conversely, 
markers of ductile failure in the brittle constituent, see Yanagisawa et al. (1983), Nicoletto et al. (2002). Nodules 
interaction, particular morphology of grains or uneven concentration of chemical elements (Mn and Si) can be 
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responsible of such local behavior, but the reason still is unclear. Also residual stresses, resulting from the cooling 
down to room temperature, have been demonstrated to be critical for an accurate prediction of the non-linear behavior 
of the DCI in the early deformation range, Bonora and Ruggiero (2005). 

In this work, the damage mechanism of DCI is modeled by a RVE approach introducing two main novelties: (i) 
the simultaneous damage and failure of both ferritic and pearlitic matrix phases, that are described by distinct damage 
models, and (ii) the application on the RVE of different values of triaxiality, which has been demonstrated to strongly 
influence the fracture of ductile metals. Random arrangements of graphite nodule cavities are reproduced inside the 
RVE and periodic boundary conditions are applied. Plasticity rules and the damage evolution laws are given to the 
matrix constituents at the microscale, while different triaxialities are imposed at the RVE boundaries on the mesoscale. 
In this way, the engineering behavior of the material is deduced by analyzing the RVE as a homogeneous medium, 
and the damage micromechanisms are studied moving back to the microscale. Triaxiality effect is analyzed because 
different triaxiality states are found very commonly in the industrial application, for example in proximity of a notch, 
which concentrates the stresses and tends to create higher triaxialities. Results will show that different stress triaxiality 
very strongly influences the DCI failure strain. 

This work is then devoted to the deeper understanding of the damage mechanism in this class of materials under 
different loading conditions, and of its influence on the response measurable by classical mechanical testing. However, 
it is also a comprehensive exploration of the possibilities and limitations given by modern calculation tools: on one 
hand obtainable results indicate an extraordinary reproducibility of mechanism of real microstructures. Conversely, a 
strong dependence from accuracy of modeling and tuning of parameters is proven. 

2. Damage and failure of ductile cast iron 

2.1. Ambiguous damage mechanisms 

Fracture and fracture toughness of DCI manly depend from the matrix structure, Bradley et al. (1990). Under 
monotonic tension loading ductile iron shows no distinct yield point, and no tension–compression symmetry, with the 
yield stress in compression being larger than in tension up to 7%, Hütter et al. (2015). The strength and the hardening 
behavior are strongly influenced by the matrix material properties showing a ratio of yield stress to ultimate strength 
of about 0.65-0.75. In ferritic–pearlitic structures, the yield stress increases also with increasing content of pearlite 
and increasing contents of Silicon. Also, it has been found that the strain to fracture depends strongly on the 
microstructure and chemical composition. With higher content of pearlite, and/or stronger deviations of the shape of 
the graphite particles from the spherical one, and/or higher contents of Silicon the material becomes more brittle and 
thus the strain at failure decreases. Empirical relations for the effect were also derived. 

However, especially under low stress triaxialities the graphite plays an important role, which is investigated only 
in a few studies yet, Memhard et al. (2011), Dahlberg et al. (2014). Regarding fracture testing, “general consensus of 
the criteria for crack initiation has not been reached yet”, because of the inhomogeneous microstructure, Kobayashi 
(2004).  

The influence of the microstructure of the matrix on the fracture toughness was investigated intensively, and 
generally it is found that higher content of pearlite leads to higher strength at the expense of lower fracture toughness 
values. However, it has to be pointed out that in ferritic/pearlitic DCI, due to the presence of nodule cavities and 
peculiar phase morphology, the damage mechanism is not uniquely definite. Ferrite represents the ductile phase, which 
is supposed to fail following ductile mechanisms; pearlite, which is composed by lamellar structure of ferrite and 
cementite, generally shows a brittle or quasi-brittle behavior, see as example Fig. 1(a). Each nodule acts as a void that 
subsequently grows with strain. Coalescence with neighboring voids results in ridges that outline large equiaxed 
dimples: voids that are about one order of magnitude smaller than the primary dimples are typically observed at the 
boundaries of the larger dimples and are found at the ridges of the primary voids, Kuna et al. (1996), 
Ghahremaninezhad et al. (2012), D’Agostino et al. (2017).  

Tensile and fracture toughness tests demonstrate this general behavior, but exceptions do exist. In pearlitic DCI 
microstructures, the ferrite capsules surrounding graphite nodules can show cleavage facets typical of ferrous alloys, 
as illustrated in Fig. 1(b), taken from Nicoletto et al. (2002, 2004, 2006). Iacoviello et al. (2013) report “cleavage in 
ferritic shields around the graphite nodules” and, analogously to the pearlitic, “striations” mainly due to transgranular 
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damaging mechanism of pearlitic lamellae. It was concluded that initially the nodules create voids that grow by plastic 
flow, but this is terminated by a transition to deformation in a very localized region over which coalescence occurs 
either by the formation of void sheets or through cleavage, Gonzaga et al. (2009). 

Conversely, for highly ferritic microstructures, under specific conditions, entrapped pearlitic areas can exhibit 
ductile fracture with fine dimples as shown in Fig. 1(c), which is detailed in Fig. 1(d). In investigated pearlitic steels, 
the fracture mechanism is found to be a ductile/brittle competition driven by different promoters, i.e. microvoids in 
the ductile phase (lamellar ferrite), microcracks in the brittle phase (cementite lamellae), and interfacial microcracks, 
Peng et al. (2004). In these cases of fully pearlitic structure, microstructural parameters, as the pearlite interlamellar 
spacing, are related to the fracture mechanism, Lewandowski et al. (1986). 

2.2. Role of graphite nodules and triaxiality effects 

In ductile metals, for a given stress state, the deviatoric component causes plastic deformation, whereas the 
hydrostatic component affects ductility. Then, the overall deformation and fracture behavior can be described by a 
triaxiality ratio, which is defined as the ratio of hydrostatic stress over von Mises equivalent stress. The higher the 
triaxiality ratio, the lower the ductility, Mirza et al. (1996).  

According to Lin et al. (1994), the failure mode in ferritic DCI changes from pure dimple to a mixed mode of 
dimple and cleavage when the nodule spacing increases over a certain value. At the same time, experiments show that 
the higher the local triaxiality, the lower the ductility and the larger the chances for cleavage fracture to occur. 

A model to estimate the local triaxiality as a function of nodule spacing of ferritic iron under uniaxial tension was 
previously proposed by Yanagisawa and Lui (1983), assuming graphite nodules as voids. The model hypotheses that 
the triaxiality ratio at the center region of the ferrite matrix is: 

 1 3 a dG     (1) 

where a is the half interparticle spacing of the nodules and dG the average diameter. In accordance with this model, 
bigger and closer nodules minimize the triaxiality promoting the ductility and ductile mechanism of fracture, small 
and distant nodules decrease the ductility and facilitate the cleavage fracture. 
 

 

Fig. 1. (a) transcrystalline continuous cleavage of pearlite; (b) transcrystalline continuous cleavage of ferrite capsules; (c) transcrystalline ductile 
fracture of ferrite; (d) detail of (c), transcrystalline ductile fracture of pearlite with fine dimples. From Nicoletto et al., (2002). 
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However, the model does not consider another important effect, which is the stress concentration near the graphite 
nodules, and consider a ferritic matrix only. By changing nodule spacing and nodule shape simultaneously, Chao et 
al. (1988) took an additional step toward the investigation of the shape effect on triaxiality ratio. Anyway, systematic 
experimental data of varying separately the individual graphite nodule variables need to be provided. 

3. Considered microstructures 

Three microstructures are here taken into consideration, the full ferritic M1, and two ferritic/pearlitic mixed 
structures, M2 and M3. These are shown in the micrographs of Fig. 2 with the same scale. As indicated in Tab. 1, the 
chemical composition of the three ductile irons only differ in the Silicon and Phosphor content, which varies the 
Equivalent Carbon content CE1 and facilitate the formation of desired structure. Tab. 2 reports the microstructural and 
strength data: graphite volume content decreases with the increasing of pearlite formation, and spheroids get thinner, 
more numerous and closer to each other. Ferrite grains get smaller in average dimension with increasing of graphite 
content. However, static strength and ductility mostly depends on the ferrite/pearlite ratio: yield strength, ultimate 
strength and hardness increases with pearlite content, ductility decreases as indicated by the impact fracture toughness 
data KC0. 

These microstructures are considered as representative of the wider class of ductile irons, since they contain the 
most meaningful features. It’s important to notice that a 100% pearlitic structure is almost impossible to obtain, for 
the carbon absorption from the matrix in the proximity of the inoculated graphite nodules. In these areas, a typical 
bull’s eye structure of ferritic enclosing the spheroids is commonly found. 

 

 
Fig. 2. Typical classes of ductile cast iron microstructures, from Endo et al. (2014). 

Table 1. Chemistry data of cast iron melts, from Nicoletto et al. (2002). 

Melt No. C S P Si Mn Cr Ni Mo Al Cu Mg Ti Ce Sn CE 

M1 3,69 0,010 0,063 3,10 0,26 0,04 - - - - 0,046 - - - 4,74 

M2 3,68 0,013 0,012 2,38 0,26 0,04 0,03 0,01 0,022 0,44 0,039 <0,005 0,0028 0,006 4,48 

M3 3,65 0,016 0,019 2,18 0,23 0,09 0,05 0,01 0,034 0,40 0,044 0,007 0,0056 <0,005 4,38 

Table 2. Mechanical properties of considered cast iron microstructures, from Nicoletto et al. (2002). 

Melt No. Graphite form N (mm-1) G (%) F (%) E (GPa) 0 (MPa) u (MPa) εpl
f (%) KC0 (J/cm2) HB 

M1 80%VI7+20%V7 174 15.0 93.5 162 350 535 15 90 178 

M2 70%VI6+30%V6 187 12.4 50.7 170 368 611 12.3 3040 189 

M3 70%VI5+30%V7 196 9.9 16,0 169 419 745 7.6 811 236 

 

 
1 For cast iron the equivalent carbon content (CE) concept is used to understand how alloying elements will affect the heat treatment and casting 
behavior. CE = %C + 0.33 (%Si + %P). 
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damaging mechanism of pearlitic lamellae. It was concluded that initially the nodules create voids that grow by plastic 
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These microstructures are considered as representative of the wider class of ductile irons, since they contain the 
most meaningful features. It’s important to notice that a 100% pearlitic structure is almost impossible to obtain, for 
the carbon absorption from the matrix in the proximity of the inoculated graphite nodules. In these areas, a typical 
bull’s eye structure of ferritic enclosing the spheroids is commonly found. 

 

 
Fig. 2. Typical classes of ductile cast iron microstructures, from Endo et al. (2014). 

Table 1. Chemistry data of cast iron melts, from Nicoletto et al. (2002). 

Melt No. C S P Si Mn Cr Ni Mo Al Cu Mg Ti Ce Sn CE 

M1 3,69 0,010 0,063 3,10 0,26 0,04 - - - - 0,046 - - - 4,74 

M2 3,68 0,013 0,012 2,38 0,26 0,04 0,03 0,01 0,022 0,44 0,039 <0,005 0,0028 0,006 4,48 

M3 3,65 0,016 0,019 2,18 0,23 0,09 0,05 0,01 0,034 0,40 0,044 0,007 0,0056 <0,005 4,38 

Table 2. Mechanical properties of considered cast iron microstructures, from Nicoletto et al. (2002). 

Melt No. Graphite form N (mm-1) G (%) F (%) E (GPa) 0 (MPa) u (MPa) εpl
f (%) KC0 (J/cm2) HB 

M1 80%VI7+20%V7 174 15.0 93.5 162 350 535 15 90 178 

M2 70%VI6+30%V6 187 12.4 50.7 170 368 611 12.3 3040 189 

M3 70%VI5+30%V7 196 9.9 16,0 169 419 745 7.6 811 236 

 

 
1 For cast iron the equivalent carbon content (CE) concept is used to understand how alloying elements will affect the heat treatment and casting 
behavior. CE = %C + 0.33 (%Si + %P). 
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4. Modeling approach 

4.1. RVE generation and boundary conditions 

Due to the peculiar DCI microstructure, in this study a RVE approach is chosen, for the effective properties are 
efficiently derived from the knowledge of the constitutive laws and spatial distribution of the constituents. The RVE 
is a “small” volume statistically representative of the bulk material, for it contains any peculiar element at the 
microstructural level, and it should be as small as possible in order to reduce the calculation time, Collini (2010), 
Kanita et al. (2003). Residual stress at the microscale due to cooling are not accounted for in order to keep the model 
as simple as possible. 

This approach has been already tried for the DCI material system, with the aim of obtaining macro-behavior from 
micro-characteristics of the constituents and of studying the damage mechanisms, see for example Steglich et al. 
(1997), Bonora et al. (2005), Collini et al. (2005), Nicoletto et al. (2006), Hütter et al. (2015), Andriollo et al. (2019), 
or again for calibrating GTN-like models, as in Kuna et al. (1996), and Tvergaard (1996). As already stated in the 
introduction, the novelty of the present work is to consider a real spatial distribution of graphite nodules inserted in a 
realistic dual-phase matrix. Then, for each considered iron class, a cubic RVE of size l = 0.250 mm is defined 
containing random configurations of voids. For this purpose, it is used the open-source toolbox Mote3D developed 
by Richter (2017), which automatically creates overlapping or non-overlapping spherical particles with user-defined 
minimum inter-particle, centre-to-centre distance and periodic boundary. The RVEs, shown in Fig. 3, reflect all the 
characteristic statistical parameters of Tab. 2 derived from metallographic sections as the nodule counting, average 
diameter, standard deviation and clustering. Details of the assumed data are indicated in Tab. 3. 
 

 

 

Fig. 3. RVE of ductile iron microstructures as generated and meshed; ferrite and pearlite are colored. 

Table 3. Microstructural modeling features. 

RVE N dG (μm) c Nodes Elements Element type DOF LEL (mm) 

M1 49 45  8 1 46,067 204,456 C3D4 138,201 0.01105 

M2 67 38  5 1.2 50,394 268,181 C3D4 161,403 0.01054 

M3 189 25  2 1.4 53,050 255,627 C3D4 159,156 0.01104 
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Regarding the volume size, a bias in the estimation of the effective properties is observed for too small volumes 
for all types of boundary conditions. The variance of computed apparent properties for each volume size is then used 
to define the precision of the estimation introducing the key-notion of integral range to relate this error estimation and 
the definition of the RVE size. For given desired precision and number of microstructural arrangements, one is able 
to provide a minimal volume size for the computation of effective properties, or, conversely, the results can be used 
to predict the minimal number of realizations that must be considered for a given volume size in order to estimate the 
effective property for a given precision. The RVE sizes for this work are qualitatively defined in such a way at least 
3 nodule-to-nodule free paths can lay in a side, considering the full ferritic structure. This size is then kept for the 
other microstructures. The verification of RVE response is then carried out considering the anisotropy of elastic 
properties, which should fall within an arbitrary deviation value as shown in the result section.  

Regarding the graphite nodules, in this work they are considered spherical voids, even if on this argument the 
literature is variegated. Some studies consider the role of graphite nodules on matrix damage mechanism as negligible, 
see Dong et al. (1997), Steglich et al. (1997), Zhang et al. (1999), Berdin et al. (2001) Ghahremaninezhad et al. (2012), 
Zybell et al. (2014), Kuna et al. (2016); but some other identify a possible active role of graphite at the local level, for 
example Di Cocco et al. (2013). However, the nodules’ role as toughening particles is weakened at high triaxiality 
states, Di Cocco et al. (2014), or depends not uniquely on the matrix structure, Iacoviello et al. (2008). 

The microstructures generated are imported in the AbaqusTM CAE model by Python-based scripts. Finite element 
simulations are then performed imposing a homogeneous stress or strain field under periodic boundary conditions. 
For this purpose, AbaqusTM provides the powerful functionality of a Micromechanics plugin developed by Omairey 
et al. (2019), for setting up and post-processing RVE models, including the application of far-field loading through 
periodic or non-periodic boundary conditions. These latter assume that the solution field φ (in this case the 
displacement ui) exhibits the following form: 

 xj  pj
    xj   

x
pj
     (2) 

where xj
 
is the coordinate, pj



 
is the  

thvector of periodicity, and 
x

 is the far-field gradient of the solution 

field (i.e., the far-field displacement gradient). Operatively, the plugin imposes this relationship on the boundary nodes 
of the RVE through the use of equation constraints. The far-field gradient is introduced through the degrees of freedom 
of assembly-level nodes, called far-field reference nodes, which are added to the analysis and are not attached to any 
elements. The far-field gradient can be specified by applying boundary conditions to these far-field reference nodes, 
such as, for the case of the present study, uniform traction or uniform displacement. The plugin post processing 
includes the calculation of the RVE homogenized properties from the completed analysis as well as performing 
averaging and statistical analysis of the fields in the whole volume and within individual constituents. 

The control of the stress triaxiality over the cell is crucial, Lin et al. (2006). In this work, it is made on the meso-
scale of the RVEs, imposing the meso-stresses Σij according to the general definition of triaxiality T: 

T 
m

eq



1
3
11  22  33 

1
2

11  22 2
 22  33 2

 11  33 2
  (3) 

In this study the triaxiality values of Tab. 4 are considered and imposed by imposing uniform tractions Σij at the 
boundaries. The RVE failure strain  f

pl  is then determined as the maximum displacement  f ,i
pl  along the direction j 

reached by the simulation before degradation, relative to the cell dimension lj and under the triaxiality Ti, Eq. (4): 
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Table 4. Triaxiality ratios imposed on the RVE at the meso-scale. 

T Σ11 Σ22 Σ33 

-0.333 -1 0 0 

-0.126 -1 0.5 0 

0.000 1 -1 0 

0.126 1 -1/2 0 

0.218 1 -1/4 0 

0.333 1 0 0 

0.577 1 1/2 0 

1.000 1 1 1/4 

1.667 1 1/2 1 

 

4.2. Plastic flow 

In this work a classical plasticity model is chosen to reproduce the plastic flow of the two phases. Isotropic 
hardening with a Mises-type yield surface, associated flow rule and a Johnson-Cook hardening law is used, where the 
yield stress, σ0, is assumed to be of the form: 

 0  A B  pl n





1̂m     (5) 

The parameters A, B and the hardening exponent n are taken from the literature for a α-ferrite Fe-Si matrix, Springer 
(2012), and for fine pearlite structure, Hyzak et al. (1976), Gensamer et al. (2012), Toribio et al. (2016). The values 
are reported in Tab. 5 and in a graphical form in Fig. 4. Since neither strain rate nor temperature dependence are 
considered, the related parameters are set to zero. 

 

Fig. 4. Model of plastic flow for the matrix constituents. 
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4.3. Ferrite damage 

The damage of the ferrite phase is here modeled with the AbaqusTM ductile damage, which is a phenomenological 
model for predicting the onset of damage due to nucleation, growth, and coalescence of voids. The model assumes 
that the equivalent plastic strain at the onset of damage  is a function of the stress triaxiality and strain 

rate, where    p q is the local stress triaxiality with p the hydrostatic pressure and q the deviatoric stress at the 
micro-scale. The damage initiation is satisfied when: 

    (6) 

where ωD is a state variable that increases monotonically as ΔωD increases with the plastic deformation for each 
increment of plastic strain D

pl . In this study, for the ferritic phase the fracture strain vs. stress triaxiality dependence 
is assumed to be an exponential law of the Johnson-Cook type: 

D
pl  1 2 e3

.
    (7) 

The parameters in Eq. (7) are reported in Tab. 5, and the represented in graphical form is depicted in Fig. 5. This 
assumption is supported by behavior of α-ferrite and ferritic steels observed in experimental tests under variable 
triaxiality conditions, Hancock et al. (1976), Johnson et al. (1985), Mirza et al. (1996), Maresca (1997), Hopperstad 
et al. (2003), Bao et al. (2004, 2009), Ohata et al. (2008), Springer (2012), Cheng et al. (2017), Hradil et al. (2017). 
For negative stress triaxiality values, if no data are available no dependency is assumed and failure strain is kept 
constant, Manjoine (1982). 

 

Fig. 5. Equivalent strain at the onset of damage of ferrite. 

Once the initiation criterion of Eq. (6) is satisfied, the material stiffness is progressively degraded by the FE analysis 
according to a specified damage evolution law for the criterion, having effect on the material response and eventually 
leading to the material failure. Here, in conjunction with the ductile damage model AbaqusTM assumes that the 
degradation of the stiffness follows a scalar damage variable, and at any given time during the analysis the stress 
tensor in the material is given by the scalar damage equation: 

s 1 D s     (8) 
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Table 4. Triaxiality ratios imposed on the RVE at the meso-scale. 
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where D is the overall damage variable and s is the effective (or undamaged) stress tensor computed in the current 
increment. The material looses its load-carrying capacity when D = 1, as illustrated in the scheme of Fig. 6. 

In the calculation, any element is removed from the mesh if all of the section points at any one integration location 
have lost their load-carrying capacity. The plastic displacement measure  (which is mesh-dependent from the 
element characteristic length LEL, ) is used to drive the evolution of damage after damage initiation, with 
the values reported in Tab. 5. In order to reproduce a hard damage evolution, the exponential softening type and the 
maximum degradation option are set, with exponent α equal to 10. The option of removing of elements from the mesh 
is also employed when the damage variable is equal to 0.95. 
 

 

Fig. 6. Scheme of progressive damage degradation. 

Table 5. Parameters of material models. 

Phase ρ (kg/mm3) E (GPa) ν 
Plastic flow parameters Ductile/shear damage Damage evolution 

A (MPa) B (MPa) n m Κ1 Κ2 Κ3 kS uf
pl  α 

Ferrite 7,85e-6 206 0.3 560 625 0.50 0 0.029 0.44 -1.5 – 0.0015 10 

Pearlite 7,85e-6 203 0.3 650 900 0.38 0 – – – 0.5 0.0004 10 

4.4. Pearlite damage 

Modeling of the fracture behavior of the pearlitic phase is somehow more controversial. As already reported in the 
introduction, Peng et al. (2004) indicate as in pearlitic steels the fracture mechanism is a ductile/brittle competition 
driven by different promoters, i.e. microvoids in the ductile phase, microcracks in the brittle phase, and interfacial 
microcracks. A damage evolution law corresponding to different patterns of microdefects is then formulated, 
containing explicitly the interlamellar spacing, which is regarded as one of the most important microstructure 
parameters for the material. 

Other observations too, Toribio et al. (2016), Hohenwarter et al. (2017), Nemoto et al. (2017), evidence a strong 
dependency from the cementite/ferrite structure morphology, which constitutes the pearlite structure. Cementite is 
growing in colonies that can be coarse of finer. In the case of relatively fine, pearlite microcracks with uneven 
appearance and shorter in length than the colony size are observed, indicating a ductile fracture behavior. On the other 
hand, in the case of relatively coarse pearlite (wider interlamellar spacing and greater colonies), the inclined cracking 
is generally of greater length (even across the complete colony) and looks more uniform; as a consequence, the fracture 
behavior in this case is more brittle. Therefore, the fracture process is determined by physical events in the pearlite 
colony with the lamellae being parallel to the tensile axis, where the deformation occurs in narrow bands of locally 
intense shear stress according to the Miller–Smith mechanism, Miller et al. (1970), Dollar et al. (1988). In this 
phenomenon, the slip bands in the ferrite produce microcracking in the cementite plates, followed by tearing in the 
ferrite lamellae, as the scheme of Fig. 7 tries to illustrates, Toribio et al. (2016). 
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Fig. 7. Scheme of the Miller-Smith mechanism of void nucleation growth and coalescence after shear bands interaction in pearlite, Toribio et al. 
(2016). 

This combined, orientation-dependent mechanism, could reasonably explain the experimental findings of some 
fracture surfaces in pearlite, as shown in section 3. In particular, the shear mechanism of ductile phase can be pointed 
as initial microcrack promoter of cementite. For this reason, the shear criterion available in AbaqusTM code is chosen 
to model the fracture behavior of pearlite in DCI, in conjunction with lower yield point and hardening with respect to 
ferrite. The AbaqusTM shear criterion is a phenomenological model for predicting the onset of damage due to local 
shear band localization, and assumes that the equivalent plastic strain at the onset of damage, S

pl , is a function of the 

shear stress ratio (and strain rate, where necessary), , being the shear stress ratio defined as: 

S 
q kSp
max


1 kS  eq

max

    (9) 

where ks is a material parameter that consider the influence of local hydrostatic stress p. A typical value of ks for 
aluminum is 0.3, Hooputra et al. (2004), while here ks is set equal to 0.5. The law chosen for S

pl  as a function of θS 
is illustrated in Fig. 8. During the FE calculation, the criterion for damage initiation is met when a condition of the 
same form of Eq. (6) is satisfied. After the onset of damage, a damage evolution law of the same type of that assumed 
for the ductile phase is followed, tuned with the parameters reported in Tab. 5. 
 

 

Fig. 8. Equivalent strain at the onset of damage for pearlite. 

 
 



	 L. Collini  et al. / Procedia Structural Integrity 18 (2019) 671–687� 68110 L. Collini / Structural Integrity Procedia  00 (2019) 000–000 

where D is the overall damage variable and s is the effective (or undamaged) stress tensor computed in the current 
increment. The material looses its load-carrying capacity when D = 1, as illustrated in the scheme of Fig. 6. 
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A (MPa) B (MPa) n m Κ1 Κ2 Κ3 kS uf
pl  α 

Ferrite 7,85e-6 206 0.3 560 625 0.50 0 0.029 0.44 -1.5 – 0.0015 10 

Pearlite 7,85e-6 203 0.3 650 900 0.38 0 – – – 0.5 0.0004 10 

4.4. Pearlite damage 

Modeling of the fracture behavior of the pearlitic phase is somehow more controversial. As already reported in the 
introduction, Peng et al. (2004) indicate as in pearlitic steels the fracture mechanism is a ductile/brittle competition 
driven by different promoters, i.e. microvoids in the ductile phase, microcracks in the brittle phase, and interfacial 
microcracks. A damage evolution law corresponding to different patterns of microdefects is then formulated, 
containing explicitly the interlamellar spacing, which is regarded as one of the most important microstructure 
parameters for the material. 

Other observations too, Toribio et al. (2016), Hohenwarter et al. (2017), Nemoto et al. (2017), evidence a strong 
dependency from the cementite/ferrite structure morphology, which constitutes the pearlite structure. Cementite is 
growing in colonies that can be coarse of finer. In the case of relatively fine, pearlite microcracks with uneven 
appearance and shorter in length than the colony size are observed, indicating a ductile fracture behavior. On the other 
hand, in the case of relatively coarse pearlite (wider interlamellar spacing and greater colonies), the inclined cracking 
is generally of greater length (even across the complete colony) and looks more uniform; as a consequence, the fracture 
behavior in this case is more brittle. Therefore, the fracture process is determined by physical events in the pearlite 
colony with the lamellae being parallel to the tensile axis, where the deformation occurs in narrow bands of locally 
intense shear stress according to the Miller–Smith mechanism, Miller et al. (1970), Dollar et al. (1988). In this 
phenomenon, the slip bands in the ferrite produce microcracking in the cementite plates, followed by tearing in the 
ferrite lamellae, as the scheme of Fig. 7 tries to illustrates, Toribio et al. (2016). 
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Fig. 7. Scheme of the Miller-Smith mechanism of void nucleation growth and coalescence after shear bands interaction in pearlite, Toribio et al. 
(2016). 

This combined, orientation-dependent mechanism, could reasonably explain the experimental findings of some 
fracture surfaces in pearlite, as shown in section 3. In particular, the shear mechanism of ductile phase can be pointed 
as initial microcrack promoter of cementite. For this reason, the shear criterion available in AbaqusTM code is chosen 
to model the fracture behavior of pearlite in DCI, in conjunction with lower yield point and hardening with respect to 
ferrite. The AbaqusTM shear criterion is a phenomenological model for predicting the onset of damage due to local 
shear band localization, and assumes that the equivalent plastic strain at the onset of damage, S

pl , is a function of the 

shear stress ratio (and strain rate, where necessary), , being the shear stress ratio defined as: 

S 
q kSp
max


1 kS  eq

max

    (9) 

where ks is a material parameter that consider the influence of local hydrostatic stress p. A typical value of ks for 
aluminum is 0.3, Hooputra et al. (2004), while here ks is set equal to 0.5. The law chosen for S

pl  as a function of θS 
is illustrated in Fig. 8. During the FE calculation, the criterion for damage initiation is met when a condition of the 
same form of Eq. (6) is satisfied. After the onset of damage, a damage evolution law of the same type of that assumed 
for the ductile phase is followed, tuned with the parameters reported in Tab. 5. 
 

 

Fig. 8. Equivalent strain at the onset of damage for pearlite. 
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5. Results and discussion 

5.1. Elastic properties and size verification of the RVEs 

Elastic properties of the RVEs are analyzed calculating the engineering constants on the three directions 
corresponding to the cartesian reference system axes, which are reported in Tab. 6. Resulting density is also reported. 
Elasticity modules are close to the experimental ones with a maximum difference of 5% and variation between the 
three directions are within 2%. This result confirms that the chosen size of the RVE is acceptable. From the results of 
elastic properties calculation it is possible to extract also the maximum stress concentration factors exerted by the 
voids population along the 3 directions, namely Kt1, Kt2 and Kt3. On the RVEs these have values varying between 2 
and 2.6, which are higher that the single spherical void solution (Kt = 2) because of voids interaction effect. Analyzing 
the results in the work by Bidhar et al. (2011) for paired spherical cavities, the RVEs behave as if they contain an 
average distance between the nodules (hera treated as cavities only) of about 1.2/1.3 times the nodule diameter. Here 
nodules do not have the same diameter, however entering this value in Eq. (1) would give a local matrix triaxiality 
estimation of (1/3 + 0.25)  0.6. As shown in the following paragraph 5.3, triaxiality developed in the RVE is locally 
much higher. 

Table 6. Homogeneous elastic properties of RVEs (in GPa). 

RVE E11 E22 E33 G12 G13 G23 ν12 ν13 ν23 ρ (kg/m3) Kt1 Kt2 Kt3 
M1 163.6 166.0 165.2 63.6 63.8 64.4 0.283 0.286 0.289 6.92 2.24 2.36 2.18 

M2 167.1 167.1 167.0 64.9 65.0 65.0 0.287 0.288 0.288 6.98 2.18 2.08 2.02 

M3 179.6 179.5 179.6 69.1 69.1 69.1 0.291 0.291 0.291 7.23 2.24 2.17 2.56 

5.2. Tensile response  

Tensile response of the RVEs is obtained by plotting the resulting nominal meso-stress Σ11 vs. the imposed 
elongation Ε11. The resulting curves, plotted in Fig. 9, show a very good agreement with experimental tensile responses 
taken from Nicoletto et al. (2002) and Collini et al. (2005). Elasticity, onset of plasticity and strain hardening are 
correctly described by the simulations. Regarding the failure strain, it can be seen that the data of Tab. 5 for the damage 
models described in sections 4.3 and 4.4 represent correctly tuned in terms of the mesh-dependent plastic displacement 
at failure  with. Simulations are interrupted when the element deletion feature makes the time increment 
falling under 10-5, because of loss of convergence of the finite element solution. 
 

 
Fig. 9. Tensile curves of RVEs and experiments. 
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5.3. Strain distribution, triaxiality and damage initiation 

Maps of plastic strain, triaxiality and damage variables are illustrated in the cut-out contours of Fig. 10, obtained 
for a constant far-field applied stress and T = 1/3 along direction 1. It can be noticed that plastic strain looks extremely 
inhomogeneous, concentrating around the nodules. Ferritic microstructure M1 leaves more inter-particle space where 
shear strain develops easily. However, for mixed structures higher equivalent stresses with lower equivalent plastic 
strains are present in the pearlite with respect to the ferrite. With this strains and stress triaxiality distribution in the 
matrix, critical damage is attained in the pearlite before than the ferrite. Local triaxiality in the matrix obvously differs 
greatly from the one imposed at the mesoscale for all the investigated range -1/3 < T < 5/3.             

      (a)    (b)         (c)             (d) 

Fig. 10. Equivalent plastic strain (a), local stress triaxiality (b), ductile (c) and shear (d) damage variables in the M1, M2, M3 microstructures at 
failure under T = 1/3. 

5.4. Strain to failure 

The plot of Fig. 11 summarizes the resulting RVE strain to failure data as calculated from Eq. (4), over the imposed 
triaxiality range. Ferritic matrix DCI (red dots) fails following the ferrite failure behavior, just lowered in terms of 
strain by the voids action in concentrating the strain and increasing the local triaxiality with respect to homogeneous 
ferrite. As previously seen from experiments, graphite nodules play a double role in decreasing the ductility of the 
matrix, since they concentrate the plastic strain and confine the strain itself creating local higher hydrostatic pressure. 
The few available experimental data on failure of GJS-400 spheroidal ductile iron at different triaxialities, Memhard 
et al. (2011), follow the trend predicted by the RVE model. 
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The mixed ferritic/pearlitic structures exhibit a dual behavior, which depends on T. A local maximum of failure 
strain is found nearby the tensile loading condition, and an increasing trend for negative triaxialities. This peculiar 
behavior resembles that found by Bao and Wierzbicki (2004) on 2024-T351 aluminum alloy and in Bai et al. (2009) 
on 1045 and DH36 steels, which are explained in terms of two-parameter (triaxiality and Lode angle) dependence, 
see Bao and Wierzbicki (2008). In fact, also the shear damage model used here for the pearlite is a two-parameter 
model that, with parameters identified on unixial tensile DCI tests (Tab. 5) yields on the mesoscale a decrease of 
failure strain with decreasing triaxiality. However, no data about strain to failure as function of stress triaxiality have 
been retrieved for pearlitic-ferritic DCIs, therefore the behavior predicted by the RVE has still to be proven 
experimentally in this case. 

A deeper analysis of the damage initiation and evolution in the phases during the traction loading confirms that the 
shear damage variable ωS describing the pearlite, increases before and faster than the ductile damage variable ωD. This 
can be easily detected from the plot of Fig. 12 where the RVEs are subject to a uniform traction Σ11. 

 

Fig. 11. Failure strains vs. imposed triaxiality at the RVE. 

 

Fig. 12. Damage variables during elongation at imposed T = 1/3. 
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Fig. 13. Local triaxiality in the ferrite at T = 1/3 and Ε11 = 5% for RVE M3, full ferritic (a) and ferritic/pearlitic with the bull’s eye structure (b). 

Finally, the analysis of local triaxiality in the ferritic capsules of the nearly full pearlitic structure put a light on the 
ambiguous behavior of ferrite that results in local cleavage fracture under certain circumstances (see Sect. 2.1). For 
the sake of comparison, the original mixed structure M3 and a full ferritic M3 volume, namely M3-F, is run and tested 
under strain controlled condition, Ε11 = 5%.  

Results, summarized in Tab. 7, reveal a net contribution of the constraint of pearlite on ferrite capsules and a local 
increasing of about 50% on η that decrease strongly their local plastic strain to failure. 

Table 7. Analysis of the behavior of ferrite under strain controlled test Ε11 = 5% 

RVE  σeq (MPa) εPEEQ η ωD or ωS 
 

M3-F Ferrite 644 3.110-2 1.88 0.09 

M3 
Ferrite capsules 653 3.610-2 2.88 0.11 

Pearlite  851 1.910-2 1.98 0.48 

6. Conclusions 

In this work 3-D periodic RVEs are generated with the aim of modeling the failure strain of ferritic/pearlitic ductile 
cast iron microstructures. Different failure models that depend on local triaxiality are used to describe the behavior of 
the single constituents at the microscale, while various triaxialities are imposed to the RVE boundaries at the 
mesoscale. 

From the analysis of results, the main conclusions can be summarized as follows: 
 The periodic random RVE approach is a powerful tool to obtain information at the meso-scale starting from local 

description of constituents, and to zoom back to the behavior at the microscale;  
 DCI microstructures show that due to heterogeneity, plastic strain localization and interaction of voids, local 

triaxialities that are considerably different from that imposed at the mesoscale are developed; 
 mixed ferrite/pearlite microstructures show a competition of damage mechanism, exhibiting the maximum of 

failure strain at η  0.25; 
 in almost fully pearlitic structures, where nodules are smaller and closer, encapsulated ferrite can be subjected to 

extremely high triaxiality that promotes the cleavage fracture. 
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Fig. 12. Damage variables during elongation at imposed T = 1/3. 
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