1,739 research outputs found

    Discovering Polarized Communities in Signed Networks

    Full text link
    Signed networks contain edge annotations to indicate whether each interaction is friendly (positive edge) or antagonistic (negative edge). The model is simple but powerful and it can capture novel and interesting structural properties of real-world phenomena. The analysis of signed networks has many applications from modeling discussions in social media, to mining user reviews, and to recommending products in e-commerce sites. In this paper we consider the problem of discovering polarized communities in signed networks. In particular, we search for two communities (subsets of the network vertices) where within communities there are mostly positive edges while across communities there are mostly negative edges. We formulate this novel problem as a "discrete eigenvector" problem, which we show to be NP-hard. We then develop two intuitive spectral algorithms: one deterministic, and one randomized with quality guarantee n\sqrt{n} (where nn is the number of vertices in the graph), tight up to constant factors. We validate our algorithms against non-trivial baselines on real-world signed networks. Our experiments confirm that our algorithms produce higher quality solutions, are much faster and can scale to much larger networks than the baselines, and are able to detect ground-truth polarized communities

    Generative models of the human connectome

    Get PDF
    The human connectome represents a network map of the brain's wiring diagram and the pattern into which its connections are organized is thought to play an important role in cognitive function. The generative rules that shape the topology of the human connectome remain incompletely understood. Earlier work in model organisms has suggested that wiring rules based on geometric relationships (distance) can account for many but likely not all topological features. Here we systematically explore a family of generative models of the human connectome that yield synthetic networks designed according to different wiring rules combining geometric and a broad range of topological factors. We find that a combination of geometric constraints with a homophilic attachment mechanism can create synthetic networks that closely match many topological characteristics of individual human connectomes, including features that were not included in the optimization of the generative model itself. We use these models to investigate a lifespan dataset and show that, with age, the model parameters undergo progressive changes, suggesting a rebalancing of the generative factors underlying the connectome across the lifespan.Comment: 38 pages, 5 figures + 19 supplemental figures, 1 tabl

    Overlapping Community Discovery Methods: A Survey

    Full text link
    The detection of overlapping communities is a challenging problem which is gaining increasing interest in recent years because of the natural attitude of individuals, observed in real-world networks, to participate in multiple groups at the same time. This review gives a description of the main proposals in the field. Besides the methods designed for static networks, some new approaches that deal with the detection of overlapping communities in networks that change over time, are described. Methods are classified with respect to the underlying principles guiding them to obtain a network division in groups sharing part of their nodes. For each of them we also report, when available, computational complexity and web site address from which it is possible to download the software implementing the method.Comment: 20 pages, Book Chapter, appears as Social networks: Analysis and Case Studies, A. Gunduz-Oguducu and A. S. Etaner-Uyar eds, Lecture Notes in Social Networks, pp. 105-125, Springer,201

    Clustering and Community Detection in Directed Networks: A Survey

    Full text link
    Networks (or graphs) appear as dominant structures in diverse domains, including sociology, biology, neuroscience and computer science. In most of the aforementioned cases graphs are directed - in the sense that there is directionality on the edges, making the semantics of the edges non symmetric. An interesting feature that real networks present is the clustering or community structure property, under which the graph topology is organized into modules commonly called communities or clusters. The essence here is that nodes of the same community are highly similar while on the contrary, nodes across communities present low similarity. Revealing the underlying community structure of directed complex networks has become a crucial and interdisciplinary topic with a plethora of applications. Therefore, naturally there is a recent wealth of research production in the area of mining directed graphs - with clustering being the primary method and tool for community detection and evaluation. The goal of this paper is to offer an in-depth review of the methods presented so far for clustering directed networks along with the relevant necessary methodological background and also related applications. The survey commences by offering a concise review of the fundamental concepts and methodological base on which graph clustering algorithms capitalize on. Then we present the relevant work along two orthogonal classifications. The first one is mostly concerned with the methodological principles of the clustering algorithms, while the second one approaches the methods from the viewpoint regarding the properties of a good cluster in a directed network. Further, we present methods and metrics for evaluating graph clustering results, demonstrate interesting application domains and provide promising future research directions.Comment: 86 pages, 17 figures. Physics Reports Journal (To Appear

    A Survey of Social Network Analysis Techniques and their Applications to Socially Aware Networking

    Get PDF
    Socially aware networking is an emerging research field that aims to improve the current networking technologies and realize novel network services by applying social network analysis (SNA) techniques. Conducting socially aware networking studies requires knowledge of both SNA and communication networking, but it is not easy for communication networking researchers who are unfamiliar with SNA to obtain comprehensive knowledge of SNA due to its interdisciplinary nature. This paper therefore aims to fill the knowledge gap for networking researchers who are interested in socially aware networking but are not familiar with SNA. This paper surveys three types of important SNA techniques for socially aware networking: identification of influential nodes, link prediction, and community detection. Then, this paper introduces how SNA techniques are used in socially aware networking and discusses research trends in socially aware networking

    Reconstructing networks

    Get PDF
    Complex networks datasets often come with the problem of missing information: interactions data that have not been measured or discovered, may be affected by errors, or are simply hidden because of privacy issues. This Element provides an overview of the ideas, methods and techniques to deal with this problem and that together define the field of network reconstruction. Given the extent of the subject, the authors focus on the inference methods rooted in statistical physics and information theory. The discussion is organized according to the different scales of the reconstruction task, that is, whether the goal is to reconstruct the macroscopic structure of the network, to infer its mesoscale properties, or to predict the individual microscopic connections

    On relational learning and discovery in social networks: a survey

    Get PDF
    The social networking scene has evolved tremendously over the years. It has grown in relational complexities that extend a vast presence onto popular social media platforms on the internet. With the advance of sentimental computing and social complexity, relationships which were once thought to be simple have now become multi-dimensional and widespread in the online scene. This explosion in the online social scene has attracted much research attention. The main aims of this work revolve around the knowledge discovery and datamining processes of these feature-rich relations. In this paper, we provide a survey of relational learning and discovery through popular social analysis of different structure types which are integral to applications within the emerging field of sentimental and affective computing. It is hoped that this contribution will add to the clarity of how social networks are analyzed with the latest groundbreaking methods and provide certain directions for future improvements

    Reconstructing networks

    Get PDF
    Complex networks datasets often come with the problem of missing information: interactions data that have not been measured or discovered, may be affected by errors, or are simply hidden because of privacy issues. This Element provides an overview of the ideas, methods and techniques to deal with this problem and that together define the field of network reconstruction. Given the extent of the subject, we shall focus on the inference methods rooted in statistical physics and information theory. The discussion will be organized according to the different scales of the reconstruction task, that is, whether the goal is to reconstruct the macroscopic structure of the network, to infer its mesoscale properties, or to predict the individual microscopic connections.Comment: 107 pages, 25 figure
    corecore