1,808 research outputs found

    Quantifying the temporal characteristics of network congestion events for multimedia services

    Full text link

    TANGO: Performance and Fault Management in Cellular Networks through Cooperation between Devices and Edge Computing Nodes

    Get PDF
    Cellular networks have become an essential part of our lives. With increasing demands on its available bandwidth, we are seeing failures and performance degradations for data and voice traffic on the rise. In this paper, we propose the view that fog computing, integrated in the edge components of cellular networks, can partially alleviate this situation. In our vision, some data gathering and data analytics capability will be developed at the edge of the cellular network and client devices and the network using this edge capability will coordinate to reduce failures and performance degradations. We also envisage proactive management of disruptions including prediction of impending events of interest (such as, congestion or call drop) and deployment of appropriate mitigation actions. We show that a simple streaming media pre-caching service built using such device-fog cooperation significantly expands the number of streaming video users that can be supported in a nominal cellular network of today

    A Survey of Machine Learning Techniques for Video Quality Prediction from Quality of Delivery Metrics

    Get PDF
    A growing number of video streaming networks are incorporating machine learning (ML) applications. The growth of video streaming services places enormous pressure on network and video content providers who need to proactively maintain high levels of video quality. ML has been applied to predict the quality of video streams. Quality of delivery (QoD) measurements, which capture the end-to-end performances of network services, have been leveraged in video quality prediction. The drive for end-to-end encryption, for privacy and digital rights management, has brought about a lack of visibility for operators who desire insights from video quality metrics. In response, numerous solutions have been proposed to tackle the challenge of video quality prediction from QoD-derived metrics. This survey provides a review of studies that focus on ML techniques for predicting the QoD metrics in video streaming services. In the context of video quality measurements, we focus on QoD metrics, which are not tied to a particular type of video streaming service. Unlike previous reviews in the area, this contribution considers papers published between 2016 and 2021. Approaches for predicting QoD for video are grouped under the following headings: (1) video quality prediction under QoD impairments, (2) prediction of video quality from encrypted video streaming traffic, (3) predicting the video quality in HAS applications, (4) predicting the video quality in SDN applications, (5) predicting the video quality in wireless settings, and (6) predicting the video quality in WebRTC applications. Throughout the survey, some research challenges and directions in this area are discussed, including (1) machine learning over deep learning; (2) adaptive deep learning for improved video delivery; (3) computational cost and interpretability; (4) self-healing networks and failure recovery. The survey findings reveal that traditional ML algorithms are the most widely adopted models for solving video quality prediction problems. This family of algorithms has a lot of potential because they are well understood, easy to deploy, and have lower computational requirements than deep learning techniques

    Quality of experience-centric management of adaptive video streaming services : status and challenges

    Get PDF
    Video streaming applications currently dominate Internet traffic. Particularly, HTTP Adaptive Streaming ( HAS) has emerged as the dominant standard for streaming videos over the best-effort Internet, thanks to its capability of matching the video quality to the available network resources. In HAS, the video client is equipped with a heuristic that dynamically decides the most suitable quality to stream the content, based on information such as the perceived network bandwidth or the video player buffer status. The goal of this heuristic is to optimize the quality as perceived by the user, the so-called Quality of Experience (QoE). Despite the many advantages brought by the adaptive streaming principle, optimizing users' QoE is far from trivial. Current heuristics are still suboptimal when sudden bandwidth drops occur, especially in wireless environments, thus leading to freezes in the video playout, the main factor influencing users' QoE. This issue is aggravated in case of live events, where the player buffer has to be kept as small as possible in order to reduce the playout delay between the user and the live signal. In light of the above, in recent years, several works have been proposed with the aim of extending the classical purely client-based structure of adaptive video streaming, in order to fully optimize users' QoE. In this article, a survey is presented of research works on this topic together with a classification based on where the optimization takes place. This classification goes beyond client-based heuristics to investigate the usage of server-and network-assisted architectures and of new application and transport layer protocols. In addition, we outline the major challenges currently arising in the field of multimedia delivery, which are going to be of extreme relevance in future years

    QoE-Based Low-Delay Live Streaming Using Throughput Predictions

    Full text link
    Recently, HTTP-based adaptive streaming has become the de facto standard for video streaming over the Internet. It allows clients to dynamically adapt media characteristics to network conditions in order to ensure a high quality of experience, that is, minimize playback interruptions, while maximizing video quality at a reasonable level of quality changes. In the case of live streaming, this task becomes particularly challenging due to the latency constraints. The challenge further increases if a client uses a wireless network, where the throughput is subject to considerable fluctuations. Consequently, live streams often exhibit latencies of up to 30 seconds. In the present work, we introduce an adaptation algorithm for HTTP-based live streaming called LOLYPOP (Low-Latency Prediction-Based Adaptation) that is designed to operate with a transport latency of few seconds. To reach this goal, LOLYPOP leverages TCP throughput predictions on multiple time scales, from 1 to 10 seconds, along with an estimate of the prediction error distribution. In addition to satisfying the latency constraint, the algorithm heuristically maximizes the quality of experience by maximizing the average video quality as a function of the number of skipped segments and quality transitions. In order to select an efficient prediction method, we studied the performance of several time series prediction methods in IEEE 802.11 wireless access networks. We evaluated LOLYPOP under a large set of experimental conditions limiting the transport latency to 3 seconds, against a state-of-the-art adaptation algorithm from the literature, called FESTIVE. We observed that the average video quality is by up to a factor of 3 higher than with FESTIVE. We also observed that LOLYPOP is able to reach a broader region in the quality of experience space, and thus it is better adjustable to the user profile or service provider requirements.Comment: Technical Report TKN-16-001, Telecommunication Networks Group, Technische Universitaet Berlin. This TR updated TR TKN-15-00

    Quality-driven management of video streaming services in segment-based cache networks

    Get PDF

    Maximum Queue Length of a Fluid Model with a Gaussian Input

    Get PDF
    A fractional Brownian queueing model, that is, a fluid model with an input of a fractional Brownian motion, was proposed in the 1990s to capture the self-similarity and long-range dependence observed in Internet traffic. Since then, a Gaussian queueing model, which is a queueing model with an input of a continuous Gaussian process, has received much attention. In this dissertation, a Gaussian queueing model is discussed and the maximum queue length over a time interval [0, t] is analyzed. Under some mild assumptions, it is shown that a limit of the maximum queue length suitably normalized is determined by a suitable function of the asymptotic variance of the Gaussian input. Some Gaussian queueing models, such as a queue with an input of several independent fractional Brownian motions and a queue with an input of an integrated Ornstein-Uhlenbeck process, are discussed as examples. For a fractional Brownian queueing model, the main results extend some related known results in the literature. The results on the maximum queue length provide insights for the occurrence of large excursions, which are also called congestion events, in a queueing process. In the context of a fractional Brownian queueing model the temporal properties of congestion events, such as the duration and the inter-congestion event time, are analyzed. A new method based on a Poisson clumping approximation is proposed to evaluate these properties. By comparing with simulation results, it is illustrated that the proposed methodology produces satisfying results for estimating the temporal properties of congestion events in a fractional Brownian queueing model
    • …
    corecore