28,959 research outputs found

    Quantitative Analysis of Opacity in Cloud Computing Systems

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Federated cloud systems increase the reliability and reduce the cost of the computational support. The resulting combination of secure private clouds and less secure public clouds, together with the fact that resources need to be located within different clouds, strongly affects the information flow security of the entire system. In this paper, the clouds as well as entities of a federated cloud system are assigned security levels, and a probabilistic flow sensitive security model for a federated cloud system is proposed. Then the notion of opacity --- a notion capturing the security of information flow --- of a cloud computing systems is introduced, and different variants of quantitative analysis of opacity are presented. As a result, one can track the information flow in a cloud system, and analyze the impact of different resource allocation strategies by quantifying the corresponding opacity characteristics

    Authentication and authorisation in entrusted unions

    Get PDF
    This paper reports on the status of a project whose aim is to implement and demonstrate in a real-life environment an integrated eAuthentication and eAuthorisation framework to enable trusted collaborations and delivery of services across different organisational/governmental jurisdictions. This aim will be achieved by designing a framework with assurance of claims, trust indicators, policy enforcement mechanisms and processing under encryption to address the security and confidentiality requirements of large distributed infrastructures. The framework supports collaborative secure distributed storage, secure data processing and management in both the cloud and offline scenarios and is intended to be deployed and tested in two pilot studies in two different domains, viz, Bio-security incident management and Ambient Assisted Living (eHealth). Interim results in terms of security requirements, privacy preserving authentication, and authorisation are reported

    A Taxonomy for Management and Optimization of Multiple Resources in Edge Computing

    Full text link
    Edge computing is promoted to meet increasing performance needs of data-driven services using computational and storage resources close to the end devices, at the edge of the current network. To achieve higher performance in this new paradigm one has to consider how to combine the efficiency of resource usage at all three layers of architecture: end devices, edge devices, and the cloud. While cloud capacity is elastically extendable, end devices and edge devices are to various degrees resource-constrained. Hence, an efficient resource management is essential to make edge computing a reality. In this work, we first present terminology and architectures to characterize current works within the field of edge computing. Then, we review a wide range of recent articles and categorize relevant aspects in terms of 4 perspectives: resource type, resource management objective, resource location, and resource use. This taxonomy and the ensuing analysis is used to identify some gaps in the existing research. Among several research gaps, we found that research is less prevalent on data, storage, and energy as a resource, and less extensive towards the estimation, discovery and sharing objectives. As for resource types, the most well-studied resources are computation and communication resources. Our analysis shows that resource management at the edge requires a deeper understanding of how methods applied at different levels and geared towards different resource types interact. Specifically, the impact of mobility and collaboration schemes requiring incentives are expected to be different in edge architectures compared to the classic cloud solutions. Finally, we find that fewer works are dedicated to the study of non-functional properties or to quantifying the footprint of resource management techniques, including edge-specific means of migrating data and services.Comment: Accepted in the Special Issue Mobile Edge Computing of the Wireless Communications and Mobile Computing journa

    Estimating Impact and Frequency of Risks to Safety and Mission Critical Systems Using CVSS

    Get PDF
    Many safety and mission critical systems depend on the correct and secure operation of both supportive and core software systems. E.g., both the safety of personnel and the effective execution of core missions on an oil platform depend on the correct recording storing, transfer and interpretation of data, such as that for the Logging While Drilling (LWD) and Measurement While Drilling (MWD) subsystems. Here, data is recorded on site, packaged and then transferred to an on-shore operational centre. Today, the data is transferred on dedicated communication channels to ensure a secure and safe transfer, free from deliberately and accidental faults. However, as the cost control is ever more important some of the transfer will be over remotely accessible infrastructure in the future. Thus, communication will be prone to known security vulnerabilities exploitable by outsiders. This paper presents a model that estimates risk level of known vulnerabilities as a combination of frequency and impact estimates derived from the Common Vulnerability Scoring System (CVSS). The model is implemented as a Bayesian Belief Network (BBN)
    corecore