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Quantitative Analysis of Opacity in Cloud
Computing Systems

Wen Zeng and Maciej Koutny

Abstract—Federated cloud systems increase the reliability and reduce the cost of the computational support. The resulting
combination of secure private clouds and less secure public clouds, together with the fact that resources need to be located within
different clouds, strongly affects the information flow security of the entire system. In this paper, the clouds as well as entities of a
federated cloud system are assigned security levels, and a probabilistic flow sensitive security model for a federated cloud system is
proposed. Then the notion of opacity — a notion capturing the security of information flow — of a cloud computing systems is
introduced, and different variants of quantitative analysis of opacity are presented. As a result, one can track the information flow in a
cloud system, and analyze the impact of different resource allocation strategies by quantifying the corresponding opacity
characteristics.

Index Terms—federated cloud computing, internet of things, opacity, security policy, information flow
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1 INTRODUCTION

THe extent and importance of cloud computing is rapidly
increasing due to the ever increasing demand for in-

ternet services and communications. Instead of building
individual information technology infrastructure to host
databases or software, a third party can host these on its
large server clouds. In addition, organizations may wish to
keep sensitive information on their more restricted servers
rather than on the public ones. This has led to the introduc-
tion of federated cloud computing in which both public and
private cloud computing resources are used [1].

A federated cloud deploys and manages multiple cloud
computing services, with various computational resources
being allocated to different clouds for both security and
business concerns. Although a federated cloud system (FCS)
can increase the reliability and reduce the cost of com-
putational support to an organization, the large number
of services and data stored in the clouds creates security
risks due to the dynamic movement of data, connected
devices, and users between various cloud environments. As
a result, it is necessary to track and control the information
flow. In order to make such information and data traceable,
one needs a formal model describing the information flow
security within FCS. In this paper, we will introduce a prob-
abilistic transition system representation of the information
flow in FCS, and then investigate security properties of the
information flow using opacity, which a notion capturing the
security of information flow.

There has recently been a significant interest in building
secure service-based systems and, on the other hand, in
measuring the security of information flow in programming
languages. The Bell-LaPadula model [2] is a state machine
model which is used to enforce access control in govern-
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ment and military applications. In [3], the author applied
this model to workflow security using Petri nets to model
workflows. However, [3] does not consider the deployment
of resources within a workflow across a set of computational
resources. In [4], the author proposed an extended Petri net
formalism — information flow security nets (IFSNs) — to
provide a way of modelling information flow security poli-
cies expressed through the net structure. In [5], the author
proposed a security model derived from the IFSNs — secu-
rity coloured Petri nets (SCPNs) — providing more compact
representation of systems and supporting more efficient
analyses of information flow. In [1], the author proposed
to partition workflows over a set of available clouds in such
a way that security requirements are met. This approach
was based on a multi-level security model extending Bell-
LaPadula [2], [6] to encompass cloud computing. In [1],
the author investigated workflow transformations that are
needed when data is communicated between clouds, but
did not consider the concurrency in the execution of tasks
nor the opacity properties of a system. In [7], [8], [9],
[10], the authors developed workflows for a cloud-based
platform, where workflow is considered to be a linked set of
individual components (blocks) which act sequentially upon
items of data. However, the information flow security and
opacity of the system was not considered.

There are different methods aimed at flow-sensitive
analysis of programs. In [11], the authors introduced a
general concept of security policy and a rigorous treatment
of intransitive information flow. In [12], the author first
showed that the data manipulated by a program can be
constrained with security levels which usually have the
structure of a partially ordered set. Moreover, this partially
ordered set is a lattice under certain natural conditions [13].
In [14], the authors presented a lattice-based framework
for both information and flow. In [15], the author first
built a formal correspondence between mutual information
and non-interference, and established a connection between
Shannon’s information theory and state-machine models of
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information flow in computing system. In [16], the authors
devised a new information theoretic definition of informa-
tion flow and channel capacity. In [17], the authors pre-
sented a notion of soundness for system that can be viewed
as a form of non-interference. In [18], the authors proposed
that Shannon’s information theory be used to measure the
information leakage in imperative programming languages.

Information hiding systems are used to formally analyse
the information-hiding properties of protocols and pro-
grams. In [19], [20], [21], the authors defined generalised
opacity for Petri nets, and then adapted opacity to the
general transition system model. [22], [23] proposed model
checking techniques to compute the Shannon entropy leak-
age and the min-entropy leakage in probabilistic transition
systems. [24], [25] studied the problem of information hid-
ing in systems characterized by the presence of randomiza-
tion and concurrency. [26], [27], [28], [29] used diagnosis to
detect whether or not the given sequence of observed labels
indicates that some unobservable fault has occurred.

In this paper, we work towards bridging a gap between
the theory of opacity and its practical application in a
probabilistic setting. The study presented in this paper
can help organizations to analyse the impact of different
resource allocation strategies. It can also provide help to
cloud providers in making security related decision at the
system design stage.

The paper is organized as follows. Section 2 provides
the basic notions used throughout this paper, and Section 3
a model for secure information flow analysis is presented.
Opacity is discussed in Section 4, and a threat model is in-
troduced in Section 5. Section 6 proposes different method-
ologies to quantify opacity. A cost function is given to
help service providers take decisions related to information
security in Section 7.

2 PRELIMINARY MATERIAL

In this part, the definition of the basic concepts and key
notions are presented making it easier to follow the technical
content of this paper.

In order to measure the information flow, the system
is treated as a communication channel. Information theory
introduced the definition of entropy H, to measure the av-
erage uncertainty in random variables. Shannon’s measures
were based on a logarithmic measure of the unexpectedness
in a probabilistic settting. The unexpectedness of an event,
which occurred with some non-zero probability p is log2

1
p .

Therefore, the total information carried by a set of n events
is computed as the weighted sum of their unexpectedness:

H =
n∑
i=1

pi log2
1

pi
, (1)

where pi is the probability of event i, and pi log2
1
pi

= 0 if
pi = 0. (1) is called the entropy of the set of events.

A discrete random variable X is a surjective function,
which maps events to values of a countable set, with each
value in the range having probability greater than zero,
i.e., X : D → R, where D is a finite set with a specified
probability distribution, and R is the finite range of X .

Shannon’s information theory [30] can be used to quan-
tify the amount of information a system may leak and the
way in which this depends on the distribution of inputs.

Definition 1 (Shannon entropy). Let X be a random variable,
x range over the set of values whichX may take, and p(x) denotes
the probability that X takes the value x. The entropy of a discrete
random variable X is denoted by H(X) and is defined by:

H(X) =
∑
x

p(x) log2
1

p(x)
. (2)

The entropy measures the average information content
of a set of events.

Definition 2 (conditional entropy). The conditional entropy
H(X|Y ) measures the uncertainty about X , given the knowledge
of Y = y. It is defined as:

H(X|Y ) =
∑
y p(y)H(X|Y = y)

= H(X,Y )−H(Y ) ,
(3)

whereH(X|Y = y) is the entropy of the discrete random variable
X conditioned on the discrete random variable Y taking a certain
value y. The joint entropy H(X,Y ) of a pair of discrete random
variables (X,Y ) with a joint distribution p(x, y) is defied as:

H(X,Y ) =
∑
x∈X

∑
y∈Y

p(x, y)
1

log2 p(x, y)
. (4)

Given two random variables, X and Y , the conditional
entropy captures dependencies between random variables,
when the knowledge of one may change the information
about the other. If H(X|Y ) = 0, there is no uncertainty
on X knowing Y ; and if X and Y are independent (i.e.,
p(x, y) = p(x)p(y)), then H(X|Y ) = H(X), meaning that
the knowledge of Y does not change the uncertainty on X .

The concept of mutual information is a measure of the
amount of information that one random variable contains
about another random variable. It implies the reduction in
the uncertainty of one random variable due to the knowl-
edge of the other.

Definition 3 (mutual information). Let p(x, y) be the joint
distribution of two random variables, X and Y . The mutual
information I(X;Y ) between X and Y is given by:

I(X;Y ) =
∑
x

∑
y p(x, y) log2

p(x,y)
p(x)p(y)

= H(X)−H(X|Y ) = H(Y )−H(Y |X) .
(5)

If X and Y are independent, then knowing X does not
reveal any information about Y and vice versa, so their
mutual information is zero. At the other extreme, ifX and Y
are identical then all information conveyed by X is shared
with Y . As a result, in the case of identity, the mutual
information is the same as the uncertainty contained in X
(or Y ) alone, namely the entropy of X (or Y as identical X
and Y have equal entropy).

3 SYSTEM MODEL

In this section, we introduce a formal model for capturing
information flow in federated cloud systems.
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In the context of a federated cloud system, we assume
that there exists a finite nonempty set C of single deploy-
ment clouds. Moreover, E is a finite nonempty set of entities,
which comprise both subjects (e.g., services and programs),
and objects (e.g., resources and messages).

An entity can have several copies, and each of these
copies may reside in a different cloud. We also allow multi-
ple copies of an entity to be present in a single deployment
cloud. As a result, in what follows, a system state will be any
finite multiset st over the Cartesian product E ×C. Thus, for
example, st(a, c) = 4 means that in the current state st there
are 4 copies of entity a residing in cloud c. The elements of
E × C will be referred to as actual entities. We will say that
an actual entity (e, c) is present in state st if st(e, c) > 0.

Definition 4 (PIFM). A probabilistic information flow
model is a triple:

PIFM = (A, st init , µ) , (6)

where A is a finite set of actions, st init is an initial state, and
µ : A → N is a probability weight mapping. It is assumed that
each action is a pair:

φ = (in, out) (7)

such that its two components, in = ((e1, c1), . . . , (ek, ck)) and
out = ((ek+1, ck+1), . . . , (ek+m, ck+m)), are nonempty finite
tuples of actual entities.

One may extend the class of allowed action types to
include, for example, features allowing checking of the
absence of certain actual entities.

Definition 5 (actions). An action φ as in (7) is enabled at state
st if: 1

φin = {(e1, c1), . . . , (ek, ck)} ≤ st , (8)

and we denote by enabled(st) the set of all actions enabled
in a state st . An enabled action φ can be executed with the
probability:

pr =
µ(φ)∑

φ′∈enabled(st) µ(φ
′)

(9)

leading to a new state st ′ = st − φin + φout , where:

φout = {(ek+1, ck+1), . . . , (ek+m, ck+m)} . (10)

We denote this by st
φ−→pr st ′.

Among the possible system states, one is only interested
is those which can be reached from the initial state.

Definition 6 (reachable states). The set of reachable states
of the probabilistic information flow model PIFM as in (6) is
the minimal set of states RS containing st init and such that if
st ∈ RS and st

φ−→pr st ′, for some φ and pr , then st ′ ∈ RS .

We presented basic notions related to the syntax and se-
mantics of a probabilistic information flow model. It allows
a straightforward capture of various notions related to the
information flow in federated cloud systems.

The model introduced in this section resembles Petri net
models proposed in [31], [32] which incorporated the Bell-
Lapadula rules in cloud computing systems.

1. Below ≤ denotes multiset inclusion, and ‘−’ and ‘+’ denote
multiset subtraction and addition, respectively.

4 OPACITY IN CLOUD COMPUTING SYSTEMS

In cloud computing, observing patterns of users’ behaviour
can lead to leakages of secure information. Information
sharing means that the behaviour of one cloud user may
appear visible to other cloud users or adversaries, and
observations of such behaviours can potentially help them
to build covert channels. It is, therefore, necessary to reason
about information leakage in a formal and precise way.

We consider using opacity as a promising technique for
analyzing information flow security. Opacity has been pro-
posed as a uniform approach for describing security proper-
ties of computing systems expressed as predicates [19], [20],
[21]. A predicate is opaque if an observer of the system is
unable to determine the truth of the predicate in a given
system run. In this section, we will present one of the
versions of opacity which can be used, e.g., to analyze
workflows executed in cloud computing systems.

Definition 7 (runs). A run of a probabilistic information flow
model PIFM as in (6) is a finite sequence actions in A:

ξ = φ1 . . . φn (11)

such that there are states st init = st1, . . . , stn+1 satisfying:

st1
φ1−→pr st2

φ2−→pr · · ·
φn−1−→pr stn

φn−→pr stn+1 . (12)

The set of all runs of PIFM is denoted by Runs(PIFM).

A variety of different observing capabilities of the be-
haviours of the system modelled by PIFM can be captured
by observation functions.

Definition 8 (observations). An observation function of a
probabilistic information flow model PIFM as in (6) is:

obs : Runs(PIFM)→ Obs∗ , (13)

where Obs is a set of observables. Moreover, obs is static2 if
there is a mapping obs ′ : A → Obs ∪ {ε} such that:

obs(ξ) = obs ′(φ1) . . . obs
′(φn) , (14)

for every run ξ = φ1 . . . φn in Runs(PIFM).

Note that obs ′ may return the empty sequence, ε, which
means that one can model invisible (or hidden) actions.

Given an observation function obs , we are interested in
whether an observer can establish a property γ (a predicate
over system runs) for a run of PIFM having only access to
the result of the observation function. As one can identify
γ with its characteristic set, i.e., the set of all those runs for
which it holds, we would want to find out whether the fact
that the underlying run belongs to γ ⊆ Runs(PIFM) can
be deduced by the observer on the basis of an observed
execution of the system. In particular, we might be inter-
ested in the final opacity predicate γZ , defined as the set
of all the runs ξ as in (11) satisfying stn ∈ Z , for some
set of states Z [21]. Intuitively, this means that might be
interested in finding out whether the observation of a run
carries sufficient information to deduce that the latter ended
in a state of Z .

2. Static in the sense that a given action is always observed in the
same way.
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Note that we are not interested in establishing whether
the underlying run does not belong to γ; to do this, we
would consider the property:

γ = Runs(PIFM) \ γ . (15)

Definition 9 (opacity). Let PIFM be a probabilistic informa-
tion flow model as in (6), and obs be an observation function as
in (13).

A set of runs γ ⊆ Runs(PIFM) is opaque w.r.t. the
observation function obs if, for every run ξ ∈ γ, there is a run
ξ ∈ obs(γ) such that obs(ξ) = obs(ξ′).

In other words, γ is opaque if all the runs in γ are
covered by runs in γ:

obs(γ) ⊆ obs(γ) . (16)

4.1 Case study
As a case study adapted to our purposes, we will use a
medical research application [1] in which data from a set
of patients’ heart rate monitors is analyzed, and then the
results are sent to the things (i.e., computing devices, digital
machines, objects, or people), as illustrated in Figure 1.
Informally, the process can be described as follows:

• A patients’ data is sent through the local network by
user . The data (d0) is a file with a header identifying
the patient (name and patient number), followed by
a set of heart rate data recoded over a period of time.

• A service (serv :s0 ) reads the data, and changes the
name of the data to (d1), then sends the data to
service (serv :s1 ).

• A service (serv :s1 ) strips off the header, leaving only
the heart rate data (d2).

• Another service (serv :s2 ) analyzes the heart rate
data, and produces results (d3).

• Finally, service (serv :s3 ) sends the data (d4) to
user/medical device , and then a ‘medical device’ can
provide appropriate service for the patient based on
the received data.

Analyzing the heart rate data (serv :s3 ) is costly and
would benefit from a cheap, scalable resources that are avail-
able on public clouds. However, considering that storing
medical records on a public cloud can breach confidentiality,
some organizations prefer to deploy the whole workflow on
a secure private cloud. Such a policy may overstretch the
limited resources available on the private cloud, resulting
in degraded performance and negative impact on other
applications. To address this problem, the partitioning of
the application between a private cloud and a public cloud
could provide a better solution.

In our case study, we consider an integration of internet
of things (IoT) with cloud computing. We use two clouds
(X and Y ), one local network LN , and a number of pro-
cesses, which together form a medical research application.
The proposed workflow operates on sensitive medical data
processed on the private cloud, and anonymised data that
can be deployed on the public cloud. CloudX hosts services
serv :s0 and serv :s1 . Cloud Y hosts two service providers:
service provider 1 includes serv :s12 and serv :s13 ; and service
provider 2 includes serv :s22 and serv :s23 .

TABLE 1
The sequence of interactions between the components of the medical

research application system.

Actions Entities Sender Receiver

φ1 d0 user serv :s0

φ2 d1 serv :s0 serv :s1

φi3 d2 serv :s1 serv :si2 (i = 1,2)

φi4 d3 serv :si2 (i = 1,2) serv :si3 (i = 1,2)

φi5 d4 serv :si3 (i = 1,2) user

φi6 d4 serv :si3 (i = 1,2) medical device

Figure 2 shows the basic structure of the execution
scenario for the medical research application, and its generic
behaviour is shown in Table 1. It starts with a data sent
from user to serv :s0 , through a local network. The data is
forwarded to service serv :s1 . Service serv :s1 then selects
one of the two providers, service provider 1 or service provider
2, and then sends d2 to the selected service providers. After
receiving the data, serv :s12 or serv :s22 produces d3 and sends
it to serv :s13 or serv :s23 , respectively. Finally, serv :s13 and
serv :s23 sends d4 to user and medical device . Crucially, an
external observer of the system is not allowed to discover
the identity of the selected provider.

Scenario A
We assume that no provider is discriminated against. Mes-
sages communicated between the clouds X , Y and local
network are visible, and messages inside the clouds are
invisible. Moreover, the observer has no means of detecting
their content (but can observe the specific cloud from which
a message originated or was sent to). This can be captured
by a static observation function obs given by:

obs ′(φ1) = a obs ′(φ2) = ε
obs ′(φ13) = b obs ′(φ23) = b
obs ′(φ14) = ε obs ′(φ24) = ε
obs ′(φ15) = d obs ′(φ25) = d
obs ′(φ16) = e obs ′(φ26) = e .

(17)

We can formulate as an opacity problem the question
of whether visible interactions reveal the identity of the
provider supplying the service. To do so, we consider a
property γ consisting of all runs where the first provider
supplied the services, i.e., executions of the following form:
3

ξ1 = φ1φ2φ
1
3φ

1
4φ

1
5φ

1
6

ξ2 = φ1φ2φ
1
3φ

1
4φ

1
6φ

1
5 .

(18)

The set of observations generated by γ is therefore given by
obs(γ) = {obs(ξi) | i = 1, 2}, where:

obs(ξ1) = abde
obs(ξ2) = abed .

(19)

We then note that γ comprises, among others, executions of
the following kind:

ξ1 = φ′1φ2φ
2
3φ

2
4φ

2
5φ

2
6

ξ2 = φ′1φ2φ
2
3φ

2
4φ

2
6φ

2
5 .

(20)

3. In the examples, we only consider complete runs.
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Fig. 1. The medical research application example, which includes four services and five finds of data.

Fig. 2. Information flow in a cloud based medical research application.

The set of observations generated therefore satisfies
obs(γ) ⊇ {obs(ξi) | i = 1, 2}, where:

obs(ξ′1) = abde
obs(ξ′2) = abed .

(21)

Hence obs(γ) ⊆ obs(γ), and so γ is an opaque property
in this case. As a result, it is not possible to say for sure
that it was the first provider who supplied the service. Since
the above argument is symmetric, we can conclude that the
identity of providers is kept secret.

Scenario B

We assume that cloud Y is public and cloud X is private.
Messages communicated between the clouds X , Y and the
local network are visible, messages inside Y are visible,
messages inside X are invisible. This can be captured by
a static observation function obs given by:

obs ′(φ1) = a obs ′(φ2) = ε
obs ′(φ13) = b obs ′(φ23) = c
obs ′(φ14) = d obs ′(φ24) = e
obs ′(φ15) = f obs ′(φ25) = g
obs ′(φ16) = h obs ′(φ26) = k .

(22)

We consider the property γ consisting of all execution
scenarios where the first provider supplied the services (the
executions are the same as in Scenario A). The set of observa-
tions they generate is given by obs(γ) = {obs(ξi) : i = 1, 2},
where:

obs(ξ1) = abdfh
obs(ξ2) = abdhf .

(23)

When the second provider supplied the services, the set of
observations generated is obs(γ) = {obs(ξ′i) | i = 1, 2},
where:

obs(ξ′1) = acegk
obs(ξ′2) = acekg .

(24)

Hence obs(γ) \ obs(γ) 6= ∅, and so γ is not an opaque
property. Thus, it is now possible to say that it was the first
provider who supplied the services.

From these two scenarios we can see that an observation
cannot establish a predicate if for any run of the system
in which the predicate is true, there is a run for which the
predicate is false, and the two runs are equivalent under the
defined observation function.

In this section, we only considered how security policies
can affect the information flow security. We have not yet
taken into account the likelihood of violating the opacity
requirement; instead, we simply reported whether a given
system is opaque or not. This yes/no outcome might be not
satisfactory in practice, especially when system behaviours
have unequal likelihood of occurring. In the case where the
probability of one run is significantly higher than the proba-
bility of another one, the observer may have good reasons to
believe that the predicate is nonetheless true. Therefore, in
the next section, we will consider the probabilistic behaviour
of the system.

5 THREAT MODEL

We now consider the probabilistic opacity in the cloud
computing systems, which allows us to reason about the
quantitative properties of systems.

Consider that a malicious service provider (insider) can
observe users’ behaviours and interactions with the server



JOURNAL OF TRANSACTION ON CLOUD COMPUTING, JANUARY 2019 6

by studying the patterns of users behaviours in a cloud
computing system. In such a case, the malicious insider can
deduce information about the users or service providers,
which might cause confidential information leakage [33],
[34]. For example, in [7], [8], workflows are developed in
a cloud-based platform, where a workflow is a linked set of
individual components (blocks) which act sequentially upon
items of data.

For the purpose of measuring opacity, we consider prob-
ability distributions on random variables of user behaviour
runs. We consider the system to be a communication chan-
nel, and a discrete random variable is used to model a finite
set of possible runs performed by the end users during their
interactions with the system.

Definition 10. A service-based computing system is a tuple:

sbcs = (U ,A,Obs,R,O, µR, µO) , (25)

where:

• U is a finite set of users interacting with the system.
• A is a finite set of actions modelling the interactions

between the system and the users, see Definition 4.
• Obs is a finite set of observables and obs : A∗ → Obs∗.
• R is a finite set of actual runs modelling interactions of

the users with the system.
• O is a finite set of observed runs obtained from the actual

runs using an observation function obs .
• µR is a probability distribution on the actual runs.
• µO is a probability distribution on the observed runs.

Each run is a finite sequence of actions performed by the
end user, ξ = φ1 . . . φk, which captures the way in which an
end user reaches the final action φk from the initial action
φ1 when requesting a specific service. All possible runs of a
user requesting a service located in the system be denoted
by:

R = {ξj | 1 ≤ j ≤ n} and
n∑
i=1

µR(ξj) = 1 . (26)

Following the definition of observation function in Sec-
tion 4, we have a number of distinct observed runs,
ψ1, . . . , ψm, such that {ψ1, . . . , ψm} = obs({ξ1, . . . , ξn}).
The probability of each observed trace ψi is µO(ψi) =∑
ξj∈obs−1(ψi)

µR(ξj), and so we have:

O = {ψi | 1 ≤ i ≤ m} and
m∑
i=1

µO(ψi) = 1 . (27)

We assume that there are two types of actions: hidden
actions and observable actions, which are related to high
security level and low security level, respectively. Actions la-
belled hidden are confidential and hidden to the adversaries,
and actions labelled observable are public and observable
to the adversaries. The classification can be based on the
security preserving mechanisms or policies applied in the
computing system. Therefore, actions are the union of two
disjoint sets:

A = high ] low (28)

For each run, some part of it is hidden and some part of
it is observable, which makes some runs equivalent to the
others when only considering observable actions. Therefore,

adversaries can derive some confidential information by
building sets of equivalence classes from observations.

We now look at the properties of observations on the
behaviours of users within the computing system through
equivalence relations (in the examples hidden actions will
be underlined).

Example 1. Consider Scenario A in Section 4.1, there are four
different actual runs that can be generated by the system R =
{ξ1, ξ2, ξ3, ξ4} and we assume µR(ξi) = pi, we have:

• ξ1 = φ1φ2φ
1
3φ

1
4φ

1
5φ

1
6 → p1

• ξ2 = φ1φ2φ
1
3φ

1
4φ

1
6φ

1
5 → p2

• ξ3 = φ1φ2φ
2
3φ

2
4φ

2
5φ

2
6 → p3

• ξ4 = φ1φ2φ
2
3φ

2
4φ

2
6φ

2
5 → p4

Moreover,
∑4
i=1 pi = 1. The actual runs are obfuscated due to the

applied security policy of the system which produces observable
runs. Since the underlined actions, φ2, φ14 and φ24 are high
security and so hidden, we obtain the following observations from
an attacker’s point of view:

• δ1 = abde → µO(δ1)
• δ2 = abed → µO(δ2)

and O = {δ1, δ2}. In other words, the observation function can
be summarised as:

• obs(ξ1) = obs(ξ3) = δ1
• obs(ξ2) = obs(ξ4) = δ2

The probability of observing δ1 is µO(δ1) = p1 + p3, and the
probability of observing δ2 is µO(δ2) = p2 + p4. The adversary
therefore builds equivalence relations on the inverse images of
the observations and derives information from the observations
of users’ behaviours.

In the above example, two runs are equivalent if they
have the same observation. Intuitively, we consider the
observation as the sum of probability distribution for the
projections of actual runs on visible actions. Information
about users’ behaviours can only be partially deduced.

6 QUANTITATIVE ANALYSIS OF OPACITY

In this section, we introduce different variants of quantita-
tive opacity for cloud computing systems.

6.1 Observational Equivalence: πρ-opacity
If ξ1 and ξ2 are two actual runs with the same observations,
i.e., obs(ξ1) = obs(ξ2), we denote ξ1 w ξ2 and say that they
are observationally equivalent.

Definition 11. A predicate γ ⊂ R is πρ-opaque w.r.t. obs if
the probability of having a run in γ which is not covered by a run
outside γ is ρ:

ρ =
1

µR(γ)
· µR({ξ ∈ γ | obs(ξ) ∈ obs(R\γ)}) . (29)

Example 2. Consider Scenario A in Section 4.1. The actual runs
are R = {ξ1, . . . , ξ4}. In addition, we assume that messages
communication between the clouds Y and local network, i.e., φ15,
φ25, φ16, and φ26, are of high security and hidden, where:

• ξ1 = φ1φ2φ
1
3φ

1
4φ

1
5φ

1
6 → 1

4
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• ξ2 = φ1φ2φ
1
3φ

1
4φ

1
6φ

1
5 → 1

2

• ξ3 = φ1φ2φ
2
3φ

2
4φ

2
5φ

2
6 → 1

8

• ξ4 = φ1φ2φ
2
3φ

2
4φ

2
6φ

2
5 → 1

8

Then we have:

obs(ξ1) = obs(ξ2) = obs(ξ3) = obs(ξ4) = ab (30)

i.e., ξ1 w ξ2 w ξ3 w ξ4. Hence all the runs in R are
observationally equivalent, and so each γ ⊂ R is π1-opaque.

Note that one could easily associate with each run ξ ∈ γ
a numerical weight κξ , reflecting its relative importance or
security level. Then (29) could be replaced by:

ρ =
1

ν(γ)
· ν({ξ ∈ γ | obs(ξ) ∈ obs(R\γ)}) , (31)

where ν(X) =
∑
ξ∈X κξ ·µR(ξ). The same comment applies

to the opacity measure introduced next.

6.2 Proportion-based Opacity: π̃χ-opacity

The observational equivalence may be too demanding in
practice. In particular, one might only require that the proba-
bility of not covered runs is low. To capture this measure, we
first define a notion of quantified opacity as the proportion
of the equivalent runs w.r.t. the whole set of actual runs.
The higher such proportion is, the more secure the system
becomes. This also corresponds to an intuition that a lower
probability of non-equivalent runs means that it is harder
for an attacker to find differences in users’ behaviours.

Definition 12. The opacity proportion measure is the probabil-
ity of the set of the covered runs:

χ = µR({ ξ ∈ R | obs(ξ) ∈ obs(R\{ξ})}) . (32)

We also say that the runs R are π̃χ-opaque.

The opacity proportion is maximal if χ = 1, because an
attacker cannot identify the actual runs behind the observed
ones. It is minimal if χ = 0.

Example 3. Consider again the example in Section 4.1. In Sce-
nario A, there are four different actual runs that can be generated
by the system R = {ξ1, . . . , ξ4} and:

• ξ1 = φ1φ2φ
1
3φ

1
4φ

1
5φ

1
6 → 1

8

• ξ2 = φ1φ2φ
1
3φ

1
4φ

1
6φ

1
5 → 1

4

• ξ3 = φ1φ2φ
2
3φ

2
4φ

2
5φ

2
6 → 1

8

• ξ4 = φ1φ2φ
2
3φ

2
4φ

2
6φ

2
5 → 1

2

The observation function yields:

• obs(ξ1) = obs(ξ3) = abde → 1
4

• obs(ξ2) = obs(ξ4) = abed → 3
4

Hence, the opacity proportion is χ = 1, and the runs R are π̃1-
opaque. We also have that γ = {ξ1, ξ2, ξ3} is π0.25-opaque.

In Scenario B, R = {ξ1, . . . , ξ4} and we have:

• ξ1 = φ1φ2φ
1
3φ

1
4φ

1
5φ

1
6 → 1

8

• ξ2 = φ1φ2φ
1
3φ

1
4φ

1
6φ

1
5 → 1

4

• ξ3 = φ1φ2φ
2
3φ

2
4φ

2
5φ

2
6 → 1

8

• ξ4 = φ1φ2φ
2
3φ

2
4φ

2
6φ

2
5 → 1

2

The observation function yields:

• obs(ξ1) = abdfh → 1
8

• obs(ξ2) = abdhf → 1
4

• obs(ξ3) = acegk → 1
8

• obs(ξ4) = acekg → 1
2

Therefore, the opacity proportion is χ = 0, and the runs R are
π̃0-opaque.

6.3 Entropy-based Opacity: πI -opacity
The measurement we consider here is based on the like-
lihood of a particular run of actions being performed by
the end user, i.e., on the probability distribution on the
user’s behaviours to measure the observations. Shannon’s
measures are based on a logarithmic measure of uncertainty,
inherent in a probabilistic event. Therefore, it is natural to
consider Shannon’s entropy as the basis of the information
loss measurement.

We consider possible runs of an end user interacting with
a service provider in the system as a random variable, and
define a notion of quantified opacity by using the concept
of mutual information between the actual runs and their
observations.

Definition 13. Consider a user u requesting a service. The
quantity of entropy-based information (uncertainty) loss due to
user u in the system (25) is:

I = I(Tu;Ou) = H(Tu)−H(Tu|Ou) (33)

where: (i) Tu and Ou are the random variables for the user u’s
actual runsR and observations runsO; (ii)H(Tu) is the entropy
(uncertainty measurement) of runs in R; and (iii) H(Tu|Ou)
is the conditional entropy of Tu, given the observation Ou (the
remaining uncertaintyR after observing O). We also say that the
user’s behaviour is πI -opaque where I = I(Tu;Ou).

Example 4. Consider again the example in Section 4.1. There are
four different actual runs that can be generated by the system and
we assume µR(ξi) = 1

4 , for all i.
In Scenario A, there are two different observed runs (δ1, δ2),

and we have: µO(δ1) = µO(δ2) =
1
2 . For R = {ξ1, ξ2, ξ3, ξ4}

and O = {δ1, δ2}, we then obtain:

I(R;O) = H(ξ)−H(ξ|δ)
= 4 · 14 log2 4− (2 · 12 log2 2) = 1 .

(34)

The mutual information betweenR and O is therefore 1, yielding
π1-opacity.

In Scenario B, there are four different observed runs, (δ1, δ2,
δ3, δ4), and we have: µO(δ1) = µO(δ2) = µO(δ3) = µO(δ4) =
1
4 . We then obtain:

I(R;O) = H(ξ)−H(ξ|δ)
= 4 · 14 log2 4− (4 · 14 log2 4) = 0 .

(35)

The mutual information between R and O is 0, yielding π0-
opacity.

Note that since the observation of each run is different, the
mutual information between R and O is exactly the number of
bits needed to encode 4 runs, i.e., 2. And the entropy (remaining
uncertainty) is 0.

IoT is a demanding environment due to the potentially
unbounded number of things (resources and subjects). As
the above discussion focused on the case of one end user
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interacting with the system, it is still necessary to define the
security measurement for all end users in the system.

Definition 14. The overall quantity of the information loss is
the mean value of all users’ information loss:

χ =
m∑
i=1

pi · I(Ti;Oi) (36)

where: (i) m is the number of end users; (ii) pi is the probability of
all runs of user ui requesting a service; (iii) Ti and Oi are random
variables of actual and observed runs for user ui accessing the
service; and (iv) I(Ti;Oi) is the information loss of user ui.

6.4 Channel Capacity: π̂C -opacity

We now define opacity measurement based on the concept
of channel capacity.

Let us consider the security preserving mechanisms
providing secure communication channels for users and
services in the information theoretical sense. The channel ca-
pacity is the maximum mutual information between T and
O over all possible end users/entities w.r.t. to requesting
a service, where T and O respectively denote the random
variables of R (the set of actual runs) and O (the set of
observed runs).

Definition 15. The channel capacity of the computing system
(25) is defined as:

C = max
u∈U

I(Tu;Ou) (37)

when each user u requests a given service. We also say that the
behaviour of the set of users is π̂C -opaque, which is the maximal
amount of information that can be obtained.

The channel is memoryless if the probability distribution
of the output depends only on the input and is conditionally
independent of previous channel inputs and outputs.

Example 5. Consider Scenario B in Section 4.1. We assume there
are two end users u1 and u2 sending (φ1) data d0 to serv :s0 . The
sum of the probabilities of all runs performed by all the users is 1.
The probability of all possible runs of u1 is 2

3 , and that of u2 is 1
3 .

The possible actual runs of each user and conditional probabilities
of each user’s runs are as follows:

End Users Actual Traces Probability

2
3 .u1 ξ1 = φ1φ2φ

1
3φ

1
4φ

1
5φ

1
6

1
6

ξ2 = φ1φ2φ
1
3φ

1
4φ

1
6φ

1
5

1
6

ξ3 = φ1φ2φ
2
3φ

2
4φ

2
5φ

2
6

1
3

ξ4 = φ1φ2φ
2
3φ

2
4φ

2
6φ

2
5

1
3

1
3 .u2 ξ1 = φ1φ2φ

1
3φ

1
4φ

1
5φ

1
6

1
8

ξ2 = φ1φ2φ
1
3φ

1
4φ

1
6φ

1
5

1
8

ξ3 = φ1φ2φ
2
3φ

2
4φ

2
5φ

2
6

3
8

ξ4 = φ1φ2φ
2
3φ

2
4φ

2
6φ

2
5

3
8

The observations are therefore as follows:

End Users Observed Traces Probability

2
3 .u1 obs(ξ1) = abdfh 1

6

obs(ξ2) = abdhf 1
6

obs(ξ3) = acegk 1
3

obs(ξ4) = acekg 1
3

1
3 .u2 obs(ξ1) = abdfh 1

8

obs(ξ2) = abdhf 1
8

obs(ξ3) = acegk 3
8

obs(ξ4) = acekg 3
8

The entropy-based information loss due to the behaviour of u1 is:

Iu1
(Tu1

;Ou1
) = H

(
1

6
,
1

6
,
1

3
,
1

3

)
= 1.9183 . (38)

The entropy-based information loss due to the behaviour of u2 is:

Iu2
(Tu2

;Ou2
) = H

(
1

8
,
1

8
,
3

8
,
3

8

)
= 1.8113 . (39)

The channel capacity is therefore C = maxu∈U I(Tu;Ou) =
1.9183 yielding π̂1.9183-opacity.

We now assume that if service provider 1 breaks down then
service provider 2 is used as a replacement. If the availability of
service provider 1 is x, we obtain the following:

End Users Observed Traces Probability

2
3 .u1 obs(ξ1) = abdfh 1

6 · x
obs(ξ2) = abdhf 1

6 · x
obs(ξ3) = acegk 1

3 + 1
6 · (1− x)

obs(ξ4) = acekg 1
3 + 1

6 · (1− x)

1
3 .u2 obs(ξ1) = abdfh 1

8 · x
obs(ξ2) = abdhf 1

8 · x
obs(ξ3) = acegk 3

8 + 1
8 · (1− x)

obs(ξ4) = acekg 3
8 + 1

8 · (1− x)

We therefore have:

Iu1(Tu1 ;Ou1) = H
(
x
6 ,

x
6 ,

3−x
6 , 3−x6

)
Iu2

(Tu2
;Ou2

) = H
(
x
8 ,

x
8 ,

4−x
8 , 4−x8

)
.

(40)

Fig. 3. The trade-off between service availability and opacity.
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Figure 3 shows the channel capacity based opacity of the
system against the availability of service provider 1. Since in
real life distributed systems the number of the parameters is high,
in our study the probability of all possible runs of u1 was fixed at
2
3 , and that of u2 at 1

3 .
The graph of Figure 3 clearly indicates that a system with high

level of availability of service provider 1 would suffer from low
degree of opacity or, in other words, high information leakage.

Looking at the above example, we can observe that a
system with high level of availability may lead to high
information leakage. Moreover, different security preserving
mechanisms or policies might produce different observa-
tions. Given a computing system, it is therefore important
to study the relations among the system security policies
from the point view of the resulting degree of security. The
following result suggests an ordering on such relations.

Theorem 1. Let Pol1 and Pol2 be security policies for ar-
chitectures with public and private clouds, which yield static
observations functions obs1 and obs2, respectively. For a set of
runs T , these observation functions define partitions, η1 and η2, of
T into equivalence classes. Moreover, O1 and O2 are the observed
runs under obs1 and obs2, respectively. Then:

η1 v η2 =⇒ I(T ;O1) ≥ I(T ;O2) , (41)

where η1 v η2 means that for every S1 ∈ η1 there is S2 ∈ η2
such that S1 ⊆ S2.

Note: The above implies that if η2 is coarser than η1 then
the information loss under η2 is smaller than under η1.

Proof : η2 groups sets of runs of η1, which adds ambiguity,
and hence reduces mutual information between T and O.
Therefore, the uncertainty measure of actual runs T given
the condition O2 is bigger than or equal to that of T given
the condition O1, i.e., H(T |O2) ≥ H(T |O1). Hence:

I(T ;O1)− I(T ;O2)
= (H(T )−H(T |O1))− (H(T )−H(T |O2))
= H(T |O2)−H(T |O1) ≥ 0 .

Thus η1 v η2 implies I(T ;O1) ≥ I(T ;O2).

7 COST MODEL FOR OPACITY AND SECURITY

In this section, we introduce a cost function, which needs to
be optimized. The security policy is an architecture with
public/private clouds, yielding an observation function,
and a predicate that needs to remain opaque. The cost
function is based on the assumption that there is a cost of
security policy and a competing cost of opacity. The cost
of the security policy is the financial cost of setting up and
using a particular architecture. The cost of opacity is the
financial cost of leaking confidential information that should
remain hidden. This gives rise to the following cost function:

total cost = policy cost + opacity cost (42)

The security policies plays a key role in determining the best
design of the system. In addition, the security policies also
influence the opacity of the system.

Example 6. Consider Example 4 and the scenarios in Section 4.1.
One can use the entropy-based opacity measurement to analyse
the cost of the system, as it implies a degree of transparency of the

communication channel between the users and the services in the
system under different security preserving mechanisms.

The two scenarios represent two security policies Pol1 and
Pol2 in Section 4.1. Pol1 indicates that clouds Y and X are
private clouds. Messages communicated between the clouds X ,
Y and local network are visible, and messages inside the clouds
are invisible. Pol2 indicates that Y is public and X is private.
Messages communicated between the clouds X , Y and the local
network are visible, messages inside Y are visible, and messages
inside X are invisible. From these decisions one can calculate
policy cost1 and policy cost2.

By applying the measurement mechanism, we also have that
the entropy-based opacity related to Pol1 is π1, and the opacity
related to Pol2 is π0, see Example 4. By taking into account
the specific financial cost of leaking information one can evaluate
opacity cost1 and opacity cost2.

The resulting total cost1 and total cost2 can then be com-
pared and the better option selected for deployment.

8 CONCLUSION

Federated cloud systems increase the reliability and reduce
the cost of computational support. However, the large num-
ber of services and data involved creates security risks due
to the dynamic movement of the entities between the clouds.
A key role of information flow security is to ensure that
information propagates throughout the execution environ-
ment without security violation; in particular, that no secure
information is leaked to unauthorised subjects.

In this paper, a probabilistic information flow model
is presented to analyse workflows deployed on federated
cloud systems. Moreover, the notion of opacity is discussed
as a security property in the analysis of systems. Following
that, a threat model is proposed to analyze the flow sen-
sitive security model based on the observations of users’
behavioural patterns. Observational equivalence, entropy,
and channel capacity are used to quantify opacity. As a
result, trade-offs between opacity and service availability
can be analysed. In addition, a cost model is presented to
analyse the opacity and security policy of the system. The
study presented in this paper can help service providers
to allocate services and resources within federated cloud
systems, and to make security related decisions.

As further research we envisage the development of
effective verification techniques based on the results of this
paper, e.g., using tools and algorithms from the Petri net
field [27], [28]. Another direction for future research is to
investigate — using verification tools — a range of realistic
case studies in order to profile the usefulness of the different
notions of opacity discussed in this paper and position them
against other ways of measuring quantitative information
flow, such as min-entropy leakage [35] and g-leakage [36],
in the context of cloud computing.
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