2,943 research outputs found

    Cued-Click Point Graphical Password Using Circular Tolerance to Increase Password Space and Persuasive Features

    Get PDF
    AbstractGraphical password can be used as an alternative to text based (alphanumeric) password in which users click on images to set their passwords. Text based password uses username and password. So recalling of password is necessary which may be a difficult one. Images are generally easier to be remembered than text and in Graphical password; user can set images as their password. Therefore graphical password has been proposed by many researchers as an alternative to text based password Graphical passwords can be applied to workstation, web log-in applications, ATM machines, mobile devices etc. This paper presents implementation of Cued click point (CCP) graphical password which uses circular tolerance. Then it is found that CCP with circular tolerance is better as compared to CCP with rectangular tolerance

    Towards an effective recognition graphical password mechanism based on cultural familiarity

    Get PDF
    Text-based passwords for authentication are exposed to the dictionary attack as users tend to create weak passwords for easy memorability. When dealing with user’s authentication, pictures are more likely to be simply remembered in comparison with words. Hence, this study aimed to determine the types of pictures in accordance to users’ cultural background. It also investigated the relationship between the choices of password and the cultural familiarity along with the effect of Graphical Password (GP) on security and usability. A list of guidelines was proposed for the recognition of graphical passwords. This is believed to increase the security as well as usability. A total of 40 students were recruited to build a GP database. Further, an evaluation was conducted to investigate users’ familiarity and recognition of the GP from the database using 30 other respondents. The results showed that the 30 participants positively responded to the familiar pictures in accordance to their cultures. The result of successful login rate was 79.51% which indicates that cultural-based GP has increased the respondents’ familiarity by promoting their memorability. Further, the respondents who chose familiar GP had higher guessing attack rate than the unfamiliar GP. Finally, a total of 8 guidelines were established based on the aspects that correspond to the users’ preferences for choosing and processing GP. These guidelines can be used by graphical password system designers to develop effective GP system

    TQ-Model: A New Evaluation Model for Knowledge-Based Authentication Schemes

    Get PDF
    Many user authentication schemes are developed to resolve security issues of traditional textual password scheme. However, only Android unlock scheme gets wide acceptance among users in the domain of smartphones. Although Android unlock scheme has many security issues, it is widely used due to usability advantages. Different models and frameworks are developed for evaluating the performance of user authentication schemes. However, most of the existing frameworks provide ambiguous process of evaluation, and their results do not reflect how much an authentication scheme is strong or weak with respect to traditional textual password scheme. In this research paper, an evaluation model called textual passwords-based quantification model (TQ-Model) is proposed for knowledge-based authentication schemes. In the TQ-Model, evaluation is done on the basis of different features, which are related to security, usability and memorability. An evaluator needs to assign a score to each of the feature based on some criteria defined in the model. From the evaluation result, the performance difference between a knowledge-based authentication scheme and textual password scheme can be measured. Furthermore, evaluation results of Android unlock scheme, picture gesture authentication scheme and Passface scheme are presented in the paper using the TQ-Model

    A STUDY OF GRAPHICAL ALTERNATIVES FOR USER AUTHENTICATION

    Get PDF
    Merged with duplicate record 10026.1/1124 on 27.02.2017 by CS (TIS)Merged with duplicate record 10026.1/1124 Submitted by Collection Services ([email protected]) on 2012-08-07T10:49:43Z No. of bitstreams: 1 JALI MZ_2011.pdf: 7019966 bytes, checksum: e2aca7edf5e11df083ec430aedac512f (MD5) Approved for entry into archive by Collection Services([email protected]) on 2012-08-07T10:50:20Z (GMT) No. of bitstreams: 1 JALI MZ_2011.pdf: 7019966 bytes, checksum: e2aca7edf5e11df083ec430aedac512f (MD5) Made available in DSpace on 2012-08-07T10:50:20Z (GMT). No. of bitstreams: 1 JALI MZ_2011.pdf: 7019966 bytes, checksum: e2aca7edf5e11df083ec430aedac512f (MD5) Previous issue date: 2011Authenticating users by means of passwords is still the dominant form of authentication despite its recognised weaknesses. To solve this, authenticating users with images or pictures (i.e. graphical passwords) is proposed as one possible alternative as it is claimed that pictures are easy to remember, easy to use and has considerable security. Reviewing literature from the last twenty years found that few graphical password schemes have successfully been applied as the primary user authentication mechanism, with many studies reporting that their proposed scheme was better than their predecessors and they normally compared their scheme with the traditional password-based. In addition, opportunities for further research in areas such as image selection, image storage and retrieval, memorability (i.e. the user’s ability to remember passwords), predictability, applicability to multiple platforms, as well as users’ familiarity are still widely possible. Motivated by the above findings and hoping to reduce the aforementioned issues, this thesis reports upon a series of graphical password studies by comparing existing methods, developing a novel alternative scheme, and introducing guidance for users before they start selecting their password. Specifically, two studies comparing graphical password methods were conducted with the specific aims to evaluate users’ familiarity and perception towards graphical methods and to examine the performance of graphical methods in the web environment. To investigate the feasibility of combining two graphical methods, a novel graphical method known as EGAS (Enhanced Graphical Authentication System) was developed and tested in terms of its ease of use, ideal secret combination, ideal login strategies, effect of using smaller tolerances (i.e. areas where the click is still accepted) as well as users’ familiarity. In addition, graphical password guidelines (GPG) were introduced and deployed within the EGAS prototype, in order to evaluate their potential to assist users in creating appropriate password choices. From these studies, the thesis provides an alternative classification for graphical password methods by looking at the users’ tasks when authenticating into the system; namely click-based, choice-based, draw-based and hybrid. Findings from comparative studies revealed that although a number of participants stated that they were aware of the existence of graphical passwords, they actually had little understanding of the methods involved. Moreover, the methods of selecting a series of images (i.e. choice-based) and clicking on the image (i.e. click-based) are actually possible to be used for web-based authentication due to both of them reporting complementary results. With respect to EGAS, the studies have shown that combining two graphical methods is possible and does not introduce negative effects upon the resulting usability. User familiarity with the EGAS software prototype was also improved as they used the software for periods of time, with improvement shown in login time, accuracy and login failures. With the above findings, the research proposes that users’ familiarity is one of the key elements in deploying any graphical method, and appropriate HCI guidelines should be considered and employed during development of the scheme. Additionally, employing the guidelines within the graphical method and not treating them as a separate entity in user authentication is also recommended. Other than that, elements such as reducing predictability, testing with multiple usage scenarios and platforms, as well as flexibility with respect to tolerance should be the focus for future research

    How WEIRD is Usable Privacy and Security Research? (Extended Version)

    Full text link
    In human factor fields such as human-computer interaction (HCI) and psychology, researchers have been concerned that participants mostly come from WEIRD (Western, Educated, Industrialized, Rich, and Democratic) countries. This WEIRD skew may hinder understanding of diverse populations and their cultural differences. The usable privacy and security (UPS) field has inherited many research methodologies from research on human factor fields. We conducted a literature review to understand the extent to which participant samples in UPS papers were from WEIRD countries and the characteristics of the methodologies and research topics in each user study recruiting Western or non-Western participants. We found that the skew toward WEIRD countries in UPS is greater than that in HCI. Geographic and linguistic barriers in the study methods and recruitment methods may cause researchers to conduct user studies locally. In addition, many papers did not report participant demographics, which could hinder the replication of the reported studies, leading to low reproducibility. To improve geographic diversity, we provide the suggestions including facilitate replication studies, address geographic and linguistic issues of study/recruitment methods, and facilitate research on the topics for non-WEIRD populations.Comment: This paper is the extended version of the paper presented at USENIX SECURITY 202

    Risk assessment of email accounts: Difference between perception and reality

    Get PDF
    The use of Internet is associated with a growing number of security threats. This thesis analyzes how users perceive the security of their email account based on the email account provider. With our study, we aim to contribute to the information security systems literature in three ways: First, by taking a more complete view on security online, and reviewing the concept of usable security, usability, human-computer interaction, trust and user perception. Second, by performing an analysis of providers of online services specifically emails. Third, by applying a renowned risk analysis method called Information Security Risk Analysis Method (ISRAM) for risk assessment. The ISRAM analysis revealed that Hotmail, Gmail and Yahoo email accounts have a medium risk level, while the reality analysis demonstrated no clearly more secure account provider with only low level risk counts

    Risks and potentials of graphical and gesture-based authentication for touchscreen mobile devices

    Get PDF
    While a few years ago, mobile phones were mainly used for making phone calls and texting short messages, the functionality of mobile devices has massively grown. We are surfing the web, sending emails and we are checking our bank accounts on the go. As a consequence, these internet-enabled devices store a lot of potentially sensitive data and require enhanced protection. We argue that authentication often represents the only countermeasure to protect mobile devices from unwanted access. Knowledge-based concepts (e.g., PIN) are the most used authentication schemes on mobile devices. They serve as the main protection barrier for many users and represent the fallback solution whenever alternative mechanisms fail (e.g., fingerprint recognition). This thesis focuses on the risks and potentials of gesture-based authentication concepts that particularly exploit the touch feature of mobile devices. The contribution of our work is threefold. Firstly, the problem space of mobile authentication is explored. Secondly, the design space is systematically evaluated utilizing interactive prototypes. Finally, we provide generalized insights into the impact of specific design factors and present recommendations for the design and the evaluation of graphical gesture-based authentication mechanisms. The problem space exploration is based on four research projects that reveal important real-world issues of gesture-based authentication on mobile devices. The first part focuses on authentication behavior in the wild and shows that the mobile context makes great demands on the usability of authentication concepts. The second part explores usability features of established concepts and indicates that gesture-based approaches have several benefits in the mobile context. The third part focuses on observability and presents a prediction model for the vulnerability of a given grid-based gesture. Finally, the fourth part investigates the predictability of user-selected gesture-based secrets. The design space exploration is based on a design-oriented research approach and presents several practical solutions to existing real-world problems. The novel authentication mechanisms are implemented into working prototypes and evaluated in the lab and the field. In the first part, we discuss smudge attacks and present alternative authentication concepts that are significantly more secure against such attacks. The second part focuses on observation attacks. We illustrate how relative touch gestures can support eyes-free authentication and how they can be utilized to make traditional PIN-entry secure against observation attacks. The third part addresses the problem of predictable gesture choice and presents two concepts which nudge users to select a more diverse set of gestures. Finally, the results of the basic research and the design-oriented applied research are combined to discuss the interconnection of design space and problem space. We contribute by outlining crucial requirements for mobile authentication mechanisms and present empirically proven objectives for future designs. In addition, we illustrate a systematic goal-oriented development process and provide recommendations for the evaluation of authentication on mobile devices.Während Mobiltelefone vor einigen Jahren noch fast ausschließlich zum Telefonieren und zum SMS schreiben genutzt wurden, sind die Anwendungsmöglichkeiten von Mobilgeräten in den letzten Jahren erheblich gewachsen. Wir surfen unterwegs im Netz, senden E-Mails und überprüfen Bankkonten. In der Folge speichern moderne internetfähigen Mobilgeräte eine Vielfalt potenziell sensibler Daten und erfordern einen erhöhten Schutz. In diesem Zusammenhang stellen Authentifizierungsmethoden häufig die einzige Möglichkeit dar, um Mobilgeräte vor ungewolltem Zugriff zu schützen. Wissensbasierte Konzepte (bspw. PIN) sind die meistgenutzten Authentifizierungssysteme auf Mobilgeräten. Sie stellen für viele Nutzer den einzigen Schutzmechanismus dar und dienen als Ersatzlösung, wenn alternative Systeme (bspw. Fingerabdruckerkennung) versagen. Diese Dissertation befasst sich mit den Risiken und Potenzialen gestenbasierter Konzepte, welche insbesondere die Touch-Funktion moderner Mobilgeräte ausschöpfen. Der wissenschaftliche Beitrag dieser Arbeit ist vielschichtig. Zum einen wird der Problemraum mobiler Authentifizierung erforscht. Zum anderen wird der Gestaltungsraum anhand interaktiver Prototypen systematisch evaluiert. Schließlich stellen wir generelle Einsichten bezüglich des Einflusses bestimmter Gestaltungsaspekte dar und geben Empfehlungen für die Gestaltung und Bewertung grafischer gestenbasierter Authentifizierungsmechanismen. Die Untersuchung des Problemraums basiert auf vier Forschungsprojekten, welche praktische Probleme gestenbasierter Authentifizierung offenbaren. Der erste Teil befasst sich mit dem Authentifizierungsverhalten im Alltag und zeigt, dass der mobile Kontext hohe Ansprüche an die Benutzerfreundlichkeit eines Authentifizierungssystems stellt. Der zweite Teil beschäftigt sich mit der Benutzerfreundlichkeit etablierter Methoden und deutet darauf hin, dass gestenbasierte Konzepte vor allem im mobilen Bereich besondere Vorzüge bieten. Im dritten Teil untersuchen wir die Beobachtbarkeit gestenbasierter Eingabe und präsentieren ein Vorhersagemodell, welches die Angreifbarkeit einer gegebenen rasterbasierten Geste abschätzt. Schließlich beschäftigen wir uns mit der Erratbarkeit nutzerselektierter Gesten. Die Untersuchung des Gestaltungsraums basiert auf einem gestaltungsorientierten Forschungsansatz, welcher zu mehreren praxisgerechte Lösungen führt. Die neuartigen Authentifizierungskonzepte werden als interaktive Prototypen umgesetzt und in Labor- und Feldversuchen evaluiert. Im ersten Teil diskutieren wir Fettfingerattacken ("smudge attacks") und präsentieren alternative Authentifizierungskonzepte, welche effektiv vor diesen Angriffen schützen. Der zweite Teil beschäftigt sich mit Angriffen durch Beobachtung und verdeutlicht wie relative Gesten dazu genutzt werden können, um blickfreie Authentifizierung zu gewährleisten oder um PIN-Eingaben vor Beobachtung zu schützen. Der dritte Teil beschäftigt sich mit dem Problem der vorhersehbaren Gestenwahl und präsentiert zwei Konzepte, welche Nutzer dazu bringen verschiedenartige Gesten zu wählen. Die Ergebnisse der Grundlagenforschung und der gestaltungsorientierten angewandten Forschung werden schließlich verknüpft, um die Verzahnung von Gestaltungsraum und Problemraum zu diskutieren. Wir präsentieren wichtige Anforderungen für mobile Authentifizierungsmechanismen und erläutern empirisch nachgewiesene Zielvorgaben für zukünftige Konzepte. Zusätzlich zeigen wir einen zielgerichteten Entwicklungsprozess auf, welcher bei der Entwicklung neuartiger Konzepte helfen wird und geben Empfehlungen für die Evaluation mobiler Authentifizierungsmethoden

    Secure and Usable User Authentication

    Get PDF
    Authentication is a ubiquitous task in users\u27 daily lives. The dominant form of user authentication are text passwords. They protect private accounts like online banking, gaming, and email, but also assets in organisations. Yet, many issues are associated with text passwords, leading to challenges faced by both, users and organisations. This thesis contributes to the body of research enabling secure and usable user authentication, benefiting both, users and organisations. To that end, it addresses three distinct challenges. The first challenge addressed in this thesis is the creation of correct, complete, understandable, and effective password security awareness materials. To this end, a systematic process for the creation of awareness materials was developed and applied to create a password security awareness material. This process comprises four steps. First, relevant content for an initial version is aggregated (i.e. descriptions of attacks on passwords and user accounts, descriptions of defences to these attacks, and common misconceptions about password and user account security). Then, feedback from information security experts is gathered to ensure the correctness and completeness of the awareness material. Thereafter, feedback from lay-users is gathered to ensure the understandability of the awareness material. Finally, a formal evaluation of the awareness material is conducted to ensure its effectiveness (i.e. whether the material improves participant\u27s ability to assess the security of passwords as well as password-related behaviour and decreases the prevalence of common misconceptions about password and user account security). The results of the evaluation show the effectiveness of the awareness material: it significantly improved the participants\u27 ability to assess the security of password-related behaviour as well as passwords and significantly decreased the prevalence of misconceptions about password and user account security. The second challenge addressed in this thesis is shoulder-surfing resistant text password entry with gamepads (as an example of very constrained input devices) in shared spaces. To this end, the very first investigation of text password entry with gamepads is conducted. First, the requirements of authentication in the gamepad context are described. Then, these requirements are applied to assess schemes already deployed in the gamepad context and shoulder-surfing resistant authentication schemes from the literature proposed for non-gamepad contexts. The results of this assessment show that none of the currently deployed and only four of the proposals in the literature fulfil all requirements. Furthermore, the results of the assessment also indicate a need for an empirical evaluation in order to exactly gauge the shoulder-surfing threat in the gamepad context and compare alternatives to the incumbent on-screen keyboard. Based on these results, two user studies (one online study and one lab study) are conducted to investigate the shoulder-surfing resistance and usability of three authentication schemes in the gamepad context: the on-screen keyboard (as de-facto standard in this context), the grid-based scheme (an existing proposal from the literature identified as the most viable candidate adaptable to the gamepad context during the assessment), and Colorwheels (a novel shoulder-surfing resistant authentication scheme specifically designed for the gamepad context). The results of these two user studies show that on-screen keyboards are highly susceptible to opportunistic shoulder-surfing, but also show the most favourable usability properties among the three schemes. Colorwheels offers the most robust shoulder-surfing resistance and scores highest with respect to participants\u27 intention to use it in the future, while showing more favourable usability results than the grid-based scheme. The third challenge addressed in this thesis is secure and efficient storage of passwords in portfolio authentication schemes. Portfolio authentication is used to counter capture attacks such as shoulder-surfing or eavesdropping on network traffic. While usability studies of portfolio authentication schemes showed promising results, a verification scheme which allows secure and efficient storage of the portfolio authentication secret had been missing until now. To remedy this problem, the (t,n)-threshold verification scheme is proposed. It is based on secret sharing and key derivation functions. The security as well as the efficiency properties of two variants of the scheme (one based on Blakley secret sharing and one based on Shamir secret sharing) are evaluated against each other and against a naive approach. These evaluations show that the two (t,n)-threshold verification scheme variants always exhibit more favourable properties than the naive approach and that when deciding between the two variants, the exact application scenario must be considered. Three use cases illustrate as exemplary application scenarios the versatility of the proposed (t,n)-threshold verification scheme. By addressing the aforementioned three distinct challenges, this thesis demonstrates the breadth of the field of usable and secure user authentication ranging from awareness materials, to the assessment and evaluation of authentication schemes, to applying cryptography to craft secure password storage solutions. The research processes, results, and insights described in this thesis represent important and meaningful contributions to the state of the art in the research on usable and secure user authentication, offering benefits for users, organisations, and researchers alike
    • …
    corecore