174 research outputs found

    Solar Enablement Initiative in Australia: Report on Efficiently Identifying Critical Cases for Evaluating the Voltage Impact of Large PV Investment

    Full text link
    The increasing quantity of PV generation connected to distribution networks is creating challenges in maintaining and controlling voltages in those distribution networks. Determining the maximum hosting capacity for new PV installations based on the historical data is an essential task for distribution networks. Analyzing all historical data in large distribution networks is impractical. Therefore, this paper focuses on how to time efficiently identify the critical cases for evaluating the voltage impacts of the new large PV applications in medium voltage (MV) distribution networks. A systematic approach is proposed to cluster medium voltage nodes based on electrical adjacency and time blocks. MV nodes are clustered along with the voltage magnitudes and time blocks. Critical cases of each cluster can be used for further power flow study. This method is scalable and can time efficiently identify cases for evaluating PV investment on medium voltage networks

    Violation-mitigation-based method for PV hosting capacity quantification in low voltage grids

    Get PDF
    Hosting capacity knowledge is of great importance for distribution utilities to assess the amount of PV capacity possible to accommodate without troubling the operation of the grid. In this paper, a novel method to quantify the hosting capacity of low voltage grids is presented. The method starts considering a state of fully exploited building rooftop solar potential. A downward process is proposed—from the starting state with expected violations on the grid operation to a state with no violations. In this process, the installed PV capacity is progressively reduced. The reductions are made sequentially and selectively aiming to mitigate specific violations: nodes overvoltage, lines overcurrent and transformer overloading. Evaluated on real data of fourteen low voltage grids from Austria, the method proposed exhibits benefits in terms of higher hosting capacities and lower computational costs compared to stochastic methods. Furthermore, it also quantifies hosting capacity expansions achievable by overcoming the effect of the violations. The usage of a potential different from solar rooftops is also presented, demonstrating that a user-defined potential allows to quantify the hosting capacity in a more general setting with the method proposed.publishedVersionPaid open acces

    Impact assessment of high penetration of rooftop PV in municipal electrical networks

    Get PDF
    Thesis (MEng (Electrical Engineering))--Cape Peninsula University of Technology, 2019There is an increasing global trend of grid connected distributed generation, mainly based on renewable energy sources such as wind and photovoltaic (PV) systems. The proliferation of these intermittent energy sources into the existing networks may subject the network into technical challenges such as voltage rise, equipment over-load, power quality and protection scheme violations. With increased PVDG (mainly rooftop PV) uptake occurring mostly on Low Voltage (LV) feeders, characterised by lack of network visibility and controllability, these technical challenges may be exac-erbated. In the absence of government incentive, current uptake of rooftop PVDG is reliant on customer preference and financial means. Thus make PVDG integration on the network be randomly placed and sized, of which the network distribution operator (NDO) will have no control over. The lack of regulations and interconnection studies conducted on South African networks has resulted in a growing concern amongst util-ities on how the increasing customer-owned rooftop PV systems uptake will impact the existing networks. This study aims to investigate technical impact high penetration of rooftop PV sys-tem will have on the existing LV networks. The load flow (LF) computation is pivotal in determining power system state when subjected to high penetration of rooftop PV. Monte-Carlo based Probabilistic Load Flow (PLF) was proposed and input variables were modelled using Beta probabilistic distribution function (PDF). The proposed im-pact assessment framework was applied on real LV urban residential network situated in Cape Town, South Africa. Simulations were conducted on DIgSILENT PowerFac-tory and the PDF for input variables (Load demand and PV generation) were derived from historic data. Four scenarios were simulated and system performance parameters were recorded such as; voltage magnitude, voltage unbalance factor and equipment thermal loading. Simulation results in the test network indicated thermal loading violation as the main limiting factor in urban residential network. PV system topology (either three-phase or single phase) proved to have significant effect on network hosting capacity, were higher PV penetration can be achieved for a three-phase system. Penetration level as low as 12% were recorded, which is significantly lower than the prescribed guidelines in simplified criteria in NRS097-2-3 standard and therefore raises a concern on the relevance of this standard on all types of networks (in urban network in particu-lar). However, penetration level above NRS097-2-3 limits may be achieved depending on feeder characteristics

    Power quality and electromagnetic compatibility: special report, session 2

    Get PDF
    The scope of Session 2 (S2) has been defined as follows by the Session Advisory Group and the Technical Committee: Power Quality (PQ), with the more general concept of electromagnetic compatibility (EMC) and with some related safety problems in electricity distribution systems. Special focus is put on voltage continuity (supply reliability, problem of outages) and voltage quality (voltage level, flicker, unbalance, harmonics). This session will also look at electromagnetic compatibility (mains frequency to 150 kHz), electromagnetic interferences and electric and magnetic fields issues. Also addressed in this session are electrical safety and immunity concerns (lightning issues, step, touch and transferred voltages). The aim of this special report is to present a synthesis of the present concerns in PQ&EMC, based on all selected papers of session 2 and related papers from other sessions, (152 papers in total). The report is divided in the following 4 blocks: Block 1: Electric and Magnetic Fields, EMC, Earthing systems Block 2: Harmonics Block 3: Voltage Variation Block 4: Power Quality Monitoring Two Round Tables will be organised: - Power quality and EMC in the Future Grid (CIGRE/CIRED WG C4.24, RT 13) - Reliability Benchmarking - why we should do it? What should be done in future? (RT 15

    Improving Grid Hosting Capacity and Inertia Response with High Penetration of Renewable Generation

    Get PDF
    To achieve a more sustainable supply of electricity, utilizing renewable energy resources is a promising solution. However, the inclusion of intermittent renewable energy resources in electric power systems, if not appropriately managed and controlled, will raise a new set of technical challenges in both voltage and frequency control and jeopardizes the reliability and stability of the power system, as one of the most critical infrastructures in the today’s world. This dissertation aims to answer how to achieve high penetration of renewable generations in the entire power system without jeopardizing its security and reliability. First, we tackle the data insufficiency in testing new methods and concepts in renewable generation integration and develop a toolkit to generate any number of synthetic power grids feathering the same properties of real power grids. Next, we focus on small-scale PV systems as the most growing renewable generation in distribution networks and develop a detailed impact assessment framework to examine its impacts on the system and provide installation scheme recommendations to improve the hosting capacity of PV systems in the distribution networks. Following, we examine smart homes with rooftop PV systems and propose a new demand side management algorithm to make the best use of distributed renewable energy. Finally, the findings in the aforementioned three parts have been incorporated to solve the challenge of inertia response and hosting capacity of renewables in transmission network

    Assessing Costs of Community Solar Integration via Optimal Distribution Grid Expansion

    Full text link
    This paper presents a comprehensive analysis of distribution grid upgrades costs necessary to integrate Community Solar (CS) projects. The innovative methodology proposed for this quantification is based on incremental least-cost expansion of the distribution system, encompassing both traditional and non-traditional grid upgrade strategies. Realistic infrastructure investment costs are obtained using a dataset of over 2,500 feeders, including various loading scenarios, and compared with empirical costs of integrating real CS projects. The results are then used to evaluate costs and deferrals from the consumers' and project developers' perspectives, assess the nature of the infrastructure upgrades and explore the potential benefits of a strategic siting of CS projects. This analysis is summarized in a set of regulatory and policy recommendations to support planning and valuation aspects related to CS

    A review of the tools and methods for distribution networks' hosting capacity calculation

    Get PDF
    Integration of distributed energy resources (DERs) has numerous advantages as well as some disadvantages. To safely integrate DERs into a given distribution network and to maximize their benefits, it is important to thoroughly analyze the impact of DERs on that particular network. The maximum amount of DERs that a given distribution network can accommodate without causing technical problems or without requiring infrastructure modifications is defined as the hosting capacity (HC). In this work, a review of the recent literature regarding the HC is presented. The major limiting factors of HC are found to be voltage deviation, phase unbalance, thermal overload, power losses, power quality, installation location and protection devices’ miscoordination. The studies are found to employ one of four different methods for HC calculation: (i) deterministic, (ii) stochastic, (iii) optimization-based and (iv) streamlined. Commercially available tools for HC calculation are also presented. The review concludes that the choice of tools and methods for HC calculation depends on the data available and the type of study that is to be performed

    Investigation into Photovoltaic Distributed Generation Penetration in the Low Voltage Distribution Network

    Get PDF
    Significant integration of photovoltaic distributed generation (PVDG) in the low voltage distribution network (LVDN) could potentially pose threats and challenges to the core activity of distribution system operators (DSO), which is to transport electrical energy in a reliable and cost-effective way. The main aim of this research is to investigate the active planning and operation of LVDNs with increased PVDG integration through steady state power system analysis. To address the impacts of voltage profile fluctuation due to power flow modification, this research proposes a probabilistic risk assessment of power quality (PQ) variations and events that may arise due to significant PVDG integration. A Monte Carlo based simulation is applied for the probabilistic risk assessment. This probabilistic approach is used as a tool to assess the likely impacts due to PVDG integration against the extreme-case scenarios. With increased PVDG integration, site overvoltage is a likely impact, whereas voltage unbalance reduces when compared with no or low PVDG penetration cases. This is primarily due to the phase cancellation between the phases. The other aspect of the work highlights the fact that the implementation of existing volumetric charges in conjunction with net-metering can have negative impacts on network operator’s revenue. However, consideration of capacity charges in designing the existing network tariff structure shows incentivising the network operator to perform their core duties under increased integration of PVDG. The site overvoltage issue was also studied and resolved in a novel way, where the active and reactive power of the PVDG inverters at all the PV installed premises were optimally coordinated to increase the PV penetration from 35.7% to 66.7% of the distribution transformer rating. This work further explores how deficiencies in both reactive power control (RPC) and active power control (APC) as separate approaches can be mitigated by suitably combining RPC and APC algorithms. A novel “Q” or “PF” limiter was proposed to restrict frequent switching between the two droop characteristics while ensuring a stabilizing (smoothened) voltage profile in each of the PV installed nodes. This novel approach not only alleviates the voltage fluctuation but also reduces the overall network losses

    An assessment of high distributed PV generation on eThekwini electricity distribution network.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Durban.Small-scale Distributed Photovoltaic Generation (DPVG) continues to grow with increasing operational challenges for electricity utilities and Distribution Network (DN) operators. In Low Voltage (LV) DNs, there are well researched potential issues that arise with high Photovoltaic (PV) penetration. These include: feeder voltage rise, voltage fluctuations and reverse power flow. Among these, the most important issue is voltage rise at the LV distribution feeder. In a broader perspective, to this point in time, there has not been more detailed research on small-scale DPVG interconnections in the LV networks in South Africa (SA) and in the KwaZulu-Natal (KZN) region. There is a great need for research in this field for ensuring network efficiency, reliability and future regulatory standards. Other network systems have been studied around the world were conditions, environment, network characteristics and electricity customer loads will be different; e.g in the North-West of England, Germany, and Queensland, Australia. Hence, the main objective of this research study is to analyze the mentioned problems, identify and test the appropriate mitigation solutions, in the event of high DPVG. This study was carried out on a typical SAn LV DN model, which represents an existing housing development estate at eThekwini Municipality. Consequently the aim is to identify solutions suitable for networks in SAn or of similar architect and characteristics. As a result, a specific application is undertaken at the KZN region, which is also representative of network characteristics of SAn networks. A voltage rise, voltage fluctuation and network power loss issues were analyzed at different PV penetration levels and varying customer loads. An innovative approach of utilization of a standard central On-Load-Tap-Change (Off-LTC) transformer for voltage regulation with high DPVG was tested. Usage of this technique has not been reported in the literature to date. National standards in SA were used as a basic guide in this study and stated the possibility of grid voltage control of distributed PV inverters. Assessment of the typical LV network showed that there is indeed voltage rise and hence possible voltage fluctuation, when PV system output power varies. The Off-LTC transformer was able to maintain network voltages within the allowed operational range and reduced the magnitude of voltage rise. This implies that there is a possibility of avoiding expensive upgrades of the existing and widespread Off-LTC transformers technology
    corecore