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Abstract

There is an increasing global trend of grid connected distributed generation, mainly

based on renewable energy sources such as wind and photovoltaic (PV) systems.

The proliferation of these intermittent energy sources into the existing networks may

subject the network into technical challenges such as voltage rise, equipment over-

load, power quality and protection scheme violations. With increased PVDG (mainly

rooftop PV) uptake occurring mostly on Low Voltage (LV) feeders, characterised by

lack of network visibility and controllability, these technical challenges may be exac-

erbated. In the absence of government incentive, current uptake of rooftop PVDG is

reliant on customer preference and financial means. Thus make PVDG integration on

the network be randomly placed and sized, of which the network distribution operator

(NDO) will have no control over. The lack of regulations and interconnection studies

conducted on South African networks has resulted in a growing concern amongst util-

ities on how the increasing customer-owned rooftop PV systems uptake will impact

the existing networks.

This study aims to investigate technical impact high penetration of rooftop PV sys-

tem will have on the existing LV networks. The load flow (LF) computation is pivotal

in determining power system state when subjected to high penetration of rooftop PV.

Monte-Carlo based Probabilistic Load Flow (PLF) was proposed and input variables

were modelled using Beta probabilistic distribution function (PDF). The proposed im-

pact assessment framework was applied on real LV urban residential network situated

in Cape Town, South Africa. Simulations were conducted on DIgSILENT PowerFac-

tory and the PDF for input variables (Load demand and PV generation) were derived

from historic data. Four scenarios were simulated and system performance parameters

were recorded such as; voltage magnitude, voltage unbalance factor and equipment

thermal loading.

Simulation results in the test network indicated thermal loading violation as the

main limiting factor in urban residential network. PV system topology (either three-

phase or single phase) proved to have significant effect on network hosting capacity,

were higher PV penetration can be achieved for a three-phase system. Penetration

level as low as 12% were recorded, which is significantly lower than the prescribed

v



guidelines in simplified criteria in NRS097-2-3 standard and therefore raises a concern

on the relevance of this standard on all types of networks (in urban network in particu-

lar). However, penetration level above NRS097-2-3 limits may be achieved depending

on feeder characteristics.
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Chapter 1

Introduction

1.1 Research Background

The current global electricity requirements are mostly supplied by depleting and en-

vironmental unfriendly fossil fuel based energy resources. In addition, the global elec-

tricity demand is increasing and countries are now looking for alternative electricity

generation sources that will also reduce the global carbon emissions. Recently, re-

newable resources, which are abundance and clean have been preferred alternative to

conventional fossil fuel for electrical energy generation. As a result, there has been

an increasing growth in renewable energy markets. In 2018, non-renewable sources

accounted for about 73.8% of electricity production and the remaining 26.2% con-

tributed by renewable sources[1].

South Africa, like many other countries, has set its own renewable energy targets

formulated in the Integrated Resource Plan (IRP) for electricity 2010, which laid out

the proposed electricity generation fleet for South Africa for the period 2010 to 2030

[2, 3]. The IRP 2010 estimated that electricity demand by 2030 would require an

increase in additional generation capacity to 52GW, of which, 17.8GW would be from

renewable sources. As seen on the current trends, large scale renewable installations

are expected to have majority contribution on this target. However, the IRP 2010

also estimated a significant increase in small-scale embedded generation (SSEG) for

residential and commercial applications, with a forecast of 30GW of rooftop PV by

2050 [2].

SSEGs in the form of rooftop photovoltaic (PV) systems are increasing rapidly in

many countries arounnd the world, including South Africa. The reason for this can be

mainly attributed to above inflation rate increasing electricity tariffs, abundant sun-

shine, load shedding experience in 2008 and 2015 as well as the decreasing price of PV
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technologies[4]. These factors, and many others, have led to customer being involved

in the electricity market as both a producer and consumer (also known as pro-sumer)

of electricity. Although the South African power utility, Eskom, does not allow inte-

gration of rooftop PV into their grid, number of municipalities (including City of Cape

Town (CCT)) do allow integration of rooftop PV into their grids through a defined and

documented application process[5]. As a result, the rooftop PV generation is expected

to continue increasing in the municipal grids, and thus introducing different technical

impacts on the existing municipal grids.

1.2 Problem statement

The application process for integrating rooftop PV into the municipal grids requires

site layout, written approval by registered Engineer or Technologist, NRS 097-2-3 and

SA renewable power plants grid code compliance [6]. This increased administrative

burden result in customers installing their rooftop PV without the knowledge of the

distributors and reducing the ability of the utility to regulate the impact these source

of generation will have on the existing network.

In the past, network monitoring was restricted to MV network (particularly at main

substations) to reduce the infrastructure investment costs and the lack of measuring

infrastructure in the LV network has made it difficult for the distributor to monitor the

impact of PV systems on existing LV network. In practice, the customer is only limited

by the available roof space and personal financial constraints. However, the possibility

of high penetration lies in the flexibility of the existing network to seamlessly accom-

modate these intermittent electricity generators, which is also referred to as network

hosting capacity[7, 8]. Network hosting capacity is dependent on the placement, size

and output power profile of a PV system [9], which utility has no control over for a

customer owned PV system [10, 11]. Proliferation of uncontrolled high penetration of

PV systems will subject the existing to challenges like Voltage rise, overloading, deter

power quality and protection issues.

Most of the PV - Grid integrated research work conducted thus far, has focused

mainly on the voltage rise impact existing grids will be subjected to as a result of

high PV penetration[12, 13]. Similar trend is observed in studies conducted in South

Africa[14, 15, 16], which may be suitable for long feeders such as rural networks. How-

ever, for urban networks characterised by electrically short radial feeders, thermal

overload may have greater influence than voltage rise.
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Considering that proliferation of rooftop PV is expected at LV level, consisting of

predominantly single-phase loads, voltage unbalance performance parameter is bound

to be affected by this distributed generation.

Due to the possible high PV penetration, the distributor may have to invest in

mitigation solution to increase grid hosting capacity. Therefore, it is important the

distributor to investigate the impact high PV system penetration will have on the

existing distribution network.

1.3 Research questions

To address the research problem presented in Section 1.2, the research questions are

formulated as follows:

• RQ1: Will the integration of rooftop PV technically impact (e.g Overvoltage,

voltage unbalance and equipment loading) the existing urban residential network

and to what extent?

• RQ2: What methods have been adopted to investigate DG impact on existing

networks?

• RQ3: Is overvoltage performance parameter adequate to assess PVDG impact on

urban residential networks?

• RQ4: How is network hosting capacity affected by rooftop PV system connection

topology?

The aim of this thesis will be addressed by finding answers to the above mentioned

research questions.

1.4 Research objectives

These objectives set below are intended to find answers to research questions listed in

Section 1.3 above. To determine the potential renewable energy that can be harvested

within the municipal area of supply.

• Conduct literature review to identify:
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– Technical impact on distribution network when subjected to high penetra-

tion of PVDG.

– applied impact assessment methods and their advantages.

• Determine the installable rooftop PV capacity of a given test network and max-

imum power injection in typical feeders.

• Model existing network and determine technical challenges based on the potential

penetration levels.

• Determine PV hosting capacity and evaluate effects of different connection meth-

ods (single-phase and three phase).

1.5 Research approach

The impact of high penetration of grid-connected rooftop PV will have on the existing

network can be evaluated by either conducting a pilot project collect field measure-

ments or by conducting a simulation study. Although pilot project will provide most

accurate results, this method of research is expensive and therefore simulation method

was adopted for this study.

The procedure illustrated in Figure 1.1 was employed to meet the objective of this

Pre-study Theoretical 

Framework 

Modeling & 

Simulations 

Results & 

Analysis 

Conclusions & 

Recommendations 

Figure 1.1: Research Approach

research work. Pre-study phase entails mainly literature review in a quest to under-

stand the possible impacts that a high penetration of rooftop PV can have on the

existing electrical network and methods applied to used to quantify these impacts.

Theoretical framework was developed to guide the study, with a focus on the oper-

ating principle of the distribution networks and the rooftop PV systems and their

integration/interconnection. The impact study methodology was developed and a real

network test system selected for simulation. Once main variables were Modelled and

real networks were used as a test network to evaluate main impact parameters of the

study (i.e. Voltagerise, voltage unbalance factor and equipment overload violation).

DigSilent Power Factory software [17] was used as a main simulation platform. The
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main inputs variables (load and PV generation) were modelled into DigSilent Power

Factory and simulations conducted for different penetration levels. Where network

violations were observed and PV hosting capacity were determined. Conclusions and

recommendations for future studies were made.

1.6 Delimitation

Considering the size of the project, only rooftop PV renewable technology will form

part of this thesis due to their technological maturity and solar resource abundance in

South Africa.

It is acknowledged that the of integrating high share of rooftop PV has multiple impacts

such as technical, economical, environmental and social issues. Although these issues

are equally important, they are large areas of research in themselves and as result, this

study will only investigate technical impact only.

The scope of the study will be limited as follows:

• Technical impact analysis will be based on steady state analysis only; focusing

on voltage rise, voltage unbalance and equipment loading violations.

• The rooftop PV integration point will be at LV networks only, focusing main on

urban residential network.

• It is assumed that all rootop PVs do not have a storage system and the supplers

power is injected to the network.

• Data sets will be based on conditions prevailing in Cape Town, South Africa.

1.7 Research Contribution

IRP in 2013, with rooftop PV targets of 21.6GW in 2030 and 29.8GW in 2050[2].

The City of Cape Town has set its own renewable energy target of 20% in 2020 and

rooftop PV systems can be a major contributor in meeting these targets. The increased

interest by consumers to install rooftop PV systems requires system engineers need

to know if the existing network will be able to withstand the increased capacity of

the intermittent PV system. This research is aimed at understanding of the technical

impact of high rooftop PV penetration into the existing municipal electrical network.

This work is also intended to contribute in rooftop PV integration literature based on

conditions and philosophy pertaining to South Africa.

The benefits of this work are based on stakeholders as follows:
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• Network operator: determining the hosting capacity of typical feeder within the

City of Cape Town area.

• Policy/Decision maker: provide insight on network limits and contribute to en-

abling pathways to increase rooftop PV penetration into the network.

The outcome of this work can be used as bases for the decision making in the approval

process of customer owned grid integrated rooftop PV system applications.

1.8 Research overview

The balance of this thesis is outlined as follows:

• In Chapter 2 a literature review was conducted on grid integration impact re-

search. To understand the future possibilities of high solar PV integration, the

global trends of PV uptake are reviewed. Benefits and technical impact on high

DG penetration on distribution grids are reviewed. impact assessment methods

• In Chapter 3 the main theoretical frame work that guided the research study is

provided, focusing on the characteristics of distribution system, PV systems and

their integration.

• Chapter 4 presents impact assessment methodologies adopted in this thesis based

on Monte-Carlo based Probabilistic modeling of input variables and PowerFac-

tory software as the main simulation platform.

• In Chapter 5, probabilistic impact assessment framework presented Chapter 4

is applied on real low voltage urban residential network. Simulation results of

both three phase and single phase rooftop PV integration are presented and the

hosting capacity of the test network is determined. Results are analyzed and

discussed in relation to previous work on the subject of this thesis.

• Chapter 6 presents main findings of this research and draws conclusion on the

research problem. Followed by answers to the research question posed and lastly,

recommendations for future research are proposed.
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Chapter 2

Literature Review

This chapter presents a literature review that is in line with the subject of integration

of DGs (rooftop solar PV system) into an existing grid. To understand the future

prospects of high solar PV integration, the global and local trends of PV uptake are

reviewed. Followed by the impact (benefits and drawbacks) of grid-tied DGs reviewed,

including the impact assessment methods adopted in the literature. Lastly, the appli-

cable integration standards and grid codes are presented.

2.1 Global uptake of solar PV

Global electricity production is been dominated by fossil fuels, accounting for 73.8%

of electricity production in 2018 and renewable energy accounting for the remaining

26.2% [1]. As illustrated in Figure 2.1, Hydro-power contributed 15.8% and account-

ing for 60% of total RES share. While the balance is shared between wind, solar

PV,Bio-power and others (Geothermal,CSP, and ocean power). Solar PV, which is

focal energy of this study, accounted for approximately 2.4% of global electricity and

its adoption has grown drastically over the preceding decade. Solar PV represented

about 55% of newly installed renewable power capacity in 2017[1],an improvement

from 47% in 2016[1].

Figure 2.2 showed an exponential global adoption of solar PV capacity, from esti-

mated 15GW in 2008 to record accumulated capacity of 505.5GW in 2018[1]. In 2018,

China accounted for for 45% annual market addition, which is the decline from 54% in

previous year. Therefore, continuing to lead in solar PV market with total PV capac-

ity of 131GW, followed by United State (51GW), Japan (49GW), Germany (45.3GW)

and Italy (19.7GW)[1]. Based on the current trend, the global uptake of solar PV is

expected to increase.
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Figure 2.1: Electricity Energy share in end 2017[1]

Figure 2.2: Global cumulative installed PV capacity,2008-2018[1]

2.1.1 PV uptake in South Africa

In South Africa, solar PV capacity targets set in the initial Integrated Resource Pro-

gram (IRP) were low when compared to other RE technologies with rooftop PV system

excluded in the target projections due to high module price at the time.

In 2017, South Africa has seen about 13MW of new PV installation and resulting in

accumulated capacity of 1.8GW[1]. Figure 2.3 presents the provincial installation of

recorded rooftop PV, which places the Western Cape as the second highest rooftop

PV installation province in the country at the time. In the later part of 2017, Salga

indicated there is 34 municipalities that allows installation SSEGs. These factors have

influenced the inclusion of rooftop PV target in the updated IRP in 2013, with rooftop

PV targets of 21.6GW in 2030 and 29.8GW in 2050[2]. These targets show the in-
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Figure 2.3: Provincial rooftop PV installations in 2017 [5]

tentions by the decision makers to evolve the country’s energy mix. With more PV

installations, high PV penetration has been recently awarded more attention among

researchers. Although the adoption of rooftop PV may be beneficial to the customers

by a reduction in electricity bill, on the other hand the DNOs will have to retain or

upgrade the electrical infrastructure while revenues are declining.

2.1.2 Motivation for Distributed PV uptake

Utilisation of distributed generation (DG) technologies has increased for electricity

generation applications and they are expected to play crucial part in future energy

mix. The adoption of DG technologies has been driven by both global and regional

factors. According to the review conducted by Pecas Lopes et al.,[18], the main drivers

for increased adoption DG can be categorised into Environmental, Economical and

national/regulations. According to International Energy Agency[19] report, major

drivers of DG are:

• Advancements in DG technologies

• Constraint in construction of new transmission lines

• Increased customers demand for reliable electricity
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• Electricity market liberalisation

• Climate change concerns

In South African context, WWF [4] reported additional factors like electricity tariffs

increasing above inflation rate, abundant sunshine, load shedding experience in 2008

and again in 2015 have triggered an increased uptake of solar PV systems in South

Africa. These factors have lead in customer being involved in the electricity market

as both the producer and consumer (pro-sumer) of electricity were permissible. Al-

though the power utility Eskom does not allow integration of small scale generation

into their grid, number of municipalities like City of Cape Town and Ethekwini allow

small scale generation into their grids. With the requirement the consumer has to be

a net-consumer (Consume more than the energy they inject into the grid). These ar-

rangements provide the opportunity for consumers to off-set their electricity bill with

SSEGs. As a result, the impact of high share of DG is expected to manifest first in

municipal grids.

2.2 Solar PV as a distributed generation

DGs are relatively smaller scale compared to the conventional centralised power gen-

erators. Other names like “dispersed generation” [15] and “small scale embedded

generators (SSEG)” [15, 20] are also used in literature to refer to these type of gener-

ators. Definition of these generators also differs in literature. Kaundianya et al. [21]

defined DGs as generators ranging from few kilowatts (kW) to Megawatts (MW) and

they are mainly installed closer to the load centre. However, this definition will not

be suitable for future application when DG capacity can be greater than the capacity

range provided in this definition. On the other hand, the definition by Ackermann et

al. [22] is widely adopted in literature[23],[14], which defines DG as “the electric power

generation source that is connected directly to the distribution network or on the cus-

tomer side of the meter”. Distributed generation technologies (DGTs) are categorised

into [24],[25]:

• Renewable DG and

• Non-Renewable DG

Non-Renewable DGT consists of reciprocal engines, Gas turbine, combustion turbine,

micro turbine and fuel cell. Renewable DGT consists of hydro, wind, solar, geo-

Thermal, biomass and tidal. Factors like free energy resource, environmental friendly

and sustainability of renewable resources make renewable DGT a favoured option than
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non-renewable DGT.

Micro-geothermal and micro-hydro systems are not suitable technologies for urban

areas. Thus make solar PV and micro-wind systems the two suitable DGTs for elec-

tricity generation application in urban areas. Solar irradiance is more predictable than

wind and PV has less visual disturbance as compared to wind turbines as they can be

rooftop installed. Therefore, this work will be focused on rooftop PV solar system.

2.2.1 Rooftop PV application

The application of PV system can either be ground mounted, Building Integrated

(BIPV) or a rooftop PV system. Ground mounted system are unfavourable in urban

areas, as they occupy land. BIPV systems are mainly for new establishments and thus

make it costly exercise for integrating into an existing building. Therefore, Rooftop

PV is the preferred application in existing buildings due to its short implementation

period, no extra land required and their out of sight. PV systems are categorized into

two, either as grid connected system (with or without batteries system) or off-grid

system (mainly with batteries system) [26] and these systems are further explained in

the below subsections.

The installation of rooftop PV system is reliant on the roof inclination and the orien-

(a) Rooftop PV without structure (b) Rooftop PV with structure

Figure 2.4: Typical rooftop PV installations

tation. Above Figure 2.4 illustrate typical rooftop PV installations, where Figure 2.4a

is a rooftop PV system installed on a pitched roof and the installation on Figure 2.4b

is a PV installation on a flat roof. This shows that the roof design cannot be used

as the only limiting factor for PV uptake, however the installation on a flat roof will

require additional structures to incline PV arrays for optimal PV generation and thus

resulting in increased installation costs.
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2.2.2 Off-grid PV systems

Off-grid or standalone PV systems are PV systems that are not connected to the elec-

trical grid. Off-grid system has been employed to providing energy for remote areas

that does not justify network expansion [21]. With the sun only shining during the

day, off-grid systems consist of energy storage system that includes battery and battery

management system to store excess energy for use when the sun is not available[27].

The additional storage system makes off-grid system more expensive when compared

to the grid-connected system, as they require additional capital and maintenance cost.

Off-grid systems are competitive when compared to diesel generated electricity and

network expansion[28]. However, relatively cheap coal based electricity generation in

South Africa makes off-grid PV system to be less viable within urban areas where grid

supply is available.

2.2.3 Grid connected PV Systems

Grid connected PV systems are a systems that are integrated with the existing grid

and they are able to supply energy into the grid. The main objective of this system

is to supply local load and feed excess energy into the grid [21]. With electrical grid

operating on alternating current (AC), inverters are employed to convert direct cur-

rent (DC) produced by PV system into AC [29]. Depending on the connection level,

the transformers may be required to produce the voltage level to that of the level of

common coupling. The ability to receive power from the grid when PV system is not

generating power makes storage system an optional part of the system, as the grid is

used as storage system [21]. Customers with potential PV uptake already have access

to grid electricity; as a result their PV system will impact the existing network by

either reducing load and/or injecting current into the grid.

In the presence of electrical grid, grid–connected PV system is the viable option

for consumers and it is even more economically viable when there is an incentive for

consumer for the excess power supplied to the grid. There are three billing concept,ie.

Net metering, Net billing and reverse blocking[30].

Therefore, it is assumed in this study that all rooftop PV installations are grid-

connected systems.
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2.3 Benefits of distributed PV systems

DGs can assist in reducing inherent negative attributes of traditional centralised fossil

fuel based generation and especially when employing renewable DGs. Benefits of DG

are presented in Table 2.1 and the can be grouped into technical, Economical and

environmental benefits as briefly discussed in the following subsections.

2.3.1 Technical benefits

The increase in load demand amounts increased current flow and therefore resulting

in high system losses.this situation more prevalent in distribution networks have an

inherent transmission loss due to their low X/R ratio characteristic (predominantly

resistive). The introduction of DG (PV) at the load point will lead in to the reduc-

tion of power demanded from the grid and thus reducing system losses. The system

losses reduction benefit can be achieved at low penetration and exacerbated at high

penetration levels[32]. The reduction in system losses constitutes economic benefit to

the distributor.

DGs can be used in voltage profile improvement as presented in literature [33][34].

Masoum et al.[33] found that moderate to high penetration of rooftop PV can have

a significant voltage profile and transformer loading improvement in residential net-

works. Voltage profile improvement can be optimised by having capability of injecting

reactive or active power into the grid as and when required[34]. This technical benefits

of PVDG systems can be economically quantified to inform holistic decision making

in power system planning, operation and infrastructure investments.

2.3.2 Economic benefits

Power system infrastructure has to be upgrade over time due to end of life of equip-

ment or increasing capacity as energy demand increases. Due to high capital costs

if this infrastructure, utilities may want ways to defer this investment cost and DG

can assist in this regard. Literatures by [35][36], concur that the integration of DG

has a potential to be strategically utilised to defer network infrastructure investment.

The other benefit of DG integration can result in reduction in system losses, which

can be economically quantified. Also DG can free up system capacity, which can pro-

vide DNO with an opportunity to connect additional customers without increasing

generation requirements. However, in order for capital cost deferral to be realised,
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distribution generation has to be incorporated into the grid operator’s planning[37].

2.3.3 Environmental benefits

The conventional fossil fuel based generators emits greenhouse gasses that negatively

affect climate change which is been linked to the detrimental weather patterns in re-

cent decades. The introduction of renewable based DG reduces the consumer load and

thus result into reduction in power generated from centralised fossil fuel based power

stations.

The realisation of the aforementioned benefits is dependent on number conditions

that must be satisfied [38][37],such as:

1. Strategic placement of the distributed PV system,

2. Penetration level, and

3. Grid characteristic.

If one or more of these factors are not satisfied, then the benefits might turn into

adverse impacts on the performance of the feeder [38] and these negative impacts will

be reviewed in the next section.

2.4 Impact of PVDG integration on distribution

networks

Historically, the electrical network was designed based on the unidirectional flow of

power from a centralized power source to the load. Integrating high share of DGs

into the network, especially renewable DGs (wind and solar), will alter operation of

the existing grid and resulting into number of technical challenges. These impacts are

briefly reviewed in this section.

2.4.1 Voltage Rise

Voltage profile is one of the most important parameter used to determine the network

reliability, ensure quality of supply; voltage variation has to be kept within stipulated

range of nominal/declared voltage. According to the national rational standard (NRS)
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governing the quality of supply (QOS) [39], the LV voltage variation should not vary

more than ±10% of rated voltage at customer point of supply. Thus make voltage

regulation an integral part of network design to ensure compliance with the QOS and

it is managed in the two ways in the conventional electrical network, resistance min-

imisation and voltage transformation.

The introduction of PV at the customer busbar alters the voltage profile of a given

feeder, especially where power injection without voltage control capability is permit-

ted. Voltage rise occur when the power generated is greater than the local load and

the excess power is injected into the grid.This effect is demonstrated by Figure 2.5,

where the absence of PVDG result in voltage drop due to local load. Meanwhile, the

introduction of PVDG will result in voltage rise especially at the end of the feeder.

In residential area, this situation occurs on a sunny day resulting in PV system gen-

Figure 2.5: Voltage change[40]

erating to their maximum capacity and low load when occupants are at work. The

concern of voltage rise has drawn attention of researcher to investigate the potential

voltage rise [14, 12, 41]and voltage profile due to the increased penetration of dis-

tributed PV systems [42, 43].

Thomson, Infield and Member[44] conducted a study based on the real city-centre

Leicester network topology with 50% penetration of PV and 100% of micro combined

heat and power systems (CHP). The authors found that 50% only voltage violation

occurs when both PV and CHP are at penetration of PV does not exceed voltage

limits and the maximum penetration (50% and 100% respectively). Furthermore, the

advantage of DG is noted as network losses decrease with an increase in penetration

level. Liu et al.[45] conducted a distribution system voltage performance at high PV

penetration and the reactive power flow. The study indicated that utilisation of in-

verter reactive power capabilities improved voltage profile on the network.
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2.4.2 Voltage Fluctuation

The intermittent nature of solar PV resource result in a fluctuating output power

and the voltage fluctuation can be observed in point of common coupling (PCC) in

a grid connected PV system. Voltage fluctuation can be grouped in two, short and

long duration fluctuation. Short duration fluctuation can be a short duration change

in radiation intensity as a result of cloud cover and a long duration fluctuation is

based on the seasonal impact. According to Woyte et al.[46] and Ebad and Grady[47],

cloud cover can result in a 30% decline in solar irradiance from the previous value

and causing voltage variation of about 0.03 to 0.04 pu. Evaluating worse case of high

PV generation with low load for residential feeder, Woyte et al.[46] found that voltage

fluctuations is highest for scattered cloud cover and lower for clear sky and overcast

sky conditions. Ebad and Grady[47] noted that the impact of voltage fluctuation is

greater in a clustered area with High penetration of rooftop PV, as the effect volt-

age fluctuation due to moving cloud cover will be experienced simultaneously by PV

systems. Conversely, the dispersed deployment of rooftop PV will result in a lesser

voltage fluctuation impact due to smoothing effect as result of geographic diversity[29].

However, the utility cannot assign location of a customer owned rooftop PV system

as it dependents on customer preference and this can lead to feeder congestion as a

result of rooftop PV geographical density[10].

2.4.3 Voltage unbalance

Integration of single phase PVDG can pose a challenge on the feeders voltage unbal-

ance. Power is distributed in a balanced three-phase form from transmission to distri-

bution network and depending on the customer’s notified maximum demand (NMD);

consumers can either be single-phase or three-phase supplied. The single phase loads

are evenly distributed in LV feeders to reduce voltage imbalance as much as practi-

cally possible, but there is an inherent degree of voltage imbalance in LV feeders due

to different customer behaviour in utilisation of electrical appliances.

Integration of single-phase PVDG can either improve or deteriorate voltage imbal-

ance in a feeder, depending on the PV rating, location and phase loading[48][49][50].

Shahnia et al [48] investigated the voltage imbalance on residential LV network due

to rooftop PV. The study found that the voltage imbalance is more prominent at the

end of the feeder, with a 30.19% probability of voltage unbalance violation (Based on

2% Vunbalance limit). Similar observations were made in a study by Emmanuel and

Rayudu[49]. The study by Pansakul[50] affirms that the voltage unbalance increase
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more when feeder PV are connected on one phase and less so when distributed across

all three phases. Although it can be argued that the integration of PVDG can improve

voltage unbalance provided that they are optimally placed. Although voltage unbal-

ance is not generally a hard set, but it can still be considered as one of the limiting

factor in the deployment of single-phase PV system into the grid[49]. The stochastic

nature of load and PV generation complicates matters even further. LV feeders con-

sints of predominantly single phase loads and as a result voltage unbalance will always

be a QoS concern for the DNO.

2.4.4 Harmonics

Inverter based technologies like PVDG can introduce harmonic emission into the net-

work. In the AC system, voltage and current ideally oscillates in sine or cosine wave-

form at standard frequency (50Hz in South African context). System harmonics refers

to the presence of non-50Hz frequency to these waveforms resulting from imperfection

of the generator and loads. Voltage distortion is mainly affected by generator, whilst

load affect current distortion. The level of harmonic content in a signal is referred to

as the total harmonic distortion (THD).

The presence of harmonics can result an increased current requirement from the

system, overheating of system equipments (transformers and cables), resonance and

maloperation of protection devices[51]. The grid integration of inverter based DG

technologies are the main contributors of harmonics.

The thyristor based , line-commuted inverters has been the main contributor of har-

monics. However,the technological advancements in the inverter industry from thyris-

tor based converter into MOSFET and IGBT based pulse width modulated (PWM)

switching converters has resulted in reduction in harmonics emitted[52].

2.4.5 Thermal overload

The design of network equipment is based on the local consumption and the intro-

duction of PV generated power can reduce the loading of the feeder cable and as

subsequently reducing losses. However, in an event where there is a mismatch of high

generation and low load, power can flow from the customer to the substation. Depend-

ing on the capacity of PVs connected into a particular feeder, cables and transformers

can be overloaded and their thermal limits can be violated.

Lazzeroni et al.,[53] investigated the impact of PV penetration in the distribution grid

of Hebron city in the Middle East. The study found that the ideal penetration factor
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was at 120%. Cable loading limits were violated at 190% penetration factor and while

the voltage was still within statutory limit. In 2014, Hou et al.,[12] presented a simi-

lar study on impact on voltage rise due to high PV penetration on Sweden network,

with 90% of households equipped with solar PV. It was found that in summer (high

generation and low load); voltage limits were not violated owing to the constant daily

commercial load and the removal of this load result in over-voltage. The main finding

in the study was in summer day where PV generation may exceed cable capacity and

leading into high currents.

2.4.6 System losses

Power system losses is an inherent phenomenon during power transmission from source

to the load and it is related to the RMS value of the current. The flow of current

through the conductor result in power losses and it can be expressed as (2.1):

Ploss =
n∑
i=1

I2i Ri (2.1)

where Ploss is the conductor losses, Ii is the current flowing in the conductor and Ri

is the resistance of the conductor. The load demand govern the magnitude of the

RMS current flowing in the conductor. The introduction of DG at the load point will

reduce load demand and therefore reduction in power losses. [44] Although general

expectation of DG is reduction in power losses, its effect is dependent on the injected

power, location and feeder characteristic. Previous studies [32, 54, 55] has investigated

the effect of PV-DG on feeder losses. Nguyen[32] investigated feeder losses the impact

high penetration of PV on feeder losses on five feeders. Normalised feeder losses follow

the pattern depicted in Figure 2.6 and Viawan[54] found similar results. At lower

penetration level system losses can be reduced and until the generation equates to the

local load demand. However, at a penetration level greater than the local load will

result in surplus power injected into the network and becoming the source of increased

system loss.

2.4.7 Impact on protection

Protection is essential in power system to ensure safety of personal and equipment. In

the conventional network with uni-directional flow of power, protection equipment are

set in such a manner that the fault is isolated quickly with minimal interrupted load.
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Figure 2.6: Normalised Feeder losses with increasing PV penetration[32]

Main protection issues as a result of in the LV feeder ranges from increase in

fault level, islanding, reverse power flow, breaker/fuse coordination, breaker reduction

of reach and sympathetic tripping[56][57]. These probable protection impacts may

necessitate change in protection settings, time delays allocated per protection level

and the directional protection [58]. Some of these impacts are briefly discussed.

Increase in fault level

Fault level refers to the maximum expected fault at a particular point in the network

[57]. Positioning of system components is crucial, as system components (cables, over-

head lines, transformers, and other equipment) are rated to withstand a given fault

current for a specified duration without being damaged, while protection devices are

isolating the fault. However, integration of PVDG into the grid introduces an ad-

ditional source into the grid and leading into increased fault level[59]. According to

[60], fault current contribution is estimated to be 110% to 150% of the inverter rating.

A single PVDG may not have that much significant contribution to the overall fault

current, but the aggregated impact of multiple PVDG may be of concern.

Reverse power flow

In the conventional network with unidirectional power flow and its magnitude is deter-

mined by load demand. However, integration of PVDG at the load center may result

in an excessive reverse power flow from when generation is greater than the demand
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(when Pgeneration � Pload, especially at midday hour) and resulting in power propaga-

tion from LV feeder into the MV network.

Sympathetic tripping

Sympathetic tripping refers to the unnecessary operating of protection device, such as

circuit breaker, for the fault that is outside of its protection zone.

2.5 PV Integration Impact assessment studies

Increased research efforts has been focused on investigating the impact distributed

generation will have on the existing distribution networks. This can be attributed

to the proliferation of these intermittent energy resources on the existing networks,

which were not designed to accommodate such increased variation in power system

parameters. These analysis are based on two main questions i.e:

1. What power system performance parameter will be violated by increased DG

penetration?

2. How much DG can be accommodated without violating system performance

parameters?

2.5.1 Hosting Capacity

Initially, distributed energy generations such as solar PV have been used as an off

grid systems, till recent years where they are integrated with the electrical network.

Proliferation of distribute generation (including PVDG) into the electrical grid has led

into a question: how much of this Distributed Generation can be accommodated into

the existing grid?. Thus, resulting in the adoption of the term Hosting Capacity to

quantify the amount generation that can be integrated into the grid without violating

its operation and performance[7].

Bollen and Ronnberg[61] used illustration in Figure 2.7 to explains Hosting Ca-

pacity concept. Figure 2.7a represent a system were the interconnection of DG will

deteriorate the performance index of the existing system even at low penetration level.

While, Figure 2.7b depicts the performance improvement of the system when subjected

to relatively low penetration and then increase at a high penetration level.
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(a) Hosting capacity without performance
improvement

(b) Hosting capacity with performance
improvement

Figure 2.7: Hosting capacity illustrations[61]

The integration of PV system is likely to impact numerous performance parameters

and they are also considered to determine PV hosting capacity of a given network.

Figure 2.8 presents a list of technical performance parameters that can be considered

to evaluate the hosting capacity of the network. The selected parameter generally

under the four hosting capacity criteria, ie Thermal rating, Voltage , protection and

power quality.

There has been significant work done in quantifying PV hosting capacity[62][56][7] and

others considering some impact of distributed PV on one or more of these performance

indices [63][13] (see Table 2.2).

Positive correlation between load and generation has a greater impact on penetra-

tion level that can be accommodated by a network/feeder[64],[65]. Based on IEEE 69-

and 33-bus systems, Hung et al.[65] found penetration level on a commercial load is

greater in comparison to industrial and residential loads; while residential load showed

least penetration level. Similarly, the study by Hasheminamin et al.[64] also reported

similar observation, when determining penetration level on a 13-bus system with com-

parison of industrial and residential loads. Industrial load showed a higher penetration

than residential load and this can be attributed to the load correlation with the gen-

eration.

Gaunt et al. [15] applied Herman-Beta transform to investigated the penetration

limits of dispersed PV on low voltage (LV) feeder. In [13], Authors investigated the

voltage impact on Swedish low voltage distribution grids based on stochastic input

variables. These studies has focused mainly on the voltage rise impact on existing

grids due to high PV penetration[13, 12].

Because the distribution networks are not homogeneous, their hosting capacity will

also vary as presented in Table 2.2. Therefore, the hosting capacity of networks can

not be generalised.
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Figure 2.8: Hosting Capacity criteria[57]

Table 2.2: Hosting Capacity summary in Literature

Reference Test network Penetration
limit

Limiting factor

Thomson[44] Leicester LV net-
work

30 Over-voltage

Jothibasu[7] 15% Over-voltage
Tonkoski[66] Canadian LV net-

work
2.5kWphh

Tie[67] Malaysian LV
network

10% Over-voltage

Ballanti &
Ochao[62]

NW England ra-
dial urban net-
work

60% Over-voltage
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2.5.2 Load flow methods

The impact DG has on the network is dependent on characteristic ranging from PV

system size, location and system characteristics [37]. Therefore, it is crucial to evalu-

ate the impact these DG systems will have on the existing distribution grid and load

flow computation becomes pivotal for this application. The two load flow techniques

(Deterministic and Probabilistic [68, 69]) are reviewed.

Deterministic load flow

Deterministic Load flow (DLF) has been used for decades for planning and operation

of electrical network. DLF is a snap-shot analysis based on predetermined constant

values of load, generation and network condition [70, 71]. Due to the specific value for

input parameters, the DLF provide a single output value and it does not consider the

uncertainty of the input parameters (load and the generation) of the system. Depend-

ing on the objective of the analysis, DLF analysis can be based on mean or worst case

input parameters.

Tonkoski et al.[66] evaluated the impact of high PV Penetration on Voltage Pro-

files in Residential Neighbourhoods. Other studies has investigate the amount of DG

that can be accommodated by the network based on worst case scenario [72]. Mah-

mud et.al[72] investigated voltage variation as a result of DER based on a worst case

scenario. Authors considered minimum load (Pload = Qload = 0) and maximum gener-

ation scenario. However, this hypothetical minimum load is not realistic and it does

not consider probability of having Pmin and DGmax. This approach can be overly

restrictive on the amount of DG that can be accommodated by a network.

Due to the variability of load and generation in time, the DLF can be further

extended into time series analysis, where the input variables can be presented as a

function of time [73, 20].

In Sydney, a study by [64] investigated the impact of High PV penetration on LV

and MV networks based on residential and industrial load profile. [33]

The advantage of DLF is its quick and easy analysis method, which requires single

input per list of variable. The disadvantage of this method is basing analysis that may

not occur or occur for a fraction of time in a year.
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Probabilistic load flow

Suitability of DLF in modern power system is inadequate, due to high level of uncer-

tainty associated with variability in load, renewable generation integration and system

operation condition [74]. In order to address this drawback of DLF, Probabilistic Load

Flow evolved.

The first appearance of PLF dates back to 1974, where Borkowska [75] proposed

a convolution based probabilistic load flow (PLF) to cater for the uncertainty of sys-

tem load parameters. PLF is employed in power system by incorporating random

variables (r.v) into the analysis to represent uncertainty of input parameters. These

r.v are based on known probability density function (PDF) or cumulative density

functions (CDF) [76, 77] and developed from historic measurements, statistical data

or engineering judgement [78]. Probabilistic Load Flows (PLF) are grouped into nu-

merical/simulation (e.g. Monte Carlo Simulation) and analytical (e.g. Convolution,

cumulants) approaches [70, 68, 79].

Numeric/simulation based PLF, such as MCS, make use of random assigning of

values to the input variables and deterministically solve LF equations per input vari-

able. Main features of MCS are random number generation and random sampling.

MCS was applied by Arshard et al.[80] to coonduct a comprehensive assessment of PV

hosting capacity and energy storage impact in realistic Finnish Low-Voltage networks.

In order to determine the optimal placement of distributed generation in three-phase

distribution systems with time varying load, Martinez and Guerra [81] applied Monte-

Carlo approach. MCS has also been applied in conducting reliability assessment of

grid-connected solar photovoltaic system[82]. However, the accuracy of MCS is de-

pendent on large number of iteration process which leads to increase computational

burden. To mitigate this drawback, other approaches such as Quasi-MCS has been

proposed were iteration number are reduced to a point were the error margin on the

accuracy is deemed acceptable[77]. However, the need for a solution with less compu-

tation time always been a motivation towards analytical techniques.

Analytical methods are based on the use of arithmetic based on PDF input variable

and application of analytic approach such as convolution techniques to determine

corresponding system output.

Monte-Carlo simulation has been widely used method in PLF application and more

so as the verification method of other probabilistic approaches. Such studies include

the work by Ghosh et al [83], were MCS was used to verify the proposed distribution

circuit state estimation based on probabilistic approach. Ruiz-Rodriguez et.al [84]

made use MCS to validate their proposed PLF consisting of combination of cumulants
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and Gram- Charlier expansion. Gaunt et al. [15] applied MCS as the validation

method to the proposed Herman-Beta transform used to investigated the penetration

limits of dispersed PV on low voltage (LV) feeder. Computational burden has been

cited as the main drawback of MCS when compared to these analytical techniques, in

spite of its high accuracy level [68].

The above mentioned Analytical method are intended at reducing computation bur-

den associated with numerical/simulation method. However, these analytical methods

are based on assumptions such as LF equation linearisation and complex mathematical

algorithms[70, 68].

It has been established that modern power system operates under a high level

of uncertainty due to variation in load, renewable generation integration and system

operation condition[74]. Therefore, conventional deterministic analysis applied in pas-

sive networks will not be adequate to assess the impact of PVDG on the existing

grids. In current grid integration research, probabilistic approach has been adopted to

investigate the impact of PVDG integration impact on the existing grids.

2.5.3 Uncertainty Modelling

As presented in subsection 2.5.2, PLF is the preferred methods of determining the im-

pact integration of intermittent resource into the existing grid. Thus make modelling

of load and PV with their associated stochastic behaviour pivotal for this application.

Statistical modelling of load and PV are reviewed below.

Uncertainty modelling of load

The Electrical load demand can vary extensively based on the time of day, day of

the week, even by season. These and other factors, makes load modelling to be a

challenging task. Overtime, models have been developed to represent a typical day

load demand based on the type of customer, i.e domestic, commercial and indus-

trial. Although these models are important, its application is limited when considering

PLF. Statistical representation of load based on PDF has been adopted widely in the

field. However, there is no agreed PDF used to represent load demand. Proposed

distributions in literature include Gaussian/normal [86, 87, 88, 89], Beta [90, 16] and

weibull[54].

The work by Golkar [86] propose a new probabilistic load flow for radial distribution

network and made use of normal density function to represent the load demand. In

their study to probabilistically model solar PV module and wind generation impact

on distribution networks, Soroudi et.al [88] chose normal distribution to represent
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load demand. Other studies have adopted normal PDF to represent load demand

in a given hour [87, 89]. The adoption of Gaussian distribution due to simplicity in

attaining distribution parameter.

As Gaussian distribution at times cannot properly represent other types of loads,

Carmona-Delgado et.al [91] proposed a Gaussian mixture model (GMM), which con-

sists of combination of several Gaussian components. Application of Gaussian dis-

tribution has been driven the by the simplicity to attain the distribution parameters

such as mean and standard deviation. However, its application has been limited to

represent aggregated loads, mainly MV to HV, which conform to central limit theory.

However, load research studies have indicate Beta PDF as the better representation

of load[90, 83]. In 1991, Herman and Kritzinger [90] conducted a load research study

based on measured winter load data for grouped residential customers in South Africa.

The research was intended to derive statistical representation these residential loads

and they found Beta distribution as a better fit of data. Representation of load cur-

rents by Beta distribution was further applied by Herman and Gaunt [92] to propose

practical probability design procedure for LV residential distribution networks.

Other load research study by Ghosh et al. [83] conducted goodness of fit using

Chi-Squared χ2 test to the load against normal, log-normal and beta distribution. χ2

test results showed data to best fit Log-normal and less so normal distribution. due to

the versatility of beta to represent skewness in data, beta distribution was chosen. As

a result, beta PDF has been applied as the descriptor of load demand in other studies

such as [85, 15, 16].

In conclusion of reviewed literature, it appears to be no uniformity on the type

of distribution function applied to model load demand. Due to its ability to model

skewness of the data, Beta distribution has been preferred to represent load PDF.

Uncertainty modelling of PV

It is well documented that the output power of PV system is inherently intermittent.

Thus make it critical that the modelling of this power source incorporate this uncer-

tainty. The generated power of a photovoltaic module depends on solar irradiance,

ambient temperature of the site and the characteristics of the module itself [88, 93].

The mostly used distribution for solar irradiance modelling are Beta[94, 88, 16], Gaus-

sian [89] and Weibull [54].

Representation of PV output using Gaussian distribution has been applied in re-

search studies such as the work conducted by Martinez-Velasco and Guerra [89], where
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they investigated the impact of distributed energy resources on large distribution net-

works. In other instances, even Weibull distribution were fond to be close representa-

tion of solar radiation data [54].

The adoption of beta distribution as a representation of solar irradiance has been

widely applied. In their study to find an optimal renewable resource mix for mini-

mized energy loss in distribution system, Atwa et al,[94] employed Beta distribution

to represent the random behaviour of solar irradiance data. Similarly in the study by

Soroudi et.al [88], beta distribution was adopted to represent solar irradiance data.

It can be concluded based on literature, that there is no agreed distribution func-

tion used to represent PV generation. However, beta distribution has been a preferred

distribution for representation of PV output.

Uncertainty modelling of PV location

There has been a wide research work done on the optimal placement of DG based on

multiple objective such as, reduction in system losses [95, 96], voltage improvement

[97]. Some of the optimisation techniques employed are particle swarm optimisation

(PSO) [98], Genetic Algorithm (GA) [96]. The application of these optimisation tech-

niques are based on the assumption that dominant impact factors (i.e. location and

size) of DG can be influenced/controlled and this assumption can only hold true to the

utility scale DG. However, the same assumption is not realistic for customer owned

DGs like rooftop PV system, of which their adoption is dependent on the resident’s

financial means, preference and motivation. It is therefore apparent that the afore-

mentioned optimisation techniques are not suitable for assessment of customer owned

DGs and therefore this work will be based on random sizing and placement techniques.

2.6 Standards and Grid codes

The National Energy Regular of South Africa (NERSA) is responsible for the regula-

tion of energy industry in accordance with the government laws, policies, standards

and international best practices in support of sustainable development. The electrical

distributors are obligated under distribution networks grid code to conduct distribu-

tion system impact assessment studies to evaluate the impact of additional loads or

embedded generator or major modification to the Distribution System [99].

In 2014, the grid connection code for renewable power plants (RPPs) connection on

transmission or distribution systems was released for implementation [100]. The grid
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code is intended to provide minimum requirements for connecting distributed genera-

tion into the grid. The grid code applies to various RPPs technologies (including solar

Photovoltaic which is focal part of this work) that are established at the time of its

release. Due to te lack of regulation on the integration of DGs with the grid, the utili-

Figure 2.9: Simplified connection criteria[101]

ties has aligned themselves with the National standard NRS097-2-3[101]. NRS097-2-3

standard provides a guideline on the penetration level that can be integrated into the

grid without conducting detailed studies. Figure 2.9 present the simplified connection

criteria as stipulated in NRS097-2-3.

The type of feeder, either dedicated or shared feeder, has an effect on the limitation

of DG capacity that can be integrated.

• In a dedicated network, Generation should be limited to 75% of NMD

• In a shared feeder, Generation should be limited to 25% of transformer rating

Table 2.3 details a NRS097-2-3 guideline on the recommended maximum individual

generation limit in a shared LV feeder. In the absence of any detailed information

of the specific feeder of interest, these guidelines are applied as they are and detailed
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Table 2.3: Maximum individual generation limit in a shared LV (400 V/230 V) feeder
[101]

Number
of phases

Service circuit-
breaker size

NMD [kVA] Maximum individ-
ual generation limit
[kVA]

1 20A 4.6 1.2
1 60A 13.8 3.68
1 80A 18.4 4.6
3 60A and 80A 41.4 13.8 (4.6 per phase)

studies are omitted. Which raises the question, does these limits applicable to all pos-

sible feeders in south Africa, considering that networks are not homogeneous? With

most rooftop PV uptake occurring in urban residential networks, it important to also

test applicability of these limits on urban residential networks.
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Table 2.4: Relevant PV impact studies in Literature

Author(s) Title Method Local

[Y/N]

Performance parameters

Conti and Raiti

[87]

Probabilistic load flow using Monte Carlo techniques for dis-

tribution networks with photovoltaic generators S

Deterministic and

Probabilistic

N Voltage & Current

Liu et.al[45] Distribution System Voltage Performance Analysis for High-

Penetration PV

N Voltage

Masoum et.al[33] Impact of Rooftop PV Generation on Distribution Trans-

former and Voltage Profile of Residential and Commercial

Networks

Time series N Transformer loading and volt-

age profile

Tokoski et.al [66] Impact of High PV Penetration on Voltage Profiles in Resi-

dential Neighborhoods

Deterministic N Over-voltage

Solanki et.al[73] Steady State Analysis of High Penetration PV on Utility

Distribution Feeder

Time series N voltage profiles, regulator con-

trol settings and system losses

Hasheminamin

et.al[64]

Impact Study of High PV Penetration in Low and Medium-

Voltage Networks When Considering Residential and Indus-

trial Load Profile

Time-series N Over-voltage

Ren et.al [102] Probabilistic Power Flow for Distribution Networks with

Photovoltaic Generators

Probabilistic N Voltage magnitude

Punyachai

et.al[42]

Impact of High Solar Rooftop PV Penetration on Voltage

Profiles in Distribution Systems

Time series N Voltage

Mahmud et.al[72] Voltage Variation on Distribution Networks With Dis-

tributed Generation : Worst Case Scenario

Worste case anal-

ysis

N Voltage
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Ebad and Grady

[47]

An approach for assessing high-penetration PV impact on

distribution feeders

N Overvoltage, Voltage fluctua-

tion and flicker level and Volt-

age regulation device opera-

tions

Watson et.al [103] Impact of solar photovoltaics on the low-voltage distribution

network in New Zealand

Probabilistic N Overvoltage, thermal loading

and transformer reverse power

Nguyen et.al [32] High PV penetration impacts on five local distribution net-

works using high resolution solar resource assessment with

sky imager and quasi-steady state distribution system sim-

ulations

N Voltage regulation, Tap

changer operation,system

losses and thermal loading

Gaunt, Namanya

and Herman [15]

Voltage modelling of LV feeders with dispersed generation

: Limits of penetration of randomly connected photovoltaic

generation

Probabilistic:

Analytical

Y Voltage

Gaunt et.al [16] Voltage modelling of LV feeders with dispersed generation :

Probabilistic analytical approach using Beta PDF

Probabilistic:

Analytical

Y Voltage

Moodley et.al [20] Impacts of SSEG on Typical South African MV networks Time series Y oltage regulation, Harmonics

distortion and revenue

Steyn [104] Modelling the technical influence of randomly distributed

solar PV uptake on electrical distribution networks

Time-series Y Voltage, Thermal overload

Lucas [105] Single-Phase PV Power Injection Limit due to Voltage Un-

balances Applied to an Urban Reference Network Using

Real-Time Simulation

Deterministic N Voltage unbalance

Mulenga and

Etherden [106]

Overvoltage due to single and three phase connected PV Stochastic N Overvoltage
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2.7 Closing remarks

The ever increasing uptake of PVDG into existing networks which were not designed

in to accommodate high penetration of intermittent and variable generation has drawn

attention of researchers to investigate future challenges that may be faced by the cur-

rent networks. Similar attention has been given by power system research community

in South Africa.

There is a limited body of knowledge on PVDG impact research conducted on real

South Africa networks (see Table 2.4). As a result, the scepticism by utilities to allow

increased uptake of DG into the existing network has been justified. Studies that a

based on real networks has applied time series approach, which has limited applica-

tion as presented in the literature. The application PLF (Herman Beta transform)

approach has been conducted on standard IEEE test networks, which is based on aca-

demic tool such as Matlab. However, most utilities make use of power system software

such as DigSilent PowerFactory for network planning purposes. As a result, there is a

need to develop a probabilistic methodology that can be applied by utility engineers

for detailed impact assessment studies.

This chapter a presented a literature review relevant to the study in this thesis.

• The global PV uptake trend and motivating factors were reviewed to provide an

over view of present and future prospect of Solar PV generation. Based on the

exponential growth of PV uptake over the years, it is expected that future grids

will be subjected to high penetration of intermittent PV systems.

• Increased uptake of DG provide both benefits and drawbacks. The benefits

are dependent on size, location and characteristic of the network. Due to the

inability for the utility to control these parameters, the negative impact of DG

on the network may outweigh the benefits.

• The selection of network performance parameter are critical in conducting impact

analysis studies, as such influencing the data resolution that can be suitably used

to investigate the chosen parameter.

• Reviewed hosting capacity limits indicated that the hosting capacity of networks

can not be generalised and each network will have to be analysed based on its

characteristics.

• The inability of Deterministic Load Flow to account for uncertainty in input vari-

ables has makes this method not suitable for PVDG impact assessment studies.
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Thus make Probabilistic Load Flow an important and necessary method for this

application.

• As highlighted that PLF apply PDF to represent random input variables (load,

PV generation etc.), however, in literature there seem to be no commonly pre-

ferred distribution type applied to represent these random variables. But beta

distribution, due to its versatility, it has has been intensively used to represent

random variable.

Therefore, highlighting the limitations of Deterministic load flow approach and jus-

tifies the increased research applying probabilistic load flow techniques to investigate

the impact of high penetration of PVDG on existing networks. Firstly, impact (ben-

efits and drawbacks) of high penetration of PVDG were reviewed, including impact

assessment methods adopted by related works.

2.8 Chapter Summary

This Chapter presented detailed literature review ranging from global uptake of dis-

tributed generation, in particular solar PVDG, which has shown prospects of growth.

benefits and technical drawback were presented, with the main focus on the distribu-

tion level. Due to the limitation of DLF in modelling variability of input parameters,

PLF is the preferred approach in PV integration impact analysis. Although it char-

acterised by iterative and computation burden, Monte-Carlo Simulation based PLF

was chosen due to it simplicity and applicability in current power systems tools, such

as DiGSILENT Powerfactory. Statistical representation of input variables(load and

PV) where reviewed and Beta distribution was preferred due to its ability represent

skewness in data. Next chapter will present theory analysis which will incorporate

concepts highlighted in this chapter.
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Chapter 3

Analysis of Grid Connected

Distributed Generation

Determining characteristics of the output of a PV system and the existing electrical

network is essential in impact assessment of grid integrated systems. This chapter

provides a theoretical background, concepts and models that were adopted to guide the

work of this thesis.

3.1 PVDG interconnection to the distribution net-

work

The interconnection of PVDG to the existing distribution network is expected to

increase and their proliferation will result into multiple technical impacts as presented

in previous chapter. A typical grid-tied rooftop PV system presented in Figure 3.1

and their (PV and Grid) interaction will lead into grid performance. Bollen et al [107]

classified these performances into ”primary’ and ”secondary” aims of power system.

Primary aim being customer related system performances such as, reliability of supply,

voltage quality, and the tariffs. While secondary aim refers DNO internal aim set to

meet the primary aim such as, components Overload prevention, correct operation of

the protection, current quality, operational security, and costs. It can be noted that

the fulfilment of secondary aims will result in primary aim being fulfilled. Even in the

presence of PVDG, DNOs are obligated by the Grid code to fulfil and maintain the

primary aims[108].

35



Figure 3.1: PVDG interconnection to the distribution network

3.2 Electrical Power system

Electrical power system has evolved over the years from small generation supplying lo-

cal load into a centralized generation currently employed[109]. Present power systems

as depicted in Figure 3.2 is made up of multiple levels i.e generation, transmission and

distribution. The centralised generation power stations are situated closer to resources,

i.e near coal mines for coal fired power stations. The generated electricity is stepped

up by generator transformers and transmitted through high voltage transmission net-

works. Transmitting electricity at high voltage is an economic way of transmitting

electricity while reducing system losses and voltage drop[110]. The distribution net-

work delivers the electricity from the transmission substation to the customer[111].

Distribution level covers both medium and low voltage network, as customers can

either be supplied at MV or LV level. The flow of power is from the centralized gen-

eration power station to the distribution level.

Electrical power system has evolved over time and it is emerging towards future power

grid depicted in Figure 3.3. The proliferation of new technologies in the distribution

network ranging from distributed generations, energy storage system and electrical

vehicles has been the main driver. the possibility of bi-directional flow of power will

alter the operation of the conventional power as presented in Figure 3.2.
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Figure 3.2: Current Power Grid [Image credit: TU Delft [112]]

3.2.1 Distribution Network topologies

The distribution network serves as the connection point for the customers access gener-

ated electricity as detailed in Section 3.2. At this level,the electrical energy is supplied

at lower voltage (typically 33kV - 400V at Vl−l, 230V at Vl−n). There are three main

distribution network topologies i.e. Radial, Loop/ring and meshed network as depicted

in Figure 3.4[113].

• Radial Feeder : is characterized by a radial feeder, with a unidirectional flow

of power from the source to the load. This network is popular due to simpler

protection, operation and it is also less expensive. However, Radial network is

less reliable compared to other network topologies.

• Loop Feeder : This network is based on two possible supply to the load and thus

make this arrangement more reliable than the radial feeder. Planning of this

feeder is slightly more complex than the radial feeder as it needs to meet all

the voltage, current and protection criteria although loads are supplied from two

sources.

• Mesh Network : is the most complex network than radial and loop feeder, but

is the most reliable of the three. It is an interconnected network, with multiple

paths between nodes/busbars. In most cases, this network is the most expensive.

The prevalent feeder configuration in distribution networks is the radial network

due to relatively cheaper infrastructure (Power system components and protection

devices) cost and less complex protection philosophy.
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Figure 3.3: Future Power Grid [Image credit: TU Delft [112]]

NOP NOP 

a) Radial b) Loop/Ring c) Mesh 

Figure 3.4: Distribution network topology

3.2.2 Low voltage feeder configuration

Typical LV network is based on a three phase four wire system, with a combined neutral

and earth at the source (distribution substation). The LV network are predominantly

resistive
X

R
< 1 and thus make Figure 3.5 relevant to represent a four wire three phase

system found in LV feeders. Table 3.1, detail typical X/R ratio per voltage level.

Figure 3.5 depict a three phase cable or line connected on secondary side of the

MV/LV transformer supplying single phase loads. Due to the resistive characteristic

of the LV feeder, conductor phase and neutral impedance are represented by Rp and
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Figure 3.5: 3phase 4wire LV system[92]

Rn respectively. The single phase load connected on between a phase and the common

neutral conductor. The load demand result in phase currents (Ia,b,c) drawn from the

transformer and the neutral current (In) flowing back to the source.

The ratio of reactance over resistance determine the characteristic of the network.

at the transmission level, conductors are have a small cross-section and thus reduce

resistance.

Table 3.1: Typical X/R Ratio[52]

Nominal system voltage(kV) Typical X/R ratio

400 16
275 10
132 6
33 2
11 1.5

3.2.3 Fault level

Short circuit current or the fault level studies are critical in the protection planning

of the system. The short circuit studies apply a Thevenin equivalent network as

presented in Figure 3.6 to quantify the maximum short circuit current at a given

node[109]. Where thevenin voltage source Vth is the voltage at the point of connection
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Figure 3.6: Thevenin equivalant network [52]

before the fault and Zth is Thevenin impedance representing the series impedance of

the network seen from the connection point. The fault level current at the connection

point can be represented as:

|IFL| =
|Vth|
Zth

(3.1)

SCR on a three phase network can be expressed as[52][114]:

Sk =
√

3V Isc(V A) (3.2)

Where Sk is the SCR at node k, V and Isc are pre-fault line to line voltage and sym-

metrical three-phase fault current, respectively. Although high SCR seem to be the

desired state for network stability, SCR should not be greater than the short circuit

(Isc) rating of components (cable, circuit breaker ect.) connected at a particular node.

Table 3.2: Typical fault level[52]

Nominal system voltage(kV) Fault level (MVA)

132 5000-25000
33 500-2500
11 10-250

Freris and Infield [52] presented typical fault level magnitude in different voltage level

as detailed in Table 3.2. Integration of the PV on a weak network points is likely to

have a greater influence the voltage behaviour.
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3.2.4 Short Circuit ratio

The network strength is characterised by the ability of a network to withstand voltage

variation, also known as network voltage stability[114]. Short circuit ration (SCR)

is a measure used determine the ’strength’ of the grid. A network with Low SCR is

considered to be ’weak ’, whilst high SCR characterise a ’strong ’ network. SCR at a

node can be expressed as:

SCR =
FL

Pn
(3.3)

Where FL is the fault level

3.2.5 Distribution Network visibility

Similar to the UK, distribution network visibility is the same as in South Africa. Figure

3.7 present data limitations of the present electrical network, where the supervisory

control and data acquisition (SCADA) infrastructure is limited to the high level of

power system[115]. With proliferation of small scale DG systems occurring in LV

feeders, the measured data is the aggregated data. The inability for the DNO to have

Figure 3.7: Distribution system data source[115]

visibility and controllability on the LV feeder to evaluate its performance, increases

the concern on the possible challenges that may manifest when subjected to high pen-

etration of DGs[116].
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3.2.6 Voltage regulation design considerations

The electricity distributor is obligated by the distribution grid code [100] to ensure

compliance with the NRS 048-2 [39]. Voltage magnitude is a critical factor in power

system and it has to be maintained within a statuary limits. Voltage regulation be

comes even more critical for customers who can not regulate their supplied voltage like

LV customers. Therefore, voltage apportionment form part of system planning and

design [117]. According to the NRS048-2[39], MV and LV voltage magnitude should

be maintained within ±5% and ±10% of nominal voltage, respectively.

In the passive network, power flow is from the source to the load which result in

voltage drop along the feeder and at full load the lower voltage limit should not be

violated. In hypothetical condition when there is no load, the upper bound on both

voltage levels is represented by a no-load graph should not be violated. In Figure.3.8,

system voltage design philosophy applied by the utility is presented.

Where:

V-s MV-s MV-d Tx-l Tx-b LV-f S-con

0.85

0.9

0.95

1

1.05

1.1

1.15

1.05 1.05 1.05 1.05

1.1 1.1 1.1

1.05

1.02

0.99
0.97

1.02

0.94
0.92

No Load
Full Load

Figure 3.8: Voltage distribution

• V − s: is a Sending voltage,

• MV − s: is a MV source,

• MV − d: MV distributor,

• Tx− l: Transformer losses,

• Tx− b: Transformer nominal boost,
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• LV − f : LV feeder,

• S − con: Service connection

Existing networks were designed based on the lower bound -8% of nominal voltage,

while applying transformers voltage boost along the feeder. The 5% voltage boost

of nominal voltage is adopted and applied on the secondary voltage rating of both

HV/MV and MV/LV transformers. Applied voltage boost results a secondary ter-

minals of 11.55 kVl−l for HV/MV transformer and 420 Vl−l for MV/LV transformer.

Voltage drop of 8% is allowed on the MV feeder and 10% voltage drop on the LV

feeder. The MV/LV transformer voltage boost afford the lower bound to be -8% of

nominal voltage, which is 2% higher than the NRS048-2 voltage drop limit at PCC.

Transformers are main voltage regulation devices in power system by providing

transition between different voltage levels. Nominal voltage (Vn) for MV network is

11kV, part of voltage regulation is incorporated in the HV/MV transformer design by

having a secondary voltage being designed at 1.06pu (11.660kV) of Vn.

3.3 Solar PV system

Solar cells the smallest Solar photovoltaic converts light into electric energy. Electrical

characteristic of Solar PV module is determined based on standard test condition

(STC), defined as a solar irradiation of
1000W

m2
, module temperature of 250C and

solar irradiation angle of 450.

The output power of a PV cell is influenced by many environmental factors, however,

solar irradiance I(s) (W/m2), ambient temperature T (0C) and PV cell characteristics

are the main contributors[118].

Output power of PV Ppv(s) can formulated as:

Ppv(s) = N × FF × V (s)× I(s) (3.4)

where N is the number of cells, FF is a fill factor, V (s)

FF =
Vmpp × Impp
Voc × Isc

(3.5)

where Vmpp is the number of cells, Impp is a fill factor, Voc Isc

Power generated by a solar cell can be expressed as [?]:

Ppv = I(s) × cosφ× ηm × ηp × Ap (3.6)
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where:

• Ppv is the PV DC power (W ),

• I(s) is the solar irradiation (W/m2),

• φ is the incident angle by considering β = 45o,

• ηm is the maximum power tracking efficiency,

• ηp is the PV panel efficiency,

• A is the PV area (m2)

Ppv,DC = ATotal ×Gs × ηoverall (3.7)

ηmodule = ηSTC [1 + kT (Tc − 25)] (3.8)

Tc = Ta +
Gs

Gs,NOCT

(Tc,NOCT − 20)
(

1− ηSTC
0.9

)
(3.9)

Ipv = Tph − Is.
(
e

q.(Vpv+Ipv.Rs)

Ns.n.k.T − 1
)
− Vpv + Ipv.Rs

Rp

(3.10)

AC conversion via solar inverter. The DC power generated by PV is converted to

AC power by an inverter. the inverter has a conversion efficiency (ηPV,inverter) which

can be expressed as:

PPV,AC = PPV,DC × ηPV,inverter (3.11)

Figure 3.9 depicts a solarPV characteristic between current (I) and voltage (V ) and

power (P ) against voltage (V ).

3.4 Voltage change along radial feeder

The integration of high penetration of PVDG into the grid will result in detrimental

technical impact unto the existing grid as illustrated in literature [119]. In this study,

the focal technical impact parameters are voltage (rise and unbalance) and equipment

overloading as mentioned in Chapter 2. Theoretical background to these parameters

is detailed below.
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Figure 3.9: Solar PV I-V and P-V characteristic[118]

3.4.1 Voltage drop along Passive radial feeder

The conventional network is considered to be a passive network due to its uni-directional

flow power, where the flow of power is from the source (transformer/substation) to the

load as illustrated in Figure 3.10.

l lP Q

Z R jX 
rVsV

Power flow direction 

Transformer

External

Grid

Figure 3.10: Conventional Radial feeder

Phasor diagram

The power flowing flowing from the source to load is dependent to load demand

and it can be expressed as a complex power

S = P + jQ = VsI
∗ (3.12)

With current I from the sending node i to the receiving node j. with voltage Vi to

receiving end with voltageVj. The line between node i and j, consist of line impedance
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Figure 3.11: Radial phasor diagram[109][120]

Z expressed as follow:

Z = R + jX (3.13)

Were R and jX are line series resistance and reactance, respectively.

Voltage drop on a line is determined by the line impedance Z and the current I

flowing through the line can be expressed as in equation (3.14) below.

Vdrop = IZ (3.14)

Voltage at the sending end can be expressed as:

Vs = Vr +
P − jQ
V ∗
s

(R + jX) (3.15)

Vs = Vr +
RP +XQ

V ∗
s

+XP −RQV ∗
s (3.16)

Therefore, voltage drop between sending and receiving ends can be written as:

∆V = Vs − Vr =
RP +XQ

V ∗
s

+
XP −RQ

V ∗
s

(3.17)

The power distribution in this network is based on the load demand depicted as active

power (Pl) with unit measure of watts (W ) and reactive power (jQ) with unit measure

of volt-ampere-reactive (V ar). The voltage difference between nodes i and j can be

estimated as in:

∆V =
Pl ×R + jQl ×X

Vn
(3.18)

It can be seen from (3.18) that the X/R ratio has an influence of voltage drop on the

feeder.
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3.4.2 Voltage drop along Active radial feeder

The introduction of a PV system at the load bus can influence the power and Voltage

profile along the feeder. Consider Figure 3.12,where PV is connected at the customer

side and it is able to inject power at this node. Voltage drop can be approximated by

expanding equation (3.18) as follows:

∆V =
(Pl − (±Pg)×R) + j(Ql − (±Qg))×X)

Vn
(3.19)

Where Pg and Qg are active and reactive power injected by PVDG, respectively.

The resultant voltage change (∆V ) at the point of common coupling is also effected by

G 

l lP Q

g gP Q

Z R jX 
rVsV

Power flow direction 

Transformer

External

Grid

Figure 3.12: Radial feeder with PV

the type of generator connection, either single phase or three phase [106]. Considering

generator injected a current I with a given power factor, the approximated ∆V can

be expressed as:

∆V = ReqIcosφ+XeqIsinφ (3.20)

Where Req + jXeq is the source impedance at the PCC.

Single-phase connected PV

The current injection of a single-phase PV connected between phase and neutral, will

result in the voltage rise at the PCC. The voltage rise due to single phase power P3

injection can be approximated as:

∆v1−φ =
∆V1−φ
Vn1−φ

≈ RefxP1−φ

V 2
n1−φ

(3.21)

Where Ref is the resistive part of the earth-fault impedance, and Vn1−φ is the nominal

phase to neutral voltage.

47



Three-phase connected PV

The approximated voltage rise at the PCC resulting from a three phase PV power P3

injection can be expressed as:

∆v3−φ =
∆V3−φ
Vn1−φ

≈ RscxP3−φ

3xV 2
n3−φ

(3.22)

Where Rsc is the resistive part of the short circuit impedance.

It is evident from the equations 3.21 and 3.22 that the voltage response will be affected

differently.

3.5 Voltage unbalance

In an three phase AC network, voltage and current in a sinusoidal waveform are in-

tended to be equal in magnitude and a displacement of 120o between phases. The

deviation from this fundamental arrangement, either voltage magnitude or phase an-

gle or combination of the two, is referred to as voltage unbalance. Figure 3.13 depicts

balanced and unbalanced voltage vectors.

Figure 3.13: Balanced and unbalanced voltage vectors

3.5.1 Definition

Voltage unbalance has been defined in many ways and varying in parameters considered

to determine if the system is unbalanced. Pillay and Manyage[121] provided voltage

unbalance definitions and they are presented below. Voltage unbalance factor (VUF)

is defined as the ratio of the negative sequence voltage components Vneg to the positive
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sequence Vpos components

%V UF =
Vneg
Vpos

∗ 100 (3.23)

Symmetrical components for Vneg and Vpos can be presented as follows:

Vpos =
Vab + aVbc + a2Vca

3
(3.24)

Vneg =
Vab + a2Vbc + aVca

3
(3.25)

Where a = 1∠1200 and a2 = 1∠2400.

This can be expressed as follows:

NEMA based definition of voltage unbalance is

%LV UR =
max voltage deviation from the avg line voltage

avg line voltage
∗ 100 (3.26)

IEEE definition is based on phase voltage.

%PV UR =
max voltage deviation from the avg phase voltage

avg phase voltag
∗ 100 (3.27)

According to NRS048-2[39], the voltage unbalance on LV, MV and HV three-phase

networks should be limited to 2%. While for planning purpose, NRS048-4 recommends

the voltage unbalance per individual installation to be limited to 0.2% for 95% of the

time in weekly sample[131]. With the aim of this study is to investigate the impact in

the network, the 2% voltage unbalance limit will be considered in the analysis.

3.6 Equipment overloading

Power system components (lines and transformers) are intended to transmit electrical

energy from the generating plant to the consumer. The bi-product of this process

is the joule effect (thermal overload) as a result of resistance characteristic of these

components. the balance of this section is based on the book by Bollen [107]. The

maximum apparent power (Smax) demand on a passive feeder can be represented in a

complex form as follows:

Smax,1 =
√
P 2
l,max +Q2

l,max (3.28)

49



where Pl,max and Ql,max are maximum active and reactive power of the load, respec-

tively. It is assumed that the both the active and reactive power maximum demands

occur at the same time, therefore equating to the maximum apparent power at the

same time.

The introduction of distribution generation into the feeder and assuming the DG

produce active power, the maximum apparent power on an active feeder can be written

as follows:

Smax,2 =
√

(Pg,max − Pl,min)2 +Q2
l,min (3.29)

The permissible maximum apparent power on the active feeder should not be greater

than the passive feeder:

Smax,2 < Smax,1 (3.30)

Therefore, the power limit can be expressed as:

Pg,max < Pl,min +
√
P 2
g,max +Q2

l,max −Q2
l,min (3.31)

Considering the maximum feeder ampacity limit, the permissible maximum current

allowed to flow through the feeder should be maintained. based on the nominal voltage,

the permissible apparent power can be expressed as follows:

Pg,max < Pl,min +
√
S2
max,limit −Q2

l,min (3.32)

These limits must be maintained to ensure system performance and reduce equipment

insulation degradation due to thermal limit violation.

The other aspect that is closely related to the thermal limit when the network is

subjected to high penetration of DG is the system losses. However, this system per-

formance indicator is not considered in this research work.

3.7 Load flow

The research method adopted in this study involves simulation studies of investigating

the impact high penetration rooftop PV systems will have on the existing network

and load flow computation is critical in conducting such investigation. Power flow,

commonly referred to as load flow (LF), is the technique employed to determine the

steady state of power systems for planning and operation purposes [70][110][122]. Load

flow is the computation of voltage magnitude (V ) and phase angle (θ) at each bus of the

power system, along with determining the active (P ) and reactive (Q) power flowing
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on the line segment of the system [110]. Firstly we consider a complex power inject at

nodei, expressed as follows:

Si = ViI
∗
i (3.33)

where, Si is a complex apparent power, Vi is the voltage and I∗i current conjugate at

nodei.

Ii =
n∑
j=1

YijVj (3.34)

where, Yij is the admittance matrix elements. Substituting the I∗i term into equation

(3.33), equation (3.33) can be re written as follows:

Si = Vi(
n∑
j=1

YijVj)
∗ = Vi

n∑
j=1

Y ∗
ijV

∗
j (3.35)

Ii =
n∑
j=1

YijVj (3.36)

Basic load flow equations are as follows:

Pi =
n∑
j=1

ViVjYij cos(δi − δj + θij) (3.37)

Qi =
n∑
j=1

ViVjYij sin(δi − δj + θij) (3.38)

∀i = 1, ...n Equation 3.37 can be expressed in a rectangular form as follows.

Pi = Vi

n∑
j=1

Vj[Gij cos(δi − δj) +Bij sin(δi − δj)] (3.39)

Qi =
n∑
j=1

ViVjVj[Gij sin(δi − δj)−Bij cos(δi − δj)] (3.40)

∀i = 1, ...n Solving these equations, two of the four variables have to be specified.

Table 3.3 gives the bus classification based on specified and unknown variables. These

are non-linear equations requiring iteration methods to solve. there are mainly three

load flow solving methods [110][122]:

• Newton-Raphson method

• Gauss-Seidel method

• Fast decoupled method
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These LF methods are applied by simulation software as algorithm. Simulation soft-

ware adopted for this study, DiGSILENT PowerFactory, employ Newton-Raphson

method to solve Non-linear AC load flow equations[17].

Table 3.3: Bus specification

Bus Specified variable Unknown variable

Slack bus Vi,θij Pi,Qi

Voltage controlled bus (PV bus) Pi,Vi Qi,θij
Load bus (PQ bus) Pi,Qi Vi,θij

These system buses can be specified as follows:

1. Slack bus : this node serves as a reference node, with a specified voltage mag-

nitude Vi. The voltage angle at this bus, typically ∠00, serves as a reference

voltage angle to other buses.

2. Voltage controlled buses (PV bus): generators are connected to this node. At

this node the real power and voltage magnitude are specified.

3. Load buses (PV bus): loads are connected to these buses and known quantities

(Pi,Qi) are specified based on measurements or historic data.

These busbars specifications are to be considered when modelling and simulating power

system performance.

3.8 Monte Carlo simulation

Monte Carlo simulation (MCS) are numerical methods used in many fields to solve

complex problems by providing a statistical probability of the expected observation

[123]. This technique can also be employed to analyse power system performance due to

stochastic behaviour of input parameters. This is achieved by random selection of input

variables from their probability distribution function and solving deterministic load

flow to obtain output parameters.[84]. This process is iterated multiple times based

on multiple input combination. The output results can be statistically represented

based on their PDF or CDF. MCS is based on the random sampling and large number

generation.

Figure 3.14 shows a MCS outline and associated steps.
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Figure 3.14: Monte Carlo Simulation [123]

The expected observation can be formulated as:

E(Y ) =
1

N

N∑
i

Yi (3.41)

where Y is the observation based on Monte-Carlo trails of N . Yi is the independent

observation governed by the solution function and probability constraints of input

variables x1,2 ,. ..,M .

3.8.1 Random variables

Variable are randomly select to represent their uncertainty. To ensure the variables

mimic the expected probability extracted from known data, probability distribution

functions are employed.

Random variables can either be discrete or continuous. where discrete variable

Random variable X can be expressed based on it distribution function, denoted as

follows[124]:

F (x) = P (X ≤ x) (3.42)

Where F (x) is the probability a variable X is taking on a value less or equal to x.
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Uniform distribution

Uniform distribution is one of the simplest continuous distribution

f(x) =


1

b− a
if x∈ α,β

0 otherwise
(3.43)

mean and standard deviation of uniform distribution are expressed as:

µ =
a+ b

2
(3.44)

and

σ =
b− a√

12
(3.45)

Normal/Gaussian distribution

Normal distribution is a bell-shaped curve

f(x) =
1√
2πσ

e
−

(x− µ)2

2σ2 ; (3.46)

Weibull distribution

Weibull distribution Function is

f(x;λ, k) =


(
k

λ

)(x
λ

)k−1

e−(x/k)k x ≥ 0

0 x < 0

(3.47)

where k > 0 and λ > 0 are the shape and scale parameters of the distribution.

Beta distribution

Beta distribution function is used to represent a continuous random variables with

distribution parameters of alpha (α) and beta (β). Were parameters are real numbers

(α,β ∈ <).Beta distribution function can be expressed as (3.48) below.

f(x) =


Γ(α + β)

Γ(α) + Γ(β)
sα−1 × (1− s)β−1 if 0 ≤ x ≤ 1,0 ≤ α,β

0 else

(3.48)
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Beta parameters are calculated based on mean (µ) and standard deviation (σ), as

denoted in (3.49)

β = (1− µ)(
µ(1 + µ)

σ2
− 1);α =

µ× β
1− µ

(3.49)

Distribution mode represent the peak of of the distribution, which represents the

quantile (x-axis value) with higher probability.

α− 1

α + β − 2
forα, β > 1 (3.50)

Consider Figure 3.15 to illustrate Beta distributions based on different mode points.

(a) Beta distribution-Right
skewed

(b) Beta distribution-
centered

(c) Beta distribution-Left
skewed

Figure 3.15: Beta distributions

The mode influence the skewness on the distribution function. Figure 3.15a present

a right skewed distribution where lower variables have a high probability. While Fig-

ure 3.15b represent a symmetrical variable as a higher probability and Figure 3.15c

depicts higher probability for the upper bound.

3.9 Goodness of fit

Goodness of Fit (GOF) test is a statistical hypothesis test to test how well the sample

data fit a distribution from the population. Some of such type of tests are Chi-square

(χ2) and Kolmogorov Smirnov (K − S)

The Chi-square (χ2) formula is expressed as followed:

χ2 = Σ
(Oi − Ei)2

Ei
(3.51)
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Where Oi and Ei are the observation and expected frequency,respectively.

The kolmogorov-Smirnov is based on the largest vertical difference between the theo-

retical and empirical cumulative distribution function:

D = max

(
F (xi)−

i− 1

n
,
i

n
− F (xi)

)
(3.52)

These tests are conducted using computer based tool, such as Easyfit software. Three

methods used in by Easyfit software, i.e. Kolmogorov Smirnov (K-S), Anderson Dar-

ling and Chi-square.

3.10 Chapter Summary

This chapter presented theoretical background of the electrical power system, with in

depth focus on the distribution network which is where PVDG integration is prevalent.

Characterization and impact factors that influence the behaviour of the network were

presented, such as network topology, fault level and short circuit ratio. The PV sys-

tem operation and characteristics were presented to give fundamental background to

be considered in system modelling. Monte-Carlo simulation and random variable com-

pilation were presented. Lastly, Goodness of Fit tests were presented and explained.

The presented theoretical background will be applied in the next chapter.
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Chapter 4

Modelling and Simulation

This chapter presents the proposed impact assessment methodology including variables

modelling and data analysis intended to address the objectives of this study. Proposed

modelling and analysis are based on theoretical background established in Chapter 3.

4.1 Introduction

Model is the mathematical representation of the system, which allows for the simu-

lation and analysis of the system. This approach allows engineers and planners to

predict the response of the power system when subjected to the change in system

state. Figure 4.1 represent the the basic modelling approach in power system analysis

and it is the same approach is adopted in this thesis.

Firstly, the two stage impact assessment framework consisting of time-series and

probabilistic analysis is presented and detailed. Followed by presentation of study

area and processing of available data (Load and generation), including modelling on

simulation platform. Lastly, detailing method of deriving statistical information from

the supplied data and their application in probabilistic analysis.

4.2 PV impact assessment methodology

In order to analyse the impact rooftop PV system on the existing distribution network,

methodology shown in Figure 4.2 is adopted. The methodology consists of two types

of analysis, i.e. time-series and probabilistic analysis.
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Figure 4.1: Basic modelling approach

4.2.1 Time-series analysis:

Prior to the PV integration analysis, a base case is determined to establish the initial

state of the test network. The base case is conducted on an annual time-series load

flow simulation and it is assumed that there are no PV systems connected. Once the

initial state of the network is established, the annual time-series load flow simulation

with installable PV capacity is conducted to determine critical point (greatest load

PV generation difference) for further analysis. When the critical point is identified,

probabilistic impact assessment described in subsection 4.2.2 is conducted for that

particular point.

Time Series Simulation procedure

1. Acquire annual load demand and PV generation and save as .csv file with time

stamp

2. Create load and PV characteristic in DIgSILENT PowerFactory as described in

Appendix A.3

3. Run a load flow using a Quasi-Dynamic command in PoweFactory

4. Plot results (Voltage, voltage unbalance factor and equipment loading) for te

simulation duration

4.2.2 Probabilistic analysis

There is high level of uncertainty in customer owned PV uptake and thus require a

randomised analysis. In this study, Monte Carlo Simulations (MCS) are conducted to

generate random variables to effect location and size of PV system as depicted in . It

is assumed that all households are PV candidates with equal chances of installing PV
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Time Series Analysis
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Figure 4.2: Proposed impact assessment methodology

system. To generate random locations and number of PV systems in a scenario, PV

out of service parameter in Powerfactory is assigned a switching characteristic based

on random variables following uniform probability distribution function (PDF) of 0
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and 1 (where, 0 = in service and 1 = out of service). PV size is varied based on a

potential rooftop PV limited by available roof space. PV scaling factor parameter is

assigned a characteristic based on random variables following a beta PDF between 0

and 1.

These input variables are generated in Microsoft excel and saved as .csv file which

Random 

Number 

 Generator 

Number 

of trials 

Input 

characteristic 

Load Flow 

computation 

Results 

Voltage 

PV location 

PV size 

Monte Carlo Simulation System modeling and Simulation Results Analysis 

.csv .xlsx 

PV in-

service  

PV scaling 

factor 

loading 

Load  

Load demand 
Voltage 

unbalance 

Figure 4.3: Probabilistic Load flow

can be read by Powerfactory. Each scenario is assigned a time step with a total step

equal to number of MCS iterations and 2500 iterations was adopted for this study.

Once .csv file is updated, load flow simulations are conducted for all possible scenarios

in Powerfactory and results (voltage and equipment loading) are stored for further

analysis. Load flows can either be balanced or unbalanced depending on how the test

system was modelled. The output peak values per scenario are plotted into scatter

plot for further analysis.

Probabilistic Simulation procedure

1. Identify instance of excess generation (Pnet = Pgeneration − Pload)

2. save as .csv file with time stamp

3. Create load and PV characteristic as described in Appendix A.3

4. Run a load flow using a Quasi-Dynamic command in PoweFactory
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4.2.3 Variables compilation

As presented in Figure 4.3, PV location, size and load demand are the three variables

to be randomly varied based on PDF. Random number generator is critical in cre-

ating random variables and Microsoft Excel is used in this study. A standard excel

function RAND() is used to generate a random number between 0 and 1. These ran-

dom numbers are generated based on software internal algorithm, which makes them

pseudo-random. However, for the balance of this work, the term ’Random-number’ is

used to refer to this pseudo-random number.

Load

Customer owned PV capacity is considered to be random as its adoption is reliant

many factors that can not be modelled with certainty. In this study, PV capacity is

varied by applying a scaling factor to the rated capacity of individual customer load.

f(x) = BETA.INV (RAND(), α, β, [A], [B]) (4.1)

where

• α and β are beta distribution parameters

• [A] is the lower bound

• [B] is the upper bound

Probability distribution function for a specific load will be derived from historic data

of a given network. Equation 4.1 set out to generate stochastic load inputs that follow

a PDF that represent load population.

PV Allocation

The adoption of customer owned PV is governed by many factors as detailed in lit-

erature and their adoption is random. In order to represent this randomness, PV

systems are switched in and out of service. to effect a uniform distribution with equal

chances of either 0 or 1, the formula (4.2) was applied in excel to generate random PV

allocations.

f(x) = IF ∗ (RAND() < 0.5, 0, 1) (4.2)

as a result, all random number below 0.5 will be rounded off to 0 and the applicable

PV will be switch on. While, any random number above 0.5 will rounded up to 1 and
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the applicable PV will be switched out. This allocation is independent of the state of

other PVs in the feeder.

PV capacity

Similar approach used for load modelling is also adopted in modelling input parameters

for customer owned PV capacity. is considered to be random as its adoption is reliant

many factors that can not be modelled with certainty. In this study, PV capacity is

varied by applying a scaling factor to the rated capacity of individual PV system.

f(x) = BETA.INV (RAND(), α, β, [A], [B]) (4.3)

where

• α and β are beta distribution parameters

• [A] is the lower bound

• [B] is the upper bound

Potential rooftop PV and notified maximum demand are the two types of PV systems

capacity boundaries considered in this study.

4.3 Simulation packages

Simulations are the integral part of this work and selection of proper simulation tool

contribute in the accuracy of the analysis entailed in a study.

4.3.1 PowerFactory

DIgSILENT PowerFactory (DPF) version 2018 was selected as the main simulation

platform for this study due to its wide adoption by utilities. PowerFactory was

developed by DIGital SImuLation of Electrical NETworks (DIgSILENT). DPF is a

computer-aided engineering tool for the analysis of transmission, distribution and in-

dustrial electrical power systems [17]. It has been widely used in previous research

work for planning and operation analysis of power systems [125][126]. This software

has a library of components necessary for the analysis required in this study and their

characteristics can be modified for the representation of practical component. This
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software consists of load flow functionalities for both snapshot (Deterministic) or time

series (know as Quasi-Dynamic) simulations. Computing this loaf flow simulations,

system state can be established by recording the values for voltage, voltage unbalance

factor and equipment loading. Due to the change in PV generation and Load demand

are function of time, Quasi-Dynamic simulation will be used in this study.

4.4 System constraint

The distribution networks has to operate within set of prescribed parameters to ensure

system security and quality of supply. For he purpose of this study, over voltage, volt-

age unbalance and equipment thermal limits will form part of network performance

parameters considered to interpret the network response when subjected to high pen-

etration of rooftop PV.

4.4.1 Voltage constraint

Voltage quality is crucial in LV network due to the inability of the customer to regulate

supply voltage. As result, voltage limit range can be expressed as follows:

V min
i ≤ V t

i ≤ V max
i (4.4)

where, V min
i and V max

i are lower and upper bound of voltage in nodei. The threshold

for V min
i and V max

i are prescribed by NRS048-2 [39], where LV voltage variation should

not vary outside of ±10% of rated voltage at customer point of supply.

4.4.2 Voltage unbalance

According to NRS048-2 [39], compatibility level of Voltage unbalance in three phase

networks is restricted to 2% and 3% for predominantly single phase or bi-phase net-

works, respectively.

Vunbalance ≥ 2% (4.5)

The voltage unbalance limit of 2% is adopted in this study.
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4.4.3 Thermal constraint

The flow of current in the electrical equipment (conductor or transformer in this study)

results in the increase in thermal characteristic of the equipment due to joule effect

[85]. Thermal loading of equipment is specified by the manufacturer and it can be

represented by (4.6).

I ti ≤ Irated (4.6)

Where I ti is the current flowing on the conductor and Irated current rating of the con-

ductor.

4.5 System modelling

The proposed methodology is applied to asses the impact of rooftop PV to the real

urban LV network. In order to run simulations, system models had to be created in

DIgSILENT PowerFactory and the required models are:

• Test network model

• Load model

• PV generation model

The following subsections will provide details on the selected study area and how sys-

tem components were models.

4.5.1 Test network Description and modelling

Impact assessment is conducted on a real LV urban residential feeder located in Cape

Town, South Africa. The test LV feeder is supplied by an 11kV feeder supplied from

HV/MV substation all modelled in PowerFactory. A single line diagram of the test

feeder is depicted in Figure 4.4. This test feeder consists of a single 315kVA Dyn11

11.66/0.42kV transformer and it supplies 18 households. The feeder consists of 4-wire

LV underground cables, with a conductors size range of 35 − 300m2. A single load

and PV are modelled to represent the summated load and generation of the customers

supplied from the particular node.
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Figure 4.4: LV test network

Major network assumptions

Due to the absence of information relating to the real network,some modelling assump-

tions where made as follows:

• Households are assumed to be evenly distributed on each node and resulting into

three house per node.

• Each household is considered to be rooftop PV candidate.

The cable parameters of the test feeder are detailed in Figure4.1. Urban feeders

are relatively short and the cable capacitance are negligible[110]. Therefore, cable

modelling include resistance, reactance and ampacity.

The test LV feeder is supplied by a 315kVA Dyn11 transformer and its details are

of interest for modeling purposes.
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Table 4.1: Test network cable data

Cable Length R1 X1 Irated
Description (km) (Ω) (Ω) (kA)

Linetx-0 0.014 0.023 0.001 0.270
Line0-1 0.014 0.023 0.001 0.270
Line1-2 0.065 0.056 0.005 0.105
Line0-3 0.046 0.012 0.003 0.210
Line3-4 0.087 0.039 0.006 0.155
Line3-5 0.063 0.028 0.005 0.155
Line5-6 0.108 0.094 0.008 0.105

Table 4.2: MV/LV Transformer details of test network

Tx Rating Count
kV A no.

200 1
315 7
500 4
800 2

6005 14

Table 4.3: MV/LV Transformer details for LV feeder

Parameter Value Unit

Srating 315 kVA
Voltage Ratio 11.66/420 kV
Vector group Dyn11
X/R ratio 22

4.5.2 Load modelling

Customer load data with appropriate resolution is critical in evaluating the impact of

customer-owned PV system on the network. As Discussed in section 3.2.5, this data

is not easily available especially for the LV level were PV uptake is prevalent.

The same data issues are available in the test system, where only the aggregated 30

minute average RMS load data measured at HV/MV substation for individual feeder

are available and there are no further data recording downstream.

A historic load demand data from January to December 2016 was obtained from the

utility and it presented in Figure 4.5. The yearly load curve can be observed, with
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annual peak load demand of 4.3 MVA occurring in winter season.

To illustrate seasonal profiles, a sample of daily loads curves for winter and summer
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Figure 4.5: MV feeder annual load demand

day is presented in Figure 4.6 below.
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Figure 4.6: Typical load for winter and Summer day

With the adoption of rooftop PV occurring at customer premises, it is crucial to

represent this data at the load point and load disaggregation have to be applied as

detailed in Subsection 4.5.2 below.
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Load Allocation

In order to conduct simulations, load demand has to be assigned to the individual load

point in the model. Load scaling method was utilized to estimate load at points were

consumption data is unknown. Load scaling is a top-down method of estimating load

allocation along the feeder to sum up to the known measurement at the beginning

of the feeder (typically at the HV/MV substation) and it is a standard feature in

DIgSILENT PowerFactory software[17]. Load scaling is conducted in two phases, i.e.

MV and consumer load scaling. This method is preferred for the same customer group,

as it retains the load profile of the group.

The industry approach is to employ proportion of a MV/LV transformer in relation

to the total installed capacity along an MV feeder is used to estimate the MV load

of a given transformer and this approach was adopted in [127]. Load scaling at each

transformer can be determined by equation (4.7) below.

Px =
Sx
Stotal

× Pfeeder (4.7)

Where Px is the scaled load at transformer x, Sx is the transformer rated capacity,

Stotal is the total installed transformer capacity along the feeder and Pfeeder is the total

feeder load measured at the beginning of feeder. By employing equation (4.7) with the

MV/LV transformer details in Table 4.2, load scaling factor of the test LV feeder was

estimated as follows:

Px =
315

6005
× Pfeeder = 0.0524× Pfeeder

Further load disaggregation was required at the load points along the LV feeder. The

concept by Heunis and Dekenah [128] is applied, where they found that the high

income customers has a high electricity consumption and has a direct correlation with

the property floor space. By applying this technique, the estimate load at point of

common coupling can be determined by modifying the previous Equation (4.7) into:

Ppcc =
Apcc
Atotal

× Px (4.8)

Where Ppcc is the scaled load at point of common coupling,Apcc is the summated prop-

erty floor area on properties supplied at pcc, Atotal is the total floor area of properties

connected along the feeder and Px is the scaled load at transformer x.

ArcGIS tool was used to quantify property floor area by building polygons, as depicted

in Figure 4.7. By employing equations (4.7) and (4.8), resulting load scaling factor

for the test network are presented in table 4.4 below. Load at each node is allocated
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Figure 4.7: Study area property footprint

Table 4.4: Load scaling factor details

Bus Property area Scaling factor

Bus 1 1169 0.169
Bus 2 1481 0.214
Bus 3 839 0.121
Bus 4 1232 0.178
Bus 5 1143 0.165
Bus 6 1049 0.152

based on the appropriate scaling factor.

Table 4.5: Summated floor size per node point

Bus no Bus1 Bus2 Bus3 Bus4 Bus5 Bus6

Property 1 (m2) 300 562 190 479 340 316
Property 2 (m2) 393 448 351 431 413 343
Property 3 (m2) 476 471 298 322 390 390

Area(m2) 1169 1481 839 1232 1143 1049

By applying the prescribed methodology, the load demand details are summarized

in Table 4.6. The limitation of this approach is that during planning stage, the over-

rated (high capacity) transformer may be installed with the anticipation of future load

and this may result in some of the network transformers being lightly loaded. This
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Table 4.6: Load demand summary

Bus number Phase S1−phase(kV A) S3−phase(kV A) Cosθ

DK1
a 3.4645

13.50
0.95

b 4.538494 0.95
c 5.497006 0.95

DK2
a 6.526941

17.20
0.95

b 5.202971 0.95
c 5.470088 0.95

DK3
a 2.196663

9.70
0.95

b 4.058045 0.95
c 3.445292 0.95

DK4
a 5.559821

14.30
0.95

b 5.002679 0.95
c 3.7375 0.95

DK5
a 3.926509

12.20
0.95

b 4.769554 0.95
c 3.5 0.95

DK6
a 3.675119

12.20
0.95

b 3.98913 0.95
c 4.535748 0.95

method is also not that effective for the combination of different load classes (com-

mercial and residential), as it does not eliminate the residential characteristic from the

load measurements (morning and afternoon peaks for residential load).

Phase allocation

Phase allocation is crucial in single phase system and DNO are allocating customers

on a busbar as balanced as possible. Although customers are evenly allocated on a

busbar (3per busbar), the overall feeder phase allocation is considered.

4.5.3 PV generation Modelling

The Photovoltaic system considered for this study is a rooftop PV system, installed at

customer premises consisting of PV modules and inverter converting DC power from

PV to AC power. The output power is based on the I-V characteristic of the PV module

and dependent on solar irradiance, ambient temperature and the characteristics of the

module itself [88, 93]. PowerFactory software has a standard PV model (.ElmPvsys),

with input variable modelled as[17]:

70



• Active Power Input, or

• Solar calculation

Active power input provides an opportunity to model a production profile of a ref-

erence PV system, where the this data is available. while on the other hand solar

calculation is used in an a case where the data of the solar panel type, the arrange-

ment of the solar array, the local time and date, and optionally irradiance data, with

the option[17]. In this study, the active power input model was adopted and active

power production was generated with PVsyst software for Cape Town area.

The PV generation profile used in this study is based on the typical meteorological

year (TMY) data derived from PVsyst for a typical PV installation Cape Town, South

Africa. PVsyst has built in METEONORM meteorological database, with res
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Figure 4.8: Typical Cape Town PV generation

Details of a PV module used for generating test PV system are detailed in table4.7.

PV potential

The rooftop PV system is the considered for this study and the PV potential of the

study area has to be quantified. There are many techniques presented in literature on

how to quantify rooftop PV potential. By considering equation (3.6), output power of
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Table 4.7: PV module characteristics

Parameters Specification

Make Yingli solar
Model YL290P-35b
Cell type Si-poly
Maximum power (Pmax) 290 W
Open circuit voltage (Voc) 44.8 V
Short circuit current (Isc) 8.68 A
Voltage at maximum power (Vmp) 35.8 V
Current at maximum power (Imp) 8.11 A
Number of cells in a module 72

a PV system can be expressed as follows:

Ppv = I(s) × cosφ× ηm × ηp × Ap (4.9)

The potential installable area is based on the available roof space. The PV potential

of all the houses supplied by the test feeder/s is modelled based on the available roof

space, inclination and orientation. The roof features were modelled in ArcGIS software

and details for the area are depicted in Figure 4.9.

Figure 4.9

Roof areas are modelled based on the available area as seen from the aerial image

and the obvious obstacles (trees, fire chimney etc.) are excluded in the model. The

available roof areas are traced out by building polygons on ArcGIS with area feature
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in order to quantify the available area.

The roof inclination is based on the angle of the roof in relation to the horizontal

plane. Properties with the same area consist of different roof inclination and some

assumptions had to be made for modelling simplification. It is assumed in this study

that all inclined roofs have inclination of 33o and the flat roofs have inclination of 0o.

The roof orientation (Azimuth) refers to the direction the roof is facing and for op-

timal PV orientation . The study area is situated at the southern side of the equator;

the south facing roofs will not be considered in the model. There are five orientations

considered in the study, i.e. North, North east, North West, East and West. Different

colours are allocated to each orientation in order to easily differentiate between orien-

tations.

Table 4.8: Available roof space

Orientation Area
Description m2

North 1499
North East 119
North West 0
East 881
West 805
Flat 1857

Total Area 5161

Installable PV capacity 757

The same approach is used to determine the installable PV capacity per point of

common coupling. the potential roof area of properties supplied from a given node

used to quantify the installable PV capacity on a node. Table4.9 provided a summary

of summated rooftop area and installable PV capacity per node.

4.6 Preliminary Simulations: Critical time identi-

fication

Computing annual power flow simulation provides detailed insight on the Grid inte-

gration impact of PV generation due to their dependency on weather which varies
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Table 4.9: Installable PV capacity per node point

Bus no Bus1 Bus2 Bus3 Bus4 Bus5 Bus6

Property 1 (m2) 146.67 292.47 330.99 195.52 484.60 231.20
Property 2 (m2) 366.67 389.96 289.61 146.64 302.89 462.39
Property 3 (m2) 220 194.98 206.87 146.64 424.04 231.20

Area(m2) 733.34 974.91 827.47 488.81 1211.54 924.78

Installable PV capacity(kWp) 109.06 144.99 123.06 72.69 180.18 137.53

based on time of the day and season. Considering vast possible scenarios that has to

be investigated, running annual time step simulation constitute high computational

burden. Therefore, some assumptions had to be made to reduce computational time

by identifying critical time that lead to worst case violation. This scenario is intended

to identify the critical time where the deference between the load and PV generation

is at its highest in a sample period (PG - PL = Pmax). This point is identified by the

following network condition:

• Year peak voltage

• Equipment overload (i.e. Cable segment and transformer)

To determine the day with worst parameter violation, a 30minute interval Quasi-

dynamic balanced three-phase load flow simulation for a year was conducted using

PowerFactory software. The resultant annual voltage profile for the furthest busbar is

presented in Figure 4.10 and the peak voltage for the year was found to be 30/11/2016

at 12:00pm (Wednesday), with peak voltage violation of 1.13pu. Due to this statutory

limits violations, PV penetration impact on test LV network will be further investi-

gated.

Figure 4.11 presents a full day profile of the aggregated load and PV generation.

It can be seen that the potential generation is greater than the load demand, thus

resulting in voltage rise on the test feeder. therefore, the worst case analysis will be

conducted based on this state of the network.

4.7 Probabilistic parameter modeling

The proposed Probabilistic methodology presented in Figure 4.3 require three variables

(load, PV size and PV location) to be presented in a statistical form using probability

density functions.
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Figure 4.10: Annual voltage distribution of DK6

Figure 4.11: Load vs PV Hour of interest

4.7.1 Probabilistic load modelling

Although the load demand probability has been well documented that the LV load

follows beta pdf[15][92], for the purpose of this study, PDF will be derived from the

supplied load data from the utility. From Figure 4.11, 12 O’clock appear to be the

hour of interest where ∆P between load and generation is at its highest. With the

load data being a 30minute average value, Beta PDF is fitted on the histogram of

hour of interest (11:30am to 12:30pm)load data for three months period (October to

December) and making up 184 sample points (N = 92 × 2). Figure 4.12 present the

resulting load PDF derived for load4a and data fitting of beta distribution is applied.
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Figure 4.12: Load demand pdf

The resulted Beta parameters (α, β) per load are detailed in Table B.1.

4.7.2 Probabilistic PV output modelling

Similar to the load modelling, the PV output power PDF is compiled based on the 12

O’clock generation data. Figure 4.13 depicts the 12 O’clock PV generation histogram

fitted with multiple distributions and Beta PDF was found to be the best fit (see

Figure 4.14 ).

Figure 4.13: Distribution fitting on 12 pm PV output (Oct - Dec period)
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Figure 4.14: Goodness of Fit results for 12 pm PV output (Oct - Dec period)

The resulted parameter per PV are detailed in Table

4.8 Results interpretation

The projected adoption of PV systems is expected to increase and as a result, its

share into the existing electrical network will increase as well. Before exploring further

on impacts of DG integration into the grid, it is critical to understand the two com-

monly used terms in grid integration literature, penetration level and hosting capacity.

The term ‘penetration level’ has been a widely used in literature to refer to the

increasing uptake trend of PV into the existing electrical network. However, many au-

thors have applied this term in many ways depending on the assumptions made on the

study. The term is used to illustrate the proportion of units equipped with PV system

[129] and the assumption is that the PV capacity is known. The other application is

proportion of the installed PV capacity to the peak load of the feeder [130][73]. This

definition incorporates the possible uncertainty relating to the size of the PV system

to be installed at a given PCC. These two applications of the term ‘penetration level’

in literature make it crucial to define the application of this term in a given study as

it has an impact on the interpretation of the findings.

Hosting capacity of a distribution feeder is the maximum amount of distributed

generation (Rooftop PV in this study) that can be integrated without violating the

thresholds of any impact criteria [61]. The integration of PV system is likely to im-

pact numerous performance parameters; this study is limited to the impact on voltage

magnitude and equipment loading.
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The performance indicators will be based on the thresholds stipulated in the grid code

governing the Quality of Supply (QOS). According to [131], the MV and LV voltage

variation should not vary more than ±5% and ±10% of rated voltage at customer

point of supply respectively.

Penetration level

PLPV =

∑n
i=0 PVrated
FMD

(4.10)

4.9 Scenario planning

The simulated case studies are formulated into four sections as detailed below. Each

scenario is intended to highlight a certain aspect that will provide insight on the net-

work performance when subjected to high penetration of rooftop PV. In general, first

set of case studies (Case1 and 2) are based on balanced three phase analysis and the

rooftop PV are limited by the potential roof space. while the other set (Case3 and 4)

are based on unbalanced three phase analysis and the single-phase rooftop PV system

are limited by circuit breaker current carrying capacity (I = 80A for this study). The

other aspect is to investigate how the network performance is influence different load

modelling in the analysis, i.e. constant load with varying PVDG parameters (size and

location) vs. varying load with varying PVDG parameters (size and location).

• Case1: The impact of three-phase grid-connected PVDG (constant load)

• Case2: The impact of three-phase grid-connected PVDG (probabilistic load)

• Case3: The impact of single-phase grid-connected PVDG (constant load)

• Case4: The impact of single-phase grid-connected PVDG (Probabilistic load)

Each case consists of two scenarios, 1) base scenario representing a passive network per-

formance in the absence of PV and 2) the second scenario representing active network

with PV. In each scenario, system parameters such as voltage magnitude, voltage un-

balance factor and equipment loading are recorded per each load flow iteration. These

results will be further analysed to understand the response of the test network.
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4.10 Limitations of time series and probabilistic

modelling

The adopted type of system modelling consists of both positive and negative attributes.

The chosen method will be dependent on the parameter to be investigated. The time

series analysis expands from deterministic (Snap-shot approach) to incorporate time

dependency of the input variables, which will illustrate time of the day to seasonal

pattern.

On the other hand, probabilistic modelling incorporate the associated uncertainty of

input variables, influenced by many myriad of factors.

4.11 Chapter summary

In this chapter, a simulation framework to investigate impact assessment of high

rooftop PV penetration into distribution network is proposed. The proposed simu-

lation methods are time series and the probabilistic modelling. Time series analysis

was applied to identify the point of interest where the impact of PV to the distri-

bution network will be at its highest. For the identified point, the historic data is

used to generate probability distribution functions for the input variables (load and

generation) and Goodness of Fit technique was applied to determine beta parameters

for input variables. The test network was presented and their history data were used

to generate PDF for probabilistic load flow analysis. In the next chapter, models and

procedures presented will be applied to assess the technical impact PV on the urban

residential network.
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Chapter 5

Impact of Rooftop PV on Cape

Town Urban Residential Feeder

This chapter presents simulation results on the impact of integration of high penetra-

tion level of rooftop PV on the Cape Town urban residential low-voltage network and

the analysis are based on the probabilistic impact assessment methodology presented in

Chapter 4. The results presented in this chapter are intended to investigate the im-

pact of PV integration by evaluating the network parameters i.e over voltage, voltage

unbalance and equipment loading. Lastly, the hosting capacity of the test network is

quantified.

5.1 Introduction

The main objective of this study is to investigate the impact of high penetration

rooftop PV in the existing electrical network. To achieve this objective, analysis has

to be made to determine distribution network performance pre and post PV integra-

tion. Simulations were conducted based on models and methods presented in Chapter

4. The system analysis are based on solely three phase or single phase system. Some

of the results in this chapter are published in [132]

5.2 Penetration level definition

Results in this Chapter are referenced in relation to the penetration level and thus need

to be defined. In this study, penetration level is defined as the total summated PV

ratings in relation to the feeder maximum demand (FMD) as formulated in Equation

5.2.
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PLPV =

∑n
i=0 PVrated
FMD

Prior to the analysis, FMD had to be quantified for the test feeder. The design FMD

was determined by gradually increasing loads on all load points, until the first violation

of either voltage or overloading is reached and a load resulting in this violation is con-

sidered a FMD. Therefore, PV penetration level is feeder specific. The first violation

was due to overload violation at 210kVA, thus the FMD for the test feeder is assumed

to be 210kVA.

5.3 Case1: The impact of three-phase grid-connected

PVDG (Constant load)

This case investigates impact of integrating a three phase PV system into a balanced

three phase network. Powerflow simulations for prior and post PV integration are con-

ducted in DIgSilent PowerFactory and network state (Voltage profile and equipment

loading) is recorded. All analysis are based on Load and PV generation profile for the

critical day identified in Section 4.6 of previous chapter. Throughout this case it is

assumed that the loads are constant.

In this subsection the network status is evaluated in the absence of the PV gener-

ation. All customer loads are modelled as three-phase loads and balanced load flow if

computed to establish the network status (Voltage magnitude and equipment loading).

5.3.1 Impact on voltage

Passive feeder

The voltage profile along the test feeder is presented in Figure 5.1. Dot represent a

busbar and a line joining dots represents a cable between busbars. It can be observed

that in absence of PV, the feeder experiences voltage drops as the busbar is further

from the transformer and the steepness between busbars indicate high voltage drop.

The closest busbar to the transformer, DK0, showed the highest voltage magnitude of

0.998p.u (399.2 V).The furthers busbar from the transformer, DK6, showed the lowest

voltage magnitude of 0.984p.u (393.6 V). Voltage magnitude for other busbars are

within the two bounds and they are detailed in Table.B.3.
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Figure 5.1: Balanced feeder voltage profile without PV

Active feeder

In this scenario, a scatter plot was used to illustrate the relationship between feeder

peak voltage and penetration of rooftop PV system into test LV feeder. Figure 5.2

depicts peak voltages anywhere in the network based on varied size and allocation of

PV systems (each dot represent a scenario). It is observed with an increases in PLpv

feeder voltage improves and move towards voltage upper limit.

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

0 50 100 150 200 250

M
a

x
im

u
m

 V
o

lt
a

g
e 

(p
.u

) 

PVDG/FMD (%) 

(200;1.10) 

(85;1.10) 

Figure 5.2: Maximum voltage

By considering the voltage upper limit of 1.10 pu, the first violation is observed at

85% penetration level (178.5kW). Beyond this point, probability of violation increases
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based on the PV capacity and location.

5.3.2 Impact on Loading

Active feeder

Scatter plot in Figure 5.3 presents maximum cable loading anywhere in the network

based on varied penetration level.
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Figure 5.3: Maximum feeder loading (3-phase)

Scatter plot indicate an increase in cable loading with an increase in penetration level.

However, there are scenario that actually results reduction in feeder loading. The

initial drop in feeder loading can be observed from the plot with an increase in PLpv

as from 0% to about 40% and this represent load-generation equilibrium. From this

point on, there is a ramping up of feeder loading due to reverse power flow.

The maximum feeder loading threshold is reached at 41% penetration level (86 kWp)

and it is regarded as the first violation point. Beyond this penetration level, the

probability of thermal violation increases and resulting in conditional hosting capac-

ity. Beyond 165% PLpv (346.5 kWp), any combination will result in feeder loading

violation.
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5.4 Case2: The impact of three-phase grid-connected

PVDG (probabilistic load)

This case is intended to investigate impact of integrating a three phase PV system into

the balance three phase network. The difference from the previous case is that loads,

PV output and location are statistically represented based on PDF characteristics

developed in Chapter 4.

5.4.1 Impact on voltage

Passive feeder

The voltage drop is the main concern on a passive feeder, as result the feeder minimum

voltage is presented in Figure 5.4. The voltage drops with an increase in load demand

ranging from 0.975 to 0.935 pu (390V to 375V (Vl−l)). For a sampled load data from

load demand PDFs, feeder voltage drop is still within a permissible minimum voltage

limit.
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Figure 5.4: Feeder minimum voltage

Active feeder

The effect of PV integration on feeder voltage is shown by scatter plot in Figure 5.5

which illustrate feeder maximum voltage impact of integrating PV into the balanced

test feeder. It is observed that the feeder maximum voltage increase with an increase

in PLpv.
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Figure 5.5: Feeder maximum voltage due to three phase PV integration

At a zero penetration level, feeder maximum voltage ranges between 0.99 p.u to about

1.04 pu (396V to 416V (Vl−l)). Increase in PLpv improves feeder voltage and until

voltage upper limit is reached at 50.2% (105.4kWp) penetration level. Beyond this

point to 300% (630 kWp) penetration level, voltage violation probability increases.

Beyond 300% PLpv, any combination will result in voltage violation.
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Figure 5.6: Feeder voltage comparison
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Figure 5.6 illustrates voltage violation probability with and without PV integration.

Base minimum feeder voltage PDF with mean value of 0.955 pu (382V). While, base

feeder maximum is constantly at 1.0 pu which is the voltage transformer secondary

busbar. Integration of PV results in Feeder maximum voltage PDF skewed to the left,

with mode value of 1.21pu.

5.4.2 Impact on Loading

Active feeder

Figure 5.7 shows a feeder maximum loading against load demand in the absence of

PV system. It is observed that feeder loading increase with an increase load demand,

ranging from 16.6% to 42.6% for minimum and maximum feeder loading.
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Figure 5.7: Baseline feeder minimum loading

The impact of PV integration on feeder loading is presented by scatter plot in Figure

5.8, which presents maximum cable loading anywhere in the network based on varied

penetration level. It can be observed that feeder loading increase with an increase in

PLpv, ranging from minimum feeder loading of 12.6% (24% less than baseline mini-

mum loading) to maximum of 199.5% (468% above baseline maximum loading). The

loading violation is recorded at penetration level of 60% and from this point the load-

ing violation probability increases with an increase in PLpv. Any location combination

beyond PLpv of 357% will result in feeder loading violation.

To evaluate the effect of PV integration, maximum feeder loading PDFs with and

without PV were compared as presented in Figure 5.9. The baseline feeder maximum

loading is more to the right with a mean value of 42% and stDEV of 5.9%. Introduc-

tion of PV results in PDF being skewed to the right, with mean value of 100% and
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Figure 5.8: Feeder maximum loading due to three phase PV integration

stDEV of 29.8%.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200

P
ro

b
ab

ili
ty

 D
en

si
ty

 

Feeder Maximum Loading (%) 

Lmax_with PV

Lmax_base

Figure 5.9: feeder-loading-comp

5.5 Case3: The impact of single-phase grid-connected

PVDG (Constant load)

This case is intended to investigate impact of integrating a single phase PV system

into the unbalanced three phase network. A typical residential loads are single phase
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supply and each household is assumed to be supplied by a single phase 80A circuit

breaker. This case is intended to evaluate the impact of single phase PVDG,Therefore,

PV capacity per property is rated at 18.4 kWp (equivalent to the assumed NMD).

Simulations in this section are based on the procedure presented in Figure 4.3 and

un-balanced load flow computation is conducted. The network state (Voltage profile,

voltage unbalance factor and equipment loading) with and without PV integration is

recorded. Throughout this case it is assumed that the loads are constant.

5.5.1 Impact on voltage

Passive feeder

Figure 5.10 presented feeder voltage profile without PV based on the deterministic

load and each phase voltage is presented by a different colour code. It can be observed

that the voltage drops as the busbar is further from the transformer and the lower

voltage drop is on blue phase with 0.98pu (225.4V (Vl−n)). Phase voltages disperse

significantly at the end of the feeder.
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Figure 5.10: Unbalanced feeder voltage profile
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Active feeder

Scatter plot in Figure 5.11 presented peak voltages anywhere in the network against

an increase in PLpv. It is observed that the voltage magnitude increase with an in-

crease in penetration level. Peak magnitude of 1.08pu (248.4V (Vl−n))) at 83% PLpv

is observed, which is considerably below voltage upper limit (1.1pu).
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Figure 5.11: Vmax Single phase

5.5.2 Impact on Voltage unbalance

Passive feeder

Voltage unbalance impact resulting from single phase PVDG considered in this subsec-

tion. Figure 5.12 present a baseline voltage unbalance at customer point of connection

(i.e at a distribution kiosk). It can be observed that there is no V UF violation in a

baseline case. Busbar near the transformer, DK0, showed least V UF value of 0.008%

and the furthest busbar, DK6, showed highest V UF value of 0.152% (this value is still

significantly lower than the VUF limit).

Active feeder

PV integration impact on feeder maximum V UF was evaluated and the results shown

in a scatter plot in Figure 5.13. Each dot represent a feeder maximum V UF based on
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varied PV location and capacity. The general observation of the scatter plot results

show that the PV integration will mostly increase V UF of the feeder. The V UF limit

of 2% was reached at approximately 45% penetration level, while higher penetration

level result in decrease in feeder V UF .
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Figure 5.13: Feeder peak voltage unbalance factor
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5.5.3 Impact on Loading

Active feeder

Figure 5.14 presents a scatter plot of maximum cable loading anywhere in the network

based on varied size and allocation of PV systems. There was no loading violation

observed, although one scenario loser to the threshold. The feeder loading increase

with an increase in PLpv.

0

20

40

60

80

100

120

0 20 40 60 80 100

L
o

a
d

in
g

 (
%

) 

PVDG/FMD (%) 

Loadmax
   Loading limit 

Figure 5.14: Maximum feeder loading (1-phase)

5.6 Case4: The impact of single-phase grid-connected

PVDG (Probabilistic load)

This case is intended to investigate impact of integrating a single phase PV system into

the unbalanced three phase network. A typical residential loads are single phase supply

and each household is assumed to be supplied by a single phase 80A circuit breaker.

This case is intended to evaluate the impact of single phase PVDG and it is assumed

that PV capacity per property is rated at 18.4 kWp (equivalent to the assumed NMD).
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5.6.1 Impact on voltage

Passive feeder

The minimum feeder voltage is the most interesting measurement for the a passive

feeder (without PV). Figure 5.15 shows minimum feeder voltage against load demand.

It is apparent that the drops with an increase in load demand. The lower and upper

voltage is 0.983 pu and 0.976 pu respectively. Therefore, no voltage violation was

recorded in a baseline scenario.
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Figure 5.15: Minimum feeder voltage without PV

Active feeder

In Figure 5.16, the effect of PV introduction on feeder maximum voltage is presented.

The overall feeder voltage is improved and the peak voltage of 1.04 pu is significantly

below he voltage limit.

5.6.2 Impact on Voltage unbalance

Passive feeder

The voltage unbalance effect was evaluated based on voltage unbalance factor. Figure

5.17 shows the feeder maximum V UF without PV integration. It can be observed that

feeder V UF increase with an increase in load demand. The maximum feeder VUF

value of 0.43% as recorded, which is significantly lower than the limit.
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Figure 5.17: Maximum feeder VUF without PV

Active feeder

To evaluate the VUF impact of integrating PV into te network, simulations were

conducted with PV system. Figure 5.18a shows the feeder maximum VUF with PV

integration. It can be observed that feeder V UF increase with an increase in PLpv.

The VUF limit (2%) was reached three times out of 2500 scenarios. It is clear that

the feeder VUF with PV is significantly higher than without PV.

The attention is drawn to Figure 5.18b, where VUF is compared between bus at the

beginning against the bus at the end of the feeder. It can be seen that the bus at the

beggining of the feeder showed less VUF change, ranging between 0.0 - 0.087%. While

VUF of the bus at end of the feeder showed most change, ranging between 0.023 -

1.99%.

93



0 10 20 30 40 50

0

0.5

1

1.5

2

2.5

F
e
e
d

e
r 

M
a
x
im

u
m

 V
U

F
 (

%
)

PVDG/FMD (%)

VUF limit

VUF feeder max

(a) Maximum feeder VUF with PV

-0.5

0

0.5

1

1.5

2

2.5

0 500 1000 1500 2000 2500

V
U

F
 [

%
]

Number of trails

Beginning of the feeder

End of the feeder

(b) Maximum feeder VUF with PV

Figure 5.18: Feeder VUF with PV integration

5.6.3 Impact on Loading

Passive feeder

Feeder loading impact was also considered.Figure 5.19 presents the feeder loading

impact against the load demand (without PV). it is observed that feeder maximum

loading increase with an increase in load demand. The recorded values ranges between

36% and 52%, which are lower than the loading limit. Therefore, no loading violation

was experienced in the absence of PV system.

94



30

35

40

45

50

55

80 85 90 95 100 105

F
e
e
d

e
r 

M
a

x
im

u
m

 L
o
a

d
in

g
 (

%
)

Load demand (kVA)

Figure 5.19: Maximum feeder loading without PV

Active feeder

To evaluate the feeder loading impact due to PV integration into the network, PV

systems were introduced and simulations were conducted. Figure5.20 shows feeder

maximum loading against penetration level. There is a general decrease in feeder load

with an increase in penetration level and it is highlighted by the trend line. how-

ever,there was a loading violation occurred around 11% PLpv.

To evaluate the impact on feeder thermal loading, comparison between passive and
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Figure 5.20: Maximum feeder loading with PV
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active scenario are presented in Figure 5.21. It can be seen that for a passive feeder

loading PDF has a mean value of around 50%. While the introduction of PV will

increase feeder loading, with a PDF mean of around 75% and peak value 123%. There-

fore, there is a risk of thermal violation in the active feeder.
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Figure 5.21: Feeder loading PDF comparison with and without PV

5.7 Determination of grid hosting capacity

Determination of grid hosting capacity is crucial for the system engineers, as it pro-

vides an insight on network performance limits when subjected to high PV penetration.

Electrical networks are not homogeneous and they are expected have varying hosting

capacity as highlighted in Table 2.2, in subsection 2.5. The adopted definition of Host-

ing capacity of a distribution feeder is the maximum amount of distributed generation

(Rooftop PV in this study) that can be integrated without violating the thresholds of

any impact criteria. Although high penetration of rooftop PV into the grid will likely

result in numerous impacts as reviewed in Chapter 2, for the purpose of this study,

only steady state overvoltage, voltage unbalance factor and equipment thermal loading

were considered as impact analysis parameters. Therefore, Hosting capacity will be

the penetration level that result in the first violation of one of the three parameters

considered in this study.
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The results of the scatter plots presented in Section 5.3 to 5.6 were considered and

the penetration level resulting first violation per performance parameter were recorded

(see Table 5.1).

It can be observed that overcurrent threshold is the limiting factor for the hosting

Table 5.1: Test feeder hosting capacity

System
topology

HC factor Case 1 Case 2 Case 3 Case 4

(%) (%) (%) (%)

3-phase
Over voltage 85 50 N/A N/A
Over loading 41 55 N/A N/A

1-phase
Over voltage N/A N/A - -
Voltage unbal-
ance

N/A N/A 45 21

Over loading N/A N/A 63 12

capacity of test LV feeder, due to the short feeder length. As a result, it can be con-

cluded that the hosting capacity for a 3-phase PV integration to the test LV feeder

is 41% Penetration level, which is equivalent to 87.5kWp (equating to 7.25kWp per

household). The last hosting capacity (HC2) is not considered in determining the

feeder hosting capacity as it depends on numerous capacity and location combination

the network operator/utility has not control over. When considering a single phase

PV integration on the hosting capacity, it was found that the test network can only

accommodate 12% penetration level and limited by thermal limit. For the test LV

feeder supplying 18 households, it can be deduced that only 1.4kWp can be installed

per household and no statutory limits will be violated. Effect of type of connection is

clearly illustrated in Table 5.1 and it can be concluded that the three phase PVDG

uptake can result in high hosting capacity.

5.8 Violation probability analysis

In some instances, Network planner may want to assess the risk of integrating a PVDG

into the network and decide whether the risk is acceptable or not. In this subsection,

the risk analysis is conducted by applying cumulative distribution functions (CDF) to

test probability of performance parameter violation.

To quantify the risk associated with these performance parameters (voltage, voltage

unbalance factor and equipment thermal loading) violation, two modelling techniques
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were evaluated, i.e. constant load (denoted by 1ph const and 3ph const) and stochastic

load (denoted by 1ph st and 3ph st).

Firstly, Figure ?? presents Cumulative distribution functions (CDF) of voltage

violation comparing single and three phase systems. A 1-phase system is within volt-

age limit, while there is 99.36% confidence of operating with in voltage limit for 3-

phase system. The balance of 0.64% represents statistical risk of voltage violation in

3− phaseconstsystem. This voltage violation risk is very low and it can be acceptable

risk.While, Voltage 3− phasest showed high probability of violation at approximately

50% risk. This risk is too high to be accepted.
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Figure 5.22: Single phase vs Three phase feeder voltage CDF plot

To assess the impact of PV integration on feeder VUF violation analysis was conducted

and plotted in Figure 5.23. the plot consists of VUF impact based on constant load

(V UF1phconst) against the impact based on statistical load (V UF1phst). No violation

was recorded,

The other critical parameter, especially in urban network, is equipment loading.

Figure 5.24 presents probability of loading violation comparing 1-phase and 3-phase

systems.

A 1-phase system is within voltage limit, while there is 73% confidence of operat-

ing with in thermal loading limit for 3-phase system. The remaining 27% represents

statistical risk of thermal loading violation in 3-phase system and it applies to both

types of modelling (Loading 3 − phaseconst and Loading 3 − phasest). As it stands,

27% risk is too high and it is unacceptable risk.
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5.9 Discussion and implications

The current study was to investigate the impact of high penetration of Rooftop PV

into the existing electrical network, specifically on the urban residential network. This

section interprets results of this study in relation to the research questions (specifically

RQ1, RQ3 and RQ4) and position them in relation to the existing body of knowledge

from literature.

The voltage rise limits are stipulated in NRS048[39], where voltage has to be

within ±10% of nominal voltage, for 95% of the weeks period. The voltage impact

of PV integration was observed in all integration scenarios. All voltage impact test

results suggests that the introduction PV will improve the feeder voltage and this is

reflected in all voltage impact result [16, 104]. However, the interesting results are

that of Section 5.6 (PV integration in unbalanced LV network (Probabilistic load)),
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where increase in penetration level results in feeder voltage drop. This response can

be attributed to the independence of input variables (load and generation), which in

this case there is a negative correlation between load demand and generated power.

The transformer secondary voltage was assumed to be at nominal voltage of 400V (Vn

= 400V = 1.0pu) and the present voltage apportionment presented in Section 3.2.6

will lead in voltage violation. Considering that CoCT transformers are designed based

on a 5% nominal voltage boost on the transformer secondary busbar (refer to Section

3.2.6), the voltage rise range will decreased and leading in reduced penetration level.

The implication of this scenario is that the DNO will have to revisit their transformer

infrastructure and operate them at a lower tap for feeders with high proliferation on

PVDGs.

The feeder voltage unbalance resulting from the integration of single-phase

grid-connected rooftop PV into a residential LV network was presented in Section

5.5 and 5.6. The results suggests that the introduction of PV into the system will

result in an increased feeder voltage unbalance and this was shown in Figures 5.13

and 5.18a. It is interesting to observe that the V UF violation can occur even at

medium penetration levels (21% to 45%) and feeder V UF decrease when approaching

high penetration levels. This can be due to phase cancellation. Although this general

observation was made by other authors [48, 105], this study provided a probability of

occurrence (see Figure 5.23) which will be crucial for quantifying risk of VUF violation

during network planning stage.

The V UF variation (∆V UF ) also depends on the position of the busbar in relation

to the source. This is presented in Figure 5.18b, where ∆V UF is minimal at the

beginning of the feeder and more at the end of the feeder. The same observation was

reported by [48]. The reason for this situation is linked to the fault level which is

higher closer to the source (transformer secondary busbar in our case), which leads

into resistance in voltage change and the opposite is true at the end of the feeder.

Considering that customer load demands are not homogeneous and they are af-

fected by many factors including weather, occupancy and activity profile. The load

modelling (either constant or stochastic) effect can be observed when comparing the

VUF results in Figures 5.13 and 5.18a. Constant load with varying PV generation

only illustrate the worst impact of the current injection to V UF , which disregard the

correlation impact between load and generation. However, there are times where PV

injection occurs on the phase with higher load relative to other phases and therefore

improving busbar V UF (refer to Figure 5.18b). Thus make statistical approach to be

the most realistic representation of V UF .
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The equipment loading is one of the concerning factors for the utility and load-

ing impact results of this study seem to justify the concern. Introduction of PV into

the network can either improve or worsen the system loading. The feeder loading

results (Figures 5.3, 5.8, 5.14 and 5.20) indicates that feeder loading is improved at

lower penetration levels and this can be attributed to the PV generated power being

lesser or equivalent to the local load (self consumption). PV can reduce feeder loading

at lower penetration levels, while at high penetration level inverse is also true and

similar observations were made by Watson et al [103]. As stated in literature, system

losses are directly proportional to the system loading. The loading trends are in line

with the normalised system losses trend reported in other studies, such as [32, 103, 54].

System topology (Single-phase vs three-phase) effect on the performance of

distribution network was evaluated and it was fond to have a significant impact on

the performance of the network. In general, the hosting capacity results presented in

Section 5.7 (see Table 5.1) affirms recommendations made in NRS097-2-3 [101], where

three phase DG can result in higher hosting capacity. However, hosting capacity

results for urban residential feeder used in this study, are not in line with the NRS

097-3-2 recommended quantities for shared networks. NRS097-2-3 [101] recommends

the following thresholds before detailed studies can be conducted, where single phase

capacity limit is 4.6kW (on NMD 18.4kVA) and three-phase capacity limit is 13.8kW

(on NMD 41.4kVA ) in shared networks. However, the current study were found to be

below NRS07-3-2 recommended threshold.

Although penetration level has an impact on feeder performance, results of this

study indicated also the influence of location.

5.10 Chapter summary

In this chapter, impact assessment of high penetration of rooftop PV on real urban

residential feeder were investigated. The analysis were based on three performance

indicators,i.e voltage rise, voltage unbalance and thermal loading. The system topology

(single-phase vs three-phase) was also considered in order to understand their overall

impact on network performance. Although most research on PV integration has been

focused mainly on the voltage impact, it is observed that over-current violation is

reached before voltage violation. This is due to electrically short feeder characteristic

of urban feeders, resulting in lesser impedance. In light of the simulations, analysis

and discussions conducted thus far, the overall conclusions of this thesis are presented

in the next chapter.
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Chapter 6

Conclusions and Future Works

This chapter presents conclusions of this study and provides recommendations for fu-

ture studies.

6.1 Conclusions

This thesis investigated the technical impact of high penetration rooftop PV on ur-

ban residential networks. Its proliferation has resulted in increased concern from the

distribution network operators due stochastic nature of PV generation and load de-

mand variability. Uncertainty associated with these variables (Loads, PVDG size and

location), has resulted in the development of impact assessment framework based on

probabilistic load flow techniques and specifically Monte-Carlo simulation. Technical

evaluation considered overvoltage, voltage unbalance factor and equipment thermal

loading. based on the results of this research, it can be concluded that the uncon-

trolled high penetration of PVDG will have detrimental impact on the existing urban

residential networks, leading mainly to equipment thermal violations.

List of research questions where posed in Section 1.3, intended to guide towards

addressing the objective of this thesis. Main findings of this works are presented in

the context of providing answers to the research questions as follows:

• RQ1: Will the integration of rooftop PV technically impact (e.g

Overvoltage, voltage unbalance and equipment loading) the existing

urban residential network and to what extent?

Integration of distributed generation has been reported to have numerous im-

pacts on the existing network and these impacts are presented in Section 2.4.

This study was limited to overvoltage, voltage unbalance and equipment loading
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resulting from high penetration of rooftop PV. Unlike the rural networks, Ur-

ban networks are characterised by short feeder lengths and thus leading to less

voltage change (both Vdrop or Vrise). Equipment loading was violated first, thus

make it the limiting factor for the adoption of rooftop PV. The extent at which

the integration of PV will impact the existing network is dependent number of

parameters such as the feeder configuration (feeder length/impeadance, number

of branches etc.), connection

• RQ2: What methods have been adopted to investigate DG impact on

existing networks?

Through rigorous literature review presented in Chapter 2, it was found there

are lot of methods applied in investigating DG impact on existing networks.

These methods can be generally grouped into deterministic and probabilistic

methods. Although each method has its advantages and disadvantages, prob-

abilistic methods are preferred as they provide a spectrum of estimated values

in a statistic form (refer to Section 2.4). In Probabilistic load flow application,

numeric/simulation based techniques such as Monte-Carlo Simulation are widely

applied due to their simplicity in their application. However, the main drawback

of MCS is the iterative process which leads to high computation burden for a de-

sired level of accuracy. On the other hand, Analytical methods are also applied,

but they are associated with complicated mathematical computation, include

the requirement of mathematical assumptions, such as linearisation of equations

and independence between input variables, which leads to inaccurate results [91].

As a result, the probabilistic assessment based on Monte-Carlo Simulation was

adopted in his study due to its simplicity in its application.

• RQ3: Is overvoltage performance parameter adequate to assess PVDG

impact on urban residential networks?

Unlike rural feeders, urban networks are characterised by short feeders and dense

loads. In this work it was found that feeder thermal constraint is the main con-

tributing factor when considering low voltage urban residential network and this

is affirmed by loading impact results in Chapter 5. This proves the risk asso-

ciated with just considering the voltage rise as the only assessment parameter

when determining the hosting capacity of low voltage networks.

• RQ4: How is network hosting capacity affected by rooftop PV system

connection topology?

PVDG system connection topology, ether single-phase or three-phase, affects the

response of the network when subjected by the high penetration of PVDG. The

effect of system topology on network hosting capacity was evaluated in Section
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5.7. Single phase PV system results in lower hosting capacity, which conform to

the recommendation of NRS097-2-3. This is also indicated simplified connection

criteria formulated in NRS097-2-3 [101] (see Section 2.6), where single phase

capacity limit is 4.6kW (on NMD 18.4kVA) and three-phase capacity limit is

13.8kW (on NMD 41.4kVA ) in shared networks.

6.2 Future Works

This thesis made a strides in understanding the potential behaviour of urban residen-

tial network when subjected to the high penetration of grid-connected rooftop PV.

However, there is still further research work that can be explored.

• Analysis conducted in this work is limited in its application as it does not cover all

possible urban network characteristics. Further research is required were analysis

are conducted on a number of urban network, which can lead in a taxonomy for

urban network in South Africa and their potential behaviour when subjected to

high penetration levels of distributed generation.

• Due to unavailability of individual customer load data, the load allocation method

applied in this study has short coming in the analysis although it is a method

widely used in the industry. This limitation highlight the need to collect cus-

tomer load data for future research work that will improve the accuracy models

used and relevance of integration studies.

• The current work was focused main on technical impact on the LV network,

future work can extend the impact assessment methodology presented in this

work to investigate how this high penetration of grid connected rooftop PV will

propagate into the upper networks (i.e MV and HV networks).

• The work of this thesis can be extended by incorporating other forms of tech-

nologies such as electrical vehicles.

• The other possible future work can be on investigating mitigation solution that

can improve Hosting capacity the test network was determined in this study.
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[11] Y. Huang, K. Alvehag, and L. Söder, “Regulation impact on distribution sys-

tems with distributed generation,” in 2012 9th International Conference on the

European Energy Market, may 2012, pp. 1–8.

[12] Y. Hou, MagnussonJesper, G. Engdahl, and L. Liljestrand, “Impact on voltage

rise of PV generation in future Swedish urban area with High PV Penetration,”

ENERGYCON 2014, pp. 904–911, 2014.
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Appendix A

DiGSILENT PowerFactory Models

DiGSILENT PowerFactory was used as the main simulation software in this study.

The following subsection provide details on how the models and variables inputs where

constructed. Further details on the aspect of system modelling in DiGSILENT Pow-

erFactory can be accessed in [17].

A.1 Test network Model

The MV network supplying the test LV feeder was modelled in DIgSILENT Powerfac-

tory and presented as a graphical representation depicted in Figure A.1. The rectan-

gular block represent the HV/MV substation and the big circles represent distribution

substation consisting of only MV switchgear. While the small circles represent the

miniature substation consisting of ring main unit (RMU) and MV/LV transformer.

The detailed simulation is conducted on the LV feeder and the single line diagram

presented in Figure A.2 was modeled in PowerFactory. The single line diagram shows

the interconnection of feeder components such as busbar, line/cables, loads, PV etc.

Each customer is represented by both load and PV system.

A.2 Variable Models

To be able to conduct simulations, input variable (Load demand, PV generation,

scaling factors etc) had to be incorporated into PowerFactory.
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Figure A.1: MV network SLD
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Figure A.3: PV scaling model
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Appendix B

Supplementary results

Table B.1: Load demand summary

Bus number Phase α β Amin Amax

1
a 1.4066 2.4654 12.523 22.813
b 1.4067 2.4655 16.405 29.886
c 1.4067 2.4655 19.87 36.197

2
a 1.4067 2.4655 18.517 33.734
b 1.4067 2.4655 14.761 26.891
c 1.4067 2.4655 15.519 28.271

3
a 1.4066 2.4654 11.051 20.131
b 1.4067 2.4655 20.415 37.19
c 1.4067 2.4655 17.332 31.575

4
a 1.4067 2.4655 18.972 34.563
b 1.4067 2.4655 17.071 31.099
c 1.4066 2.4654 12.754 23.234

5
a 1.4067 2.4655 17.515 26.443
b 1.4067 2.4655 17.632 32.121
c 1.4067 2.4655 16.65 30.332

6
a 1.4067 2.4655 14.7 26.779
b 1.4067 2.4655 15.956 29.067
c 1.4067 2.4655 18.142 33.05

B.1 Case1 Results summary

Steady state results of passive 3phase network are presented in Table B.3.
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Table B.2: Load demand summary

Bus number Phase α β Amin Amax

1
a 1.4066 2.4654 12.523 22.813
b 1.4067 2.4655 16.405 29.886
c 1.4067 2.4655 19.87 36.197

2
a 1.4067 2.4655 18.517 33.734
b 1.4067 2.4655 14.761 26.891
c 1.4067 2.4655 15.519 28.271

3
a 1.4066 2.4654 11.051 20.131
b 1.4067 2.4655 20.415 37.19
c 1.4067 2.4655 17.332 31.575

4
a 1.4067 2.4655 18.972 34.563
b 1.4067 2.4655 17.071 31.099
c 1.4066 2.4654 12.754 23.234

5
a 1.4067 2.4655 17.515 26.443
b 1.4067 2.4655 17.632 32.121
c 1.4067 2.4655 16.65 30.332

6
a 1.4067 2.4655 14.7 26.779
b 1.4067 2.4655 15.956 29.067
c 1.4067 2.4655 18.142 33.05

Table B.3: Voltage profile and loading without PV

Bus number Voltage (p.u.) Line ID Loading(%)

DK0 0.999 Linetx-0 32.9
DK1 0.995 Line0-1 16.6
DK2 0.989 Line0-3 34.3
DK3 0.995 Line1-2 23.9
DK4 0.992 Line3-5 24.0
DK5 0.991 Line3-4 13.4
DK6 0.984 Line5-6 17.0

B.2 Case2 Results summary

Figure ?? presents Voltage unbalance factor output result from the Quasi-Dynamic

simulation in powerFactory.

The feeder loading was examined and the probability density function is presented

in Figure B.2. The measured data is fitted on Beta PDF and distribution parameters

are µ of 0.97987899 and σ of 0.00125274. The singlle phase feeder loading PDF when

subjected to rooftop PV is presented in FigureB.3.

The output voltage data fitted the beta distribution with µ of 0.97987899 and σ of
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Figure B.1: Test

Figure B.2: Loading base

0.00125274. The minimum voltage drop of 0.975 pu which is significantly above the

NRS minimum voltage limit of 0.90pu.

Voltage unbalance impact

Figure B.5 presents the feeder maximum VUF fitted with a Beta PDF. Beta PDF is

skewed to the left with distribution parameters of µ of 0.97987899 and σ of 0.00125274.The

recorded maximum VUF of 0.96% is significantly lower than NRS maximum VUF limit

of 2%.
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Figure B.3: Single phase feeder loading PDF when subjected to high rooftop PV
penetration

Figure B.4: Feeder voltage drop PDF-base

Figure B.5: VUF base-1phase

B.3 Case4

To interpret the potential of voltage violation, PDF of the active feeder is presented

in Figure B.6.

125



0 0.2 0.4 0.6 0.8 1 1.2

0

0.5

1

1.5

2

2.5

3

3.5

0

200

400

600

800

1000

1200

P
R

O
B

A
B

IL
IT

Y 
D

EN
SI

TY

BUS VOLTAGE [PU]

Histogram

Beta fit

Figure B.6: Maximum feeder voltage PDF in an active feeder
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Figure B.7: Feeder VUF PDF comparison with and without PV
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Appendix C

PV System specification

Specification of the Yingli 310Wp solar PV used in this thesis.

PVsyst T
RIA

L02/03/18 22h13PVSYST V6.40

Characteristics of a PV module

PVsyst Evaluation mode

Manufacturer, model : Yingli Solar,   YL290P-35b

Availability : Prod. from 2015

Data source : Manufacturer 2015

STC power (manufacturer) Pnom 290 Wp Technology Si-poly

Module size (W x L) 0.990 x 1.960 m² Rough module area 1.94 m²Amodule

Number of cells 1 x 72 Sensitive area (cells) Acells 1.75 m²

Specifications for the model (manufacturer or measurement data)

Reference temperature TRef 25 °C Reference irradiance GRef 1000 W/m²

Open circuit voltage Voc 44.8 V Short-circuit current Isc 8.68 A

Max. power point voltage Vmpp 35.8 V Max. power point current Impp 8.11 A

 => maximum power Pmpp 290.0 W Isc temperature coefficient muIsc 3.6 mA/°C

One-diode model parameters

Shunt resistance Rshunt 245 ohm Diode saturation current IoRef 0.099 nA

Serie resistance Rserie 0.46 ohm Voc temp. coefficient MuVoc -151 mV/°C

Diode quality factor Gamma 0.96

Specified Pmax temper. coeff. muPMaxR -0.43 %/°C Diode factor temper. coeff. muGamma 0.000 1/°C

Reverse Bias Parameters,  for use in behaviour of PV arrays under partial shadings or mismatch

Reverse characteristics (dark) BRev 3.20 mA/V² (quadratic factor (per cell))

Number of by-pass diodes per module  3 Direct voltage of by-pass diodes -0.7 V

Model results for standard conditions  (STC:  T=25°C,  G=1000 W/m²,  AM=1.5)

Max. power point voltage Vmpp  35.8 V Max. power point current Impp  8.11 A

Maximum power Pmpp   290.0 Wc Power temper. coefficient muPmpp -0.42 %/°C

Efficiency(/ Module area) Eff_mod  14.9 % Fill factor FF 0.746

Efficiency(/ Cells area) Eff_cells  16.6 %
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PV module:  Yingli Solar,  YL290P-35b

290.0 W

Incident Irrad. = 1000 W/m²

Cells temp. = 25 °C
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Figure C.1: Solar PV specification
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