473 research outputs found

    Hardware/software co-design of fractal features based fall detection system

    Get PDF
    Falls are a leading cause of death in older adults and result in high levels of mortality, morbidity and immobility. Fall Detection Systems (FDS) are imperative for timely medical aid and have been known to reduce death rate by 80%. We propose a novel wearable sensor FDS which exploits fractal dynamics of fall accelerometer signals. Fractal dynamics can be used as an irregularity measure of signals and our work shows that it is a key discriminant for classification of falls from other activities of life. We design, implement and evaluate a hardware feature accelerator for computation of fractal features through multi-level wavelet transform on a reconfigurable embedded System on Chip, Zynq device for evaluating wearable accelerometer sensors. The proposed FDS utilises a hardware/software co-design approach with hardware accelerator for fractal features and software implementation of Linear Discriminant Analysis on an embedded ARM core for high accuracy and energy efficiency. The proposed system achieves 99.38% fall detection accuracy, 7.3× speed-up and 6.53× improvements in power consumption, compared to the software only execution with an overall performance per Watt advantage of 47.6×, while consuming low reconfigurable resources at 28.67%

    Zooplankton visualization system: design and real-time lossless image compression

    Get PDF
    In this thesis, I present a design of a small, self-contained, underwater plankton imaging system. I base the imaging system’s design on an embedded PC architecture based on PC/104-Plus standards to meet the compact size and low power requirements. I developed a simple graphical user interface to run on a real-time operating system to control the imaging system. I also address how a real-time image compression scheme implemented on an FPGA chip speeds up image transfer speeds of the imaging system. Since lossless compression of the image is required in order to retain all image details, I began with an established compression scheme like SPIHT, and latter proposed a new compression scheme that suits the imaging system’s requirements. I provide an estimate of the total amount of resources required and propose suitable FPGA chips to implement the compression scheme. Finally, I present various parallel designs by which the FPGA chip can be integrated into the imaging system

    Research and development for the data, trigger and control card in preparation for Hi-Lumi lhc

    Get PDF
    When the Large Hadron Collider (LHC) increases its luminosity by an order of magnitude in the coming decade, the experiments that sit upon it must also be upgraded to continue to their physics performance in the increasingly demanding environment. To achieve this, the Compact Muon Solenoid (CMS) experiment will make use of tracking information in the Level-1 trigger for the first time, meaning that track reconstruction must be achieved in less than 4 μs in an all-FPGA architecture. MUonE is an experiment aiming to make an accurate measurement of the the hadronic contribution to the anomalous magnetic moment of the muon. It will achieve this by making use of similar apparatus to that designed for CMS and benefit from the research and development efforts there. This thesis presents both development and testing work for the readout chain from tracker module to back-end processing card, as well as the results and analysis of a beam test used to validate this chain for both CMS and the MUonE experiment.Open Acces

    Online Timing Slack Measurement and its Application in Field-Programmable Gate Arrays

    Get PDF
    Reliability, power consumption and timing performance are key concerns for today's integrated circuits. Measurement techniques capable of quantifying the timing characteristics of a circuit, while it is operating, facilitate a range of benefits. Delay variation due to environmental and operational conditions, and degradation can be monitored by tracking changes in timing performance. Using the measurements in a closed-loop to control power supply voltage or clock frequency allows for the reduction of timing safety margins, leading to improvements in power consumption or throughput performance through the exploitation of better-than worst-case operation. This thesis describes a novel online timing slack measurement method which can directly measure the timing performance of a circuit, accurately and with minimal overhead. Enhancements allow for the improvement of absolute accuracy and resolution. A compilation flow is reported that can automatically instrument arbitrary circuits on FPGAs with the measurement circuitry. On its own this measurement method is able to track the "health" of an integrated circuit, from commissioning through its lifetime, warning of impending failure or instigating pre-emptive degradation mitigation techniques. The use of the measurement method in a closed-loop dynamic voltage and frequency scaling scheme has been demonstrated, achieving significant improvements in power consumption and throughput performance.Open Acces

    Energy-Sustainable IoT Connectivity: Vision, Technological Enablers, Challenges, and Future Directions

    Full text link
    Technology solutions must effectively balance economic growth, social equity, and environmental integrity to achieve a sustainable society. Notably, although the Internet of Things (IoT) paradigm constitutes a key sustainability enabler, critical issues such as the increasing maintenance operations, energy consumption, and manufacturing/disposal of IoT devices have long-term negative economic, societal, and environmental impacts and must be efficiently addressed. This calls for self-sustainable IoT ecosystems requiring minimal external resources and intervention, effectively utilizing renewable energy sources, and recycling materials whenever possible, thus encompassing energy sustainability. In this work, we focus on energy-sustainable IoT during the operation phase, although our discussions sometimes extend to other sustainability aspects and IoT lifecycle phases. Specifically, we provide a fresh look at energy-sustainable IoT and identify energy provision, transfer, and energy efficiency as the three main energy-related processes whose harmonious coexistence pushes toward realizing self-sustainable IoT systems. Their main related technologies, recent advances, challenges, and research directions are also discussed. Moreover, we overview relevant performance metrics to assess the energy-sustainability potential of a certain technique, technology, device, or network and list some target values for the next generation of wireless systems. Overall, this paper offers insights that are valuable for advancing sustainability goals for present and future generations.Comment: 25 figures, 12 tables, submitted to IEEE Open Journal of the Communications Societ

    State-of-the-Art Sensors Technology in Spain 2015: Volume 1

    Get PDF
    This book provides a comprehensive overview of state-of-the-art sensors technology in specific leading areas. Industrial researchers, engineers and professionals can find information on the most advanced technologies and developments, together with data processing. Further research covers specific devices and technologies that capture and distribute data to be processed by applying dedicated techniques or procedures, which is where sensors play the most important role. The book provides insights and solutions for different problems covering a broad spectrum of possibilities, thanks to a set of applications and solutions based on sensory technologies. Topics include: • Signal analysis for spectral power • 3D precise measurements • Electromagnetic propagation • Drugs detection • e-health environments based on social sensor networks • Robots in wireless environments, navigation, teleoperation, object grasping, demining • Wireless sensor networks • Industrial IoT • Insights in smart cities • Voice recognition • FPGA interfaces • Flight mill device for measurements on insects • Optical systems: UV, LEDs, lasers, fiber optics • Machine vision • Power dissipation • Liquid level in fuel tanks • Parabolic solar tracker • Force sensors • Control for a twin roto

    Parameterized Implementation of K-means Clustering on Reconfigurable Systems

    Get PDF
    Processing power of pattern classification algorithms on conventional platforms has not been able to keep up with exponentially growing datasets. However, algorithms such as k-means clustering include significant potential parallelism that could be exploited to enhance processing speed on conventional platforms. A better and effective solution to speed-up the algorithm performance is the use of a hardware assist since parallel kernels can be partitioned and concurrently run on hardware as opposed to the sequential software flow. A parameterized hardware implementation of k-means clustering is presented as a proof of concept on the Pilchard Reconfigurable computing system. The hardware implementation is shown to have speedups of about 500 over conventional implementations on a general-purpose processor. A scalability analysis is done to provide a future direction to take the current implementation of 3 classes and scale it to over N classes

    Machine Learning and Signal Processing Design for Edge Acoustic Applications

    Get PDF
    • …
    corecore