2,221 research outputs found

    Real-time and Probabilistic Temporal Logics: An Overview

    Full text link
    Over the last two decades, there has been an extensive study on logical formalisms for specifying and verifying real-time systems. Temporal logics have been an important research subject within this direction. Although numerous logics have been introduced for the formal specification of real-time and complex systems, an up to date comprehensive analysis of these logics does not exist in the literature. In this paper we analyse real-time and probabilistic temporal logics which have been widely used in this field. We extrapolate the notions of decidability, axiomatizability, expressiveness, model checking, etc. for each logic analysed. We also provide a comparison of features of the temporal logics discussed

    An Objection to Naturalism and Atheism from Logic

    Get PDF
    I proffer a success argument for classical logical consequence. I articulate in what sense that notion of consequence should be regarded as the privileged notion for metaphysical inquiry aimed at uncovering the fundamental nature of the world. Classical logic breeds necessitism. I use necessitism to produce problems for both ontological naturalism and atheism

    A Galois connection between classical and intuitionistic logics. I: Syntax

    Full text link
    In a 1985 commentary to his collected works, Kolmogorov remarked that his 1932 paper "was written in hope that with time, the logic of solution of problems [i.e., intuitionistic logic] will become a permanent part of a [standard] course of logic. A unified logical apparatus was intended to be created, which would deal with objects of two types - propositions and problems." We construct such a formal system QHC, which is a conservative extension of both the intuitionistic predicate calculus QH and the classical predicate calculus QC. The only new connectives ? and ! of QHC induce a Galois connection (i.e., a pair of adjoint functors) between the Lindenbaum posets (i.e. the underlying posets of the Lindenbaum algebras) of QH and QC. Kolmogorov's double negation translation of propositions into problems extends to a retraction of QHC onto QH; whereas Goedel's provability translation of problems into modal propositions extends to a retraction of QHC onto its QC+(?!) fragment, identified with the modal logic QS4. The QH+(!?) fragment is an intuitionistic modal logic, whose modality !? is a strict lax modality in the sense of Aczel - and thus resembles the squash/bracket operation in intuitionistic type theories. The axioms of QHC attempt to give a fuller formalization (with respect to the axioms of intuitionistic logic) to the two best known contentual interpretations of intiuitionistic logic: Kolmogorov's problem interpretation (incorporating standard refinements by Heyting and Kreisel) and the proof interpretation by Orlov and Heyting (as clarified by G\"odel). While these two interpretations are often conflated, from the viewpoint of the axioms of QHC neither of them reduces to the other one, although they do overlap.Comment: 47 pages. The paper is rewritten in terms of a formal meta-logic (a simplified version of Isabelle's meta-logic

    Undecidable First-Order Theories of Affine Geometries

    Get PDF
    Tarski initiated a logic-based approach to formal geometry that studies first-order structures with a ternary betweenness relation (\beta) and a quaternary equidistance relation (\equiv). Tarski established, inter alia, that the first-order (FO) theory of (R^2,\beta,\equiv) is decidable. Aiello and van Benthem (2002) conjectured that the FO-theory of expansions of (R^2,\beta) with unary predicates is decidable. We refute this conjecture by showing that for all n>1, the FO-theory of monadic expansions of (R^2,\beta) is \Pi^1_1-hard and therefore not even arithmetical. We also define a natural and comprehensive class C of geometric structures (T,\beta), where T is a subset of R^2, and show that for each structure (T,\beta) in C, the FO-theory of the class of monadic expansions of (T,\beta) is undecidable. We then consider classes of expansions of structures (T,\beta) with restricted unary predicates, for example finite predicates, and establish a variety of related undecidability results. In addition to decidability questions, we briefly study the expressivity of universal MSO and weak universal MSO over expansions of (R^n,\beta). While the logics are incomparable in general, over expansions of (R^n,\beta), formulae of weak universal MSO translate into equivalent formulae of universal MSO. This is an extended version of a publication in the proceedings of the 21st EACSL Annual Conferences on Computer Science Logic (CSL 2012).Comment: 21 pages, 3 figure

    Decidability in the logic of subsequences and supersequences

    Get PDF
    We consider first-order logics of sequences ordered by the subsequence ordering, aka sequence embedding. We show that the \Sigma_2 theory is undecidable, answering a question left open by Kuske. Regarding fragments with a bounded number of variables, we show that the FO2 theory is decidable while the FO3 theory is undecidable

    Complete Deductive Systems for Probability Logic with Application in Harsanyi Type Spaces

    Get PDF
    Thesis (PhD) - Indiana University, Mathematics, 2007These days, the study of probabilistic systems is very popular not only in theoretical computer science but also in economics. There is a surprising concurrence between game theory and probabilistic programming. J.C. Harsanyi introduced the notion of type spaces to give an implicit description of beliefs in games with incomplete information played by Bayesian players. Type functions on type spaces are the same as the stochastic kernels that are used to interpret probabilistic programs. In addition to this semantic approach to interactive epistemology, a syntactic approach was proposed by R.J. Aumann. It is of foundational importance to develop a deductive logic for his probabilistic belief logic. In the first part of the dissertation, we develop a sound and complete probability logic Σ+\Sigma_+ for type spaces in a formal propositional language with operators LriL_r^i which means ``the agent ii's belief is at least rr" where the index rr is a rational number between 0 and 1. A crucial infinitary inference rule in the system Σ+\Sigma_+ captures the Archimedean property about indices. By the Fourier-Motzkin's elimination method in linear programming, we prove Professor Moss's conjecture that the infinitary rule can be replaced by a finitary one. More importantly, our proof of completeness is in keeping with the Henkin-Kripke style. Also we show through a probabilistic system with parameterized indices that it is decidable whether a formula ϕ\phi is derived from the system Σ+\Sigma_+. The second part is on its strong completeness. It is well-known that Σ+\Sigma_+ is not strongly complete, i.e., a set of formulas in the language may be finitely satisfiable but not necessarily satisfiable. We show that even finitely satisfiable sets of formulas that are closed under the Archimedean rule are not satisfiable. From these results, we develop a theory about probability logic that is parallel to the relationship between explicit and implicit descriptions of belief types in game theory. Moreover, we use a linear system about probabilities over trees to prove that there is no strong completeness even for probability logic with finite indices. We conclude that the lack of strong completeness does not depend on the non-Archimedean property in indices but rather on the use of explicit probabilities in the syntax. We show the completeness and some properties of the probability logic for Harsanyi type spaces. By adding knowledge operators to our languages, we devise a sound and complete axiomatization for Aumann's semantic knowledge-belief systems. Its applications in labeled Markovian processes and semantics for programs are also discussed
    • …
    corecore