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Abstract

These days, the study of probabilistic systems is very popular not only in theoretical com-

puter science but also in economics. There is a surprising concurrence between game theory

and probabilistic programming. J.C. Harsanyi introduced the notion of type spaces to give

an implicit description of beliefs in games with incomplete information played by Bayesian

players. Type functions on type spaces are the same as the stochastic kernels that are used

to interpret probabilistic programs. In addition to this semantic approach to interactive

epistemology, a syntactic approach was proposed by R.J. Aumann. It is of foundational

importance to develop a deductive logic for his probabilistic belief logic.

In the first part of the dissertation, we develop a sound and complete probability logic Σ+

for type spaces in a formal propositional language with operators Li
r which means “the

agent i’s belief is at least r” where the index r is a rational number between 0 and 1. A

crucial infinitary inference rule in the system Σ+ captures the Archimedean property about

indices. By the Fourier-Motzkin’s elimination method in linear programming, we prove

Professor Moss’s conjecture that the infinitary rule can be replaced by a finitary one. More

importantly, our proof of completeness is in keeping with the Henkin-Kripke style. Also we

show through a probabilistic system with parameterized indices that it is decidable whether

a formula φ is derived from the system Σ+. The second part is on its strong completeness.

It is well-known that Σ+ is not strongly complete, i.e., a set of formulas in the language

may be finitely satisfiable but not necessarily satisfiable. We show that even finitely satisfi-

able sets of formulas that are closed under the Archimedean rule are not satisfiable. From

these results, we develop a theory about probability logic that is parallel to the relationship

between explicit and implicit descriptions of belief types in game theory. Moreover, we use
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a linear system about probabilities over trees to prove that there is no strong completeness

even for probability logic with finite indices. We conclude that the lack of strong complete-

ness does not depend on the non-Archimedean property in indices but rather on the use of

explicit probabilities in the syntax.

We show the completeness and some properties of the probability logic for Harsanyi type

spaces. By adding knowledge operators to our languages, we devise a sound and complete

axiomatization for Aumann’s semantic knowledge-belief systems. Its applications in labeled

Markovian processes and semantics for programs are also discussed.
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CHAPTER 1

Introduction

“I’ve always believed in numbers. In equations and logics that lead to

reason. But after a lifetime’s such pursuits, I ask, what truly is logic?

Who decides reason? ”

–John Nash, A Beautiful Mind

Knowledge and Belief Knowledge and belief have been actively studied by re-

searchers starting with ancient Greek philosophers. It was not until recently that they

received a rigorous formal treatment in modal logic and in modern probability theory, which

was necessitated by their substantive uses in artificial intelligence and game theory. Com-

puter scientists and game theorists are more concerned about interactive epistemology, i.e.,

knowledge and belief among a group of agents such as the relationship among knowledge,

belief, and action, while philosophers are more interested in questions about epistemology of

a single agent, such as “what does it mean to say that someone knows something.” Kripke

structures, a standard semantics for modal logic, provide a mathematical framework for

reasoning about knowledge. It is well-known that the deductive system S5 is a sound and

complete axiomatization with respect to the class of Kripke structures for knowledge where

accessibility relations are equivalence relations. Now we use a simple example to illustrate

this kind of structures.

(H, H)
OO

2
²²

oo 1 // (H, T )
OO

2
²²

(T,H) oo
1

// (T, T )

Example 1.0.1. Consider a game between player 1 and player 2. Each of them has

a coin. After tossing his coin, each of them knows the outcome of his own toss but does

1



1. INTRODUCTION 2

not know the outcome of the other. There are four possible states after tossing in the

game: (H, H), (H, T ), (T,H) and (T, T ). (H, T ) means that player 1’s outcome is heads

and player 2 gets tails. The meanings of other states are similar. The Kripke structure for

this simple game is given by the diagram above. For example, at state (H, H), player 1

considers only (H, H) and (H, T ) possible because he knows his own outcome but does not

know the outcome of player 2’s toss. According to this analysis, at each state, each player

knows that the other player knows his own outcome.

Reasoning about belief is more subtle than reasoning about knowledge. In this thesis, we

are concerned only about quantified beliefs like the statement “I believe that the chance of it

raining today is ninety percent.” We reconsider the example above, now adding probabilities

to it.

Example 1.0.2. The game is played the same as in the previous example except that

we further assume that player 1 has a fair coin, i.e. after tossing it, it is equally likely to

land heads and tails, and player 2 has a biased coin which is twice as likely to land heads as

to land tails. At state (H, H), player 1 believes that the chance for player 2’s coin to land

head and tail are 2/3 and 1/3, respectively. So he assigns 2/3 to the state (H, H) (or itself)

and 1/3 to (H,T ). Since, at that state, he never thinks the states (T, H) or (T, T ) possible,

he assigns 0 to both of them. Similarly, we can define both players’ beliefs at other states.

We can then consider beliefs of agents about other agents’ beliefs. At the state (H,H),

player 1 has one-third belief in player 2’s belief that chance of both coins’ landing tails is

one half.

How do we represent and reason about quantified beliefs? Can we find a mathematical

framework for belief analogous to Kripke structures for knowledge?

Modeling Beliefs and Belief Types Reconsider the statement “I believe that the

chance of rain today is at least ninety percent.” This belief is about another statement

that it will rain today. Mathematically, statements are modeled as events. Since the first

statement involves probabilities, it is natural to consider these statements in the context of
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a measurable space S = 〈Ω,A〉 where Ω is a state space and A is a σ-algebra on this space.

So we interpret this quantified belief using an operator L0.9 on A, i.e. a mapping from A to

A. L here stands for “at least”. If A stands for the event that it will rain today, then L0.9A

denotes the belief that the chance of rain today is at least ninety percent. For any index

r ∈ Q∩ [0, 1], the operator Lr is defined similarly. For such a family of belief operators Lr,

it is easy to check that they satisfy the following properties: for events A,An ∈ A,

L0(A) = Ω(1.1)

L1(Ω) = Ω(1.2)

LrA ⊆ ∼ Ls(∼ A), r + s > 1(1.3)

rn ↑ r ⇒ LrnA ↓ LrA(1.4)

Lr(A ∩B) ∩ Ls(A ∩ (∼ B)) ⊆ Lr+s(1.5)

∼ Lr(A ∩B)∩ ∼ Ls(A ∩ (∼ B)) ⊆ ∼ Lr+sA(1.6)

An ↓ A ⇒ LrAn ↓ LrA(1.7)

where ↑ (↓) means infinitely approaching by an (a) increasing (decreasing) sequence. The

first three properties say that degrees of beliefs are always between 0 and 1. (1.5) and (1.6)

state that belief operators are finitely additive. (1.7) is the continuity from above property

from measure theory. These three properties ensure that belief operators are σ additive.

(1.4) states that these operators are continuous in degrees (indices r in Lr). This kind of

treatment of belief interpreted by operators is analogous to the treatment of knowledge in

Kripke structures, interpreted by partition-induced operators. In order to make this par-

allel between knowledge and belief complete, we still need a quantified version of “Kripke

structures” for quantified beliefs. Such quantified Kripke structures, which are called belief

types in game theory, have played a major role in economic theory and game theory.

There are two approaches to belief types in game theory. The first represents beliefs explic-

itly, and is called the explicit description of beliefs. Such a description starts with a space
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of states of nature, which specify parameters of a game, such as payoff functions. Next it

specifies the beliefs of the agents about the space of states of nature, and then the beliefs

about the combination of the nature space with the beliefs about the nature space and so

on. An explicit belief type consists of a hierarchy of beliefs which satisfy the coherence

requirement that different levels of beliefs of every agent do not contradict one another. In

the first layer, the beliefs are represented by probability measures over the nature space,

and the beliefs in the second layer are represented by probability measures over the space

of probability measures in the first layer, and so on. Such a straightforward description

provides all possible belief types, which form an explicit model for beliefs. However, this

model is hardly a workable model considering the complexity of the representations of the

belief types in it.

The second is the implicit description of beliefs, which is what we want for giving formal

semantics for beliefs. It was introduced by Harsanyi in 1960’s [16] for games with incomplete

information played by Bayesian players. This description is defined in a measure space

S = 〈Ω,A〉. For each agent, each state of this space is associated with a state of nature and

a probability measure on the space. His implicit belief type at the state is this probability

measure. It provides a belief over the nature space. Since each state is associated with a

belief type, it also defines beliefs of beliefs about the nature space, and so on. So we can

extract a hierarchy of beliefs (or simply explicit description) from this implicit description.

If we ignore the association with the nature space, namely the economic content, the above

association of states to probability measures is called a type function from Ω to the measure

space ∆(S) of probability measures on S. This type function corresponds to a Markovian

kernel Ti for each agent i on Ω×A, i.e., a function from Ω×A to [0, 1] which satisfies the

following two conditions:

• for each w ∈ Ω, Ti(w, ·) is a probability measure on S; and

• for each A ∈ A, Ti(·, A) is an A-measurable function.
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The triplet 〈Ω,A, Ti〉 is called a type space. It was shown in Samet [31] that there is a

natural one-to-one correspondence between such defined type spaces and the families above

of belief operators. Type spaces are exactly the expected “quantified Kripke structures”

for beliefs. Note that the introspectivity conditions would be captured by the standard

Harsanyi type spaces within the multi-agent setting of game theory.

Syntactic Formalism An alternative to the above semantic approach to belief is

Aumann’s syntactic approach. The building blocks of the syntactic formalism are formu-

las. They are constructed from propositional letters (which are interpreted by Aumann as

“natural occurrences”, in contrast with the nature space in Harsanyi’s type spaces) by the

Boolean connectives and a family of belief operators Li
r where r ∈ Q∩ [0, 1]. The character-

istic feature of the syntax is this family of operators. The interpretation of Li
rφ is that the

agent i’s belief in the event φ is at least r. Li
r is the syntactic counterpart of the semantic

belief operator Lr
1 on σ-algebras. In this thesis, we mainly focus on reasoning about beliefs

of one agent. So, for simplicity, we omit the label i.

With this language, we devise a deductive system for quantified beliefs which we prove to

be sound and complete with respect to the class of type spaces above. It is not surpris-

ing that our logical formulation Σ+ contains many properties from semantic belief operators.

Probability Logic Σ+

• (A0) Propositional logic

• (A1) L0φ

• (A2) Lr>
• (A3) Lr(φ ∧ ψ) ∧ Lt(φ ∧ ¬ψ) → Lr+tφ, r + t ≤ 1

• (A4) ¬Lr(φ ∧ ψ) ∧ ¬Ls(φ ∧ ¬ψ) → ¬Lr+sφ, r + s ≤ 1

• (A5) Lrφ → ¬Ls¬φ, r + s > 1

1We use the same symbol Li
r for both the syntactic and semantic operators. Context should determine

which we mean.
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• (DIS) If ` φ ↔ ψ, then ` Lrφ ↔ Lrψ.

• (ARCH): If ` γ → Lsφ for all s < r, then ` γ → Lrφ

The most important principle is the rule (ARCH). It captures the Archimedean property of

the index set Q ∩ [0, 1] of our language. In the presence of this rule, we can give a natural

proof of the completeness of the system Σ+ with respect to the above semantics, which

can also be regarded as a natural generalization of standard completeness proofs through

canonical models in modal logics to probability logics. There is one more thing that we need

to deal with. The rule (ARCH) is not finitary but infinitary. In order to replace it with

a finitary principle, we need to consider its relation with reasoning about linear inequalities.

Reasoning about quantified beliefs can be stratified into different levels according to depths

of formulas. At each level, probabilistic reasoning is reduced to reasoning about linear

inequalities plus propositional reasoning with probabilistic constraints.

{>,⊥}
¢

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢¢

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
AA

Level 1

Level 2

Level 3

The rule (ARCH) makes sure that at each level each finite consistent set of linear inequali-

ties is satisfiable in a type space. Another rule (DIS) says that Lr is a syntactic congruence

operator. Coherence of probabilistic beliefs is already implicit in this syntactic representa-

tion. Indeed, our syntactic formulation is very similar to the explicit description of belief
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types in games with incomplete information.

With this interpretation in terms of linear programming, we can replace the infinitary rule

(ARCH) with a finitary rule by the Fourier-Motkzin elimination method. The elimination

method tells us that if a system of linear inequalities has a solution, we can use a simple

algorithm to find it within a finite number of steps. In terms of syntax, it follows that,

for any formulas γ and φ, there is a sufficiently small rational ε which depends only on

the syntactic forms of these two formulas such that if γ → Lr−εφ is derivable in Σ+, so

is γ → Lrφ. So we conclude that Σ+ with this replacement provides a finitary deductive

system to reason about beliefs.

Strong Completeness and Compactness It is well-known that strong completeness

and compactness fail for probability logics. For example, the set {L 1
2
− 1

4n
p : n ∈ N}∪{¬L 1

2
p}

is consistent and hence finitely satisfiable, but it is not satisfiable. How about the sets Γ

of formulas that avoid such obvious non-satisfaction, i.e. if Lsφ ∈ Γ for all s < r, then

Lrφ ∈ Γ? Such sets of formulas, if consistent, are called admissible. In other words, are

admissible sets satisfiable? The question is parallel to the question whether coherent beliefs

are always types in game theory. This kind of analogy between belief types and probability

logic is summarized in the following table:

belief type probability logic

implicit description semantics

explicit description syntax

coherence weak completeness

coherent beliefs are types strong completeness

universal type space canonical model

certain topological properties compactness

Heifetz and Samet [19] showed that coherent beliefs are not always types. In the thesis,

we prove that admissible sets are not necessarily satisfiable. Just as the equivalence be-

tween implicit description and explicit description breaks down for belief type in the general
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measure-theoretic context, the strong completeness of the deductive system with respect to

the semantics does not hold for admissible sets. It was shown by Heifetz and Samet [18] and

by Moss and Viglizzo [29] that, in the general measure theoretic context, there is a universal

type space which consists of all hierarchies of beliefs that are types. In this thesis, we prove

that the canonical model whose elements are satisfiable admissible sets is a type space and

actually the “biggest” type space. A similar result for the multi-agent case was proved in

Moss and Viglizzo[29]. In other words, in the context of general measure theory, belief types

in game theory correspond elegantly to our deductive system for reasoning about beliefs.

Only in the last row of the above table is the analogy between belief type and probability

logic less strong. For a belief type, certain topological properties such as compact Hausdorff

and Polish [26] can be imposed on the nature space, and these properties are preserved along

the hierarchies of beliefs. So, under these topological conditions, coherent beliefs are types.

But, for probability logic, it is hard to imagine how to impose certain topological properties

on the algebra of formulas of depth 0, which are Boolean combinations of propositional

letters, i.e. purely propositional formulas.

Surprisingly, compared to the easy-going proofs in modal logic, it is difficult to generalize the

completeness proof through the canonical model to Σ+ plus some simple high-order prob-

ability formulas like modal logics. Here we take the logic Σ1 = Σ+ + (L1φ → L1L1φ) as an

illustration. For separable measurable spaces S = 〈Ω,A〉, the extra axiom L1φ → L1L1φ

characterizes the transitivity property of S: Ti(w)({w′ ∈ Ω : ∀A ∈ A(Ti(w′)(A) = 0 ⇒
Ti(w)(A) = 0)}) = 1, ∀w ∈ Ω. In order to show the completeness of Σ1 with respect to the

class of transitive type spaces, we should prove that the canonical type space is transitive.

If we use such a finitary method as filtration, the syntactic characterization of transitivity

requires formulas that are of depth one more than the maximal depth of formulas in the

canonical frame. So finitary methods are not applicable here. Infinitary methods are the

only candidate. To make sure that infinitary methods do not produce the non-Archimedean

property, we can restrict the index set to a finite set of rationals between 0 and 1. If we

could show that any consistent set of formulas with finite indices is satisfiable, then the
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completeness of Σ1 would follow immediately. However, we show that there is no hope of

such strong completeness for probability logics with finite indices. So, it seems that the

failure of strong completeness does not ultimately come from the non-Archimedean property

in indices but rather from the use of explicit probabilities in the syntax.

Two Important Systems Harsanyi type spaces are those type spaces where each

agent is introspective, i.e., is certain of his type, at each state. They have played a major

role in games with incomplete information played by Bayesian players. It was proved in [18]

and [29] that there is a universal Harsanyi type space, which contains all possible types.

So implicit descriptions do not lose the generality of explicit descriptions. The property

of being introspective can be characterized by the two axiom schemas: Lrφ → L1Lrφ and

¬Lrφ → L1¬Lrφ. Let ΣH denote the logic Σ+ plus these two axiom schemas. We show

that this system provides a complete axiomatization of Harsanyi type spaces. Moreover, we

support the idea that introspective beliefs of a single agent gain simplicity by showing that

each ΣH -consistent atom in a finite language has a unique maximal consistent extension if

we only increase the depth.

In his seminal paper [2], Aumann introduced another important kind of structures to reason

about both knowledge and belief. Aumann’s knowledge-belief semantic systems are con-

servative combinations of Harsanyi type spaces and partition structures for knowledge. He

proved that the canonical system consisting of all semantically-closed maximal consistent

sets of formulas is an Aumann’s knowledge-belief system. But his definition of consequence

is not syntactic but semantic. He did not succeed in devising a deductive system for a syn-

tactic definition of consistency. By adding some axiom schemata to the basic probability

logic Σ+ and S5, we formulate a logical system which is sound and complete with respect

to the class of Aumann’s knowledge-belief systems. Because of the simplicity of both epis-

temology and the beliefs of a single agent, so is his combination of knowledge and belief.

Common knowledge is one of the most important notions in interactive epistemology. By
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adding Halpern and Moses’ axioms for common knowledge [15], we get a complete axiom-

atization of Aumann’s knowledge-belief semantical systems with common knowledge.

In addition to their applications in belief types of game theory, probability logics are also

used in theoretical computer science. Probabilistic bisimulation is a mathematical formu-

lation of the equivalence of two probability models (on type spaces). Two models M and

M ′ are probabilistic bisimilar if they satisfy the same propositional letters and they match

in their type functions. Actually, our language of probability logics provides a logical

characterization of probabilistic bisimulation in the sense that two probability models are

probabilistic bisimilar if and only if they satisfy the same formulas. We can use this theory

to finitely approximate labeled Markov processes. Type functions are also used as semantics

for programs. They were employed by Kozen [22], [23] to provide a semantics for proba-

bilistic programs. With this interpretation, a logical language can be developed to allow

explicit reasoning about probabilistic programs. Moreover, programs as type functions seem

to give insights to Peter Selinger’s semantics for quantum programming language [33]. His

slogan for this approach is “quantum data and classical control.” He interpreted quantum

programs as superoperators on density matrices, which is just the quantum counterpart

of Kozen’s interpretation of probabilistic programs as linear operators with norms ≤ 1 on

measure spaces. These promising applications in theoretical computer science will guide us

in our future research on probability logics.

Overview Chapter 2 introduces core concepts of probability logics such as semantics,

syntax, axiomatization and decidability. In Chapter 3, we develop a theory about probabil-

ity logic that parallels the theory of belief types in economics. Two important systems from

interactive epistemology are analyzed in detail in Chapters 4 and 5. The last two chapters

sketch the application of probability logics to labeled Markovian processes and to semantics

of programs.



CHAPTER 2

Basic Probability Logic

2.1. Introduction

Reasoning about knowledge and belief has been an active topic of investigation for re-

searchers in such diverse fields as philosophy [20], economics [2] and artificial intelligence

[14]. It is well-known that S5 provides a sound and complete axiomatization for the logic of

knowledge with respect to the class of Kripke structures of knowledge. However, the logical

system of belief is still a subject to be explored.

First we demonstrate how probabilities are involved in expressing beliefs. Here we cite one

example from [31]. Jane says that the probability of putting a human being on Mars in

her lifetime is eighty percent. This is a belief about the statement: “In her lifetime, human

beings will land on Mars.” In probability theory, statements are modeled as events. But, if

we want to make beliefs the subject of beliefs, then beliefs to some degree themselves must

be events. So, beliefs transform statements to statements; mathematically, they map events

to events. This gives an intuitive semantics for beliefs.

Ever since [16], type spaces have been the most important models for providing implicit

description of belief types in economic theory and game theory. Each point of a type space

is called a state, and is associated with a state of nature (which can be though of as a

specification of the parameters of a game) as well as a probability measure for each agent.

Each agent’s probability measure at each state is his type, which describes his beliefs about

the events of the space. Type functions are also called Markovian kernels in probability

theory.

11
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In addition to this semantic approach to belief types, R. Aumann in [4] proposed the sec-

ond syntactic one. Beliefs are expressed in formulas which are recursively constructed from

atomic formulas according to some well-known rules. The logical formulation is of foun-

dational importance because it enables the explicit construction of Kripke structures for

beliefs from more primitive statements and, moreover, it would show that the above two

approaches are equivalent. The canonical model in the proof of the completeness would pro-

vide a universal type space in [18]. It is essential to provide a deductive logic for belief types.

In this dissertation we give an axiomatization of probability logic with respect to the class

of type spaces. Our system is based on the work in [14] by Fagin and Halpern and in [17] by

Heifetz and Mongin. In [14], Fagin and Halpern define a rich langauge for their logic. The

logical language includes not only formulas expressing probabilities but also linear combina-

tions of probability formulas. In order to accommodate this rich syntax with “arithmetic”

connectives, they have to formulate an independent system for linear inequalities. Their

system is sound and complete with respect to the class of type spaces. In [17], Heifetz and

Mongin use a much simpler syntax suggested in [4] by Aumman. Its characteristic feature

is captured by the belief operators Li
r for rationals r ∈ [0, 1], which is interpreted as “the

agent i’s belief is at least r”. In some sense, this syntax is a quantified syntax of modal

logic. Their finitary system, based on Aumann’s original system, is also shown to be sound

and complete with respect to the class of type spaces.

However, our formulation is essentially different from the above work in that we don’t use

any arithmetic formulas like reasoning about linear inequalities in [14] or any arithmetic

style rule like the rule (B) in [17]. The most important contribution of our thesis is our

proof of completeness. In order to show completeness, both [14] and [17] use some theorems

from linear programming and convex analysis, and their definition of probability measures

on their canonical models is not canonical in the sense that it is not totally determined by

the syntax. This method does not agree with the tradition from [24]. In our proof of com-

pleteness, however, the probability measure on the canonical model is totally determined
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by the syntax. In some sense, our completeness is a generalization of Kripke’s completeness

proof to the modal logic of probability.

2.2. Semantics and Syntax

The syntax of our logic is very similar to that of modal logic. We start with a fixed infinite

set P := {p1, p2, · · · } of propositional letters. We also use p, q, · · · to denote propositional

letters. The set of formulas Φ is built from propositional letters as usual by connectives

¬, ∧ and a countably infinite modalities Lr for each r ∈ Q ∩ [0, 1], where Q is the set of

rational numbers. Equivalently, a formula φ is formed by the following syntax:

φ := p | ¬φ | φ1 ∧ φ2 | Lrφ (r ∈ Q ∩ [0, 1])

Lr is the primitive modality in our language. But we also use a derived modality Mr which

means “at most” in our semantics through the following definition:

(DEF M) Mrφ := L1−r¬φ.

Let L be the formal language consisting of the above components. We use r, s, α, β, · · ·
(also with subscripts) to denote rationals. Next we describe the semantics of our system.

A probability model is a tuple

M := 〈Ω,A, T, v〉

where

• Ω is a non-empty set, which is called the universe or the carrier set of M ;

• A is a σ-field of subsets of Ω;

• T is a measurable mapping from Ω to the space ∆(Ω,A) of probability measures

on Ω, which is endowed with the σ-field generated by the sets:

{µ ∈ ∆(Ω,A) : µ(E) ≥ α} for all E ∈ A and rational α ∈ [0, 1],

• v is a mapping from P to A, i.e. v(p) ∈ A.

T is called a type function on the space and 〈Ω,A, T 〉 is called a type space.
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Remark. Let T be a type function. Define S(w, A) := T (w)(A) for any w ∈ Ω and

A ∈ A. It is easy to check that S is a Markovian kernel, i.e., it satisfies the following two

conditions:

(1) S(w, ·) is a probability measure on the sigma-algebra A for any w ∈ Ω;

(2) S(·, A) is an A-measurable function for any A ∈ A.

Conversely, if S is a Markovian kernel on (Ω,A), then such a defined function T : Ω →
∆(Ω,A) that T (s)(A) := S(s,A) for any s ∈ Ω and A ∈ A is a type function. In the proof

of the converse statement, we need the following standard theorem from real analysis [1] or

[39]:

Theorem 2.2.1. Let f : (X,ΣX) → (Y, ΣY ) be a function between measurable spaces,

and let C generate ΣY . Then f is measurable if and only if f−1(C) ∈ ΣX for each C ∈ C.

The forcing relation |= between states and formulas is defined inductively as follows:

• M,w |= p iff w ∈ v(p) for propositional letters p;

• M,w |= φ1 ∧ φ2 iff M, w |= φ1 and M,w |= φ2;

• M,w |= ¬φ iff M, w 6|= φ;

• M,w |= Lrφ iff T (w)([[φ]]) ≥ r, where [[φ]] := {w ∈ Ω : M, w |= φ}.

φ is valid in the probability model M if M |= φ, i.e. for all states w ∈ M , M,w |= φ. φ is

valid in a class of probability models C if, for each M ∈ C, M |= φ. φ is valid in a class T
of type spaces if φ is valid in all the probability models defined on T .

2.3. Completeness

In this section we will give a complete axiomatization of probability logic with respect

to the class of type spaces. Our system is different from that by Heifetz and Mongin in that

we don’t need the rule (B)1 but we need another rule which is similar to the induction rule

1We will define this rule formally in the next section. It is closely related to the semantic fact that,

given a probability measure µ on a state space Ω, if a function f can be written as a sum of characteristic

functions in two different ways, then the two ways of calculating the integral with respect to µ will give the

same result.
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in PDL.

Probability Logic Σ+

• (A0) propositional calculus

• (A1) L0φ

• (A2) Lr>
• (A3) Lr(φ ∧ ψ) ∧ Lt(φ ∧ ¬ψ) → Lr+tφ, r + t ≤ 1

• (A4) ¬Lr(φ ∧ ψ) ∧ ¬Ls(φ ∧ ¬ψ) → ¬Lr+sφ, r + s ≤ 1

• (A5) Lrφ → ¬Ls¬φ, r + s > 1

• (DIS) If ` φ ↔ ψ,` Lrφ ↔ Lrψ.

• (ARCH): If ` γ → ¬Msφ for all s < r, then ` γ → Lrφ
2.

Observe that the rule (ARCH) is the only rule that is really about the indexes of the modal-

ities. Since the index set Q∩ [0, 1] has the Archimedean property, i.e., the property of having

no infinitely small elements, the fact that the rule has infinitely many premises seems un-

avoidable. Despite its infinite flavor, it is very easy to use the rule (ARCH) to show other

propositions in Σ+. In the next section, we will show as an illustration the admissibility of

the rule (B) in our Σ+. From there, one may find that the rule is finite in nature. Before

we show the completeness, we will prove some basic theorems of Σ+. For simplicity, we will

sometimes drop ` in front of theorems.

Lemma 2.3.1. The following two principles are provable in Σ+:

(1) ¬Lr⊥ if r > 0;

(2) ¬Mr> if r < 1, which is just dual to the first part.

Proof. Since r > 0, there is a t such that t < 1 such that t+ r > 1. Reason inside Σ+:

Lt> (A1)

Lt> → ¬Lr⊥ (A5)

2ARCH here stands for the Archimedean property of rational numbers Q.
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¬Lr⊥ (A0).

¤

Theorem 2.3.2. The following principles are provable in Σ+:

(1) If φ → ψ, then Lrφ → Lrψ;

(2) Lrφ → Lsφ if r ≥ s;

(3) ¬Lrφ → Mrφ;

Proof. We reason inside Σ+.

(1) φ → ψ (Assumption)

ψ ↔ φ ∧ ψ (A0)

Lrψ ↔ Lr(φ ∧ ψ) (DIS)

Lr(φ ∧ ψ) ∧ L0(φ ∧ ¬ψ) → Lr(φ) (A3)

L0(φ ∧ ¬ψ) (A1)

Lr(φ ∧ ψ) → Lr(φ) (A0)

Lrφ → Lrψ (A0)

(2) If r = t, it is trivially true. Assume that r > t.

¬Lt(φ ∧ φ) ∧ ¬Lr−t(φ ∧ ¬φ) → ¬Lrφ (A4)

¬Lr−t(φ ∧ ¬φ) (above lemma)

¬Ltφ → ¬Lrφ (DIS and A0)

Lrφ → Ltφ (A0)

(3) ¬Lr(> ∧ φ) ∧ ¬L1−r(> ∧ ¬φ) → ¬L1> (A4)

¬Lrφ ∧ ¬L1−r(¬φ) → ¬L1> (DIS and A0)

¬Lrφ → Mrφ (A2 and A0)

¤

Corollary 2.3.3. The following principles follow immediately from the above theorem:

(1) If φ → ψ, then Mrψ → Mrφ;

(2) Lrφ → Lsφ if r ≤ s;

(3) ¬Mrφ → Lrφ;
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Lemma 2.3.4. The following two propositions hold:

(1) If ` ¬(φ ∧ ψ), then ` Lrφ ∧ Lsψ → Lr+s(φ ∨ ψ), r + s ≤ 1;

(2) If ` ¬(φ ∧ ψ), then ` ¬Lrφ ∧ ¬Lsψ → ¬Lr+s(φ ∨ ψ), r + s ≤ 1.

Proof. Note that, from propositional reasoning, (φ∨ψ)∧φ ↔ φ, (φ∨ψ)∧ψ ↔ ψ and

(φ ∨ ψ) ∧ ψ → (φ ∨ ψ) ∧ ¬φ. It follows from (A3) that

Lr((φ ∨ ψ) ∧ φ) ∧ Ls((φ ∨ ψ) ∧ ¬φ) → Lr+s(φ ∨ ψ).

From (DIS) and (A0), we know

Lrφ ∧ Lsψ → Lr((φ ∨ ψ) ∧ φ) ∧ Ls((φ ∨ ψ) ∧ ¬φ)

It follows from the above two that:

` Lrφ ∧ Lsψ → Lr+s(φ ∨ ψ).

The proof of the second part is similar to that of the first part.

¤

Now we are prepared to show the completeness. Fix ψ and assume that it is consistent in

Σ+. We need to show that it has a probability model.

Definition 2.3.5. The depth dp(φ) of a formula φ is defined inductively:

• dp(p) := 0 for propositional letters p;

• dp(¬φ) := dp(φ);

• dp(φ1 ∧ φ2) := max{dp(φ1), dp(φ2)};
• dp(Lrφ) := dp(φ) + 1.

Now we define a local language L[ψ] to be the language satisfying the following conditions:

• The propositional letters in L[ψ] are those occurring in ψ;

• The indexes of formulas in L[ψ] are in the finite set I[ψ], which is the set of all

rationals in the form of p/q ∈ [0, 1] where q is the least common multiple of all

denominators of the indices appearing in ψ;

• The formulas in L[ψ] are of depth ≤ dp(ψ).
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The above q is called the accuracy of the language L[ψ] and I[ψ] the index set of the

language. Let L+ be the language obtained by only increasing the depth of L[ψ] by one3.

Such a defined language L[ψ] gives rise to a set of maximal consistent subsets and it is

denoted Ω, which will be the carrier set of our canonical model. For any formula φ ∈ L[ψ],

define [φ] := {∆ ∈ Ω : φ ∈ ∆}. It is easy to see that for any Γ ∈ Ω, since Γ is consistent

in L+, there is a maximal consistent extension Γ+ ∈ L+ such that Γ ⊆ Γ+. For any Γ ∈ Ω

and φ ∈ L[ψ], define

αΓ
φ = max{α ∈ I[ψ] : Lαφ ∈ Γ+} and βΓ

φ = min{β ∈ I[ψ] : Mβφ ∈ Γ+}

Note that LαΓ
φ
φ ∈ Γ+ and MβΓ

φ
φ ∈ Γ+.

Lemma 2.3.6. For the above defined αΓ
φ and βΓ

φ , either αΓ
φ = βΓ

φ or βΓ
φ = αΓ

φ + 1/q.

Proof. First we show that αΓ
φ ≤ βΓ

φ . Suppose that αΓ
φ > βΓ

φ . Since LαΓ
φ
φ ∈ Γ+,

¬βΓ
φφ ∈ Γ+ (by (A5)). But this contradicts the fact that MβΓ

φ
φ ∈ Γ+.

Now we show that αΓ
φ ≤ βΓ

φ + 1/q. Suppose that αΓ
φ > βΓ

φ + 1/q. It follows that there is

a rational s ∈ I[ψ] such that s := αΓ
φ + 1/q. Since s > αΓ

φ, Lsφ 6∈ Γ+. This implies that

¬Lsφ ∈ Γ+. According to one lemma above, Msφ ∈ Γ+. But this contradicts the fact

s < βΓ
φ .

¤

Given Γ ∈ Ω and φ ∈ L[ψ] we define T Γ
φ to be either {αΓ

φ} if αΓ
φ = βΓ

φ or the open interval

(αΓ
φ, βΓ

φ ) if αΓ
φ < βΓ

φ . A language L1 is more accurate than the language L2 if the accuracy

q1 of L1 is a multiple of the accuracy q2 of the language L2. L1 is strictly more accurate

than the language L2 if q1 = m · q2 for some natural number m ≥ 2. For any maximal

consistent set ∆ in the finite language L′ with accuracy q′ (and the index set I ′) and any

formula φ in L, we define:

α∆
φ = max{α ∈ I ′ : Lαφ ∈ ∆} and β∆

φ = min{β ∈ I ′ : Mβφ ∈ ∆}.

3This increase is needed in the definition of α and β to come.
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Lemma 2.3.7. Assume that L1 is more accurate than L2, ∆ is a maximal consistent

set of formulas in L2 and ∆′ is a maximal consistent extension of ∆ in L1. Then, for any

φ ∈ L2,

α∆
φ ≤ α∆′

φ ≤ β∆′
φ ≤ β∆

φ

To show the truth lemma, we want to define a probability measure T (Γ) on the subsets of

Ω with the property that

(P ) : ∀φ ∈ L[ψ], T (Γ)([φ]) ∈ T Γ
φ

In order to achieve (P), Rockfellar’s Lemma is used in [17]. In the following, we show that,

with addition of the rule (ARCH), we don’t need this lemma. This also implies that the rule

(B) is unnecessary in the complete axiomatization. Fagin and Halpern’s reasoning about

linear inequalities are not necessary either. However, we don’t know how to achieve the

property (P) directly for the above Γ and Ω in our system. But instead we will show the

property in a more accurate language than L[ψ]. Our canonical model is constructed in

the local language L[ψ] but the definition of the mapping T is obtained in the “infinitely

accurate language” L, which is also the formal langauge of the logic. Our proof of the Truth

Lemma is quite unconventional. For any maximal consistent extension Γ∞ in L of Γ+ such

that Γ+ ⊆ Γ∞, we define, for any φ ∈ L[ψ],

α∞φ = max{α ∈ Q : Lαφ ∈ Γ∞} and β∞φ = min{β ∈ Q : Mβφ ∈ Γ∞}

Both α∞φ and β∞φ might be irrational.

Lemma 2.3.8. For any maximal extension Γ∞φ , α∞φ = β∞φ .

Proof. Suppose that α∞φ < β∞φ . This implies that there is a rational r between:

α∞φ < r < β∞φ . Therefore, Lrφ 6∈ Γ∞. Since Γ∞φ is maximal consistent, ¬Lrφ ∈ Γ∞φ . It

follows that Mrφ ∈ Γ∞. But this is impossible because β∞φ is the greatest lower bound.

Suppose that α∞φ > β∞φ . Then there are two rationals r1 and r2 such that α∞φ > r1 > r2 >

β∞φ . Since α∞φ > r1, Lr1φ ∈ Γ∞. But this implies that ¬Mr2φ ∈ Γ∞ by (A5). On other
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hand, we have that Mr2φ ∈ Γ∞ because r2 > β∞φ . This is a contradiction. So we have

shown that α∞φ = β∞φ .

¤

Lemma 2.3.9. (1) 2Ω = {[φ] : φ ∈ Φ(ψ)};
(2) For any φ1, φ2 ∈ L[ψ], `Σ+ φ1 → φ2 iff [φ1] ⊆ [φ2].

Proof. We need only propositional reasoning to show the first part. The second is just

a standard result in modal logic. Note that each formula is actually an equivalence class

under the Σ+-derived equivalence relation.

¤

We define T (Γ) : 2Ω → [0, 1] as follows: T (Γ)([φ]) = α∞φ .

Theorem 2.3.10. Such a defined function T : 2Ω → [0, 1] is well-defined.

Proof. Assume that [φ1] = [φ2]. According to the second part of the above lemma,

` φ1 ↔ φ2 and hence ` (Lrφ1 ↔ Lrφ2) ∧ (Msφ1 ↔ Msφ2). So α∞φ1
= β∞φ2

. In other words,

T (Γ)([φ1]) = T (Γ)([φ2]).

¤

From the first part of Lemma 2.3.9, it follows that T is total. It is easy to see that T (Γ)(Ω) =

T (Γ)([>]) = 1 since L1> ∈ Γ∞. Next we show the finite additivity.

Lemma 2.3.11. For A,B ∈ 2Ω, if A ∩B = ∅, then T (Γ)(A) + T (Γ)(B) = T (Γ)(A ∪B).

Proof. It is easy to see that there are formulas φ1, φ2 ∈ L[ψ] such that A = [φ1],

B = [φ2] and ` φ1 → ¬φ2. Let α1, α2 and α+ denote T (Γ)([φ1]), T (Γ)([φ2]) and

T (Γ)([φ1 ∨ φ2]), respectively. So we only need to show that α1 + α2 = α+.

Suppose that α1+α2 < α+. Then there are ε1 > 0 and ε2 > 0 such that (α1+ε1)+(α2+ε2) <

α+, α1 + ε1 ∈ Q and α2 + ε2 ∈ Q. Let α′1 := α1 + ε1 and α′2 := α2 + ε2. It follows that

Lα′1φ1 6∈ Γ∞ and hence ¬Lα′1φ1 ∈ Γ∞. Similarly, ¬Lα′2φ2 ∈ Γ∞. By (A4) (actually
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by one lemma following from it), we know that ¬Lα′1+α′2(φ1 ∨ φ2) ∈ Γ∞. But this is im-

possible because α′1+α′2 < α+ and α+ is the least upper bound such that Lβ(φ1∨φ2) ∈ Γ∞.

The following argument is dual to the above one. Suppose that α1 + α2 > α+. Then

there are two ε1 > 0 and ε2 > 0 such that (α1 − ε1) + (α2 − ε2) > α+, α1 − ε1 ∈ Q and

α2 − ε2 ∈ Q. Let α′′1 := α1 − ε1 and α′′2 := α2 − ε2. It follows that Mα′′1 φ1 6∈ Γ∞ and hence

Lα′′1 φ1 ∈ Γ∞. Similarly, Lα′′2 φ2 ∈ Γ∞. By (A3), we know that Lα′′1+α′′2 (φ1 ∨ φ2) ∈ Γ∞. But

this is impossible because α′′1 + α′′2 > α+ and α+ is the smallest upper bound such that

Lα(φ1 ∨ φ2) ∈ Γ∞.

¤

Since Γ+ ⊆ Γ∞, αΓ
φ ≤ T (Γ)([φ]) ≤ βΓ

φ for any φ ∈ L[ψ]. But, as we will see in the following

proof of the Truth Lemma, we have to eliminate the possibility that T (Γ)([φ]) = βΓ
φ when

αΓ
φ < βΓ

φ . This is also the reason why we need the rule (ARCH).

Lemma 2.3.12. In L[ψ], given any Γ ∈ Ω, there is a strictly more accurate language LΓ

and a maximal consistent extension ∆ in LΓ of Γ+ satisfying the following condition:

(E): for all φ ∈ L[ψ] such that αΓ
φ < βΓ

φ , either α∆
φ = β∆

φ = βΓ
φ or β∆

φ < βΓ
φ .

Proof. We claim that, for any φ such that αΓ
φ < βΓ

φ , there is a rational r strictly

between αΓ
φ and βΓ

φ such that Γ+ ∪{Mrφ} is consistent. Suppose not. Then, for all r < βΓ
φ ,

` ∧
Γ+ → ¬Mrφ. It follows from the rule (ARCH) that ` ∧

Γ+ → LβΓ
φ
φ. So, LβΓ

φ
φ ∈ Γ+.

But, this contradicts the fact that αΓ
φ (< βΓ

φ ) is the largest such number in the index set

I[ψ]. So, there is a r < βΓ
φ such that Γ+ ∪ {Mrφ} is consistent.

Now we prove the main lemma. Our proof strategy is like “sandwich-making”. First we

enumerate all the formulas in L[ψ] such that αΓ
φ < βΓ

φ : φ1, φ2, · · · , φn. For φ1, we know

that there is a rational r1 between αΓ
φ1

and βΓ
φ1

such that Γ+ ∪ {Mr1φ1} is consistent. Let

L1 be the language obtained from L+ just by increasing the accuracy of the language in the
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following way: if q is the accuracy of L+, i.e. the least common multiple of the denomina-

tors of all the indexes in ψ, then the accuracy of the language L1 is the integer q1 which is

the least common multiple of q and the denominator of r1. Let I1 be the index set of the

langauge L1. It is easy to see that there is a maximal consistent extension Γ1 ∈ L1 such

that Γ+ ∪ {Mr1φ1} ⊆ Γ1.

Next we consider φ2. Define:

αΓ1

φi
:= max{r ∈ I1 : Lrφi ∈ Γ1} and βΓ1

φi
:= min{r ∈ I1 : Mrφi ∈ Γ1} for each i: 1 ≤ i ≤ n.

It is easy to see that βΓ1

φ1
≤ r1 < βΓ

φ1
and βΓ1

φ2
≤ βΓ

φ2
because Γ+ ⊆ Γ1. If βΓ1

φ2
< βΓ

φ2
, then

we are done. If βΓ1

φ2
= βΓ

φ2
and αΓ1

φ2
= βΓ1

φ2
, we don’t do anything either. Now we consider

the possibility that βΓ1

φ2
= βΓ

φ2
and αΓ1

φ2
< βΓ1

φ2
. As we already said above, this is the case

where we need the rule (ARCH). By appealing to the above claim, we know that there is

r2 such that αΓ1

φ2
< r2 < βΓ1

φ2
and Γ1 ∪ {Mr2φ2} are consistent. Similarly, we can define the

expanded language L2. Therefore, there is a maximal consistent extension Γ2 ∈ L2 such

that Γ1 ∪ {Mr2φ2} ⊆ Γ2.

Similarly, we can define αΓ2

φi
and βΓ2

φi
for all φi. Then βΓ2

φ2
≤ r2 < βΓ1

φ2
= βΓ

φ2
. Now we

move to deal with φ3. If, either βΓ2

φ3
< βΓ

φ3
, or βΓ2

φ3
= βΓ

φ3
and αΓ2

φ3
= βΓ2

φ3
, then we don’t do

anything. If βΓ2

φ3
= βΓ

φ3
and αΓ2

φ3
< βΓ2

φ3
, then there is a maximal consistent extension Γ3 in

the corresponding langauge L3 such that Γ2 ∪ {Mr3φ3} ⊆ Γ3 for some r3 ∈ (αΓ2

φ3
, βΓ2

φ3
). We

repeat this process, then we will get a chain of Γi’s in the expanded language Li’s:

Γ ⊆ Γ+ ⊆ Γ1 ⊆ Γ2 ⊆ · · · ⊆ Γn

Observe that, in Γn, for all φi, either αΓn

φi
= βΓn

φi
= βΓ

φi
or βΓn

φi
< βΓ

φi
. Therefore, given any

Γ ∈ L[ψ], there is a maximal consistent extension Γn in the language Ln such that Γn ⊇ Γ+

and, for any φ ∈ L[ψ], either αΓn

φ = βΓn

φ = βΓ
φ or αΓn

φ ≤ βΓn

φ < βΓ
φ . Note that αΓ

φ and βΓ
φ

are defined in the language L+, αΓn

φ , βΓn

φ are defined in the language Ln. So Ln and Γn are

what we want to get.
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¤

Now we enumerate all the maximal consistent sets in Ω:

Γ1, Γ2, · · · , ΓN .

From the above lemma, it follows that, for each Γi, there is a strictly more accurate language

Li and a maximal consistent extension ∆i in the language Li that satisfy the property (E).

Assume that Lc is a language that is strictly more accurate than all the languages Li. The

language Lc gives rise to a set Ωc of maximal consistent sets of formulas in Lc. For each ∆i,

there is a maximal consistent extension ∆c
i ∈ Lc such that ∆i ⊆ ∆c

i . Since property (E) is

preserved for more accurate languages, it holds in all these ∆c
i .

Further, for each ∆c
i ∈ Lc, there is a maximal consistent extension Γ∞i ∈ L such that

Γ∞i ⊇ ∆c
i . For each φ ∈ L[ψ], let α

Γ∞i
φ and β

Γ∞i
φ be just defined as above. It follows

that α
Γ∞i
φ = β

Γ∞i
φ . From the above lemmas, we know that such a Γ∞i defines a probability

measure T (Γi) : 2Ω → [0, 1]: T (Γi)([φ]) = α
Γ∞i
φ .

Lemma 2.3.13. For such T (Γi), we can show that, if Lrφ ∈ L[ψ], then

Γi |= Lrφ iff Lrφ ∈ ∆c
i .

Proof. Assume that Γi |= Lrφ. Then, T (Γi)([φ]) ≥ r. There are several cases that

we have to consider. If αΓi
φ = βΓi

φ , it is easy to see that T (Γi)([φ]) = αΓi
φ and hence

αΓi
φ ≥ r. From the definition of αΓi

φ , it follows that Lrφ ∈ Γ+
i ⊆ ∆c

i . If αΓi
φ < αΓi

φ

and α
∆c

i
φ = β

∆c
i

φ = βΓi
φ , then r ≤ T (Γi)([φ]) = α

∆c
i

φ = βΓi
φ . Obviously Lrφ ∈ ∆c

i . The

last case that we have to consider is when αΓi
φ < βΓi

φ and β
∆c

i
φ < βΓi

φ . It means that

T (Γi)([φ]) < αΓi
φ + 1/q where q is the accuracy of the local language L[ψ]. Since r ∈ I[ψ],

αΓi
φ ≥ r. So Lrφ ∈ Γi ⊆ ∆c

i .

Assume that Lrφ ∈ ∆c
i . It follows that r ≤ α

∆c
i

φ ≤ α
Γ∞i
φ = T (Γi)([φ]). So Γi |= Lrφ.

¤

Lemma 2.3.14. (Truth Lemma) For any φ ∈ L[ψ],
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Γi |= φ iff φ ∈ ∆c
i iff φ ∈ Γi.

Proof. Here we only note that every time when we increase the accuracy of the working

languages, the set of propositional variables remains the same. We can prove this by

induction on the complexity of the formula φ. The nontrivial case has been proved in

the above lemma. The second equivalence follows from the fact that φ ∈ L[ψ] and Γi is the

L[ψ]-fragment of ∆c
i .

¤

Theorem 2.3.15. (Completeness) |= ψ iff `Σ+ ψ.

Proof. Assume that ψ is consistent. Then it is contained in some maximal consistent

extension Γi ∈ L[ψ]. By the Truth Lemma, we know that Γi |= ψ. So ψ is satisfiable. We

have shown the completeness.

¤

Note that this is a weak completeness result. Strong completeness does not hold for Σ+

because of the lack of compactness.

Theorem 2.3.16. (noncompactness) Σ+ is not compact. That is to say, there is some

set Λ of formulas in L, although Λ is finitely satisfiable, it is not satisfiable.

Proof. It is easy to see that the set of formulas:

{¬L1/2p} ∪ {L1/2−(1/2)n+2p : n ∈ N}

is finitely satisfiable but not satisfiable in the class of probability models.

¤

2.4. Equivalence to Heifetz & Mongin’s System

Semantically, it is easy to see that our system is equivalent to that in [17] since they are

sound and complete with respect to the same class of type spaces. In this section, we will
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give a constructive proof of their equivalence. More importantly, we will give the proof as

an illustration how to use the induction rule (ARCH).

Theorem 2.4.1. The following forms of (ARCH) are equivalent:

• If ` γ → ¬Msφ for all s < r, then ` γ → Lrφ;

• If ` γ → ÃLsφ for all s < r, then ` γ → Lrφ;

• If ` γ → Msφ for all s > r, then ` γ → Mrψ;

Here we show that our system Σ+ subsumes the system in [17]. We only need to show that

the rule (B) there is admissible in our system. But, before we do that, we will prove that

the following axiom can be obtained in our system. It is actually the so called (A13) in [17].

Lemma 2.4.2. `Σ+ Mr(φ ∧ ¬ψ) ∧Ms(φ ∧ ψ) → Mr+sφ, if r + s ≤ 1.

Proof. By the rule (ARCH)4, we know that it suffices to show that

(∗) :` Mr(φ ∧ ¬ψ) ∧Ms(φ ∧ ψ) → Mtφ for all 1 ≥ t > r + s.

Note that ` Mr(φ ∧ ¬ψ) → ¬Lr+ε/4(φ ∧ ¬ψ) and ` Mr(φ ∧ ψ) → ¬Ls+ε/4(φ ∧ ψ) where

ε is a sufficiently small rational number such that t − r − s > ε/2. Moreover, since `
¬Lr+ε/4(φ∧¬ψ)∧¬Ls+ε/4(φ∧ψ) → ¬Lr+s+ε/2φ and r + s+ ε < t, (∗) follows immediately.

¤

The rule (B) in [17] is the defining rule in their system. This rule conveys the intuition

that “if a function f can be written as a sum of characteristic functions in two different

ways, then the two ways of calculating the integral with respect to µ will give the same

result.” Now we formalize this idea. Let (φ1, · · · , φm) be a finite sequence of formulas and

φ(k) denote
∨

1≤i1<···<ik≤n(φi1 ∧ · · · ∧ φik).

Then the above intuition that the sum of characteristic functions of the finite sequence

(φ1, · · · , φm) and that of (ψ1, · · · , ψm) are equal to each other can be formalized as

4The principle that we use here is not the same as that in the system Σ+ but the dual form, which

follows immediately from the one in the system by (DEF M).
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∧m
k=1(φ

(k) ↔ ψ(k))

This formula is denoted as (φ1, · · · , φm) ↔ (ψ1, · · · , φm). The inference rule (B) can be

stated as follows:

If ((φ1, · · · , φm) ↔ (ψ1, · · · , ψm)), then

((
∧m

i=1 Lriφi) ∧ (
∧m

j=2 Msjψj)) → L(r1+···+rm)−(s2+···+sm)ψ1

for (r1 + · · · + rm) − (s2 + · · · + sm) ∈ [0, 1]. Now we show that the rule (B) is admissible

in our system. Before we give a formal proof, we will develop an intuition how to apply

the rule (ARCH). We will not show the general form of (B). But instead we prove as an

illustration the case m = 2:

If (φ1, φ2) ↔ (ψ1, ψ2), then Lr1φ1 ∧ Lr2φ2 ∧Ms2ψ2 → Lr1+r2−s2ψ1

for r1 + r2 − s2 ∈ [0, 1]. Assume that (φ1, φ2) ↔ (ψ1, ψ2). According to the rule (ARCH),

it suffices to show:

Lr1φ1 ∧ Lr2φ2 ∧Ms2ψ2 → Lr1+r2−s2−εψ1 for any sufficiently small rational ε.

In the following we will use a backtracking deduction from the conclusion to the beginning

to see what axioms we need in the expected proof. Since the ε gives us a lot of flexibility,

we will just use the strict inequality symbols like < and >. For a clear presentation, we will

write, say, φ1 ∧ φ2 > r instead of the formal ¬Mr(φ1 ∧ φ2).

(1) In order to show that ψ1 > r1 + r2 − s2 − ε, we need to show that φ1 ∧ ψ2 > t and

ψ1 ∧ ¬ψ2 > r1 + r2 − s2 − t− ε where t is a parameter;

(2) In order to show that ψ1 ∧ ¬ψ2 > r1 + r2 − s2 − t − ε, we need to show that

ψ1 ∨ ψ2 > r1 + r2 − t− ε and ψ2 < s2;

(3) Note that ` ψ1 ∨ ψ2 ↔ φ1 ∨ φ2. In order to show that φ1 ∨ φ2 > r1 + r2 − t − ε,

we need to show that φ1 > r1 and φ2 ∧ ¬φ1 > r2 − t− ε;

(4) Note that ` φ1 ∧ φ2 ↔ ψ1 ∧ ψ2. In order to show that φ2 ∧ ¬φ1 > r2 − t − ε, we

need to show that φ2 > r2 and φ1 ∧ φ2 < t + ε.

As you can see in the above reasoning, ψ1 ∧ ψ2(↔ φ1 ∧ φ2) is the parameter.

Lemma 2.4.3. If ` φ1 → ¬φ2 and r + s ≤ 1, then
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(1) ` Mr(φ1) ∧Ms(φ2) → Mr+s(φ1 ∨ φ2);

(2) ` ¬Mr(φ1) ∧ ¬Ms(φ2) → ¬Mr+s(φ1 ∨ φ2);

(3) ` Mr(φ1) ∧ ¬Ls(φ2) → ¬¬Lr+s(φ1 ∨ φ2);

(4) ` Lr(φ1) ∧ ¬Ms(φ2) → ¬Mr+s(φ1 ∨ φ2);

Definition 2.4.4. A proof E of Lrφ (Mrφ) in Σ+ is stable if E(r/(r− ε)) (E(r/(r + ε))

is a proof of Lr−ε (Mr+ε) in Σ+ for any sufficiently small ε, where E(r/(r−ε)) (E(r/(r+ε))

is obtained by substituting r−ε (r+ε ) for r occurring in the proof sequence of Lrφ (Mrφ).

The rule (ARCH) just tells us that all of our proofs in Σ+ are stable.

Theorem 2.4.5. If ` (φ1, φ2) ↔ (ψ1, ψ2), then ` Lr1φ1∧Lr2φ2∧Ms2ψ2 → Lr1+r2−s2−εψ1

for any arbitrarily small ε.

Proof. Observe that the assumption says that we can use φ1 ∧ φ2 (φ1 ∨ φ2) and ψ1 ∧
ψ2(ψ1 ∨ψ2) interchangeably. First we just formalize the above intuition. We reason in Σ+:

given any ε,

(1) Lr2φ2 ∧ (Mt(φ1 ∧ φ2) ∧ Lt−δ(φ1 ∧ φ2)) → Lr2−t(φ2 ∧ ¬φ1);

(2) Lr1φ1 ∧ ¬Mr2−t(φ2 ∧ ¬φ1) → ¬Mr1+r2−t(φ1 ∨ φ2);

(3) Lr1+r2−t(ψ1 ∨ ψ2) ∧Ms2ψ2 → Lr1+r2−s2−t(ψ1 ∧ ¬ψ2);

(4) (Lt−δ(ψ1 ∧ψ2)∧Mt(φ1 ∧ φ2))∧Lr1+r2−s2−t−ε(ψ1 ∧¬ψ2) → Lr1+r2−s2−εψ1 for any

δ < ε.

If we sum up all these theorems and then apply propositional calculus, we will get the

following:

Lr1φ1 ∧ Lr2φ2 ∧Ms2ψ2 ∧ ((Mt(φ1 ∧ φ2) ∧ Lt−δ(φ1 ∧ φ2))) → Lr1+r2−s2−εψ1.

But this is equivalent to:

(R) : Lr1φ1 ∧ Lr2φ2 ∧Ms2ψ2 ∧ ¬Lr1+r2−s2−εψ1 → (Mt(φ1 ∧ φ2) → Mt−δ(φ1 ∧ φ2)).

Since Lr1φ1 ∧ Lr2φ2 ∧Ms2ψ2 ∧ ¬Lr1+r2−s2−εψ1 → Mr1+r2−s2−ε(φ1 ∧ φ2),

Lr1φ1 ∧ Lr2φ2 ∧Ms2ψ2 ∧ ¬Lr1+r2−s2−εψ1 → Mr1+r2−s2−ε−δ(φ1 ∧ φ2)
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If we apply the induction axiom (R) n + 1 times, we will get:

Lr1φ1 ∧ Lr2φ2 ∧Ms2ψ2 ∧ ¬Lr1+r2−s2−εψ1 → Mr1+r2−s2−ε−n·δ(φ1 ∧ φ2)

Eventually, we will get closer and closer to zero by the Archimedean property of Q, since δ

is an arbitrary small rational < ε. By the rule (ARCH), we know that the above proof is

stable. This means that we reach a formula that will lead to a contradiction:

Lr1φ1 ∧ Lr2φ2 ∧Ms2ψ2 ∧ ¬Lr1+r2−s2−εψ1 → M0(φ1 ∧ φ2).

Now we see the intuition how we can get a contradiction. The premise of the above formula

tells us that:

(1) the probability of φ1 is bigger than or equal to r1;

(2) the probability of φ2 is bigger than or equal to r2;

(3) the probability of ψ1 is smaller than r1 + r2 − s2 − ε;

(4) the probability of ψ2 is smaller than or equal to s2.

Since the probability of φ1 ∧ φ2 (and ψ1 ∧ ψ2) is zero, the first two premises will get that

the probability of φ1 ∨ φ2 is bigger than or equal to r1 + r2 while the last two premises will

tell us that the probability is smaller than r1 + r2− s2− ε, which is contradiction. Next we

formalize the above intuition. φ0 denote Lr1φ1 ∧ Lr2φ2 ∧Ms2ψ2 ∧ ¬Lr1+r2−s2−εψ1.

Since ` φ0 → M0(φ1 ∧ φ2),

(C) :` φ0 → Lr1+r2(φ1 ∨ φ2) and ` φ0 → Mr1+r2−ε(ψ1 ∨ ψ2)

by the first two conjuncts and the last two conjuncts in φ0, respectively. According to the

assumption, ` (φ1 ∨ φ2) ↔ (ψ1 ∨ ψ2). So (C) implies that

` φ0 → Lr1+r2(φ1 ∨ φ2) ∧Mr1+r2−ε(ψ1 ∨ ψ2).

But, since r1 + r2 > r1 + r2 − ε, ` Lr1+r2(φ1 ∨ φ2) → ¬Mr1+r2−ε(ψ1 ∨ ψ2). Obviously, this

leads to a contradiction. So we conclude that ` φ0 → ⊥, i.e. ` Lr1φ1 ∧ Lr2φ2 ∧Ms2ψ2 ∧
¬Lr1+r2−s2−εψ1 → ⊥. Obviously, this is equivalent to:

` Lr1φ1 ∧ Lr2φ2 ∧Ms2ψ2 → Lr1+r2−s2−εψ1.
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¤

2.5. Lr(Mr) is the Modality for Inner (Outer) Measures

In this section, we will give a complete axiomatization of the general case: [[φ]](= {w ∈ X :

w |= φ} is not necessarily a measurable set. For the completeness of the presentation, we

will give the definition of the semantics although it is very similar to the measurable case.

We call the logic for the general case ΣL. The only difference in syntax from Σ+ is that

we only need one modality Lr for rational r ∈ [0, 1]. This implies that L1−r¬φ no longer

means “at most”. A probability model with an inner measure is defined as follows:

M = 〈Ω,A, T, ν〉

where Ω is a non-empty set; A is a σ-algebra of subsets of Ω; T is a mapping from Ω

to the space ∆(Ω,A) of inner probability measures on Ω, which is endowed with the σ-

field generated by the sets {µ∗ : µ∗(E) ≥ α} for all E ∈ A and rational r ∈ [0, 1], and

ν is a mapping from the set P of propositional letters to 2Ω. This also means that ν(p)

is not necessarily measurable. The semantical clause for the nontrivial modality Lr is

correspondingly defined as:

M,w |= Lrφ iff T (w)([φ]) ≥ r.

The axiomatization is quite expected after our axiomatization for measurable case. We only

need the almost positive5 half of the Lr half system of Σ+.

Probability Logic ΣL

• (A0) propositional calculus

• (A1) L0φ

• (A2) Lr>
• (A3) Lr(φ ∧ ψ) ∧ Ls(φ ∧ ¬ψ) → Lr+sφ, r + s ≤ 1

• (A5) Lrφ → ¬Ls¬φ if r + s > 1;

• (A7) Lrφ → Lsφ, if r ≥ s;

• (DIS) If ` φ → ψ,` Lrφ → Lrψ.

5It is in the sense that we don’t use any explicit negation in our axiomatization.



2. BASIC PROBABILITY LOGIC 30

• (ARCH): If ` γ → Lsφ for all s < r, then ` γ → Lrψ.

The validity of all theorems of ΣL is obvious. Note that the axiom (A4) is not valid here.

Now we show the completeness. Assume that ψ is consistent. We need to show that ψ

is satisfiable in the above inner probability models. Here we will still use the notations

from Section 3. Similarly, we can define the index set I[ψ] and the local language L[ψ].

This language gives rise to a set Ω of maximal consistent sets in L[ψ]. For any Γ and φ,

αΓ
φ (defined through a maximal extension Γ+ in the expanded language L+ and uses (A7)

implicitly) can be defined similarly but we cannot define βΓ
φ because the modality Mr is not

in our formal language. In order to prove truth lemma, we have to eliminate the possibility

that the probability measure of [φ] at Γ T (Γ)([φ]) = αΓ
φ + 1/q, where q is the accuracy of

the language L[ψ]. This is the place where we need the rule (ARCH).

Lemma 2.5.1. For any Γ ∈ Ω and φ ∈ L[ψ], there is a maximal consistent extension

Γ∞ in the language L, which is the formal language of the logic, such that Γ+ ⊆ Γ∞ and

αΓ
φ ≤ α∞φ < αΓ

φ + 1/q where

α∞φ = max{r ∈ Q : Lrφ ∈ Γ∞}.

Proof. We claim that, for any Γ ∈ Ω and φ, Γ∪{¬Lrφ} is consistent for some rational

r < αΓ
φ+1/q. Suppose not. Then ` ∧

Γ+ → Lrφ for all r < αΓ
φ+1/q. By the rule (ARCH),

we know that ` ∧
Γ → LαΓ

φ+1/qφ. It follows that LαΓ
φ+1/qφ ∈ Γ+ since LαΓ

φ+1/qφ ∈ L[ψ].

But this is against the definition of αΓ
φ.

We enumerate all the formulas in L[ψ]:

φ1, φ2, · · · , φn.

Suppose that Γ+ ∪ {¬Lr1φ1} is consistent for some αΓ
φ1
≤ r1 < αΓ

φ1
+ 1/q. Since our rea-

soning here is exactly parallel to that in Lemma 2.3.12., we will not repeat here. We just

sketch the proof. By propositional reasoning, we know that there is a maximal consistent

extension Γ1 in the language L1 such that Γ1 ⊇ Γ+ ∪ {¬Lr1φ1} where L1 is a strictly more

accurate langauge than L[ψ]. Then it is easy to see that the above define αΓ1

φ1
for Γ1 is
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strictly smaller than αΓ
φ1

+ 1/q.

Now we consider φ2 and Γ1. Observe that αΓ
φ2
≤ αΓ1

φ2
< αΓ1

φ2
+ 1

q1
≤ αΓ

φ2
+ 1/q where q1 is

the accuracy of the langauge L1 (since ¬LαΓ
φ2

+1/qφ2 ∈ Γ+ ⊆ Γ1). By the same argument

as for φ1, we know that there is a maximal consistent extension Γ2 in the strictly more

accurate langauge L2 such that Γ2 ⊇ Γ1 ∪ {¬Lr2φ2} for some r2: αΓ1

φ2
≤ r2 < αΓ1

φ2
+ 1

q1
. So

αΓ
φ2
≤ αΓ1

φ2
≤ αΓ2

φ2
≤ r2 < αΓ1

φ2
+ 1

q1
≤ αΓ

φ2
+ 1

q .

If we repeat this process for all φi for 1 ≤ i ≤ n, then we will get a chain of maximal

consistent extensions Γi’s such that

Γ ⊆ Γ+ ⊆ Γ1 ⊆ · · · ⊆ Γn

and, for each φi,

αΓ
φi
≤ αΓ1

φi
≤ · · · ≤ αΓi−1

φi
≤ αΓi

φi
≤ ri < αΓi

φi
+ 1/qi ≤ αΓi−

φi
+ 1/qi−1 ≤ · · · ≤ αΓ

φi
+ 1/q

Note that there is one place where the inequality is strict. For such a Γn there is a maximal

consistent extension Γ∞ in the langauge L such that Γn ⊆ Γ∞. It is easy to see that

any maximal extension of Γn will preserve the above inequality. This implies that, for any

φi ∈ L[ψ] and α∞φi
:= {r ∈ Q : Lrφi ∈ Γ∞},

αΓ
φi
≤ αΓ1

φi
≤ · · · ≤ αΓn−1

φi
≤ αΓn

φi
≤ α∞φi

≤ αΓn

φi
+ 1/qn ≤ · · · < αΓi

φi
+ 1/qi ≤ · · · ≤ αΓ

φi
+ 1/q

¤

Lemma 2.5.2. The following two are needed in the following definition of inner proba-

bility measure on the canonical model:

(1) if ` φ1 → ¬φ2 and r + s ≤ 1, then ` Lrφ1 ∧ Lsφ2 → Lr+s(φ1 ∨ φ2);

(2) ` ¬Lr⊥ for any r > 0.

Now we define the inner probability measures on the canonical model based on such Γ∞.

Define

T (Γ) : 2Ω → [0, 1] as T (Γ)([φ]) = α∞φ .
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The following part is parallel to that in the measurable case. It is easy to see that T (Γ)(Ω) =

T (Γ)([>]) = 1 and T (Γ)(∅) = T (Γ)([⊥]) = 0 since L1> ∈ Γ∞ (A2) and ¬Lr⊥ ∈ Γ∞ for any

r > 0. Next we show the finite superadditivity.

Lemma 2.5.3. This is the very place where we need the axiom (A5):

(1) T (Γ)([φ]) + T (Γ)([¬φ]) ≤ 1.

(2) If ` φ1 → ¬φ2, then T (Γ)([φ1]) + T (Γ)([φ2]) ≤ 1.

Proof. We just prove the first part and leave the second part to the reader. Suppose

that T (Γ)([φ]) + T (Γ)([¬φ]) > 1. Then there are two sufficiently small rationals ε and ε′

such that r := T (Γ)([φ]) − ε, s := T (Γ)([¬φ]) − ε′ and r + s > 1. According to the above

definition, we know that Lrφ ∈ Γ∞ and Ls(¬φ) ∈ Γ∞. Since r + s > 1, ¬Ls¬φ ∈ Γ∞ (by

(A5)), which is a contradiction. So, T (Γ)([φ]) + T (Γ)([¬φ]) ≤ 1.

¤

Lemma 2.5.4. For A,B ∈ 2Ω, if A ∩B = ∅, then T (Γ)(A) + T (Γ)(B) ≤ T (Γ)(A ∪B).

Proof. We know that there are formulas φ1, φ2 ∈ L[ψ] such that A = [φ1] and B = [φ2].

Let α1, α2 and α+ denote T (Γ)([φ1]), T (Γ)([φ2]) and T (Γ)([φ1 ∨ φ2]), respectively. By the

above lemma, we know that α1 + α2 ≤ 1. So we only need to show that α1 + α2 ≤ α+.

Suppose that α1 + α2 > α+. Then there are two ε1 > 0 and ε2 > 0 such that (α1 − ε1) +

(α2 − ε2) > α+, α1 − ε1 ∈ Q and α2 − ε2 ∈ Q. Let α′1 := α1 − ε1 and α′2 := α2 − ε2. It

follows that Lα′1φ1 ∈ Γ∞ Similarly, Lα′2φ2 ∈ Γ∞. By (A3) (one pervious lemma), we know

that Lα′1+α′2(φ1 ∨ φ2) ∈ Γ∞. But this is impossible because α′1 + α′2 > α+ and α+ is the

smallest upper bound such that Lβ(φ1 ∨ φ2) ∈ Γ∞.

¤

Indeed such defined T (Γ) is an inner probability measure for all Γ.

Lemma 2.5.5. (Truth Lemma) Let T (Γ) defined as above. Then, for any Lrφ ∈ L[ψ],

Lrφ ∈ Γ iff Γ |= Lrφ.
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Proof. Assume that Γ |= Lrφ. This implies that α∞φ ≥ r. Since α∞φ < αΓ
φ + 1/q,

r ≤ αΓ
φ. It follows that Lrφ ∈ Γ.

Assume that Lrφ ∈ Γ. It follows that r ≤ αΓ
φ ≤ α∞φ . Since T (Γ)([φ]) = α∞φ , Γ |= Lrφ.

¤

Theorem 2.5.6. (Completeness) Let Mo be the class of probability models with inner

measures. Then

|=Mo ψ iff `ΣL
ψ.

Proof. Since ψ is consistent as we assume at the beginning of this section, ψ is con-

tained in a maximal consistent extension Γ in the language L[ψ]. It follows from the above

lemma that Γ |= ψ.

¤

The noncompactness can be proved similarly.

Corollary 2.5.7. ΣL is not compact.

2.6. Decidability

In this section, we give a new logic Σv and show that its relation to the system Σ+ through

which we can get the decidability of Σ+ easily. Also this logic will justify both our claim

that Σ+ is a finite system in nature and our meta-reasoning with index parameters in Σ+.

We need the following index language with equality LI as an auxiliary language.

2.6.1. Term Calculus. The index language with equality LI consists of

(1) countably infinite index variables x, y, · · · (and with subscripts) and two constants

0 and 1;

(2) two predicates: ≤ and <6;

(3) function symbols: +,−.

6We can mae do with only either one of them and define the other using equality.
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An index term t is defined by the following syntax:

t := x | 0 | 1 | t1 + t2 | t1 − t2

We use t (with subscripts) to denote index terms. A literal index formula in the language

LI is defined as follows:

g =: t1 = t2 | t1 ≤ t2 | t1 < t2 | ¬g

Now we develop some machinery that is needed for our main theorem. The following

abbreviations are very handy:

• n for 1 + · · ·+ 1 for n times;

• n · t is short for t + · · ·+ t for n times;

• n
m + t = u is short for n + mt = mu;

• n
m + t ≤ u is short for n + mt ≤ mu;

• n
m + t < u is short for n + mt < mu;

So we can also assume that the language includes rationals as constants. Equivalently,

a literal index formula is an atomic formula or the negation of an atomic formula in the

langauge LI . A guard index set G is a set of literal index formulas. An evaluation v is a

mapping from X := {x1, · · · , xn, · · · } to Q, the number system of rational numbers. An

index formula g is valid if g is true under all evaluations. A guard index set G is valid if all

g′s in G are valid. g is a logical consequence of g′ (denoted as g′ |= g) if every evaluation

that satisfies g′ also satisfies g.

Our goal is to find a calculus ` that is sound and complete with respect to the above

semantics:

g′ ` g iff g′ |= g.

2.6.2. Axiomatization in Term Calculus. The system AXI , in addition to those

for equality, has the following axioms and rules:
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Index Calculus AXI
7

• t ≤ t, 0 < 1,

• t1 + 0 = t1, t1 + t2 = t2 + t1, t1 + (t2 + t3) = (t1 + t2) + t3;

• (t1 + t2)− t2 = t1, (t1 − t2) + t2 = t1;

• ¬(t1 < t2),¬(t1 = t2)
t2 < t1

, t1 ≤ t2,¬(t1 = t2)
t1 < t2

;

• t1 < t2
t1 ≤ t2

; t1 < t2
¬(t1 = t2)

; ¬(t1 < t2)
t2 ≤ t1

; t2 ≤ t1
¬(t1 < t2)

;

• t1 ≤ t2, t2 ≤ t3
t1 ≤ t3

; t1 ≤ t2, t2 ≤ t1
t1 = t2

;

• t1 ≤ t2
t1 + t3 ≤ t2 + t3

; t1 ≤ t2
t3 − t2 ≤ t3 − t1

;

• nt1 = nt2
t1 = t2

; nt1 ≤ nt2
t1 ≤ t2

; nt1 < nt2
t1 < t2

.

• g
t 6= t′⇔

g,¬(t > t′)
t < t′ ; g,¬g′

0 6= 0⇔
g
g′ ;

g, g1
g2

⇔g,¬g2¬g1
.

• t 6= t′, g
g′ ⇔ t > t′, g

g′ & t < t′, g
g′ .

A literal index formula g is derivable from a guard index set G (denoted as G ` g) if there

is a sequence s each element of which is either:

(1) an element of G, or

(2) an instance of the axioms in AXI , or

(3) a result by applying the rules in AXI to other elements located before in the

sequence.

A guard index set G1 is derivable from the guard set G2 if G2 ` g for all g ∈ G1.

Theorem 2.6.1. (Completeness of term calculus) For any literal index formulas g and

finite guard index set G,

G |= g iff G `AXI
g.

In order to show this theorem, we have to apply some techniques from linear programming

[32]. However, we don’t use them directly but adapt them into our setting of term calculus.

First we state the problem of linear programming. A term inequality system is a group

7Probably some of them below are redundant. But we are more concerned about the completeness of

the axiomatization.
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of linear inequalities with integral coefficients (but with rational constant terms) in the

following form:

S =





a11x1 + · · ·+ a1nxn ≥ c1

· · · , · · ·
ar1x1 + · · ·+ arnxn ≥ cr

−a′11x1 − · · · − a′1nxn > −c′1

· · ·
−a′s1x1 − · · · − a′snxn > −c′s

Note that all the aij and a′ij are integers and ci and c′i are rationals. First we prove

the integral version of Farkas’s lemma and then we show the integral version of Kuhn’s

transposition theorem. There are many adaptations that we can use to show these. But,

for the following proof of the decidability of the term calculus, we choose to use Fourier-

Motzkin elimination method in [32]. First we assume that s = 0. Then the term inequality

system can be written as a more condensed matrix presentation: Ax ≥ c where

A =




a11 · · · a1n

· · · · · · · · ·
ar1 · · · arn


 .

and x = (x1, · · · , xn)T and c = (c1, · · · , cr)T .

Lemma 2.6.2. The following two statements are equivalent:

(1) Ax ≥ c is unsatisfiable in Q;

(2) there exists an integral row vector α such that

• each coordinates of α is nonnegative;

• αA = 0;

• αc > 0.

Proof. We will use the Fourier-Motzkin elimination method. First we eliminate x1.

Without loss of generality, we assume that a1,1, · · · , ar+,1 > 0, a(r++1),1, · · · , ar−,1 < 0 and
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ar−+1,1, · · · , ar,1 = 0. Let a1 be the least (positive) common multiple of all a1,1, · · · , ar+,1,

a(r++1),1, · · · , ar−,1. Then by multiplying each of the first r− rows by a corresponding

positive integer, we can get the following term inequality system:

Sn =





a1x1 + · · ·+ a1
1nxn ≥ c1

1

· · · , · · ·
a1x1 + · · ·+ a1

r+,nxn ≥ c1
r+

−a1x1 + · · ·+ a1
r++1,nxn ≥ c1

r++1

· · ·
−a1x1 + · · ·+ a1

r−,nxn ≥ c1
r−

0 · x1 + · · ·+ ar−+1,nxn ≥ cr−+1

· · ·
0 · x1 + · · ·+ ar,nxn ≥ cr

where a1
ij(1 ≤ i ≤ r−, 2 ≤ j ≤ n) are integers but c1

k(1 ≤ k ≤ r−) are rationals. Then it is

easy to see that the first r− rows are equivalent to the following inequalities:

∑n
j=2 a1

k,jxj − c1
k ≥ a1x1 ≥ c1

i − (
∑n

j=2 a1
i,jxj) for all i : 1 ≤ i ≤ r+ and k : r+ + 1 ≤ k ≤ r−.

The solvability of the system Sn with n unknown variables can be reduced to the following

system Sn−1 with n− 1 unknown variables:

Sn−1 =





∑n
j=2 a1

k,jxj − c1
k ≥ c1

i − (
∑n

j=2 a1
i,jxj)

ar−+1,2x2 + · · ·+ ar−+1,nxn ≥ cr−+1

· · ·
ar,2x2 + · · ·+ ar,nxn ≥ cr

for all i : 1 ≤ i ≤ r+ and k : r+ + 1 ≤ k ≤ r−. Note the following three facts about the

system Sn−1:

(1) Sn−1 has only n− 1 unknown variables;

(2) it has r+ · r− + (r − r−) inequalities;

(3) Sn has a rational solution iff Sn−1 has a rational solution.
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Now we show the lemma. The direction from (2) to (1) is trivial true. Now we show the

other direction. We use the induction on the dimension of the term inequality system.

(1) Assume that the number of the unknown variables is 1. Then the term inequality

system is just equivalent to the following inequlaity:

max{c1, · · · , cr+} ≤ a1x1 ≤ min{−cr++1, · · · ,−cr−}.

Since Ax ≥ c is unsatisfiable, there are k and l such that 1 ≤ k ≤ r=, r+ + 1 ≤
l ≤ r− and ck > −cl (otherwise, the system would have a rational solution by the

density of rationals). Therefore we can choose the row vector α for this case to be:

(01, · · · , 0k−1, 1k, 0k+1, · · · , 1l, 0l+1, · · · , 0r)

where the subscripts indicate the location of the element in the vector. In other

words, all coordinates are zeros except the k-th and l-th coordinates. It is easy to

see that αA = 0 and αc > 0. So we finish the proof for the base case.

(2) Assume that Sn : Ax ≥ c have n unknown variables and does not have a rational

solution. Equivalently, Sn does not have a rational solution. Then, from the above

observations, we know that Sn−1 : A′x′ = c′, where A′ is just the above matrix

in the Fourier-Motzkin elimination method and x′ = (x2, · · · , xn), does not have

a rational solution, either. By induction hypothesis, we know that there is an

integral vector αn−1 such that

(a) αn−1 ≥ 0;

(b) αn−1A
′ = 0;

(c) αn−1c
′ > 0.

To put it in another word, (0, · · · , 0, αn−1c
′) is a nonnegative integral combination

of the row vectors of the matrix [A′, c′]. Moreover, each of the first r+ · (r− − r+)

rows of Sn−1 is a sum of two row vectors of the first r− rows of the matrix [A, c].

Therefore, (0, 0, · · · , 0, αn−1c
′) is also a nonnegative integral combination of the

row vectors of the matrix [A, c]. That is to say, there is a row vector αn such that

• αn ≥ 0;

• αnA = 0;
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• αnc > 0.

So we finish the inductive step and hence the whole lemma.

¤

The above proof can also be adapted for the proof for the general case: s > 0. The system

S can be represented as a matrix presentation: Ax ≥ c and A′x > c′.

Lemma 2.6.3. The following two statements are equivalent:

(1) The system S : Ax ≥ c and A′x > c′ does not have a rational solution;

(2) there is an integral row vector (α, α′) such that:

• α ≥ 0 and α′ ≥ 0;

• αA + αA′ = 0;

• Either αc + αc′ > 0 or some entry of α′ is positive, and αc + αc′ ≥ 0.

Proof. The proof of this lemma is similar to that for the special case s = 0.

¤

As an illustration, we show the following lemma.

Lemma 2.6.4. Show that {a1t1 + a2t2 ≥ c1, b1t1 + b2t2 ≥ c2} ` (2a1 + 3b1)t1 + (2a2 +

3b2)t2 ≥ 2c + 3d.

Proof. Reason inside AXI :

b1t1 + b2t2 ≥ d, b1t1 + b2t2 ≥ d

(b1t1 + b2t2) + (b1t1 + b2t2) ≥ d + d

(2b1)t1 + (2b2)t2 ≥ 2d

[(2b1)t1 + (2b2)t2] + (b1t1 + b2t2) ≥ 2d + d

(3b1)t1 + (3b2)t2 ≥ 3d

(2a1)t1 + (2a2)t2 ≥ 2c (Similarly)

(2a1 + 3b1)t1 + (2a2 + 3b2) ≥ (2c + 3d).

¤

Lemma 2.6.5. The following propositions are provable in AXI :
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(1) 0x1 + 0x2 + · · · 0xn = 0

(2) ¬(0 > n) for any positive integer n.

Proof. First note that 0x = 0. According to our convention, 0x = (1 − 1)x = x − x.

On the other hand, x−x = 0 because 0+x = x. Now we can see that 0 = 0x1 = 0x1 +0 =

0x1 + 0x2 = · · · = 0x1 + · · ·+ 0xn. For the second proposition, we prove by contraposition.

Suppose that 0 > n. but, according to the axiom 0 < 1, we have that 0 < n. Then, by one

axiom in AXI , we know that it contradicts the fact that 0 > n.

¤

Now we go back to prove Theorem 2.6.1.

Proof. (Completeness) It is easy to check the soundness of the term calculus. Now we

are showing the completeness of the term calculus. Given a finite guard index set G and

an literal index formula g, assume that G¬ ` g. If g is of the form t = t′, then G 6` t ≥ t′

or G 6` t ≤ t′. Now we need to show that there is an evaluation v such that both G and ¬g

are verified under v. Let G′ = G∪{¬g}. We can transform G′ to a term inequality system.

If some element of G′ is an equality t1 = t2, then we can just replace it by t1 ≤ t2 and

t1 ≥ t2. According to the last rule, we can assume that all the elements in G′ are inequalities.

There are two cases that we need to consider.

(1) Assume that all of the elements of G′ are of the form t ≥ t′. By the axioms of

AXI , we can transform it into the following term inequality system:

S =





a11x1 + a12x2 + · · ·+ a1nxn ≥ c1

· · ·
ar1x1 + ar2x2 + · · ·+ arnxn ≥ cr

Usually it is written in matrix form: Ax ≥ c. Suppose that it is not satisfiable.

According to one previous lemma, there is an integral row vector α = (α1, · · · , αr)

such that:

• α ≥ 0;
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• αA = 0;

• αc > 0.

As we have shown in the above lemma, inside AXI we can multiply the i-th row

by αi and then add all of them together. So we will get on the left side 0x1 +0x2 +

· · ·+0xn. On the right hand side, we will get αc, which is a positive rational. But,

according to one lemma above, we will get that 0 > αc, or equivalently, 0 > n for

some positive integer n. From this we can easily deduce that 0 6= 0. Sum up all

the above arguments, we get that: G′ ` 0 6= 0. It follows that G ` g. But this

contradicts to our assumption that G 6` g. This implies that G |= g.

(2) Assume that some elements of G′ are of the form t > t′. We can transform it into

the following term inequality system:

S =





a11x1 + · · ·+ a1nxn ≥ c1

· · · , · · ·
ar1x1 + · · ·+ arnxn ≥ cr

−a′11x1 − · · · − a′1nxn > −c′1

· · ·
−a′s1x1 − · · · − a′snxn > −c′s

Correspondingly it can be written as a matrix presentation: Ax ≥ c and A′x > c′.

We need to show that G 6|= g. It suffices to show that G′ is satisfiable. Suppose

that it is not satisfiable. By the main lemma above, we have that there are two

integral row vectors α = (α1, · · · , αr) and α′ = (α′1, · · · , α′s) such that

• α ≥ 0 and α′ ≥ 0;

• αA + αA′ = 0;

• Either αc + α′c′ > 0 or some entry of α′ is positive and αc + α′c′ ≥ 0.

Here we only discuss the second case: some entry of α′ is positive and αc+α′c′ ≥ 0.

Assume that α′s > 0. We multiply each row by the corresponding integers:
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



α1a11x1 + · · ·+ α1a1nxn ≥ α1c1

· · · , · · ·
αrar1x1 + · · ·+ αrarnxn ≥ αrcr

−α′1a
′
11x1 − · · · − α′1a

′
1nxn > −α′1c

′
1

· · ·
−α′sa′s1x1 − · · · − α′sa′snxn > −α′sc′s

Add the first (r + s− 1) rows together we will get the following inequality: a1x1 +

· · ·+ anxn ≥ d for some integers ai and rational d. Since αA + α′A′ = 0, we have

that: a1 = α′sa′s1, · · · , an = α′sa′sn. It follows that −(a1x1 + · · ·+ anxn) > −α′sc′s.

Since αc + α′c′ ≥ 0, −α′sc′s ≥ d. It follows that a1x1 + · · · + anxn > −d. So

(a1x1 + · · · + anxn) < d. But this contradicts the fact that a1x1 + · · · + anxn ≥
d. This implies that G′ ` 0 6= 0. Equivalently, G ` g, which contradicts our

assumption that G 6` g. We conclude that G 6|= g. So we finish the proof of the

completeness.

¤

Theorem 2.6.6. The term calculus is decidable, i.e. given a finite guard index set G

and a literal index formula g, it is decidable inside AXI whether G ` g or not.

Proof. The theorem follows directly from Fourier-Motzkin’s elimination method. We

only need to see whether G′ := G ∪ {¬g} has a rational solution or not by the above

completeness. But this can be achieved by the elimination method in finite many steps. If

G′ has a solution, then we can conclude that G 6` g by the completeness result. If G′ does

not have a solution, then we can conclude that G ` g because otherwise G′ would have a

solution.

¤

2.6.3. Decidability of Σ+. After setting up the auxiliary system for our logic, we are

now defining the syntax for the deductive system Σv. A formula φ[G] in this logic consists

of two parts: the propositional part φ and the index part G. G is a guard index set of
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literal index formulas containing all index terms occurring in φ. The index part specifies the

condition which the indexes in the propositional part must satisfy. For example, the formula

(Lt1φ → ¬Lt2¬φ)[t1 + t2 > 1] means that the indexes in the formula part Lt1φ → ¬Lt2¬φ

satisfies the condition: t1 + t2 > 1. If the propositional part does not contain the modalities

L, we can regard the corresponding index part as (0 = 0), which we just omit. G1 ¹ G2 if

all the index terms occurring in G1 occur also in G2. Propositional part φ are defined as

follows:

φ := p | φ1 ∧ φ2 | ¬φ | Ltφ

When the context is clear, we also call the propositional part φ a formula. Given any

formula φ, the guard index set G0(φ) specifying that, for all index terms t occurring in φ,

0 ≤ t ≤ 1 is called the basic guard index set. Without further notice, any guard index set for

any formula φ is a superset of its basic guard index set. In order to “evaluate” the indexes

variables, we also write φ as φ(x1, · · · , xn), where x1, · · · , xn are all the index variables

occurring in φ.

Probability Logic Σv

• (A1) L0φ

• (A2) Lt>;

• (A3) Lt1(φ ∧ ψ) ∧ Lt2(φ ∧ ¬ψ) → Lt1+t2φ

• (A4) ¬Lt1(φ ∧ ψ) ∧ ¬Lt2(φ ∧ ¬ψ) → ¬Lt1+t2φ

• (A5) Lt1φ → ¬Lt2¬φ [t1 + t2 > 1]

• (ARC) (γ → (Mtφ → Mt−tεφ))[G]
(γ → M0φ)[G] , where all of index variables in t and tε are new;

• (DIS) (φ ↔ ψ)[G]
(Ltφ ↔ Ltψ)[G, 0 ≤ t ≤ 1] , where all the index variables in t are new;

• (ARCH): (γ → Lt−tεφ)[G]
(γ → Ltφ)[G] , where all index variables appearing in tε are new;

• (CL) propositional calculus with the rule MP replaced by the following rule:

MPv:
(φ1 → φ2)[G], φ1[G′]

φ2[G,G′] , ;

Note that in this axiomatization, we omit all the basic guard index formulas to simplify the

presentation. Here we just give a brief intuition of the rules in Σv. (ARC) and (ARCH)

actually characterize the Archimedean property of Q, which means that, if the pace is
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constant, it will hit the zero after finite step backwards. (DIS) says that the probability

measure is monotonic. And MPv is just the detachment rule in index variables. If a formula

φ[G] is provable in Σv, it can be interpreted as follows:

if any realization of φ[G] 8 satisfies the guard condition, then φ is valid in any proba-

bility structure.

Note that according to our definition of formulas, for any formula φ[G], all the index terms

in φ also occur in G. In the following, for any formula φ[G], x1, · · · , xn are all the index

variables occurring in φ and x1, · · · , xn, · · · , xN are all the index variables occurring in G.

Lemma 2.6.7. The following rule (B) with index variables is admissible in Σv:

((φ1, · · · , φn) ↔ (ψ1, · · · , ψn))[G]
(
∧n

i=1 Ltiφi ∧
∧n

j=2 Mt′jψj → LPn
i=1 ti−

Pn
j=2 t′jψ1)[G′] ,

where t1, · · · , tn, t′2, · · · , t′n are new and [G′] = [G, 0 ≤ ti, tj ,
∑n

i=1 ti −
∑n

j=2 t′j ≤ 1];

Proof. This is just an abstraction of the proof of Lemma 2.4.5. And it is needed in

the connection of Σ+ to Σv. In order to convince the reader, we give a proof for the case

that n = 3.

&%

'$

&%

'$

&%

'$5 2 6
1

3 4
7

φ1 φ2

φ3

&%

'$

&%

'$

&%

'$5’ 2’ 6’
1’

3’ 4’
7’

ψ1 ψ2

ψ3

Note that the numbers denote the areas for the corresponding formulas. Our proof is

informal but informative enough. Assume that

8We will formalize this definition below.



2. BASIC PROBABILITY LOGIC 45

` (φ1, φ2, φ3) ↔ (ψ1, ψ2, ψ3).

And assume that

Ξ =





a1 ≤ 1 ≤ a1 + δ

a2 ≤ 2 ≤ a2 + δ

a3 ≤ 3 ≤ a3 + δ

a4 ≤ 4 ≤ a4 + δ

Since 1 + 2 + 3 + 4 = 1′ + 2′ + 3′ + 4′, we can similarly assume that

Ξ′ =





a1 ≤ 1′ ≤ a1 + δ

a2 ≤ 2′ ≤ a2 + δ

a3 ≤ 3′ ≤ a3 + δ

a4 ≤ 4′ ≤ a4 + δ

By a similar argument in Section 2.4, we have the following inequality system:





5 ≥ r1 − (a1 + a2 + a3 + 3δ)

6 ≥ r2 − (a1 + a2 + a4 + 3δ)

7 ≥ r3 − (a1 + a4 + a3 + 3δ)

Since all the numbered areas in the diagram are disjoint, we add them together and have

the following inequality:

φ1 ∨ φ2 ∨ φ3 ≥ (r1 + r2 + r3)− (a1 + a2 + a3 + a4)− 9δ − a1.

which is equivalent to saying that

ψ1 ∨ ψ2 ∨ ψ3 ≥ (r1 + r2 + r3)− (a1 + a2 + a3 + a4)− 9δ − a1.

Since ψ2 ≤ s2, 6′ ≤ s2 − (a1 + a2 + a4). Similarly, we have 7′ ≤ s3 − (a1 + a3 + a4). Denote

A = a1 +a2 +a3 +a4. Note that all the numbered areas in the second diagram are disjoint,

we can use the inequality axioms in the system and get:

5′ ≥ (r1+r2+r3)−(s2+s3)−A−9δ−a1−[s2−(a1+a2+a4)]−[s3−(a1+a3+a4)]−(A+4δ)

By simplifying the above inequality, we have:
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5′ ≥ (r1 + r2 + r3)− (s2 + s3)− 13δ −A + a4

It follows immediately from this inequality that:

ψ1 ≥ (r1 + r2 + r3)− (s2 + s3)− 13δ.

By summing up the above argument, we have that: given any sufficiently small ε and δ

such that 100δ ≤ ε, from the assumptions Ξ, Ξ′ and the following assumptions:

φ1 ≥ r1.φ2 ≥ r2, φ3 ≥ r3, ψ2 ≤ s2, ψ3 ≤ s3,

it follows that

ψ1 ≥ (r1 + r2 + r3)− (s2 + s3)− 13δ.

Suppose that ψ1 < (r1 + r2 + r3)− (s2 + s3)− ε. From the rule (ARC), we can deduce that

1 = 2 = 3 = 4 = 1′ = 2′ = 3′ = 4′ = 0.

It follows (as what we have shown in Section 3) that φ1, φ2 and φ3 are disjoint and ψ1, ψ2, ψ3

are disjoint. From this result, we have that

φ1 ∨ φ2 ∨ φ3 ≥ r1 + r2 + r3 while ψ1 ∨ ψ2 ∨ ψ3 < r1 + r2 + r3 − ε.

But this contradicts our assumption that ` (ψ1 ∨ ψ2 ∨ ψ3) ↔ (φ1 ∨ φ2 ∨ φ3). So ψ1 ≥
(r1+r2+r3)−(s2+s3)−ε. By the rule (ARCH), we have that ψ1 ≥ (r1+r2+r3)−(s2+s3),

which is exactly what we want to show.

¤

Definition 2.6.8. A realization τ of the formula φ[G] is a mapping from X := {x1, · · · ,

xn} to Q∩ [0, 1] such that

AXI ` G(x1/τ(x1), · · · , xn/τ(xn)).

Now we are well-equipped to state the main theorem of this section about the relationship

between Σv and Σ+:

Theorem 2.6.9. Given any formula φ(x1, · · · , xn)[G(x1, · · · , xN )], if Σv ` φ[G], then,
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(S): for any realization τ of G, Σ+ ` φ(x1/τ(x1), · · · , xn/τ(xn)).

Proof. Prove by induction on the proof sequence of φ[G] ∈ Σv.

(1) Basis case: φ is an axiom in Σv. The it is easy to see that the proposition (S)

holds. Here we take Lt(φ ∧ ψ) ∧ Lt′(φ ∧ ¬ψ) → Lt+t′φ as an illustration. The

implicit guard index set is the basic guard index set. For any realization τ , it is

easy to see that

(Lt(φ ∧ ψ) ∧ Lt′(φ ∧ ¬ψ) → Lt+t′φ)[x1/r1, · · · , xn/rn]

is an axiom in Σ+.

(2) Assume that φ := (γ → M0ψ)[G] and it is a result by applying the rule (ARC):

(γ → (Mtφ → Mt−tεψ))[G]
(γ → M0ψ)[G] , where all of index variables in t and tε are new

Given any realization τ of φ, then it can be extended to a realization τ [y1/r1,

· · · , yk/rk] of (γ → (Mtφ → Mt−tεφ))[G] (where y1, · · · , yk are the index variables

occurring in t or tε) because of the following two obvious facts:

(a) all of index variables in t and tε are new;

(b) G `AXI
G[x1/r1, · · · , xk/rk] for all ri : 0 ≤ ri ≤ 1, where xi are those appear-

ing in t or tε.

The Induction Hypothesis implies that, under the realization τ , for any r > 0,

γ → Mrφ is provable in Σ+. By appealing to the rule (ARCH) in Σ+, we know

that φ(x1/τ(x1), · · · , xn/τ(xn)) is provable in Σ+.

(3) Assume that φ := (Ltγ ↔ Ltψ)[G, 0 ≤ t ≤ 1] is a result by applying the rule (DIS)

in Σv:

(γ ↔ ψ)[G]
(Ltγ ↔ Ltψ)[G, 0 ≤ t ≤ 1] , where all the index variables in t are new;

Let τ be a realization of (Ltγ ↔ Ltψ)[G, 0 ≤ t ≤ 1]. If we take a corresponding

restriction to the index variables in (γ → ψ), then we will get a realization τ ′

of (γ ↔ ψ)[G] because G is a subset of [G, 0 ≤ t ≤ 1] and t is new. Since

τ ′ is a realization of (γ ↔ ψ)[G], by the induction hypothesis, we know that

(γ ↔ ψ)[x1/τ ′(x1), · · · , xk/τ ′(xk)]] is provable in Σ+ where x1, · · · , xk are all the
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index variables occurring in γ ↔ ψ. By the rule (DIS) in Σ+, we know that (Ltφ ↔
Ltψ)[x1/τ(x1), · · · , xk/τ(xk), · · ·xn/τ(xn)] is provable in Σ+, where xk+1, · · · , xn

are the index variables occurring in t.

(4) The proof of the case for (ARCH) is similar to that for the case for (ARC);

(5) The case for the rule CL is also similar with a little more complication. Assume

that φ := φ2[G, G′] is a result by applying the rule MPv:

(φ1 → φ2)[G], φ1[G′]
φ2[G,G′] .

Assume that τ is a realization of φ2[G,G′]. That is to say, AXI ` G[x1/τ(x1),

· · · , xn/τ(xn)] and AXI ` G′[x1/τ(x1), · · · , xn/τ(xn)]. Without loss of generality,

we can assume that the index variable set of φ1 is the same as that of φ2. For

example, if x is an index variable in φ1 but not in φ2. Then we can add the

index formula x = x to φ2 to make up for this “shortcoming”. Assume that τ

is a realization of φ2[G,G′]. It is easy to see that it is also a realization of both

(φ1 → φ2)[G] and φ1[G′] because both [G] and [G′] are subsets of [G,G′]. According

to the induction hypothesis,

Σ+ ` (φ1 → φ2)(x1/τ(x1), · · · , xn/τ(xn)) and Σ+ ` φ1(x1/τ(x1), · · · , xn/τ(xn)).

It follows immediately that

Σ+ ` φ2(x1/τ(x1), · · · , xn/τ(xn))

¤

Corollary 2.6.10. If Σv ` φ(x1, · · · , xn)[G(x1, · · · , xN ]) and, for any realization τ ,

AXI ` G(x1/τ(x1), · · · , xn/τ(xn), · · · , xn+j/r1, · · · , xn+j+ij/rij , · · · , xN ), then Σv ` φ(x1,

· · · , xn)[G(x1, · · · , xn, · · · , xn+j/r1, · · · , xn+j+ij/rij , · · · , xN )]

Note that the realizations here evaluate only the index variables in φ but not completely

those in G. The extra condition just says that any expansion of realizations must validate

the guard set.
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In the proof of the following theorem, we choose the axiomatization in [17] because their

deductive system has a very nice tree property. Of course, we have shown that their system

is equivalent to ours.

Theorem 2.6.11. If φ(x1/r1, · · · , xn/rn) is provable in Σ+, then there is a guard index

set G such that Σv ` φ(−→x )[G] and τ : xi 7→ ri(1 ≤ i ≤ n) is a realization of G.

Proof. We prove on the proof sequence of the formula φ(x1/r1, · · · , xn/rn) in Σ+.

(1) Basis case: φ(x1/r1, · · · , xn/rn) is an axiom in Σ+. We can just choose the basic

guard index set G0 for the corresponding axiom in Σv.

(2) Assume that φ := (Lrγ ↔ Lrψ) is a result by applying the rule:

γ ↔ ψ
Lrγ ↔ Lrψ

.

According to the induction hypothesis, there is a guard set G such that Σv `
φ(−→x )[G] and τ : xi 7→ ri is a realization. Define [G′] := [G, 0 ≤ x ≤ 1] and

τ ′ := τ ∪ {(x, r}. It is easy to see that Σv ` (Lxγ ↔ Lxψ)[G′] and τ ′ is a

realization.

(3) Assume that φ :=
∧n

i=1 Lriφi ∧
∧n

j=2 Mr′jψj → LPn
i=1 ri−

Pn
j=2 r′jψ1 is a result by

applying the rule:

(φ1, · · · , φn) ↔ (ψ1, · · · , ψn)∧n
i=1 Lriφi ∧

∧n
j=2 Mr′jψj → LPn

i=1 ri−
Pn

j=2 r′jψ1
.

By induction hypothesis, we know that there is a guard index set G such that

Σv ` ((φ1, · · · , φn) ↔ (ψ1, · · · , ψn))(x1, · · · , xn) where x1, · · · , xn are all the in-

dex variables that occur in ((φ1, · · · , φn) ↔ (ψ1, · · · , ψn)) and τ : xi 7→ ri is a

realization. Now we define:

[G′] := [G, 0 ≤ yi ≤ 1, 0 ≤ zj ≤ 1, 0 ≤ ∑n
i=1 yi −

∑n
j=2 zj ≤ 1]

where yi’s and zj ’s are new and 1 ≤ i ≤ n and 2 ≤ j ≤ n. Moreover, we define:

τ ′ := τ ∪ {(yi, ri), (zj , r
′
j) : 1 ≤ i ≤ n, 2 ≤ j ≤ n}.

By Lemma 2.6.7, we know that

Σv ` (
∧n

i=1 Lyiφi ∧
∧n

j=2 Mz′jψj → LPn
i=1 yi+

Pn
j=2 z′jψ1)[G′]

And the τ ′ is a realization.
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(4) Assume that φ(x1/r1, · · · , xn/rn) is a result by applying the rule:

ψ → φ, ψ
φ

(x1/r1, · · · , xn/rn)

Here we also assume that φ(x1/r1, · · · , xn/rn) and ψ(x1/r1, · · · , xn/rn) are instan-

tiations of the formulas φ(x1, · · · , xn) and ψ(x1, · · · , xn) respectively, which have

the same index variable set. According to the induction hypothesis, there are two

guard index sets G and G′ such that

Σv ` (ψ → φ)[G] and Σv ` ψ[G′]

And τ : xi 7→ ri is a realization of both (ψ → φ)[G] and ψ[G′]. By the rule MPv,

we know that Σv ` φ[G,G′] and τ is a realization of the formula φ[G, G′]. This

case also close our induction proof.

¤

Corollary 2.6.12. Σ+ is decidable.

Proof. First we know from the above completeness proof through filtration that Σ+

has the finite model property. Now we need to show that the set of theorems of Σ+ is

recursively enumerable. In order to show that the logic Σ+ is recursively enumerable, we

only need to show that the set of theorems of Σv is recursively enumerable (by the above

lemma). Compared to the decidability of normal modal logic, we need to consider only one

more question: is the relationship among indexes of the different modalities is decidable? It

is easy to see that the set of theorems of Σv is recursively enumerable. Now we use this result

to show that the theorems of Σ+ is recursively enumerable. We let one Turing machine to

enumerate all the theorems derived from the system Σv and let the second Turing machine

to instantiate the index variables in the theorems by the indexes in ψ. If ψ is provable in

Σ+, there is such a instantiation which is a realization (by the above theorem). Moreover,

this can be decided. And hence, by Theorem 2.6.6, we know that ψ is provable in Σ+. If

it is not, it should be falsifiable in the finite canonical model in our proof of completeness.

So, Σ+ is decidable.

¤
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In the last part of this section, we will justify the reasoning with index parameters in the

logic Σ+. First we can expand the language LI by including the following set of constants:

CQ := {cr : r ∈ Q ∩ [0, 1]}. Let ∆Q be the set of all atomic formulas or the negation of

atomic formulas that are true in 〈Q∩ [0, 1],≤, +〉. And it is called the diagram of the index

set Q∩ [0, 1]. For example, the following principles are in this diagram:

(1) cr + cs = cr+s;

(2) cr ≤ cs if r ≤ s in Q.

Let AX be AXI ∪∆Q in this expanded language with CQ and Σv+c be the corresponding

deductive system in the expanded langauge. All the above proposition still hold in this

expanded language. Now we justify our use of the following rule with a parameter in the

logic Σ+:

γ → Lr−xεφ
γ → Lrφ

, where xε is the only index variable in this rule.

Assume that r1, · · · , rn (including r) are all the index constants occurring in γ → Lrφ. If

γ → Lrφ is a theorem in Σ+, there is a guard index set G such that AX ` G(r1, · · · , rn)

and Lv+c ` (γ → Lrφ)G(r1, · · · , rn). In order to show this formula, it suffices to show the

following instead:

Σv+c ` (γ → Lr−xεφ)[G(r1, · · · , rn), 0 ≤ xε ≤ 1, 0 ≤ r − xε ≤ 1].

So, in order to show that Σ+ ` φ(r1, · · · , rn), it is suffices to show that

Σv+c ` (γ → Lr−xεφ)[G(r1, · · · , rn), 0 ≤ xε ≤ 1, 0 ≤ r − xε ≤ 1] for some guard index set

G.

Usually this G is easy to get because it is just the basic guard index set for this formula.

The illustration of how to use this principle is in Section 4 where we show the admissibility

of the rule (B) in our deductive system Σ+.

2.7. Moss’s Conjecture

The Kreisel conjecture is a famous conjecture in proof theory that postulates that, if there

is a uniform bound on the lengths of shortest proofs of instances of S(n̄) , then the universal

generalization is provable in Peano arithmetic. Basing on the similarity of the rule (ARCH)
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and the Godel’s ω rule in Peano arithmetic, Professor Moss pointed to me that it is quite

possible that if there is a uniform bound on the set {s : s < r} such that γ → Lsφ is deriv-

able in our system Σ+, so is γ → Lrφ. In this section, we show that this conjecture is true

by applying the above Fourier-Motzkin’s elimination method. But, first we show that the

probability measures on the canonical model in Section 3 can be computed constructively.

There we only gave an existence proof.

Elements in Ω are called atoms. Let n = |Ω|. Fix an atom Γ and its maximal consistent

extension Γ+ in the language L+. As you can see, the atoms in Ω are the building blocks in

the semantics. We enumerate all the atoms Γi in Ω and denote them as xi according to this

ordering. For any formula φ in L[ψ], if φ is propositionally equivalent to the disjunction of

different atoms: Γ1,Γ2, · · · ,Γr, then we denote φ as x1 +x2 + · · ·+xr. Then the inequality

system consists of the following inequalities:

(1) For any formula φ in L[ψ], if φ = x1+x2+ · · ·+xr and αΓ
φ < βΓ

φ , then its inequality

is

αΓ
φ < x1 + x2 + · · ·+ xr < βΓ

φ .

(2) For any formula φ in L[ψ], if φ = x1+x2+ · · ·+xr and αΓ
φ = βΓ

φ , then its inequality

is

αΓ
φ ≤ x1 + x2 + · · ·+ xr and x1 + x2 + · · ·+ xr ≤ βΓ

φ .

(3) For each xi (1 ≤ i ≤ n), we add the inequalities:

xi ≥ 0 and xi ≤ 1.

(4) Actually this case is covered in the first case. In order to emphasize its importance,

we make it explicit here:

x1 + x2 + · · ·+ xn ≥ 1 and −x1 − x2 − · · · − xn ≥ −1.

To sum up, we get an inequality system like
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SΓ =





xi1 + · · ·+ xiΓi
≥ ri

· · ·
xk1 + · · ·+ xkΓk

≥ rk

−xi′1 + · · · − xi′Γi
≥ −r′i

· · ·
−xk′1 + · · · − xk′Γk

≥ −r′k

x1 ≥ 0

· · ·
xn ≥ 0

−x1 ≥ −1

· · ·
−xn ≥ −1

The accuracy of the system is the smallest natural number q such that any coefficients and

constant terms are mutiple of its reciprocal 1/q. Since we already know from the proof

of the completeness of the system Σ+ that this inequality system SΓ has a solution, then

we can use the Fourier-Motzkin’s elimination to find the solutions of all x′is and hence a

probability measure defined at the atom Γ. So we have shown that the probability measures

at each atom of the canonical model can be defined constructively.

But this is not the end of the story. We can also show that the construction of “sandwich-

making” in the proof of the completeness is constructive, too. At the beginning of the

construction, we proved the following claim:

for any φ such that αΓ
φ < βΓ

φ , then there is a rational r such that αΓ
φ < r < βΓ

φ and

Γ+ ∪ {Mrφ} is consistent.

Moreover, we can prove a stronger result than that by constructively giving the rational r

as a special case of Moss’ conjecture.
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Lemma 2.7.1. Let ψ,L[ψ] and Ω as those defined in the proof of the completeness of Σ+.

Then we can constructively find a rational number ε, which depends only on the syntactic

form of ψ, such that, for any φ in L[ψ] and any Γ+, if ` ∧
Γ+ → LβΓ

φ−εφ, then ` ∧
Γ+ →

LβΓ
φ
φ

Proof. The proof of the lemma is based on the observations about the elimination

method of the inequality system like the above SΓ. Since ¬MβΓ
φ
φ ∈ Γ+ and Γ+ is consistent,

Γ∪ {¬MβΓ
φ
φ} has a model. We still use SΓ to denote the inequality system obtained in the

above way. Assume that the number of the unknowns in SΓ is n and denote SΓ as Sn. By

appealing to the elimination method, we will get the following system with (n−1) unknown

variables:

Sn−1 =





∑n
j=2 a1

k,jxj − c1
k ≥ c1

i − (
∑n

j=2 a1
i,jxj)

∑n
j=2 a1

k′,jxj − c1
k′ > c1

i′ − (
∑n

j=2 a1
i′,jxj)

ar−+1,2x2 + · · ·+ ar−+1,nxn ≥ cr−+1

· · ·
ar,2x2 + · · ·+ ar,nxn ≥ cr

for some k′s and i′s. Finally, we will reach the base case: the number of the unknown

variable is 1:

max{ri : i ∈ I}R xnR min{sj : j ∈ J} for some index set I and J where R is > or ≥.

Observe that

(1) The number of the atoms (or just |Ω|) is determined by the number of propositional

letters occurring in ψ, the accuracy of ψ and the depth of ψ. And so is the number

N of the inequalities in the inequality system SΓ.

(2) Let q be the accuracy of the language L[ψ]. Then q! is the accuracy of all of

the inequality system Si (1 ≤ i ≤ N). Indeed, all the reductions from Si+1 to

Si involves either division by a rational whose denominator is less than or equal

to q or addition or subtraction, neither of these two operations will increase the
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accuracy of the system. That is to say, the coefficients and constant terms of all

the inequality systems Si (1 ≤ i ≤ N) are multiples of the rational 1
q! .

Now we begin to estimate the ε. Consider the base case:

max{ri : i ∈ I}R xnR min{sj : j ∈ J} for some index set I and J where R is > or ≥.

If both of R′s are ≤, then we choose either max{ri : i ∈ I} or min{sj : j ∈ J}. Note

that both are still multiples of 1
q! . If at least one of R′s is <, then we pick up the middle

point of the two. At worst, it is a multiple of 1
2·q! . Now we consider xn−1. According to

the elimination process, in order to find a solution of xn−1, we only need to consider the

following inequalities:





xn−1Rb1xn + c1

· · ·
xn−1Rbkxk + ck

xn−1Sb′1xn + c′1

· · ·
xn−1Sb′lxl + c′l

where R′s are ≤ or < and S′s are ≥ or >. Let αn−1 = max{b′1xn + c′1, · · · , Sb′lxl + c′l} and

βn−1 = min{b1xn + c1, · · · , Sbkxk + ck}. Then we know that αn−1Rxn−1Rβn−1. If the first

R is ≤, then we choose xn−1 = αn−1. Similarly for the second R. If both of them are <,

then we choose the middle points of αn−1 and βn−1. In the first case, xn−1 is a multiple of

1
2(q!)2

at worst. In the second case, xn−1 is a multiple of 1
22(q!)2

at worst. If we repeat this

process, then we will get the following estimation:

xi has a solution which is a multiple of 1
2i(q!)i for all i : 1 ≤ i ≤ n.

We conclude that, if an inequality system of accuracy q has a solution, then it has a solution

which is a multiple of 1
2n(q!)n , i.e. xi is a a multiple of 1

2n(q!)n for all i : 1 ≤ i ≤ n. Let

ε = 1
4n(q!)n .
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Now we show the main lemma by translating the language of inequality system into the

langauge of modal logic of probability. Suppose that 6` ∧
Γ+ → LβΓ

φ
φ. Then Γ+ ∪ ¬LβΓ

φ
φ

is consistent. According to our completeness, we know that it has a probability model.

That is also to say, the above translated inequality system has a rational solution which is

a multiple of 1
2n(q!)n . Without loss of generality, we assume that in the above translation

from formulas to inequalities:

x1 + · · ·+ xr < βΓ
φ where φ is denoted by x1 + · · ·+ xr.

Note that βΓ
φ is a multiple of 1/q. According to the above solutions for the whole inequality

system, x1 + · · ·+xr is a multiple of 1
2n(q!)n . Since x1 + · · ·+xr < βΓ

φ , βΓ
φ − (x1 + · · ·+xr) >

1
2n(q!)n . Of course, βΓ

φ − (x1 + · · ·+xr) > 1
4n(q!)n . That is to say, x1 + · · ·+xr < βΓ

φ − 1
4n(q!)n .

In the langauge of our deductive system, it says:

Γ+ ∪ ¬LβΓ
φ− 1

4n(q!)n
φ has a model and hence 6` ∧

Γ+ → LβΓ
φ− 1

4n(q!)n
φ

So we finish the proof of the lemma.

¤

Now we show Moss’s theorem in the general form:

Theorem 2.7.2. For formulas γ and φ, we can constructively find a sufficiently small

rational number ε, which depends only on the depth, the accuracy and the number of propo-

sitional letters of γ and φ such that

`Σ+ γ → Lr−εφ ⇒`Σ+ γ → Lrφ.

Proof. The first part of the proof is actually the repetition of the construction of the

canonical model in the proof of the completeness of Σ+. Consider the formula ψ := γ∧¬Lrφ.

Use the same method before, we can get a local langauge L[ψ] and it gives rise to a carrier

set Ω of maximal consistent sets of formulas in the local langauge. Then, in order to define

αΓ
φ for all formulas φ in the language and for all atoms Γ, we expand the local language to

L+ by adding the depth by 1. Let q be the accuracy of the language L[ψ] and n be the

number of the atoms in Γ, which depends only on the depth, the accuracy and the number



2. BASIC PROBABILITY LOGIC 57

of propositional letters of γ and φ. We choose ε = 1
4n(q!)n . Suppose that 6`Σ+ γ → Lrφ.

Then γ∧¬Lrφ is consistent. So it has a probability model. This is equivalent to saying that

the corresponding inequality system has a solution. By the argument in the above lemma,

we know that it has a solution which is a multiple of 1
2n(q!)n . It means that γ ∧ ¬Lrφ is

satisfiable in a probability model with transition probabilities which are multiples of 1
2n(q!)n .

This implies that γ ∧ ¬Lr−ε is also satisfiable in this probability model. So `Σ+ γ → Lrφ

and hence finish the proof of Moss’s conjecture.

¤

This theorem also implies that we can replace the rule (ARCH) in Σ+ by the following

finitary rule:

(ARCHf ) : γ → Lr−εφ
γ → Lrφ

.

Let Σf
+ denote the deductive system after this replacement. It is easy to see that the com-

pleteness proof still goes through because the rule ARCHf is stronger than ARCH. We

only need to worry about the soundness of ARCHf . This is just shown in the above argu-

ment by using Fourier-Motzkin’s elimination. Indeed, our system Σ+ can be strengthened

to a finite system Σf
+. But we still choose to work with Σ+ because it looks much more

natural and easier to use with.

In the following, we will give an example to illustrate the above algorithm . Consider the

following inequality system:

S3 =





x1 − 2x3 ≥ −1/4

−x1 − x2 > −7/8

2x2 + x3 > 3/4

−2x1 + 3x3 ≥ 1/8

By applying the elimination method, we will get the following system:
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S2 =





−x2 − 2x3 > −9/8

−1/2x3 ≥ −3/16

2x2 + x3 > 3/4

with the constraints for x1:





x1 ≥ −1/4 + 2x3

x1 < −x2 + 7/8

x1 ≤ 3/2x3 − 1/16

By repeating the above process, we have:

S1 =




−3x3 > −6/4

−1/2x3 ≥ −3/16

with the constraints for x2





x2 > 1/2x3 − 3/8

x2 < 9/8− 2x3

Since 3/8 < 1/2, we choose x3 = 3/8, which does not increase the accuracy of the system.

Since 3/16 < x2 < 3/8, we choose the midpoint: x2 = 9/32. By substituting these numbers,

we get that 1/2 ≤ x1 < 25/32 and x1 ≤ 1/2. So we can just pick up either of the bounds:

x1 = 1/2 and don’t need to increase the accuracy. Obviously, all the solutions are multiple

of the rational 1
2383 where 8 is the accuracy of the system S3 and 3 is the number of the

unknown variables. The above theorem tells us that, the following evaluation:





x1 = 1/2

x2 = 9/32

x3 = 3/8

is also a solution of the following inequality system:
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S3 =





x1 − 2x3 ≥ −1/4

−x1 − x2 > −7/8− 1
4383

2x2 + x3 > 3/4− 1
4383

−2x1 + 3x3 ≥ 1/8



CHAPTER 3

Failure of Strong Completeness

In our proof of the completeness of Σ+, we use a filtration method from modal logic.

The main reason for using filtration is the fact that Σ+ is not compact, i.e., there is a

set of formulas which is finitely satisfiable but not itself satisfiable. For example, C :=

{¬L1/2p} ∪ {L1/2−1/2np : n ∈ N} is not compact. It seems that the noncompactness did

cause some troubles to Aumann when he was trying to give a syntactic definition of conse-

quence in his paper [4]. He defined consequence semantically instead, which is significantly

different from what he did for knowledge in another paper [3], where he used a deductive

system to define consequence syntactically. Although he did succeed in proving the exis-

tence of the universal knowledge-belief system, he did not achieve this goal syntactically

as we just mentioned. Our work as well as Heifetz and Mongin’s on probability logic did

provide an axiomatization which is weakly complete with respect to the class of type spaces.

By these deductive systems, we can define syntactically only consequence of a finite number

of formulas.

The first choice to define syntactically consequences of an arbitrary set of formulas is to

avoid noncompact sets of formulas like the above C. Admissible sets are those maximal

consistent sets of formulas that don’t contain such noncompact set of formulas. It is easy to

see that all satisfiable maximal consistent sets are admissible. Then we might expect that

all admissible sets form a canonical countably-additive probability model. In the following

section, we will show that the canonical model consisting of admissible sets is finitely ad-

ditive but not countably additive. This implies that there is an admissible set that is not

satisfiable in the class of type spaces. Moreover, it tells us that non-Archimedean property

60
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in indices isn’t the failure of additivity related to (ARCH) for the lack of strong complete-

ness or compactness of probability logics.

The second attempt is to restrict the indices to a finite set of rationals. We hoped that this

restriction would prevent indices from getting close to non-Archimedean property. How-

ever, we can still show that there is a set of formulas with finite indices that derive such

noncompact set like C := {¬L1/2p}∪{L1/2−1/2np : n ∈ N}. There is no hope of strong com-

pleteness or compactness for probability logics with finite indices, either. So probably the

lack of compactness of probability logics ultimately does not come from non-Archemedean

property in indices but comes from the use of explicit probabilities.

3.1. Admissible Sets Don’t Necessarily Define Types

As we know, our language of probabilistic logic is three-dimensional. We use index vector

(q, d, w) to denote its three dimensions: q is the accuracy index, d the depth index and

w the width index. For a given formula φ, its accuracy index q(φ) is the least common

multiple of all denominators of the indices that appear in φ, its depth index d(φ) is the

depth of the formula and its width index w(φ) is the number of propositional letters that

occur in φ. Here we assume much knowledge of the terminology and construction from the

completeness proof of Σ+. For a given formula ψ, assume that it is consistent and its index

vector is (q(ψ), d(ψ), w(ψ)). Define Φ(q(ψ), d(ψ), w(ψ)) to be the smallest set of formulas

that satisfies the following conditions:

(1) the accuracy indices of any formula is a multiple of 1/q(ψ);

(2) the propositional letters that occur are among p1, · · · , pw(ψ);

(3) the depths of formulas are ≤ d(ψ).
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Φ(q, d, w)

Without loss of generality, we assume that all the accuracy indices in this section are facto-

rials. Note that Φ(q(ψ), d(ψ), w(ψ)) is finite because we take the quotient of propositional

reasoning. This finite set Φ(q(ψ), d(ψ), w(ψ)) gives rise to a set Ω(q(ψ), d(ψ), w(ψ)) of max-

imal consistent sets of formulas, which are called atoms of Ω(q(ψ), d(ψ), w(ψ)). Let Aq

denote the set of rationals between 0 and 1 which is a multiple of 1/q. Next we extend each

atom Γ to a maximal consistent extension Γ+ in the language L(q(ψ), d(ψ) + 1, w(ψ)) and

define, for any formula φ in the language L(q(ψ), d(ψ), w(ψ)),

αΓ
φ := max{r ∈ Aq(ψ) : Lrφ ∈ Γ+} and βΓ

φ := min{r ∈ Aq(ψ) : Mrφ ∈ Γ+}.

For each Γ, there is a maximal consistent extension Γ∞ in the formula language L of our

logic. Such a Γ+ defines a probability measure T (Γ) at Γ on the set {[φ] : φ is in the

language L(q(ψ), d(ψ), w(ψ))} of events where [φ] := {∆ ∈ Ω(q(ψ), d(ψ), d(ψ)) : φ ∈ ∆}.
We have shown that αΓ∞

φ = βΓ∞
φ for all formulas φ in the language L(q(ψ), d(ψ), w(ψ))}.

And we define T (Γ)([φ]) := αΓ∞
φ . And then we can show that,

• if αΓ
φ = βΓ

φ , then T (Γ)([φ]) = αΓ
φ = βΓ

φ ;

• if αΓ
φ < βΓ

φ , then αΓ
φ < T (Γ)([φ]) < βΓ

φ ,

If we define v(p) := {∆ ∈ Ω(q(ψ), d(ψ), w(ψ)) : p ∈ ∆}, then we can show that M(q(ψ),

d(ψ), w(ψ)) := 〈Ω(q(ψ), d(ψ), w(ψ)), 2Ω(q(ψ),d(ψ),w(ψ)), T, v〉 is a probability model for ψ.
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More generally, we can show the truth lemma: for any formula φ in the language L(q(ψ),

d(ψ), w(ψ))

M(q(ψ), d(ψ), w(ψ)), Γ |= φ iff φ ∈ Γ.

Now we look at the model from the perspective of linear programming just as in [14].

We used this perspective to solve Moss’s conjecture. First we enumerate all the atoms in

Ω(q(ψ), d(ψ), w(ψ)):

Γ1, Γ2, · · · , Γn, · · · ,ΓN(q(ψ),d(ψ),w(ψ))

where N(q(ψ), d(ψ), w(ψ)) is the number of atoms in Ω(q(ψ), d(ψ), w(ψ)), which is totally

determined by the index vector (q(ψ), d(ψ), w(ψ)). Next we want to define a rational prob-

ability measure at each atom Γi in the sense that transition probabilities from atoms to

atoms are rational. The probability measures at all atoms are independent of each other.

For any φ in the language, the probability measure of φ at the atom Γi is decided by its αΓi
φ

and βΓi
φ , which is defined through the chosen maximal consistent extension Γ+. Without

loss of generality, we use a constructive algorithm to give a rational probability measure at

the atom Γ1. We use xij to denote a transition probability from the atom Γi to the atom

Γj . Next we translate all the constraints in the forms αΓ1
φ and βΓ1

φ to a linear inequality

system.

K(q(ψ), d(ψ), w(ψ)) denotes the number of formulas in the set Φ(q(ψ), d(ψ), w(ψ)). And

the atoms that includes φ are: Γi1 , · · · , ΓiJ(φ)
where J(φ) is a natural number. For each

formula φ in the language L(q(ψ), d(ψ), w(ψ)), if αΓ1
φ = βΓ1

φ , then the inequality system

includes the following two

• x1i1 + x1i2 + · · ·+ x1ij(φ)
≥ αΓ1

φ and

• −x1i1 − x1i2 + · · · − x1ij(φ)
≥ −αΓ1

φ .

If αΓ1
φ < βΓ1

φ , then the inequality system includes the following two

• x1i1 + x1i2 + · · ·+ x1ij(φ)
> αΓ1

φ and

• −x1i1 − x1i2 + · · · − x1ij(φ)
> −βΓ1

φ .
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Since there are M(q(ψ), d(ψ), w(ψ)) formulas in the language, the inequality system must

includes the above 2 · K(q(ψ), d(ψ), w(ψ)) inequalities. For each x1k(1 ≤ k ≤ N((q(ψ),

d(ψ), w(ψ)), it must satisfies the following constraints:

• xik ≥ 0

• −xik ≥ −1.

Since there are N(q(ψ), d(ψ), w(ψ)) atoms, there are 2×N(q(ψ), d(ψ), w(ψ)) such inequal-

ities. Besides, x1− is a probability measure. So we have to include the following two more

inequalities:

• x11 + x12 + · · ·+ x1,N(q(ψ),d(ψ),w(ψ)) ≥ 1;

• −x11 − x12 − · · · − x1,N(q(ψ),d(ψ),w(ψ)) ≥ −1;

If we put all these 2×K(q(ψ), d(ψ), w(ψ))+2×N(q(ψ), d(ψ), w(ψ))+2 inequalities together,

then we get the inequality system that corresponds to the probability formulas in Γ+:

S =





x1i1 + x1i2 + · · ·+ x1ij(φ)
> αΓ1

φ

−x1i1 − x1i2 + · · · − x1ij(φ)
> −βΓ1

φ

· · · · · ·
x1i′1 + x1i′2 + · · ·+ x1ij(φ)′ > αΓ1

φ

−x1i′1 − x1i′2 + · · · − x1ij(φ)′ > −βΓ1
φ

xik ≥ 0

−xik ≥ −1

· · · · · ·
x11 + x12 + · · ·+ x1,N(q(ψ),d(ψ),w(ψ)) ≥ 1

−x11 − x12 − · · · − x1,N(q(ψ),d(ψ),w(ψ)) ≥ −1

The completeness proof of Σ+ has shown that the above linear inequality system has a

solution. If we use the Fourier-Motzkin’s elimination method, then we can show that the

system has a rational solution x1k = r
(1)
1k , i.e., all r

(1)
1k ’s are rational and, moreover, there is a

sufficiently small rational number εM such that all r
(1)
1k ’s are multiples of εM . For example,

we can take εM to be 1
4n(q(ψ)!)n where n is the number of atoms, i.e., N(q(ψ), d(ψ), w(ψ)).

Here we pick εM := 1/(q(1)) such that q(1) is a factorial and is divided by q(ψ). For each φ
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in the language L(q(ψ), d(ψ), w(ψ)), if all the atoms that contain φ are Γi1 , · · · , ΓiJφ
, then

we define:

r
(1)
φ := r

(1)
1,i1

+ · · ·+ r
(1)
1,iJφ

.

It is easy to see that r
(1)V

Γk
= r

(1)
1k according to this definition. Observe that all these r

(1)
φ ’s

are multiples of 1/(q(1)). Define

Θ1 := Γ+
1 ∪ {Lr

(1)
φ

φ, M
r
(1)
φ

φ : φ ∈ Φ(q(ψ), d(ψ), w(ψ))}.

It easy to check that Θ1 is satisfiable at Γ1 in the canonical model M(q(ψ), d(ψ), w(ψ)) =

〈Ω(q(ψ), d(ψ), w(ψ)), 2Φ(q(ψ),d(ψ),w(ψ)), T, v〉. Actually, the truth lemma can be generalized

to the language L(q(ψ), d(ψ) + 1, w(ψ)):

M(q(ψ), d(ψ), w(ψ)), Γ |= φ iff φ ∈ Γ+ for any formula φ ∈ Φ(q(ψ), d(ψ) + 1, w(ψ)).

It follows that Θ1 is consistent. Without loss of generality, we assume that q(1) > d(ψ), w(ψ).

Then Θ1 has a maximal consistent extension Γ(1)
1 in the language L(q(1), q(1), q(1)). Note

that, for any formula φ in the language L(q(ψ), d(ψ), w(ψ)), both L
r
(1)
φ

φ and L
r
(1)
φ

φ are in

Γ(1)
1 . For a maximal consistent extension Γ(1)+

1 of Γ(1)
1 in the language L(q(1), q(1)+1, q(1)), we

define α
Γ

(1)
1

γ and β
Γ

(1)
1

γ similarly for all formulas γ in Φ(q(1), q(1), q(1)). The above observation

means that, for any formula φ in the language L(q(ψ), d(ψ), w(ψ)),

α
Γ

(1)
1

φ = β
Γ

(1)
1

φ = r
(1)
φ

As we pointed out in the proof of Moss’s conjecture, such an εM depends only on the index

vector (q(ψ), d(ψ), w(ψ)). This implies that we can just repeat the above procedure to

all other Γi’s (1 ≤ i ≤ N): (1) establishing a corresponding inequality system, (2) using

the Fourier-Motzkin’s elimination method to get a rational solution which are multiples of

1/(q(1), (3) defining corresponding Θi’s, (4) all the Θi’s have maximal consistent extensions

Γ(1)
i in the language L(q(1), q(1), q(1)) such that,

α
Γ

(1)
i

φ = β
Γ

(1)
i

φ for all formulas φ in the language L(q(ψ), d(ψ), w(ψ))

which is defined through maximal consistent extensions Γ(1)+
i in the language L(q(1), q(1) +

1, q(1)). Now we summarize the above results in the following theorem.

Theorem 3.1.1. There is a natural number q(1) satisfying the following conditions:
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(1) q(1) is factorial and is a multiple of q(ψ), and q(1) > d(ψ), w(ψ).

(2) for each atom Γi ∈ Ω(q(ψ), d(ψ), w(ψ)), there is a maximal consistent extension

Γ(1)
i in the language L(q(1), q(1), q(1)) such that,

α
Γ

(1)
i

φ = β
Γ

(1)
i

φ for all formulas φ in the language L(q(ψ), d(ψ), w(ψ))

which is defined through maximal consistent extensions Γ(1)+
i in the langauge

L(q(1), q(1) + 1, q(1)).

More generally, we enumerate all atoms in Ω(q(k), q(k), q(k)):

Γk,1, Γk,2, · · · , Γk,Nk
where Nk >> N .

And we can achieve a more general result for all k’s.

Theorem 3.1.2. There is a natural number q(k+1) satisfying the following conditions:

(1) q(K+1) is factorial and is a multiple of q(k).

(2) for each atom Γk,i ∈ Ω(q(k), q(k), q(k))(1 ≤ i ≤ Nk), there is a maximal consistent

extension Γ(k+1)
k,i in the language L(q(k+1), q(k+1), q(k+1)) such that,

(C): α
Γ

(k+1)
k,i

φ = β
Γ

(k+1)
k,i

φ for all formulas φ in the language L(q(k), q(k), q(k))

which is defined through maximal consistent extensions Γ(k+1)+
k,i in the langauge

L(q(k+1), q(k+1) + 1, q(k+1)).

3.1.1. Admissible Sets of Formulas.

Definition 3.1.3. A maximal consistent extension Γ∞ in the language L of our logic

is admissible if, for all formulas φ and for all rationals r and rn such that limn→∞ rn = r

and rn < r, {Lrnφ : n ∈ N} ∪ {¬Lrφ} 6⊆ Γ∞.

Note that the condition in the definition is equivalent to saying that, whenever γ → Lsφ ∈
Γ∞ for all s < r, then γ → Lrφ ∈ Γ∞, i.e., Γ∞ is closed under the rule (IND). Now we con-

struct the infinite canonical model. For any atom Γk,i ∈ Ω(q(k), q(k), q(k)), there is a maximal

consistent extension Γ(k+1)
k,i in the language L(q(k+1), q(k+1), q(k+1)) such that the property

(C) is satisfied. This relation between Γk,i and Γ(k+1)
k,i is denoted by Γk,i ≺ Γ(k+1)

k,i . Similarly,

there is a maximal consistent extension Γ(k+2)
k,i in the langauge L(q(k+2), q(k+2), q(k+2))such
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that Γ(k+1)
k,i ≺ Γ(k+2)

k,i . If we continue this kind of argument, then we will get the following

chain:

Γk,i ≺ Γ(k+1)
k,i ≺ Γ(k+2)

k,i ≺ · · · ≺ Γ(k+n)
k,i ≺ · · ·

Note that q(k) < q(k+1) < · · · < q(k+n) < · · · . We also denote Γk,i as Γ(k)
k,i .

Lemma 3.1.4.
⋃∞

j=k Γ(j)
k,i is admissible.

Proof. For any given φ in the language L, there is a j such that φ ∈ Φ(q(j), q(j), q(j)).

This implies that either α
Γ

(j)
k,i

φ = β
Γ

(j)
k,i

φ or α
Γ

(j)
k,i

φ < β
Γ

(j)
k,i

φ , both of which are defined through

a maximal consistent extension Γ(j)+
k,i int the language L(q(j), q(j) + 1, q(j)). According to

the above construction, α
Γ

(j+1)
k,i

φ = β
Γ

(j+1)
k,i

φ . For any m ≥ j + 1, α
Γ

(m)
k,i

φ = β
Γ

(m)
k,i

φ because any

maximal consistent extension can only shorten the distance between α and β but there is

nothing to contract the distance (=0) between these two here. If we look at all the accuracy

indices r in the formulas of the form Lrφ, we can see an increasing sequence which becomes

a constant sequence after a sufficiently large number of steps:

· · · ≤ α
Γ

(j)
k,i

φ ≤ α
Γ

(j+1)
k,i

φ = α
Γ

(j+2)
k,i

φ = α
Γ

(j+3)
k,i

φ = · · ·

So
⋃∞

j=k Γ(j)
k,i is admissible.

¤

Theorem 3.1.5. (Existence Theorem) For any language L(q, d, w), any atom Γ ∈
Ω(q, d, w) has at least one admissible maximal consistent extension in the formal language

of our logic.

Proof. For any given atom Γ ∈ Ω(q, d, w), there is a k such that Γ ∈ Ω(q(k), q(k), q(k)).

Assume that Γ is Γk,i in the enumeration of all atoms in Ω(q(k), q(k), q(k)). Then Γ = Γk,i ⊆
⋃∞

j=k Γ(j)
k,i , which is admissible.

¤

One may ask whether all admissible maximal consistent extensions in the language L can be

obtained in the above way of “stabilizing” restrictions of the set in different local languages

through the Fourier-Motzkin elimination method. The answer is no. Actually most of them



3. FAILURE OF STRONG COMPLETENESS 68

cannot be finitely approximated in this way. In the above construction, we used a uniform

algorithm to find the accuracy index for all the atoms at this level. For example, as stated

in Theorem 3.1.1, we found a natural number q(k+1) such that

• for each atom Γk,i ∈ Ω(q(k), q(k), q(k))(1 ≤ i ≤ Nk), there is a maximal consistent

extension Γ(k+1)
k,i in the language L(q(k+1), q(k+1), q(k+1)) such that,

(C): α
Γ

(k+1)
k,i

φ = β
Γ

(k+1)
k,i

φ for all formulas φ in the language L(q(k), q(k), q(k))

For a group of linear inequality systems like in Section 2.6, if all of them have solutions,

they definitely have rational solutions. It is not necessarily true that all rational solutions of

all systems are multiples of a single rational unit of the form 1/q for some natural number

q. This is just as obvious as the Archimedean property. Most of them will misses the

above construction in a uniform way. Our reasoning here is an adaption to our problem of

Cantor’s diagonalization method to show that there is no bijection between N and R. If we

cannot use the above method to find all the admissible maximal consistent sets in L, then

how can we finitely approximate any given admissible set? Now we give a brief description

of this finite approximation. Consider the admissible set Γ∞. Define

Γ∞(n, n, n) := Φ(n, n, n) ∩ Γ∞.

In other words, Γ∞(n, n, n) is the set of formulas with index vectors (q, d, w)(q ≤ n, d ≤
n,w ≤ w) in Γ∞. Similarly, for any φ ∈ Φ(n, n, n), we can define α

Γ∞(n,n,n)
φ and β

Γ∞(n,n,n)
φ

through a maximal consistent extension Γ∞+(n, n, n) in the language L(n, n + 1, n) which

should be also a subset of Γ∞. We already know that

· · · ≤ α
Γ∞(n−1,n−1,n−1)
φ ≤ α

Γ∞(n,n,n)
φ ≤ α

Γ∞(n+1,n+1,n+1)
φ ≤ · · ·

Also we know that, since Γ∞ is admissible, there is an Nφ such that, if n ≥ Nφ, then

α
Γ∞(n,n,n)
φ =α

Γ∞(n+1,n+1,n+1)
φ . Since the number of formulas in Φ(n, n, n) is finite, we can

find a common Nn such that, for all formulas φ ∈ Φ(n, n, n) and all n ≥ Nn,

α
Γ∞(n,n,n)
φ = α

Γ∞(n+1,n+1,n+1)
φ .

This also implies that, for all formulas φ ∈ Φ(n, n, n),

α
Γ∞(Nn,Nn,Nn)
φ = β

Γ∞(Nn,Nn,Nn)
φ
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In other words, this equation will be preserved under any maximal consistent extensions of

Γ∞(Nn, Nn, Nn). Now we can see how this admissible set miss the above uniform construc-

tion. Without loss of generality, we assume that n = q(k) for some k and Nn ≤ q(k=1). As we

know, the rational solution to the linear inequality system that corresponds to Γ∞(n, n, n)

is not necessarily unique, it is quite possible that (Γ∞(n, n, n))(k+1) ∩Φ(Nn, Nn, Nn) is not

the same as Γ∞(Nn, Nn, Nn). This also means that the admissible set miss the uniform

construction at this step. Although we can apply the uniform maximal consistent exten-

sions to all atoms in Ω(q(k+1), q(k+1), q(k+1)), Γ∞ can still miss this construction at this

step, too. If Γ∞ keep missing the method all the time, it also means that we can obtain

it in the above uniform way. Indeed, it can miss the uniform method all the time because

we can probably make the additional formulas in the finite approximation of Γ∞ behave

differently from they do in the uniform finite approximation. So it is not necessarily true

that all maximal consistent extensions can be obtained in the above uniform construction.

However, this negative fact does not affect our proof of the completeness because the most

important fact that we need is the above Existence Theorem.

Now we construct the canonical model. The state space Ω∞ is the set of all admissible

maximal consistent sets of formulas in the langauge L. Define [φ] := {Γ∞ ∈ Ω∞ : φ ∈ Γ∞}.
The σ-algebra A∞ on the state space is defined by the σ-algebra generated by the set

Φ∞ := {[φ] : φ is a formula in L}. It is easy to see that Φ∞ is an algebra or a field. Define

v∞(p) := [p]. It remains to define the transition probability function T∞ on the space.

Lemma 3.1.6. For any formula φ, αΓ∞
φ = βΓ∞

φ . Moreover, LαΓ∞
φ

φ ∈ T∞ and MαΓ∞
φ

φ ∈
T∞

Proof. The proof of the first part was already shown before. The second part follows

from the fact that Γ∞ is admissible.

¤

For any Γ∞ ∈ Ω∞, define T∞(Γ∞)([φ]) = αΓ∞
φ . Now we want to go over some results in

measure theory. Also we give a detailed proof of these results though.
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Definition 3.1.7. A probability measure on an algebra A is a function µ : A → [0, 1]

satisfying the properties

(1) µ(∅) = 0, µ(Ω) = 1;

(2) If A1, · · · , An, · · · is a disjoint sequence of sets in A whose union is in A, then

µ(
⋃∞

i=1 Ai) =
∑∞

i=1 µ(Ai).

We already shown the finite additivity of T∞(Γ∞). Assume that {[φi]}i is a disjoint sequence

of sets in Φ∞ whose union [φ] is in Φ∞. Suppose that we could show that

T∞(Γ∞)(
⋃

[φi]) =
∑∞

i=1 T∞(Γ∞)([φi]).

Then we could define an outer measure µ∗(Γ)∞ at Γ∞ on the state space Ω∞ as follows:

for any subset E ⊆ Ω∞ , µ∗(Γ∞)(E) = inf{∑∞
i=1 T∞(Γ∞)([φi]) : E ⊆ ⋃∞

i=1[φi]}

This outer measure would define a type at Γ∞ on the σ-algebra generated by the algebra

of all sets [φ]. However, T∞(Γ∞)(
⋃

[φi]) is not necessarily equal to
∑∞

i=1 T∞(Γ∞)([φi]).

Lemma 3.1.8. For any formulas γ1 and γ2, ` γ1 → γ2 iff [γ1] ⊆ [γ2]. Especially, for

any finite conjunction
∧N

i=1 φi, we have that ` ∧N
i=1 φi → φ.

Proof. Suppose that 6` γ1 → γ2. Then γ1 ∧ ¬γ2 is consistent. By the above Existence

Theorem, there is an admissible set ∆∞ such that γ1 ∧ ¬γ2 ∈ ∆∞. This implies that

[γ1] ⊆ [γ2]. The other direction is straightforward. The second part follows from the fact

that
⋃∞

i=1[φi] = [φ] ¤

Theorem 3.1.9. T∞(Γ∞)(
⋃∞

i=1[φi]) ≥
∑∞

i=1 T∞(Γ∞)([φi]).

However, it is not generally true that T∞(Γ∞)(
⋃∞

i=1[φi]) ≤
∑∞

i=1 T∞(Γ∞)([φi]). Since

T∞(Γ∞) is finitely additive, the above inequality is equivalent to the following statement:

• If [φ1] ⊇ [φ2] ⊇ · · · and
⋂∞

i=1[φi] = ∅(= [⊥]), then T∞(Γ∞)(
⋂∞

i=1[φi]) = 0.

In the following section, we show that this statement does not necessarily hold. So admissible

sets don’t form a probability model.
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3.2. Guided Maximal Consistent Extension

For any local language L(q, d, w), we can define the set Ω(q, d, w). The elements of Ω(q, d, w)

can be enumerated as follows:

Γ1(q, d, , w),Γ2(q, d, w), · · · , ΓN(q,d,w)(q, d, w)

γi(q, d, w) denotes
∧

Γi(q, d, w). We can define a probability space S(q, d, w) on Ω(q, d, w):

S(q, d, w) := 〈Ω(q, d, w), 2Ω(q,d,w), P (q, d, w)〉 where P (q, d, w) is any given probability mea-

sure on Ω(q, d, w). For simplicity, we denote P (q, d, w)(Γi(q, d, w))(1 ≤ i ≤ N(q, d, w)) by

p
(d)
i . So p

(d)
1 + · · ·+ p

(d)
N(q,d,w) = 1. For any formula φ ∈ Φ(q, d, w), we can show that

φ ↔ ∨
φ∈Γi(q,d,w) γi(q, d, w) is a tautology.

It is easy to see that P (q, d, w)([φ]) =
∑

φ∈Γi(q,d,w) p
(d)
i . Define l

S(q,d,w)
φ to be the largest

multiple of 1
q which is less than or equal to P (q, d, w)([φ]) and m

S(q,d,w)
φ to be the smallest

multiple of 1
q which is greater than or equal to P (q, d, w)([φ]). Then such a probability

space S(q, d, w) will determine two probability formulas about φ:

L
l
S(q,d,w)
φ

φ and M
m

S(q,d,w)
φ

φ.

Define Ξ(q, d, w) to be the set of all these formulas, i.e.

Ξ(q, d, w) := {L
l
S(q,d,w)
φ

φ,M
m

S(q,d,w)
φ

φ : φ ∈ Φ(q, d, w)}.

Lemma 3.2.1. The above defined Ξ(q, d, w) is consistent.

Proof. It suffices to show that Ξ(q, d, w) is contained in some atom in Ω(q, d + 1, w).

In some sense, this lemma can be regarded as a reverse of our completeness theorem where,

given a maximal consistent set of formulas in some local langauge, we need to find a prob-

ability measure at this set. In order to show that, we construct this atom from the bottom.

We start this construction from Ω(1, 0, w), which is the set of formulas of all Boolean

combinations of propositional letters occurring in Ω(q, d, w). So the accuracy index does

not play any role for the set of propositional formulas. The reason why we chose 1 as the

accuracy index is to emphasize that the local language is the least accurate. Enumerate all

the atoms in Ω(1, 0, w):
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Γ1(1, 0, w), Γ2(1, 0, w), · · · , ΓN(1,0,w)(1, 0, w).

Fix an atom Γ1(1, 0, w) ∈ Ω(1, 0, w), we want to define a probability measure on Ω(1, 0, w)

at this atom which agrees with the constraints imposed by Ξ(q, d, w). We only need to

define the transition probabilities from one atom to another. Define

T (Γ1(1, 0, w))((Γi(1, 0, w)) =
∑

Γi(1,0,w)⊆Γj(q,d,w) p
(d)
j .

It is easy to check that such defined T (Γ1(1, 0, w)) is a probability measure on the state space

Ω(1, 0, w). For other atoms Γi(1, 0, w)(i 6= 1), we define the probability measures at these

atoms according to their maximal consistent extensions Γ∞i in the infinite language obtained

through Γ+
i , which is a maximal consistent extension in the language L(q, 1, w), by the con-

struction method in our completeness proof. Define M(1, 0, w) := 〈Ω(1, 0, w), 2Ω(1,0,w), T, ν〉
where ν(p) = {Γ(1, 0, w) ∈ Ω(1, 0, w) : p ∈ Γ(1, 0, w)}. So M(1, 0, w) is a type space (or

probability model).

Claim 3.2.2. Ξ(1, 0, w) is satisfiable at Γ1(1, 0, w).

For any formula φ ∈ Φ(1, 0, w), T (Γ1(1, 0, w))([φ]) =
∑

φ∈Γj(1,0,w) T (Γ1(1, 0, w))(Γj(1, 0, w))

=
∑

φ∈Γi(q,d,w) p
(d)
i . It follows that l

S(q,d,w)
φ ≤ T (Γ1(1, 0, w))([φ]) ≤ m

S(q,d,w)
φ . Therefore

L
l
S(q,d,w)
φ

φ and M
m

S(q,d,w)
φ

φ are satisfiable at Γ1(1, 0, w). Hence Ξ(1, 0, w) is satisfiable at

Γ1(1, 0, w).

According to the definition of ν, we know that Γ1(1, 0, w) is satisfiable at Γ1(1, 0, w) too.

So Γ(1, 0, w)
⋃

Ξ(1, 0, w) is satisfiable at Γ1(1, 0, w) and hence is consistent. There is a

maximal consistent extension Γ(q, 1, w) such that Γ(q, 1, w) ⊇ Γ1(1, 0, w) ∪ Ξ(1, 0, w) and

Γ(q, 1, w) ∈ Ω(q, 1, w).

Enumerate all the atoms in Ω(q, 1, w):

Γ1(q, 1, w), Γ2(q, 1, w), · · · , ΓN(q,1,w)(q, 1, w).

Without loss of generality, Γ1(q, 1, w) = Γ(q, 1, w). Define the probability measure T (Γ1

(q, 1, w)) at the atom Γ1(q, 1, w) as follows:
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T (Γ1(q, 1, w))(Γi(q, 1, w)) =
∑

Γi(q,1,w)⊆Γj(q,d,w) p
(d)
j .

It is easy to see that it is a probability measure on the state space Ω(q, 1, w). Moreover, for

any formula ψ ∈ Φ(1, 0, w),

α
Γ(q,1,w)
ψ = l

S(q,d,w)
ψ and β

Γ(q,1,w)
ψ = m

S(q,d,w)
ψ .

This also implies that the above defined T (Γ(q, 1, d) satisfied the following property:

• if α
S(q,1,w)
ψ = β

S(q,1,w)
ψ , then T (Γ1(q, d, w))([ψ]) = α

S(q,1,w)
ψ ;

• if α
S(q,1,w)
ψ < β

S(q,1,w)
ψ , then α

S(q,1,w)
ψ < T (Γ1(q, d, w))([ψ]) < β

S(q,1,w)
ψ ;

For other atoms Γi(p, 1, w)(i 6= 1), we define the probability measures at these atoms ac-

cording to their maximal consistent extensions Γ∞i in the infinite language obtained through

Γ+
i , which is a maximal consistent extension in the language L(q, 1, w), by the construction

method in our completeness proof. For each atom Γi(q, 1, w) and each propositional letter

p, define ν(p) := {Γi(q, 1, w) ∈ Ω(q, 1, w) : p ∈ Γi(q, 1, w)}. Then we get a type space

M(q, 1, w) := 〈Ω(q, 1, w), 2Ω(q,1,w), T, ν〉. By a similar induction (to that in the proof of the

truth lemma in Σ+), we can show the following claim:

Claim 3.2.3. For any atom Γi(q, 1, w) and any formula φ ∈ Φ(q, 1, w),

M(q, 1, w), Γi(q, 1, w) |= φ iff φ ∈ Γi(q, 1, w).

Here we only prove this claim at the atom Γi(q, 1, w). We only show the case that φ := Lrψ.

Other cases are straightforward. Assume that M(q, 1, w), Γ1(q, 1, w) |= φ. It implies

that T (Γ1(q, 1, w))([[ψ]]) ≥ r. If α
Γ1(q,1,w)
ψ = β

Γ1(q,1,w)
ψ , then, by induction hypothe-

sis, T (Γ1(q, 1, w))([[ψ]]) = T (Γ1(q, 1, w))([ψ]) and l
S(q,d,w)
ψ = m

S(q,d,w)
ψ . Since l

S(q,d,w)
ψ ≤

T (Γ1(q, 1, w))([ψ]) ≤ m
S(q,d,w)
ψ , T (Γ1(q, 1, w))([[ψ]]) = α

Γ1(q,1,w)
ψ . It follows that Lrψ ∈

Γ1(q, 1, w). If α
Γ1(q,1,w)
ψ < β

Γ1(q,1,w)
ψ , α

Γ1(q,1,w)
ψ < T (Γ1(q, 1, w))([[ψ]]) < β

Γ1(q,1,w)
ψ since

T (Γ1(q, 1, w))([[ψ]]) = T (Γ1(q, 1, w))([ψ]) (by I. H.). It follows from the assumption that

T (Γ1(q, 1, w))([[ψ]]) ≥ r that r ≤ α
Γ1(q,1,w)
ψ . Hence Lrψ ∈ Γ1(q, 1, w). For the other direc-

tion, assume that Lrψ ∈ Γ1(q, 1, w). This implies that r ≤ α
Γ1(q,1,w)
ψ . Since α

Γ1(q,1,w)
ψ ≤

T (Γ1(q, 1, w))([ψ]) and T (Γ1(q, 1, w))([[ψ]]) = T (Γ1(q, 1, w))([ψ]), T (Γ1(q, 1, w))([[ψ]]) ≥ r.

That is to say, M(q, 1, w),Γ1(q, 1, r) |= Lrψ.
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Claim 3.2.4. Ξ(q, 1, w) is satisfiable at Γ1(q, 1, w).

Given any formula φ ∈ Φ(q, 1, w), we need to show that both L
l
S(q,d,w)
ψ

φ and M
l
S(q,d,w)
ψ

φ are

satisfiable at Γ1(q, 1, w). By the above claim, we know that [[φ]] = [ψ]. This implies that

T (Γ1(q, 1, w))([[φ]]) = T (Γ1(q, 1, w))([φ]) =
∑

φ∈Γj(q,d,w) p
(d)
j , which is greater than l

S(q,1,w)
ψ .

So L
l
S(q,d,w)
ψ

φ is satisfiable at the atom Γ1(q, d, w). Similarly, we can show that M
l
S(q,d,w)
ψ

φ

is satisfiable at Γ1(q, 1, w).

From the above claim, we know that Ξ(q, 1, w)
⋃

Γ1(1, 0, w), which is just the set of for-

mulas of depth 0, is satisfiable at Γ1(q, 1, w) in the type space M(q, 1, w). Therefore,

Ξ(q, 1, w)
⋃

Γ1(1, 0, w) is consistent and is contained in a maximal consistent extension

Γ(q, 2, w) which is an atom in Ω(q, 2, w). By repeating the above argument, we can con-

struct a canonical type space M(q, 2, w) where the probability measure at Γ(q, 2, w) agrees

with the probability measure P (q, d, w) such that Γ(1, 0, w)
⋃

Ξ(q, 2, w) is satisfiable at

Γ(q, 2, w). Hence Ξ(q, 2, w) is consistent. Eventually, we can find a maximal consistent set

Γ(q, d + 1, w) ∈ Ω(q, d + 1, w) such that Γ(1, 0, w)
⋃

Ξ(q, d, w) is included in Γ(q, d + 1, w).

So we have shown that Ξ(q, d, w) is consistent.

¤

Corollary 3.2.5. For any consistent formula φ of degree 0, i.e. φ ∈ Φ(1, 0, w), {φ} ∪
Ξ(q, d, w) is consistent.

Proof. Fix the consistent formula φ of degree 0. It is contained in a maximal consistent

extension Γ(1, 0, w) ∈ Ω(1, 0, w). We define a probability measure T (Γ(1, 0, w)) at Γ(1, 0, w)

that agrees with the probability measure P (q, d, w). Just as above, we can define a canonical

type space on the state space Ω(1, 0, w). By repeating this argument, we can get a maximal

consistent extension Γ(q, d + 1, w) ∈ Ω(q, d + 1, w) that includes Ξ(q, d, w) and Γ(1, 0, w)

which contains φ. So {φ} ∪ Ξ(q, d, w) is consistent.

¤
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Corollary 3.2.6. For any atom Γ(q, d, w) ∈ Ω(q, d, w), the propositional part and the

probability part of its normal form are independent of each other in the sense that, for any

consistent formula φ, the conjunction of the probability part and φ is consistent.

Fix an index vector (q, d, w). For this index vector, we have a canonical type space

M(q, d, w) := 〈Ω(q, d, w), 2Ω(q,d,w), T, ν〉.1 We have already shown the following truth lemma:

for any formula φ ∈ Φ(q, d, w) and ∆(q, d, w) ∈ Ω(q, d, w),

M(q, d, w), ∆(q, d, w) |= φ iff φ ∈ ∆(q, d, w).

Enumerate all elements in Ω(q, d, w):

Γ1(q, d, w),Γ2(q, d, w), · · · , ΓN(q,d,w)(q, d, w).

Now we consider guided maximal extensions of Γ1(q, d, w). Let (q′, d′, w′) Â (q, d, w). Next

we define a probability measure P (q′, d′, w′) on the state space Ω(q′, d′, w′) satisfying the

following conditions:

(1)
∑

∆(q′,d′,w′)∈Ω(q′,d′,w′) P (q′, d′, w′)(∆(q′, d′, w′)) = 1;

(2) for each atom Γi(q, d, w) ∈ Ω(q, d, w)(1 ≤ i ≤ N(q, d, w)), T (Γ1(q, d, w))(Γi(q,

d, w)) =
∑

Γi(q,d,w)⊆∆(q′,d′,w′) P (q′, d′, w′)(∆(q′, d′, w′)).

The first condition makes sure that such defined P (q′, d′, w′) is a probability measure on

Ω(q′, d′, w′). The second condition guarantees that atoms in Ω(q′, d′, w′) with a probability

measure satisfying this condition are maximal consistent extensions of Γ1(q, d, w). Define

S(q′, d′, w′) := 〈Ω(q′, d′, w′), 2Ω(q′,d′,w′), P (q′, d′, s′)〉. Just as above, we can define, for any

formula φ ∈ Φ(q′, d′, w′), l
S(q′,d′,w′)
φ , m

S(q′,d′,w′)
φ and Ξ(q′, d′, w′) similarly.

Theorem 3.2.7. (Guided Maximal Consistent Extension Theorem) The proposition con-

sists of the following two parts:

• For the atom Γ1(q, d, w) ∈ Ω(q, d, w), there is a maximal consistent extension

Γ(q′, d′ + 1, w′) such that Ξ(q′, d′, w′) ∪ Γ1(q, d, w) ⊆ Γ(q′, d′ + 1, w′).

1Since T is not unique, such a canonical type space on Ω(q, d, w) is not unique, either.
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• Let Γ(q′, d′, w′) = Γ(q′, d′ + 1, w′) ∩ Φ(q′, d′, w′). If we set the probability mea-

sure at Γ(q′, d′, w′): T (Γ(q′, d′, w′)) = P (q′, d′, w′) and define the probability mea-

sures at other atoms in Ω(q′, d′, w′) by a similar procedure to that in the proof

of the completeness of Σ+, such a defined canonical type space M(q′, d′, w′) :=

〈Ω(q′, d′, w′), 2Ω(q′,d′,w′), T, ν〉 satisfies the following property (truth lemma): for

any formula φ ∈ Φ(q′, d′, w′) and ∆(q′, d′, w′) ∈ Ω(q′, d′, w′),

M(q′, d′, w′), ∆(q′, d′, w′) |= φ iff φ ∈ ∆(q′, d′, w′).

Proof. Let γ0 be the conjunction of all formulas of degree 0 in the set Γ1(q, d, w). By

the corollary 3.2.5, we know that {γ0}∪Ξ(q′, d′, w′) is contained in an atom Γ(q′, d′+1, w′) ∈
Ω(q′, d′ + 1, w′). In order to show that Ξ(q′, d′, w′) ∪ Γ1(q, d, w) ⊆ Γ(q′, d′ + 1, w′), we only

need to show that Γ1(q, d, w) ⊆ Γ(q′, d′ + 1, w′). But this is guaranteed by the second

condition of our definition of P (q′, d′, w′). According to the above lemma 3.2.1, it suffices

to show that each conjunct of the normal form of Γ1(q, d, w) is contained in Γ(q′, d′+1, w′).

Since the propositional part of the normal form is tautologically equivalent to γ0, it is

contained in Γ(q′, d′ + 1, w′).

Claim 3.2.8. Each probability formula Lrφ which is a conjunct of the probability part

of the normal form is also in Γ(q′, d′ + 1, w′).

Assume that Lrφ is a conjunct of the probability part of the normal form.

T (Γ1(q, d, w)([φ])) =
∑

φ∈∆(q,d,w)(∈Ω(q,d,w))

T (Γ1(q, d, w))(∆(q, d, w))

=
∑

φ∈∆(q,d,w)(∈Ω(q,d,w))

∑

∆(q,d,w)∈∆(q′,d′,w′)(∈Ω(q′,d′,w′))

P (q′, d′, w′)(∆(q′, d′, w′))

=
∑

φ∈∆(q′,d′,w′)

P (q′, d′, w′)(∆(q′, d′, w′))

Observe that α
Γ1(q,d,w)
φ is the largest multiple of 1

q that is less than or equal to T (Γ1(q, d, w)

([φ]), which is equal to l
S(q′,d′,w′)
φ because T (Γ1(q, d, w)([φ])) =

∑
φ∈∆(q′,d′,w′) P (q′, d′, w′)
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(∆(q′, d′, w′)). Similarly, we can show that β
Γ1(q,d,w)
φ = m

S(q′,d′,w′)
φ . It follows immedi-

ately that L
α

Γ1(q,d,w)
φ

φ ∈ Γ(q′, d′ + 1, w′). Since Lr ∈ Γ1(q, d, w), r ≤ α
Γ1(q,d,w)
φ and hence

Lrφ ∈ Γ(q′, d′ + 1, w′). We finish the proof the claim and hence show that Γ1(q, d, w) ⊆
Γ(q′, d′ + 1, w′).

For the second part, we only need to show that, for any formula φ ∈ Φ(q′, d′, w′) and any

atom Γi(q′, d′, w′) ∈ Ω(q′, d′, w′)(1 ≤ i ≤ N(q′, d′, w′)),

(1) if α
Γi(q

′,d′,w′)
φ = β

Γi(q
′,d′,w′)

φ , then T (Γi(q′, d′, w′))([φ]) = α
Γi(q

′,d′,w′)
φ ; and

(2) if α
Γi(q

′,d′,w′)
φ < β

Γi(q
′,d′,w′)

φ , then α
Γi(q

′,d′,w′)
φ < T (Γi(q′, d′, w′))([φ]) < β

Γi(q
′,d′,w′)

φ .

We may assume that Γ(q′, d′, w′) = Γ1(q′, d′, w′). Here we only consider Γ(q′, d′, w′). Ac-

cording to our above argument, we know that α
Γ(q′,d′,w′)
φ = l

S(q′,d′,w′)
φ and β

Γ(q′,d′,w′)
φ =

m
S(q′,d′,w′)
φ . If α

Γ(q′,d′,w′)
φ = β

Γ(q′,d′,w′)
φ , then T (Γ(q′, d′, w′))([φ]) = l

S(q′,d′,w′)
φ = m

S(q′,d′,w′)
φ =

α
Γ(q′,d′,w′)
φ . If α

Γ(q′,d′,w′)
φ < β

Γ(q′,d′,w′)
φ , then l

S(q′,d′,w′)
φ < m

S(q′,d′,w′)
φ . It follows immedi-

ately that l
S(q′,d′,w′)
φ < T (Γ(q′, d′, w′))([φ]) < m

S(q′,d′,w′)
φ . That is to say, α

Γ(q′,d′,w′)
φ <

T (Γ(q′, d′, w′))([φ]) < β
Γ(q′,d′,w′)
φ

¤

Corollary 3.2.9. Each atom Γ in Ω(q, d, w) has at least two descendants (or maximal

consistent extensions) in Ω(q, d + 1, w).

Proof. Assume that Γ ∈ Ω(q, d, w). Then there is an atom Γd−1 ∈ Ω(q, d, w) such

that ¬M0(
∧

Γd−1) ∈ Γ. For, otherwise, M0> ∈ Γ and hence ⊥ ∈ Γ. Let Γd be a maximal

consistent extension of Γd−1 in Ω(q, d, w). According to the above theorem, both Γ ∪
{M0(

∧
Γd)} and Γ ∪ {¬M0(

∧
Γd)} are consistent. So Γ has at least two descendants.

¤

We have already known that the following set is consistent:

C := {¬M0p1} ∪ {M 1
2n

p1 : n ∈ N}.

So there is a maximal consistent set Γ∞ that contains C as a subset. Recall that Γ∞ does

not have a probability model. Fir any index vector (q, d, w), define
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Γ(q, d, w) := Γ∞ ∩ Φ(q, d, w).

Especially we have a sequence of maximal consistent sets in the local language L(2n, 2n, 2n):

Γ(1, 1, 1) ⊆ Γ(2, 2, 2) ⊆ Γ(22, 22, 22) ⊆ · · · ⊆ Γ(2n, 2n, 2n) ⊆ · · ·

such that
⋃

n Γ(2n, 2n, 2n) = Γ∞. Now we apply the above theorem about guided maximal

consistent extensions to find an admissible maximal L-consistent set Γ1 such that

1
4 = T (Γ1)([Γ(2, 2, 2)]) = T (Γ1)([Γ(22, 22, 22)]) = · · · = T (Γ1)([Γ(2n, 2n, 2n)]) = · · ·

First we consider the algebra (Ω(1, 1, 1), 2Ω(1,1,1)). Since Γ(1, 1, 1) is a maximal L(1, 1, 1)-

consistent, Γ(1, 1, 1) ∈ Ω(1, 1, 1). Set an arbitrary probability measure P (1, 1, 1) on this

algebra such that:

• P (1, 1, 1)(Γ(1, 1, 1)) = 1
4 ;

• For all atoms ∆ in Ω(1, 1, 1), P (1, 1, 1)(∆) is a multiple of 1
2m1 for some positive

natural number m1.

By applying the above theorem, we know that there is a maximal L(2m1 , 2m1 , 2m1)-consistent

set Γ2m1 ∈ Ω(2m1 , 2m1 , 2m1) such that

• for any formula φ in the language L(1, 1, 1), α
Γ2m1

φ = β
Γ2m1

φ = P (1, 1, 1)([φ]); and

• α
Γ2m1V

Γ(1,1,1) = β
Γ2m1V

Γ(1,1,1) = 1
4 ;

Now consider the algebra (Ω(2m1 , 2m1 , 2m1), 2Ω(2m1 ,2m1 ,2m1)). Note that (Ω(1, 1, 1), 2Ω(1,1,1))

is a subalgebra of (Ω(2m1 , 2m1 , 2m1), 2Ω(2m1 ,2m1 ,2m1)). Set a probability measure P (2m1 ,

2m1 , 2m1) on this algebra that satisfies the following conditions:

• P (2m1 , 2m1 , 2m1) agrees with P (1, 1, 1) on 2Ω(1,1,1);

• P (2m1 , 2m1 , 2m1)(Γ(2m1 , 2m1 , 2m1)) = 1
4 ;

• for all atoms ∆ in Ω(2m1 , 2m1 , 2m1), P (2m1 , 2m1 , 2m1)(∆) is a multiple of 1
2m2 for

some m2 > m1.

By applying the above theorem, we know that there is a maximal L(2m2 , 2m2 , 2m2)-consistent

set Γm2 ∈ Ω(2m2 , 2m2 , 2m2) such that

• for any formula φ in the language L(2m1 , 2m1 , 2m1), α
Γ2m2

φ = β
Γ2m2

φ = P (2m1 , 2m1 ,

2m1)([φ]);
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• α
Γ2m2V

Γ(2m1 ,2m1 ,2m1) = β
Γ2m2V

Γ(2m1 ,2m1 ,2m1) = 1
4 ;

• Γ2m1 ⊆ Γ2m2 .

By repeating above process, we get a sequence of maximal L(2mi , 2mi , 2mi)-consistent set

Γ2mi :

Γ2m1 ⊆ Γ2m2 ⊆ · · ·

that satisfies the following conditions:

• for each Γ(2mi , 2mi , 2mi), α
Γ2mi

∧Γ(2mi ,2mi ,2mi) = β
Γ2mi

∧Γ(2mi ,2mi ,2mi ) = 1
4 ;

• any formula φ ∈ Φ(2mi , 2mi , 2mi), α
Γ2mi

φ = β
Γ2mi

φ

Define Γ1 :=
⋃

i Γ2mi . From the above observations, it follows that Γ1 is an admissible

maximal consistent set in L. According to our definition on canonical models,

1
4 = T (Γ1)([Γ(2, 2, 2)]) = T (Γ1)([Γ(22, 22, 22)]) = · · · = T (Γ1)([Γ(2n, 2n, 2n)]) = · · ·

Lemma 3.2.10.
⋂

i[Γ(2mi , 2mi , 2mi)] = ∅.

Proof. Suppose that
⋂

i[Γ(2mi , 2mi , 2mi)] 6= ∅. Assume that ∆ ∈ ⋂
i[Γ(2mi , 2mi , 2mi)].

That is to say, Γ(2mi , 2mi , 2mi) ⊆ ∆. It follows that {¬M0p1} ∪ {M 1
2n

p1 : n ∈ N} ⊆ ∆.

So ∆ is not admissible. This contradicts the assumption that ∆ is an admissible maximal

consistent set in the language L.

¤

Theorem 3.2.11. For such a Γ1, T (Γ1) is finitely additive but not σ-additive.

Proof. Suppose that T (Γ1) were sigma-additive. This would imply that

T (Γ1)(
⋂

i[Γ(2mi , 2mi , 2mi)]) = limi→∞ T (Γ1)([Γ(2mi , 2mi , 2mi)]) = 1
4 .

But this contradicts the fact that T (Γ1)(∅) = 0.

¤

Corollary 3.2.12. The canonical model defined on the set of admissible sets of for-

mulas is not a probability model.
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Theorem 3.2.13. All satisfiable maximal consistent sets of formulas form a probability

model. Moreover, it is the biggest (or universal) probability model in the sense that any

other probability model can be embedded into it.

Proof. The following proof is adapted from [4] or [18] Assume that Ω is the set of

all satisfiable maximal consistent sets of formulas. [φ] denotes the set {s ∈ Ω : φ ∈ s}.
Obviously, the set of [φ]’s is an algebra, which is denoted as A0. A denotes the σ-algebra

generated by A0. For any s ∈ Ω, define T (s)([φ]) = sup{r ∈ [0, 1] : Lrφ ∈ s}.

Claim 3.2.14. If s is satisfiable at some state w of a probability model M = 〈ΩM ,AM ,

TM , vM 〉, then, for any formula, T (s)([φ]) = TM (w)([[φ]]) where [[φ]] = {w′ ∈ ΩM : M, w′ |=
φ}.

But this is straightforward because both of them are equal to sup{r ∈ [0, 1] : Lrφ ∈ s}.
Moreover, since TM (w) is a probability measure on the algebra that consists of sets of the

form [[φ]], T (s) is also a probability measure on the algebra A0. Hence it can be uniquely

extended to a probability measure on the σ-algebra A. In order to prove that such defined

T is a type function, it remains to show that T (·, A) is A-measurable for any A ∈ A.

Br(A) denotes the set {w ∈ Ω : T (w, A) ≥ r} for r ∈ [0, 1] and A ∈ A. Define A′ = {A ∈
A : Br(A) ∈ A,∀r ∈ [0, 1]}. It is easy to see that Br(A) ∈ A if A ∈ A0. In other words,

A′ ⊇ A0.

Claim 3.2.15. A′ is a monotone class.

Let (Ai)i be a decreasing sequence of events in A′. Since Br(
⋂

i Ai) =
⋂

i B
r(Ai),

⋂
i Ai ∈

A′. So A′ is closed under the formation of monotone intersections. Let (Ai)i be an in-

creasing sequence of event in A′. Also we have that
⋃

i Ai ∈ A′. Indeed, Br(
⋃

i Ai) =
⋂

n

⋃
m Br− 1

n (Am) ∈ A. So A′ is also closed under the formation of monotone unions.

Claim 3.2.16. A′ = A and hence T (·, A) is A-measurable for any A ∈ A.



3. FAILURE OF STRONG COMPLETENESS 81

According to Halmos’s monotone class theorem, A ⊆ A′. So A = A′. In other words, for

any A ∈ A and any rational r ∈ [0, 1], Br(A) ∈ A. This implies that T (·, A) is A-measurable

for any A ∈ A.

Next we show that it is the biggest probability model. Let M ′ = 〈Ω′,A′, T ′, v′〉 be a

probability model. Define d : Ω′ → Ω as d(s′) = {φ : M ′, s′ |= φ}. Note that d(s′) ∈ Ω. It

follows that, for any s′ ∈ Ω′, M ′, s′ |= Lrφ if and only if Lrφ ∈ d(s′) and hence M ′, s′ |= ψ

if and only if ψ ∈ d(s′). Indeed, d is a type morphism from M ′ to its image in M . So we

have finished the proof of the whole theorem.

¤

Corollary 3.2.17. The set of satisfiable maximal consistent sets of formulas is a proper

subset of the set of admissibles.

Proof. The γ1 that we constructed in the above counterexample is admissible but not

satisfiable. For, otherwise, it should define a probability measure on the algebra consisting

of [φ]’s. But we have shown that this is impossible.

¤

3.3. No Compactness or Strong Completeness for Probability Logics with

Finite Indices

One might expect that if we would weaken the language of our logic to include only finite

indices, we could prove a strong completeness. With strong completeness, we could easily

prove the completeness of Σ+ plus some other higher-order probability formulas with respect

to their corresponding class of type spaces. Moreover, with strong completeness, we could

give a syntactic definition of consequence in this restricted language for Aumann’s work on

interactive epistemology: probability. All of his results there would also be proved in this

language with finite indices. However, in this section, we show that there is no compactness

or strong completeness for probability logics with finite indices. So this approach with

a restricted syntax towards interactive epistemology does not work well. First we define
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linear systems of probabilities over trees. Next we construct such a system that is not

compact. In the third part, we show that, whenever any consistent set of formulas contains

this noncompact linear system, it is finitely satisfiable but not satisfiable.

3.3.1. System of Linear Inequalities and Equations of Probabilities. We define

I to be a function from N+×N+ to N+ that is strictly increasing in the second coordinate,

where N+ is the set of positive natural numbers. Nj is defined inductively: Nj = I(j −
1, Nj−1) for j > 2. Now we consider a genealogy tree T . X is the set of nodes. The first

generation consists of x1,1, · · · , x1,N1 , which are independent of each other. Each node in

the tree has at least one descendant, which is indicated by arrows in the following graph.

The population in the j-th generation is Nj . Note that I is the function to determine the

number of descendants. T can be illustrated as follows:

x1,1 · · · x1,N1»»»»»»»»»»»»9

©©©©©©¼

XXXXXXXXXXXXz

HHHHHHj
x2,1 · · · x2,I(1,1) · · · x2,I(1,N1−1)+1· · · x2,I(1,N1)

...
...

?
xj,k

?
xj,1

?

@
@

@R
xj+1,1· · · xj+1,I(j,1)

· · · · · ·

· · · · · ·¡
¡

¡ª

@
@

@R
xj+1,I(j,k−1)+1 · · · xj+1,I(j,k)

...

?

?
xj,Nj

¡
¡

¡ª
xj+1,I(j,Nj−1)+1 · · · xj+1,Nj+1

...
...

...
...

...
...

A term t is a finite subset of X such that any two elements are not in the same branch. Its

family set consists of the elements in t and all their descendants. The order of t is defined

to be max{j : xj,k ∈ t}, i.e., the lowest generation order of elements in t. It is denoted by

o(t). Two terms t and t′ are equal if their family sets at the max{o(t), o(t′)}th generation
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are the same. We denote t ≡ t′.

Remark. We can interpret the above definitions in the context of probability theory.

Ω denotes the set of all (infinite) branches of the tree T . Each branch is represented by an

infinite sequence of nodes. For example, the leftmost branch is (x1,1, x2,1, x3,1, · · · ). Define

Tn as the subtree of T which consists of all notes of depth ≤ n and Ωn the set of (finite)

branches in Tn. Note that any branch in Ωn is represented by a finite sequence of length

n. For example, the leftmost branch in this tree is (x1,1, x2,1, · · · , xn,1). zk : Ω → X is the

k-th coordinate function. A cylinder of rank n is a set of the form:

A = {w ∈ Ω : (z1(w), z2(w), · · · , zn(w)) ∈ H} for some H ⊆ Ωn.

A0 denotes the set of cylinders of all ranks. It is easy to check that A0 is a field. Now

we can interpret our above definition of terms in this “generalized sequence space”. Cylin-

ders of rank n corresponds exactly to terms of order n. For example, let I(1, 1) = 2,

the cylinder {w ∈ Ω : (z1(w), z2(w)) = (x1,1, x2,1)} ∪ {w ∈ Ω : (z1(w), z2(w), z3(w)) =

(x1,1, x2,2, x3,I(2,1)+1)} corresponds to the term {x2,1, x3,I(2,1)+1}.

Let t = {xj1,k1 , · · · , xjm,km} and t′ = {xj′1,k′1 , · · · , xj′n,k′n}. Since we will associate each node

with a probability, we simply write t ≡ t′ more explicitly as:

(*): xj1,k1 + · · ·+ xjm,km = xj′1,k′1 + · · ·+ xj′n,k′n

Let S= denote the set of all such linear equations (*) as well as the following:

xj,1 + · · ·+ xj,Nj = 1 for all j ≥ 1.

Note that S= is uniquely determined by the genealogy tree. S0 is the set of all linear

inequalities:

0 ≤ xj,k ≤ 1 for all j ≥ 1 and k ≤ Nj .

Fix a natural number p ≥ 2. This is a crucial assumption for our following conjecture.

Define Qp := { q
p : p, q ∈ N+} ∩ [0, 1]. Let S≤ be a countable (possibly countably infinite)

set of linear inequalities which is one of the following forms:
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• q
p < xj1,k1 + · · · + xjm,km < q+1

p for some term t = {xj1,k1 , · · · , xjm,km} and some

natural number q such that q
p , q+1

p ∈ Qp;

• xj1,k1 + · · ·+ xjm,km = q′
p for some q′ such that q′

p ∈ Qp.

S≤ can be regarded as a constraint set. Let S denote the union of S=,S0 and S≤. Any

subset of the linear system A is called a linear probability tree system.

Remark. The first part of S= says that each cylinder may have different representa-

tions in terms of terms and probability measures on the field A0 is finitely additive. The

second part tells us that, since all cylinders of the form {w ∈ Ω : (z1(w), · · · , zn(w)) ∈ Ωn}
is the same as Ω, they must have the probability 1. The system S0 says that probabilities of

cylinders should be between 0 and 1. In short, both S= and S0 make sure that the solution

to the system S is a (finitely additive) probability measure on the field A0 of cylinders. S≤
is the essential part of S. Given a finite set Qp of rationals, it says that for any cylinder, we

only know that its probability is either equal to one rational from Qp or is strictly between

two consecutive numbers from Qp.

3.3.2. No Compactness for Linear System of Probabilities over Trees. In

this subsection, we construct a linear probability tree system that is not compact. In the

following, we fix p = 2. Then Q2 = {0, 1/2, 1}.

Lemma 3.3.1. There is a linear probability tree system S2 such that

• all indices in S2 are in Q2;

• S2 has a real solution;

• 0 < x1 < 1
32 is deducible from S2.

Proof. We assume that S includes 0 < x1. In order to get x1 < 1
32 , it suffices to show

that, for some x2,
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x1 + x2 <
1
16

(3.1)

x1 − x2 < 0(3.2)

Note that neither of these two inequalities are specified by our language above. For the first

inequality, it suffices to show that, for some x3,

x1 + x2 + x3 <
1
8

(3.3)

x1 + x2 − x3 < 0(3.4)

Similarly, for the first part, it suffices to show that, for some x4,

x1 + x2 + x3 + x4 <
1
4

(3.5)

x1 + x2 + x3 − x4 < 0(3.6)

Similarly, for the first part, it suffices to show that, for some x5,

x1 + x2 + x3 + x4 + x5 <
1
2

(3.7)

x1 + x2 + x3 + x4 − x5 < 0(3.8)

Note that the first one is within our language. Next we deal with all these inequalities,

x1 + x2 + x3 + x4 − x5 < 0(3.9)

x1 + x2 + x3 − x4 < 0(3.10)

x1 + x2 − x3 < 0(3.11)

x1 − x2 < 0(3.12)

These four inequalities are deducible from the following eight inequalities:
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x1 + x2 + x3 + x4 + x
(5)
5 <

1
2

(3.13)

1
2

< x5 + x
(5)
5(3.14)

x1 + x2 + x3 + x
(5)
5 + x

(5)
4 <

1
2

(3.15)

1
2

< x4 + x
(5)
5 + x

(5)
4(3.16)

x1 + x2 + x
(5)
5 + x

(5)
4 + x

(5)
3 <

1
2

(3.17)

1
2

< x3 + x
(5)
5 + x

(5)
4 + x

(5)
3(3.18)

x1 + x
(5)
5 + x

(5)
4 + x

(5)
3 + x

(5)
2 <

1
2

(3.19)

1
2

< x2 + x
(5)
5 + x

(5)
4 + x

(5)
3 + x

(5)
2(3.20)

For example, (9) is derivable from (13) and (14). S2 denotes the system consists of (13)-

(20), (7) and the inequality: 0 < x1. It is easy to see that the system is within our

language and 0 < x1 < 1
32 is provable from S2. Finally, we need to show that S2 has a

real solution. Consider the inequalities from (1) to (8), we assign the following vales to

variables: x1 = 1
64 , x2 = 1

32 , x3 = 1
16 , x4 = 1

8 , x5 = 1
4 . Consider the inequalities (13) and

(14), it is desirable that x
(5)
5 = 33

128 . Consider (15) and (16), it is natural to assign x
(5)
4 = 16

128 .

Similarly, we assign x
(5)
3 = 8

128 , x
(5)
2 = 4

128 . Indeed, these form a solution to the system S2.

¤

Theorem 3.3.2. For any n, there is a linear probability tree system S2 such that

• all indices in S2 are in Q2;

• S2 has a real solution;

• 0 < x1 < 1
2n is deducible from S2.

Proof. It follows from a similar algorithm proof as in the above lemma.

¤

Theorem 3.3.3. There is a linear probability tree system S such that

• all indices in S are in Q2;
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• S is finitely satisfiable;

• 0 < x1 < 1
2n is deducible from S for all n.

Proof. Here we demonstrate a typical step in the construction of our required S2.

Define S(1)
2 = {0 < x1 < 1

2}. S
(2)
2 denotes the system consists of the following inequalities:

0 < x1(3.21)

x1 + x2 <
1
2

(3.22)

x1 + x
(2)
2 <

1
2

(3.23)

1
2

< x2 + x
(2)
2(3.24)

We already know that S(2)
2 has a real solution and 0 < x1 < 1

22 is provable in this system.

Define S(2) = S(1)
2 ∪ S(2)

2 . Similarly, S(3)
2 denotes the system consists of the following

inequalities:

0 < x1(3.25)

x1 + x2 + x3 <
1
2

(3.26)

x1 + x2 + x
(3)
3 <

1
2

(3.27)

1
2

< x3 + x
(3)
3(3.28)

x1 + x
(3)
2 + x

(3)
3 <

1
2

(3.29)

1
2

< x2 + x
(3)
2 + x

(3)
3(3.30)

We already know that S(3)
2 has a real solution and 0 < x1 < 1

23 is provable in this system.

Define S(3) as the set consists of all elements in S(2) and S(3)
2 as well as the following

equation:

x
(2)
2 = x

(3)
2 + x

(3)
3 .

It is easy to see that S(3) has a real solution and 0 < x1 < 1
8 is derivable there. S(4)

2

consists of the following linear inequalities:
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0 < x1(3.31)

x1 + x2 + x3 + x4 <
1
2

(3.32)

x1 + x2 + x3 + x
(4)
4 <

1
2

(3.33)

1
2

< x4 + x
(4)
4(3.34)

x1 + x2 + x
(4)
4 + x

(4)
3 <

1
2

(3.35)

1
2

< x3 + x
(4)
4 + x

(4)
3(3.36)

x1 + x
(4)
4 + x

(4)
3 + x

(4)
2 <

1
2

(3.37)

1
2

< x2 + x
(4)
4 + x

(4)
3 + x

(4)
2(3.38)

S ′(4)
2 is gotten from S(4)

2 by replacing x
(4)
2 by x

(3)
2 . Define S(4) as the set consisting of all

inequalities in S(3) and S ′(4)
2 as well as the following inequality:

x
(3)
3 = x

(4)
3 + x

(4)
4 .

It is easy to see that S(4) has a real solution and 0 < x1 < 1
16 is derivable in this sys-

tem. Similarly, S(5) can be constructed from S(4) and S(5)
2 (constructed as above) by some

replacements and by adding the following equation:

x
(4)
4 = x

(5)
4 + x

(5)
5 .

There is a pattern for the kind of relationships among x
(i)
j ’s.
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x
(1)
1

6¡¡µ

x
(2)
1 x

(2)
2

6 6¡¡µ

x
(3)
1 x

(3)
2 x

(3)
3

6 6 6¡¡µ

x
(4)
1 x

(4)
2 x

(4)
3 x

(4)
4

6 6 6 6¡¡µ

x
(5)
1 x

(5)
2 x

(5)
3 x

(5)
4 x

(5)
5

6 6 6 6 6¡¡µ

x
(6)
1 x

(6)
2 x

(6)
3 x

(6)
4 x

(6)
5 x

(6)
6

...
...

...
...

...
...

...

Ta denotes this tree. By repeating this inductive process, we will achieve a sequence of finite

systems:

S(1) ⊂ S(2) ⊂ S(3) ⊂ · · · ⊂ S(n) ⊂ · · ·

such that, for every n,

• S(n) has a real solution;

• 0 < x1 < 1
2n is derivable in this system.

S denotes
⋃∞

n=1 S(n). It is easy to check that S satisfies all the properties that we need. So

we have finished the proof of the theorem.

¤

So our conjecture does not hold.

Corollary 3.3.4. (Non-compactness) There is a linear probability tree system S that

is finitely solvable but not solvable.

Proof. Consider the system S that we construct in the above theorem. Recall that it

is finitely solvable. However, it is not solvable, since 0 < x1 < 1
2n for all n is derivable in

this system.

¤
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3.3.3. No Compactness or Strong Completeness for Probability Logic with

Finite Indexes. In this section, we show that there is no hope of compactness and strong

completeness for probability logics even with finite indices by embedding the system of

linear inequalities in the last section into a certain structure of formulas. Enumerate all

propositional letters: p0, p1, p2, · · · . Define Gn := {∧n
i=0 sipi : si is ¬ or blank }. Gn will be

the n-th generation in our following tree. Elements of Gn are called n-atoms. An n+1-atom

x is an immediate descendant of an n-atom x′ if x′ is a conjunct of x. An n-atom x is a

descendant of a m-atom y if n > m and y is a conjunct of x. Actually the second condition

implies the first one. It is well-known that all these atoms form a binary tree, which is

denoted by T (2). We illustrate the tree as follows.

G1

G2

G3

x1,1 x1,2 x1,3 x1,4

¤
¤
¤
¤¤²

C
C
C
CCW

¤
¤
¤
¤¤²

C
C
C
CCW

¤
¤
¤
¤¤²

C
C
C
CCW

¤
¤
¤
¤¤²

C
C
C
CCW

x2,1 x2,2 x2,3 x2,4 x2,5 x2,6 x2,7 x2,8

¤
¤
¤
¤¤² ?

¤
¤
¤
¤¤² ?

¤
¤
¤
¤¤² ?

¤
¤
¤
¤¤² ?

¤
¤
¤
¤¤² ?

¤
¤
¤
¤¤² ?

¤
¤
¤
¤¤² ?

¤
¤
¤
¤¤² ?

Note that each node in the n-th generation is an n-atom and the tree T (2) consists of the

four subtrees T (2)
1 , T (2)

2 , T (2)
3 and T (2)

4 with roots x1,1, x1,2, x1,3 and x1,4, respectively. Now

we embed the nodes of the system of linear inequalities in the last section to the tree T (2)

in the following way:

(1) the tree Ta in the counterexample is faithfully embedded into the subtree T (2)
4 ;

(2) x1, x2, · · · , xn, · · · are mapped into the other three subtrees T (2)
1 , T (2)

2 and T (2)
3

such that xi’s are in different branches of T (2).

We still use xi and xj
i to denote their images, which are atoms and hence Boolean formulas

of propositional letters. Next we translate the linear inequalities in the system S into a set

of formulas. There are tree types of linear inequalities or equations in S:
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(1) j
2 < xi1 + · · ·+ xin < j+1

2 where j
2 , j+1

2 ∈ Q2;

(2) xi1 + · · ·+ xin ∈ Q2;

(3) xi1 + · · ·+ xin = xj1 + · · ·+ xjm

They are translated into formulas as follows:

(1) for the first type, it is translated to ((L j
2
∧ ¬M j

2
)(xi1 ∨ · · · ∨ xin)) ∧ ((M j+1

2
∧

¬L j+1
2

)(xi1 ∨ · · · ∨ xin))

(2) for the second type, it is translated directly into ((L j
2
∧M j

2
)(xi1 ∨ · · · ∨ xin)) for

j
2 ∈ Q2;

(3) for the third type, it only appears in the tree Ta and it is already incorporated in

the relationships among atoms of T (2)
4 . For example, if x

(1)
1 = x

(2)
1 + x

(2)
2 , then,

according to this mapping, x
(1)
1 ↔ x

(2)
1 ∨ x

(2)
2 is a propositional tautology.

Let ΓS denote this translated set of formulas from the system S.

Theorem 3.3.5. (Non-Compactness) There is a set of formulas in the language of Σ+

with finite indices that is finitely satisfiable but not satisfiable.

Proof. Consider the above ΓS . Since each finite subset of S has a solution, ΓS is

finitely satisfiable. According to this faithful translation, we can see immediately that

{¬M0x1} ∪ {M 1
2n

x1 : n ≥ 1} is derivable from ΓS in Σ+.

So ΓS does not have a probability model.

¤

Corollary 3.3.6. Strong completeness does not hold for probability logics with finite

indices. In other words, if Γ is a (possibly infinite) set of formulas in the language of Σ+

that is consistent in Σ+, it is not necessarily true that it has a probability model.

Proof. Since strong completeness = weak completeness + compactness, there is no

hope of strong completeness for probability logics even with finite indices, either.

¤



CHAPTER 4

Probability Logic for Harsanyi Type Spaces

In game theory and economics, there is a special kind of type spaces which are used to

describe introspection of agents. In a Harsanyi type space, each agent is certain of his

degree of belief at every state of this space. It is shown in Heifetz and Samet [18] that

there is a universal Harsanyi type space within a general measure-theoretical context. In

this section, we provide a deductive system which is complete with respect to the class of

Harsanyi type spaces. Moreover, we underscore the relative simplicity of one-person belief

system by showing that each atom in a finite language has only one maximal consistent

extension if we keep the depth and width of the language the same. Viglizzo [37] and

Viglizzo and Moss [29] study Harsanyi type spaces from the perspective of coalgebra.

4.1. Normal forms

Given any finite local language L(q, d, w), we define F (q, n, w)(n ≤ d), the set of normal

forms of depth n, as follows:

(1) n = 0. F (1, 0, w) is the set of formulas π1p1 ∧ π2p2 ∧ · · · ∧ πwpw where each

πi(1 ≤ i ≤ w) is either blank or ¬;

(2) n > 0. Then F (q, n, w) is the set of formulas
∧{pi : 1 ≤ i ≤ w and pi ∈

Γ(q, n, w)} ∧∧{¬pi : 1 ≤ i ≤ w and¬pi ∈ Γ(q, n, w)} ∧∧{Lrφ,Msφ : Lrφ,Msφ ∈
Γ(q, d, w)}∧∧{¬Lrφ,¬Msφ : ¬Lrφ,¬Msφ ∈ Γ(q, d, w)} for some atom Γ(q, d, w) ∈
Ω(q, d, w).

The first part
∧{pi : 1 ≤ i ≤ w and pi ∈ Γ(q, n, w)} ∧∧{¬pi : 1 ≤ i ≤ w and¬pi ∈

Γ(q, n, w)} is called the propositional part of the normal form and
∧{Lrφ,Msφ : Lrφ, Msφ ∈

Γ(q, d, w)} ∧ ∧{¬Lrφ,¬Msφ : ¬Lrφ,¬Msφ ∈ Γ(q, d, w)} for some atom Γ(q, d, w) ∈ Ω

(q, d, w) is called the probability part of the normal form.

92
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Lemma 4.1.1. For any atom Γ(q, d, w), the conjunction γ(q, d, r) of all formulas in

Γ(q, d, w) is tautologically equivalent to a normal form in the language L(q, d, w). Moreover,

any formula φ ∈ Φ(q, d, w) is tautologically equivalent to a disjunction of normal forms in

the language L(q, d, w).

Proof. The second part follows from the first part immediately. So we only show the

first part. There are two types of atomic formulas:

(1) literals, i.e. propositional letters or their negations;

(2) formulas of the forms Lrφ,Mrφ,¬Lrφ or ¬Mrφ (all of them are formulas in Φ

(q, d, w)).

Any formula
∧{πipi : 1 ≤ i ≤ w} ∧∧{πLrφLrφ : Lrφ ∈ Φ(q, d, w)} ∧∧{πMrφMrφ : Mrφ ∈

Φ(q, d, w)} where πi, πLrφ, πMrφ are either blank or ¬ is called a statement. Note that a

statement is not necessarily consistent. By using propositional reasoning, we can show that

the conjunction γ(q, d, w) of formulas in the atom Γ(q, d, w) is tautologically equivalent to

a conjunction of statements: s1 ∨ s2 ∨ · · · ∨ sk. Note that we regard each formula as an

equivalence class where the equivalence relation is the tautological equivalence. Under this

equivalence, γ(q, d, w) ∈ Γ(q, d, w). One of the statements, say s1, is in Γ(q, d, w) because

otherwise ¬γ(q, d, w) ∈ Γ(q, d, w), which contradicts the fact that γ(q, d, w) ∈ Γ(q, d, w).

Moreover, si → ¬sj is a tautology for any i and j such that 1 ≤ i, j ≤ k and i 6= j. Then

only the state s1 is in Γ(q, d, w). Suppose that si ∈ Γ(q, d, w) for some i 6= 1. This would

imply that Γ(q, d, w) is inconsistent because si → ¬s1 is a tautology and s1 ∈ Γ(q, d, w).

Therefore, for i 6= 1, ¬si ∈ Γ(q, d, w). So we have shown that there is one and only one

statement that is in Γ(q, d, w).

Since γ(q, d, w) is tautologically equivalent to the disjunction s1∨s2∨· · ·∨sk, s1 → γ(q, d, w)

is a tautology. Moreover, s1 ∈ Γ(q, d, w). This implies that γ(q, d, w) → s1 is a tautology

because γ(q, d, w) is the conjunction of all the formulas in Γ(q, d, w) and s1 is one of them.

So we have shown that γ(q, d, w) is tautologically equivalent to a statement s1, which is a

normal form according to the definition.
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¤

Definition 4.1.2. In the above lemma, we have shown that, for any atom Γ(q, d, w),

γ(q, d, w) is tautologically equivalent to a statement and also to a normal form s1. This

normal form is called the normal form of Γ(q, d, w) (or of γ(q, d, w)). For any formula φ,

φ=0 denotes the propositional part of its normal form and φ>0 denotes its probability part.

4.2. Correspondence and Completeness

In this section we will show that the axiom system Σ+ plus the following two axiom schemes:

• (4p) : Lrφ → L1Lrφ

• (5p) : ¬Lrφ → L1¬Lrφ

is sound and completeness with respect to the Harsanyi type spaces. Let ΣH denote this

system. Assume that 〈Ω,A, T 〉 is a type space and A is generated by a countable subfield

A0. [T (w)] denotes {w′ : T (w) = T (w′)}. Indeed, for any w,

[T (w)] =
⋂

A∈A0

{w′ ∈ Ω : T (w)(A) = T (w′)(A)}

=
⋂

A∈A0

⋂

r∈Q∩[0,1]

{w′ ∈ Ω : T (w′)(A) ≥ r ↔ T (w)(A) ≥ r}

=
⋂

A∈A0

⋂

r∈Q∩[0,1],T (w)(A)≥r

{w′ ∈ Ω : T (w′)(A) ≥ r}

and is hence measurable. Note that the last equality comes from the fact that A0 is a field.

If each type is certain of its type, i.e.,

T (w)([T (w)]) = 1 for all w ∈ S,

the type space is called a Harsanyi type space. First we show a correspondence result.

Theorem 4.2.1. (Correspondence) Let S = 〈Ω,A, T 〉 be a type space and A0 be a

countable subfield generating A. Then both 4p and 5p are valid in S if and only if S is a

Harsanyi type space.

Proof. This theorem follows directly from the proof that [T (w)] is measurable. ¤
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The main result of this section is the following theorem:

Theorem 4.2.2. ΣH is sound and complete with respect to the class of Harsanyi type

spaces.

The soundness of the system is clear. We concentrate on the completeness. In [17], they gave

a proof sketch of the completeness proof. But it seems that they missed many crucial steps

that are needed for the completeness. Here we give a detailed proof of the completeness.

Assume that ψ is consistent. We need to show that it is satisfiable in a Harsanyi type

space. Just as in the proof of the completeness of Σ+, we define a local langauge L[ψ]. Let

Φ(ψ) denote the finite set of formulas in this language. It gives rise to a set Ω of maximal

consistent sets, whose elements are called atoms.

Proof. Assume that ψ is consistent and is in Φ(q, d, w). Enumerate all the atoms in

Ω(q, d, w):

Γ1(q, d, w),Γ2(q, d, w), · · · , ΓN(q,d,w)(q, d, w).

The conjunction of formulas in any atom Γi(q, d, w) ∈ Ω(q, d, w) is denoted as γi(q, d, w). It

has a normal form φi
=0∧φi

>0 where φi
=0 is the propositional part and φi

>0 is the probability

part.

Claim 4.2.3. Any maximal consistent extension Γi(q, d + 1, w) ∈ Ω(q, d + 1, w) of

Γi(q, d, w) contains the formula L1(φi
>0).

For any maximal consistent extension Γi(q, d+1, w) ∈ Ω(q, d+1, w), L1(φi
>0) ∈ Γi(q, d+1, w)

since φi
>0 ∈ Γi(q, d, w) ⊆ Γi(q, d + 1, w).

We divide the set of atoms in Ω(q, d, w) into many groups according to their probability

parts. Let 0 = i0 < i1 < · · · < ik < · · · < iN = N(q, d, w). Define:

Gk := {Γj(q, d, w) ∈ Ω(q, d, w) : ik−1 + 1 ≤ j ≤ ik} for each 1 ≤ k ≤ N .

Without loss of generality, we assume that
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• all the atoms in each group have the same probability parts;

• atoms in different groups have different probability parts.

Next we define probability measures at all atoms according to their representatives at

each group. Given any Γik(q, d, w), we know that it has a maximal consistent extension

denoted by Γik(q, d, w) ∈ Ω(q, d + 1, w). Moreover, there is a maximal consistent extension

Γ∞ik (q, d, w) in the language L that includes Γik(q, d, w). Now, as usual, we define the

probability according to Γ∞ik (q, d, w). For any formula γ in the formal language L, we

have shown that α
Γ∞ik (q,d,w)
γ = β

Γ∞ik (q,d,w)
γ . Recall that, for any formula φ ∈ Φ(q, d, w),

[φ] = {∆(q, d, w) ∈ Ω(q, d, w) : φ ∈ ∆(q, d, w)}. Define:

T (Γik(q, d, w))([φ]) = α
Γ∞ik (q,d,w)

φ

We have shown that this indeed defines a probability measure at Γik(q, d, w) satisfying the

following properties: for any formula φ ∈ Φ(q, d, w),

• if α
Γik

(q,d+1,w)

φ = β
Γik

(q,d+1,w)

φ , then T (Γik(q, d, w))([φ]) = α
Γik

(q,d+1,w)

φ ;

• if α
Γik

(q,d+1,w)

φ < β
Γik

(q,d+1,w)

φ , α
Γik

(q,d+1,w)

φ < T (Γik(q, d, w))([φ]) < β
Γik

(q,d+1,w)

φ ;

This is to say, S(Γik(q, d, w)) := 〈Ω(q, d, w), 2Ω(q,d,w), T (Γik(q, d, w))〉 is a probability space.

Claim 4.2.4. T (Γik(q, d, w))(Gk) = 1

Observe that Gk = [φik
>0]. Since Γ∞ik (q, d, w) is a maximal consistent extension of Γik(q, d, w),

L1(φ
ik
>0) ∈ Γ∞ik (q, d, w). So T (Γik(q, d, w))(Gk) = T (Γik(q, d, w))(φik

>0) = α
Γ∞ik (q,d,w)

φ
ik
>0

= 1.

Define probability measures at other atoms according to their representatives. For any j

such that ik1 + 1 ≤ j ≤ ik, define:

T (Γj(q, d, w))([φ]) = T (Γik)([φ]) for any formula φ ∈ Φ(q, d, w).

Note that T (Γj(q, d, w))([φj
>0]) = 1 because [φj

>0] = [φik
>0]. After defining T for all atoms,

we take M(q, d, w) := 〈Ω(q, d, w), 2Ω(q,d,w), T, ν〉 where ν(p) := {∆(q, d, w) ∈ Ω(q, d, w) : p ∈
∆(q, d, w)}. [[φ]] denote the set {∆(q, d, w) ∈ Ω(q, d, w) : M(q, d, w), ∆(q, d, w) |= φ}.
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Claim 4.2.5. For any formula φ ∈ Φ(q, d, w) and any atom ∆(q, d, w) ∈ Ω(q, d, w),

M(q, d, w), ∆(q, d, w) |= φ iff φ ∈ ∆(q, d, w). Equivalently, [φ] = [[φ]].

This is exactly the truth lemma. As usual, we prove by induction on the formula φ. It is easy

to see that the claim holds for base case and Boolean ones. Here we only show the nontriv-

ial case. Assume that M(q, d, w),∆(q, d, w) |= Lrφ. It follows that T (∆(q, d, w))([[φ]]) ≥
r. By induction hypothesis, this is equivalent to saying that T (∆(q, d, w))([φ]) ≥ r.

Suppose that ∆(q, d, w) ∈ Gk. It follows that T (Γik(q, d, w)) = T (∆(q, d, w)). Hence

T (Γik(q, d, w))([φ]) ≥ r. If α
Γik

(q,d+1,w)

φ = β
Γik

(q,d+1,w)

φ , then α
Γik

(q,d+1,w)

φ = T (Γik(q, d, w))

([φ]) ≥ r. This implies that Lrφ ∈ Γik(q, d + 1, w) and hence Lrφ ∈ Γik(q, d, w) because

Γik(q, d, w) = Γik(q, d + 1, w) ∩ Φ(q, d, w). Moreover, since ∆(q, d, w) and Γik(q, d, w) have

the same probability parts, Lrφ ∈ ∆(q, d, w). If α
Γik

(q,d+1,w)

φ < β
Γik

(q,d+1,w)

φ , then r ≤
α

Γik
(q,d+1,w)

φ because r is a multiple of 1/q. Similarly, this implies that Lrφ ∈ Γik(q, d+1, w)

and hence Lrφ ∈ Γik(q, d, w) because Lrφ ∈ Φ(q, d, w). Since ∆(q, d, w) and Γik(q, d, w) are

in the same group and hence have the same probability parts, Lrφ ∈ ∆(q, d, w).

Now for the other direction. Assume that Lrφ ∈ ∆(q, d, w). It follows that Lrφ ∈
Γik(q, d, w) and hence Lrφ ∈ Γ∞ik (q, d, w). This implies that T (Γik)([φ]) = α

Γ∞ik (q,d,w)

φ ≥ r.

By induction hypothesis, this is equivalent to saying T (Γik)([[φ]]) ≥ r. That is to say,

M(q, d, w), ∆(q, d, w) |= Lrφ. Now we finish the proof of the claim.

Claim 4.2.6. M(q, d, w) is a Harsanyi type space.

Recall that, for any atom ∆(q, d, w), [T (∆(q, d, w))] denotes the set {∆′(q, d, w) ∈ Ω(q, d, w) :

T (∆′(q, d, w)) = T (∆(q, d, w))}. We need to show that T (∆(q, d, w))([T (∆(q, d, w))]) = 1

for all atom ∆(q, d, w). Assume that ∆(q, d, w) ∈ Gk. In the above definition of T , we

make the probability measures at atoms in each group the same and probability measures

at atoms from different groups are different. This implies that [T (∆(q, d, w))] = Gk. We

already know that Gk = [φiK
>0]. According to Claim 4.2.4, T (Γik)([φiK

>0]) = T (Γik)(Gk) = 1.

Since T (∆(q, d, w)) = T (Γik(q, d, w)), T (∆(q, d, w))([T (∆(q, d, w))]) = T (∆(q, d, w))(Gk) =

T (Γik(q, d, w))(Gk) = 1. So we have shown that, for any atom ∆(q, d, w) ∈ Ω(q, d, w),
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T (∆(q, d, w))([T (∆(q, d, w))]) = 1. That is to say, M(q, d, w) is a Harsanyi type space.

Since ψ is consistent, it is contained in an atom Γi(q, d, w) for some i such that 1 ≤ i ≤
N(q, d, w). By the truth lemma, we know that M(q, d, w), Γi(q, d, w) |= ψ. In other words,

ψ is satisfiable in a Harsanyi type space. So we finish the proof of the completeness.

¤

Theorem 4.2.7. It is decidable whether φ is a theorem of ΣH .

Proof. The proof here is similar to the decidability proof of Σ+. We only need to add

the following two axioms to ΣI :

Lrφ → L1Lrφ and ¬Lrφ → L1¬Lrφ where r is a parameter.

Through this system with index parameters, we can show that the set of the theorems of

ΣH is recursively enumerable. Moreover, by the above completeness theorem, we know that

ΣH has finite model property. These imply that it is decidable whether φ is a theorem of

ΣH .

¤

4.3. Basic Properties of ΣH

Lemma 4.3.1. The proposition consists of four parts:

(1) `ΣH
Lsψ ∧ Lrφ → Lr(φ ∧ Lsψ)

(2) `ΣH
Lsψ ∧ ¬Lrφ → ¬Lr(φ ∧ Lsψ)

(3) `ΣH
¬Lsψ ∧ Lrφ → Lr(φ ∧ ¬Lsψ)

(4) `ΣH
¬Lsψ ∧ ¬Lrφ → ¬Lr(φ ∧ ¬Lsψ)

Proof. Here we use the rule (B). First note that `Σ+ (φ, ψ) ↔ (φ ∨ ψ, φ ∧ ψ). Reason

inside ΣH :
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Lrφ ∧ Lsψ → Lrφ ∧ L1(Lsψ) ∧M1(φ ∨ Lsψ)

→ Lr(φ ∧ Lsψ)

In both (1) and (2), we apply the rule (B). Dually, we have:

¬Lrφ ∧ Lsψ → ¬Lrφ ∧M1(Lsψ) ∧ L1(φ ∨ Lsψ)

→ ¬Lr(φ ∧ Lsψ)

In (3), we use implicitly the following argument:

Lsψ → L1Lsψ

→ L1(φ ∨ Lsψ)

The proofs of 3 and 4. are similar.

¤

Theorem 4.3.2. The proposition consists of two parts:

(1) `ΣH
(
∧m

i=1 Lsiψi ∧
∧n

j=1 ¬Ltjψ
′
j) ∧ Lrφ → Lr(φ ∧ (

∧m
i=1 Lsiψi ∧

∧n
j=1 ¬Ltjψ

′
j))

(2) `ΣH
(
∧m

i=1 Lsiψi ∧
∧n

j=1 ¬Ltjψ
′
j) ∧ ¬Lrφ → ¬Lr(φ ∧ (

∧m
i=1 Lsiψi ∧

∧n
j=1 ¬Ltjψ

′
j))

Proof. This proposition follows directly from the above lemma by the following fact:

`ΣH
(
∧m

i=1 Lsiψi ∧
∧n

j=1 ¬Ltjψ
′
j) → L1(

∧m
i=1 Lsiψi ∧

∧n
j=1 ¬Ltjψ

′
j)

¤

Lemma 4.3.3. `ΣH
(Lrφ ∨ Lsψ) → L1(Lrφ ∨ Lsψ)
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Proof. Reason inside ΣH :

Lrφ → L1Lrφ

→ L1(Lrφ ∨ Lsψ)

Lsψ → L1(Lrφ ∨ Lsψ)

Lrφ ∨ Lsψ → L1(Lrφ ∨ Lsψ)

¤

Lemma 4.3.4. `ΣH
(Lrφ∧Lsψ) → L1(Lrφ∧Lsψ), and `ΣH

(Lrφ∧¬Lsψ) → L1(Lrφ∧
¬Lsψ)

Proof. The proof of the second part is similar to that of the first one. We only show

the first part. Reason inside ΣH :

Lrφ ∧ Lsψ → L1Lrφ ∧ L1Lsψ

→ L1Lrφ ∧ L1Lsψ ∧M1(Lrφ ∨ Lsψ)

→ L1(Lrφ ∧ Lsψ)

¤

Theorem 4.3.5. If φ is a Boolean combination of formulas of the form Lrψ, then

φ → L1φ is a theorem in ΣH .

Proof. Assume that φ is a Boolean combination of formulas of the form Lrγ and its

disjunctive normal form is
∨I

i=1

∧ki
j=1 πi

jLri
j
φi

j where πi
j is either blank or ¬. Reason inside

ΣH :
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I∨

i=1

ki∧

j=1

πi
jLri

j
φi

j →
I∨

i=1

L1(
ki∧

j=1

πi
jLri

j
φi

j)

→ L1(
I∨

i=1

ki∧

j=1

πi
jLri

j
φi

j)

¤

Fix the index vector (q, d, w) of the local language. Define

• Γ=0 := {γ=0 : γ=0 is the propositional part of some atom Γ(q, d, w)};
• Γ>0 := {γ>0 : γ>0 is the probability part of some atom Γ(q, d, w)};
• Φ=0 := {Φ=0 : φ=0 is the propositional part of some formula φ ∈ Φ(q, d, w)};
• Φ>0 := {φ>0 : φ>0 is the probability part of some formula φ ∈ Φ(q, d, w)}.

Observe that, for any φ>0 ∈ Φ>0, `ΣH
φ>0 → L1φ>0.

Lemma 4.3.6. For any γ=0 ∈ Γ=0 and γ>0 ∈ Γ>0, if γ=0 ∧ γ>0 is inconsistent, then

γ>0 → M0γ=0 is provable in ΣH .

Proof. Assume that γ=0 ∧ γ>0 is inconsistent. Reason inside ΣH :

γ>0 → ¬γ=0

L1γ>0 → L1¬γ=0

γ>0 → L1γ>0

γ>0 → L1¬γ=0

γ>0 → M0γ=0

¤

Lemma 4.3.7. Let Γ1,Γ2 and Γ3 be three atoms in Ω(q, d, w) and γ1, γ2 and γ3 be the

conjunctions of formulas in these three atoms, respectively. Their normal forms are φ1
=0 ∧

φ1
>0, φ2

=0 ∧ φ2
>0 and φ3

=0 ∧ φ3
>0. Then the following three propositions hold:
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(1) if both φ2
>0 and φ3

>0 are different from φ1
>0, then γ1 → M0(γ2 ∨ γ3) is provable in

ΣH ;

(2) if only one of them, say, φ2
>0, is different from φ1

>0, then

(a) γ1 → L
α

Γ1
φ3
=0

(γ2∨γ3)∧M
β

Γ1
φ3
=0

(γ2∨γ3) is provable in ΣH whenever αΓ1

φ3
=0

= βΓ1

φ3
=0

;

(b) γ1 → L
α

Γ1
φ3
=0

(γ2 ∨ γ3)∧¬M
α

Γ1
φ3
=0

(γ2 ∨ γ3)∧M
β

Γ1
φ3
=0

(γ2 ∨ γ3)∧¬L
β

Γ1
φ3
=0

(γ2 ∨ γ3) is

provable in ΣH whenever αΓ1

φ3
=0

< βΓ1

φ3
=0

;

(3) if none of these two is different from φ1
>0, then

(a) γ1 → L
α

Γ1
φ2
=0∨φ3

=0

(γ2 ∨ γ3) ∧M
β

Γ1
φ2
=0∨φ3

=0

(γ2 ∨ γ3) is a theorem of ΣH whenever

αΓ1

φ2
=0∨φ3

=0
= βΓ1

φ2
=0∨φ3

=0
;

(b) γ1 → L
α

Γ1
φ2
=0∨φ3

=0

(γ2∨γ3)∧¬M
α

Γ1
φ2
=0∨φ3

=0

(γ2∨γ3)∧M
β

Γ1
φ2
=0∨φ3

=0

(γ2∨γ3)∧¬L
β

Γ1
φ2
=0∨φ3

=0

(γ2 ∨ γ3) is a theorem of ΣH whenever αΓ1

φ2
=0∨φ3

=0
< βΓ1

φ2
=0∨φ3

=0
;

Proof. Assume that both φ2
>0 and φ3

>0 are different from φ1
>0. Reason inside ΣH :

γ1 → ¬φ2
>0

→ L1(¬φ2
>0)

→ M0(φ2
>0)

→ M0(φ3
>0)

→ M0(φ2
>0 ∨ φ3

>0)

→ M0(γ2 ∨ γ3)

Next we assume that only one of them, say, φ2
>0, is different from φ1

>0. From above, we

know that γ1 → M0γ2 is provable in ΣH .
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γ1 → φ3
>0

→ L1(φ3
>0)

→ L
α

Γ1
φ3
=0

(φ3
=0 ∧ φ3

>0)

→ L
α

Γ1
φ3
=0

(γ3)

→ L
α

Γ1
φ3
=0

(γ2 ∨ γ3)

→ M
β

Γ1
φ3
=0

(γ3)

→ M
β

Γ1
φ3
=0

(γ2 ∨ γ3)

→ L
α

Γ1
φ3
=0

(γ2 ∨ γ3) ∧M
β

Γ1
φ3
=0

(γ2 ∨ γ3)

Assume that none of these two is different from φ1
>0. Then φ1

>0 = φ2
>0 = φ3

>0. Reason

inside ΣH :

γ1 → φ2
>0

→ L1(φ2
>0)

→ L1(φ2
>0)

→ L1(φ3
>0)

→ Lα
φ2
=0∨φ3

=0

(φ2
>0 ∧ (φ2

=0 ∨ φ3
=0))

→ Lα
φ2
=0∨φ3

=0

((φ2
>0 ∧ φ2

=0) ∨ (φ3
>0 ∧ φ3

=0))

→ Lα
φ2
=0∨φ3

=0

(γ2 ∨ γ3)

→ Mβ
φ2
=0∨φ3

=0

(γ2 ∨ γ3)

→ Lα
φ2
=0∨φ3

=0

(γ2 ∨ γ3) ∧Mβ
φ2
=0∨φ3

=0

(γ2 ∨ γ3)

¤

Theorem 4.3.8. Probabilities of formulas in the extensions of higher depth are uniquely

determined by those in their restrictions of lower depth. Let Γ(q, d + 1, w) be a maximal
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consistent extension of Γ(q, d, w) ∈ Ω(q, d, w) by increasing its depth by 1 and the normal

form of Γ(q, d, w) is φ=0 ∧φ>0. Define Γ(q, 1, d) := Γ(q, d, w)∩Φ(q, 1, d). Assume that φ is

a formula in Φ(q, d, w) and it is tautologically equivalent to the disjunction of the following

normal forms:

φ1
=0 ∧ φ1

>0, φ
2
=0 ∧ φ2

>0, · · · , φn
=0 ∧ φn

>0.

In addition, we assume that the first m(≤ n) probability parts are the same as φ>0 and

other probability parts are different, i.e.

φi
>0 = φm

>0(1 ≤ i ≤ m) and φj
>0 6= φm

>0(m + 1 ≤ j ≤ n)

Then α
Γ(q,d+1,w)
φ = α

Γ(q,1,w)Wm
i=1 φi

=0
and β

Γ(q,d+1,w)
φ = β

Γ(q,1,w)Wm
i=1 φi

=0
. That is to say, Γ(q, d, w) has one

and only one maximal consistent extension in Ω(q, d + 1, w), which is Γ(q, d + 1, w).

Theorem 4.3.9. Assume that Γ1(q, d, w) and Γ2(q, d, w)(d ≥ 1) are two atoms in

Ω(q, d, w), and Γ1(q, d + k,w) and Γ2(q, d + k, w) are maximal consistent extensions in

Ω(q, d + k, w) of Γ1(q, d, w) and Γ2(q, d, w), respectively. If the normal forms of Γ1(q, d, w)

and Γ2(q, d, w) have the same probability parts, then the normal forms of Γ1(q, d+k, w) and

Γ2(q, d + k, w) also have the same probability parts.

Corollary 4.3.10. Any atom Γ(q, d, w) ∈ Ω(q, d, w)(d ≥ 1) has one and only one

maximal consistent extension in Ω(q, d + k, w) for any k ≥ 0. More precisely, it is the

probability part of the normal form of Γ(q, d, w) that uniquely determines the probability

part(s) of its maximal consistent extension(s) in Ω(q, d + k, w).

4.4. A Conservation Result

Theorem 4.4.1. For any formula ψ of depth ≤ 1, if `ΣH
ψ, then `Σ+ ψ.

Proof. It suffices to show that, for any formula of depth 1, if it is consistent in Σ+,

then so is it in ΣH . Assume that ψ is a Σ+-consistent formula of depth 1. Then it is

contained in a maximal Σ+-consistent set Γ0(q, 1, w) ∈ Ω(q, 1, w) of formulas for some q

and w where Ω(q, 1, w) is the set of all maximal Σ+-consistent set of formulas in Φ(q, 1, w).

Recall that Ω(1, 0, w) denotes the set of all formulas of depth 0 with propositional letters
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p1, · · · , pw and Γ0(q, 0, w) denotes the set Γ0(q, 1, w) ∩ Φ(q, 0, w).i.e. the set of formulas of

depth 0 in Γ0(q, 1, w).

Now we define a Harsanyi type space on Ω(q, 0, w). Consider Γ0(q, 0, w), which is an element

of Ω(q, 0, w). We have shown that there is a probability measure T (Γ(q, 0, w)) at Γ(q, 0, w)

such that, for any formula φ ∈ Φ(q, 0, w),

(1) if α
Γ0(q,1,w)
φ = β

Γ0(q,1,w)
φ , then T (Γ0(q, 0, w))([φ]) = α

Γ0(q,1,w)
φ ;

(2) if α
Γ0(q,1,w)
φ < β

Γ0(q,1,w)
φ , then α

Γ0(q,1,w)
φ < T (Γ0(q, 0, w))([φ]) < β

Γ0(q,1,w)
φ ;

For other atoms ∆(q, 0, w) ∈ Ω(q, 0, w), define T (∆(q, 0, w)) = T (Γ0(q, 0, w)) and further

the canonical model M(q, 0, w) := 〈Ω(q, 0, w), 2Ω(q,0,w), T, ν〉 where ν(p) = {∆(q, 0, w) ∈
Ω(q, 0, w) : p ∈ ∆(q, 0, w)}. M(q, 0, w) is a Harsanyi type space. Indeed, for any atom

∆(q, 0, w), [T (∆(q, 0, w))] = Ω(q, 0, w) and hence T (∆(q, 0, w))([T (∆(q, 0, w))]) = 1.

Claim 4.4.2. M(q, 0, w), Γ0(q, 0, w) |= ψ.

It suffices to show that, for any formula φ ∈ Φ(q, 1, d), M(q, 0, d), Γ0(q, 0, d) |= φ iff

φ ∈ Γ0(q, 1, d). It is easy to check that this is true for the base case and the Boolean

cases. Now we show the nontrivial case. Assume that M(q, 0, d), Γ0(q, 0, d) |= Lrφ
′.

T (Γ0(q, 0, d))([[φ′]]) ≥ r. Note that φ′ is a formula of depth 0. Obviously, [[φ′]] = [φ′]. So

T (Γ0(q, 0, d))([φ′]) ≥ r. If α
Γ0(q,1,w)
φ′ = β

Γ0(q,1,w)
φ′ , then α

Γ0(q,1,w)
φ′ = T (Γ0(q, 0, d))([φ′]) ≥ r.

This implies that Lrφ
′ ∈ Γ0(q, 1, d). If α

Γ0(q,1,w)
φ′ < β

Γ0(q,1,w)
φ′ , then α

Γ0(q,1,w)
φ′ < T (Γ0(q, 0, d))

([φ′]) < β
Γ0(q,1,w)
φ′ . This also implies that Lrφ

′ ∈ Γ0(q, 1, d). For the other direction, as-

sume that Lrφ
′ ∈ Γ0(q, 1, w). It follows that r ≤ α

Γ0(q,1,d)
φ′ . Moreover, T (Γ0(q, 0, d))([φ′]) ≥

α
Γ0(q,1,d)
φ′ . So T (Γ0(q, 0, d))([φ′]) ≥ r and hence by induction hypothesis T (Γ0(q, 0, d))([[φ′]])

≥ r.

We have shown that ψ is satisfiable in a Harsanyi type space. According to the above

completeness theorem, ψ is ΣH -consistent.

¤
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Theorem 4.4.3. The probability part and the propositional part of any normal forms in

ΣH are independent of each other in the following sense: for any normal form γ(q, d, r)(γ=0

and γ>0 are its propositional part and probability part, respectively) in ΣH and for any ΣH-

consistent formula φ of depth 0, φ ∧ γ>0 is consistent.

Proof. Fix a consistent formula φ of depth 0 and a normal form γ(q, d, w) that is

tautologically equivalent to the conjunction of all the formulas in some atom Γ(q, d, w) ∈
Ω(q, d, w). Let γ=0 and γ>0 be its propositional part and probability part, respectively.

Since φ is consistent, it is a conjunct of the propositional part φ=0 of some normal form. It

suffices to show that φ=0 ∧ γ>0 is ΣH -consistent. Γ(q, 1, d) denotes Γ(q, d, w) ∩ Φ(q, 1, w).

Suppose that γ=0(q, 1, w) and γ>0(q, 1, w) are the propositional part and the probability part

of the normal form of Γ(q, 1, d). From one previous independence result, we know that φ=0∧
γ>0(q, 1, w) is Σ+-consistent. According to the above conservation result, φ=0∧γ>0(q, 1, w)

is ΣH -consistent. Moreover, it is a normal form of some atom Γ′(q, 1, w). But Γ′(q, 1, w)

has a unique maximal consistent extension Γ′(q, d, w) in Ω(q, d, w). Since the normal forms

of Γ(q, 1, w) and Γ′(q, 1, w) have the same probability parts, the normal forms of Γ(q, d, w)

and Γ′(q, d, w) have the same probability parts, too. That is to say, the probability part

of the normal form of Γ′(q, d, w) is also γ>0. In addition, its propositional part is φ=0. So,

φ=0 ∧ γ>0 is ΣH -consistent.

¤

The following figure illustrates the maximal consistent extensions in ΣH . The first step

maximal consistent extensions from > in ΣH is the same as that in Σ+ because the set of

maximal ΣH -consistent sets of formulas of depth ≤ 1 is the same as that of maximal Σ+-

consistent sets of formulas of depth ≤ 1. But after that, any atom has only one maximal

consistent extension, which is illustrated in the figure by demonstrating that each node from

the second step has only one descendant.
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CHAPTER 5

Adding Knowledge to Belief

Aumann’s knowledge-belief semantic systems are conservative extensions of Harsanyi type

spaces by including knowledge operators in the languages. They have played an important

role in game theory with incomplete information [2]. In this section, we add knowledge

operators to our probability logic to get a complete axiomatization with respect to Aumann’s

semantics for knowledge and belief. Just as we did for the probability logic of Harsanyi

type spaces, we show that, in our knowledge-belief deductive system, each atom in a finite

language has only one maximal consistent extension if we keep the accuracy and the width

of the language the same. This result is an indication of the relative simplicity of the

one-person interactive epistemology. Moreover, despite the infinitary flavor of common

knowledge, it can also be finitely axiomatized [15]. The forthcoming handbook chapter [5]

offers a panorama of epistemic logic.

5.1. Interactive Epistemology: Knowledge

The syntax of our logic for knowledge is similar to that of modal logic. We start with a

fixed infinite set P := {p1, p2, · · · } of propositional letters. We also use p, q, · · · to denote

propositional letters. The set of formulas Φ is built from propositional letters as usual

by connectives ¬,∧ and a modality operator K, which is the initial letter of the word

knowledge. In other words, a formula φ is formed by the following syntax:

φ := p | ¬φ | φ1 ∧ φ2 | Kφ.

A knowledge frame F is a tuple 〈Ω, R〉 where Ω is a Kripke frame and R is an equivalence

relation. A knowledge model M on the frame F is a tuple 〈Ω, R, v〉 where 〈Ω, R, v〉 is a

knowledge frame and v is a valuation such that v(p) ∈ 2Ω for any propositional letter p.

The forcing relation |= between states and formulas are defined inductively as follows:

108
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• M,w |= p if w ∈ v(p) for propositional letters p;

• M,w |= φ1 ∧ φ2 if M, w |= φ1 and M,w |= φ2;

• M,w |= ¬φ if M, w 6|= φ;

• M,w |= Kφ if, for any w′ such that wRw′, M, w′ |= φ.

φ is valid in the knowledge model M if M,w |= φ for all states w ∈ M . φ is valid in a

knowledge frame F if it is valid in all models on the frame. φ is valid in a class of knowledge

frames if it is valid in all the frames in the class. It is well known that the following set of

axiom schemata and inference rules provides a sound and complete axiomatization for the

logic of knowledge with respect to the above class of knowledge frames:

• All instances of propositional tautologies;

• K : K(φ → ψ) → (Kφ → Kψ);

• T : Kφ → φ;

• 4 : Kφ → KKφ;

• 5 : ¬Kφ → K¬Kφ;

• Modus Ponens: From φ and φ → ψ infer ψ;

• Generalization: From φ infer Kφ.

The names K,T,4,5 are standard in modal logic. T says that if the agent knows something,

it should be true. 4 and 5 says that the agent knows that he knows or not. For completeness,

we will present the proof of the soundness and completeness of the above system with respect

to the class of knowledge frames.

Theorem 5.1.1. φ is valid in the class of knowledge frames if and only if `S5 φ1

Proof. It is easy to show the soundness. Here we only prove the completeness. Assume

that φ is consistent. Now we need to show that φ is satisfiable in a knowledge model. Let

Sub(φ) be the smallest set of formulas that includes all subformulas of φ and is closed

under simple negation, i.e. ¬ψ ∈ Sub(φ) iff ψ ∈ Sub(Φ). Define Ω as the set of all maximal

consistent subsets s of Sub(φ). Elements of Ω are called atoms. And they are also states of

1This is actually weak completeness. From this system, strong completeness also holds.
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the following canonical model. Let k be the set function from Ω to 2Sub(φ): for each atom

s, k(s) is the subset of s of formulas of the form Kψ or ¬Kψ. Define sRt if k(s) = k(t). It

is easy to check that R is indeed an equivalence relation on Ω. v(p) = {s ∈ Ω : p ∈ s}. Let

M := 〈Ω, R, v〉. It remains to show the following truth lemma:

(Truth Lemma) For any ψ ∈ Sub(φ), M, s |= ψ iff ψ ∈ s.

We prove the truth lemma on the structural complexity of ψ. The only case that we need to

take seriously is ψ := Kψ′. Assume that M, s |= Kψ′. Now we show that Kψ′ ∈ s. Suppose

that Kψ′ 6∈ s. It follows that ¬Kψ′ ∈ s. Therefore, k(s) ∪ {¬ψ′} is consistent because,

otherwise, `S5 k(s) → ψ′ and `S5 k(s) → K(ψ′) and hence Kψ′ ∈ s, which contradicts

the assumption that Kψ′ 6∈ s. So, Kψ′ ∈ s. Next we show the other direction. Assume

that Kψ′ ∈ s. We need to show that M, s |= Kψ′. There is an atom s′ such that sRs′, i.e.

k(s) = k(s′). Then Kψ′ ∈ s′. Since Kψ′ → ψ′ is an axiom of S5, ψ′ ∈ s′. By induction

hypothesis, we know that M, s′ |= ψ′. So M, s |= Kψ′. We have finished the proof of the

truth lemma and hence the theorem.

¤

5.2. Aumann’s Knowledge-belief System

Now we combine the syntaxes of S5 and Σ+ to get a sound and complete axiomatization

of the logic of knowledge and probability with respect to the class of knowledge-probability

frames. Formally, a formula φ is formed by the following syntax:

φ := p | ¬φ | φ1 ∧ φ2 | Kφ | Lrφ

where r is a rational between 0 and 1. ΣS5 denote the system Σ+ + S5. Since there is

a well-known one-to-one correspondence between equivalence relations and partitions, we

will use them alternatively. Let R be an equivalence relation on Ω and Π be the associated

partition of Ω. A choice function c on the partition Π (or on R) is a function from Ω to Ω

such that

for any states w1 ∈ Π(w2), c(w1) = c(w2) ∈ Π(w2).

Definition 5.2.1. A knowledge-probability frame F is a tuple 〈Ω, R, c,A, T 〉 where
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• 〈Ω, R〉 is a knowledge frame;

• 〈Ω,A, T 〉 is a probability frame;

• the choice function c is A-measurable.

A knowledge-probability model M is a tuple 〈Ω, R,A, T, v〉 where 〈Ω, R,A, T 〉 is a knowledge-

probability frame and v is a valuation such that v(p) ∈ A for all propositional letters p.

The following is the main theorem in this section. A variant of the same result can be found

in [14].

Theorem 5.2.2. A formula φ is valid in the class of knowledge-probability frame iff

`ΣS5
φ.

Proof. (Sketch) The soundness is easy to check. Here we only show the completeness.

Assume that φ is consistent. Here we extend the definition of dp(φ) to include the following

one more clause:

• dp(Kψ) = dp(ψ) + 1.

Similarly define the local language L[φ] to be the same as in [17] except that we count the

depth in K. Note that formulas here are actually equivalence classes under the tautological

equivalence. Such a defined language L[φ] gives rise to a set of maximal consistent subsets

and it is denoted by Ω, which will be the carrier set of our following canonical model.

Elements in Ω are also called atoms. Using propositional reasoning, we can show that the

conjunction of formulas in each atom Γ is equivalent to a conjunctive formula φ0 ∧φK ∧φP

where φ0 is a conjunction of propositional letters, φK a conjunction of formulas of the forms

Kψ or ¬Kψ and φP a conjunction of formulas of the forms Lrψ or ¬Lrψ. This modularity

in atoms reflects the modularity of our axiomatization of the knowledge-probability system.

Define the knowledge accessibility relation R as usual: Γ1RΓ2 if k(Γ1) = k(Γ2). In order to

define the type function T , we constantly increase just the accuracy of the local langauge

L[φ]. When the accuracy goes to infinity, we will get a definition of T at this level. The

proof of the completeness is also a combination of those for knowledge and for probability.

¤
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Aumann’s interactive epistemology deals with the logic of knowledge and belief when there

is more than one agent. First we handle the simplest case when there is only one agent. As

you may expect, there should be some conditions that connect knowledge with probability.

Definition 5.2.3. A knowledge-belief fame F is a tuple 〈Ω, R, c,A, T 〉 where 〈Ω, R〉 is

a knowledge frame and 〈Ω,A, T 〉 is a probability frame such that

• c is a A-measurable function, or for any A ∈ A, {w : Π(w) ⊆ A} ∈ A;

• T (w)(Π(w)) = 1 for all w ∈ Ω;

• For any s ∈ Π(t), T (s) = T (t).

A knowledge-belief model M on the frame F is a tuple 〈Ω, R,A, T, v〉 where v is a valuation

such that v(p) ∈ A for all propositional letters p.

Let Σkb be the system ΣS5 with the following additional axioms which deal with the inter-

action between knowledge and belief:

• Kφ → L1φ;

• Lrφ → L1Lrφ;

• ¬Lrφ → L1¬Lrφ.

The first axiom says that, if the agent knows something, he believes it with certainty. The

second and the third say that the agent knows his probability distribution. Our main task

is to show the soundness and completeness of Σkb.

Theorem 5.2.4. φ is valid in the class of all knowledge-belief frames if and only if

`Σkb
φ.

Proof. Soundness is straightforward. Now we only show the completeness. Assume

that φ is consistent. We want to prove that φ is satisfiable in a knowledge-belief frame. As

usual, we define a local language L[φ] and it induces a set Φ[φ] of formulas in this local

language. Define Ω to be the set of all maximal consistent subsets of Φ[φ]. Elements of Ω

are called atoms. For each atom s, k(s) denotes the subset of s consisting of all formulas of

the forms Kψ,¬Kψ, Lrψ or ¬Lrψ and l(s) denotes the subset of s consisting of formulas

only of the forms Lrψ or ¬Lrψ. Define sRt if k(s) = k(t). It is easy to see that R is an
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equivalence relation. Let Π denote the partition associated with this equivalence relation R.

It is easy to see that sRt if and only if s ∈ Π(t). The definition of T is totally determined

by the subset l(s) for any atom s. In order to define T at all atoms s with the same l(s),

we choose one, say s0, among these atoms and fix it. Then, by applying the same technique

as in the completeness proof for Σ+ and ΣH , we can define a probability measure T (s0)

and set probability measures at all other atoms s with the same l(s) = l(s0) to be the same

as T (s0). That is to say, T (s) = T (s0) if l(s) = l(s0). Such defined partition Π and type

function T satisfy the following frame conditions:

• for any atoms s and t ∈ Ω, if s ∈ Π(t), then T (s) = T (t);

• for any atom s ∈ Ω, T (s)(Π(s)) = 1.

The first part follows from the fact that, for any atoms s and t, k(s) = k(t) implies l(s) =

l(t). For the second part, it suffices to show that Lr → L1Lrψ,¬Lrψ → L1¬Lrψ, Kψ →
L1Kψ and ¬Kψ → L1¬Kψ are provable in Σkb. These are obvious. Define the canonical

model M := 〈Ω, R, 2Ω, T, v〉 where v(p) := {s ∈ Ω : p ∈ s}. It remains to show the truth

lemma:

(Truth Lemma) for any formula ψ ∈ Φ(φ), M, s |= ψ iff ψ ∈ s.

The proof for the base case and Boolean cases are straightforward and the proof for the

probability case is the same as that in ΣH . Here we only show the case: ψ := Kψ′. Assume

that M, s |= Kψ′. We want to show that Kψ′ ∈ s.

Claim 5.2.5. If Kψ′ 6∈ s, k(s) ∪ {¬ψ′} is consistent.

Proof of the claim Suppose that k(s)∪{¬ψ′} is inconsistent. It follows that
∧

k(s) → ψ′ is

provable and hence K(
∧

k(s)) → Kψ′ is provable. Note that
∧

k(s) → K(
∧

k(s)) is prov-

able because K(ψ1) ∧K(ψ2) → K(ψ1 ∧ ψ2),Kχ → KKχ,¬Kχ → K¬Kχ, Lrχ → KLrχ

and ¬Lrχ → K¬Lrχ are all provable. These implies that
∧

k(s) → Kψ′ is provable. Since

Kψ′ ∈ Φ(φ), Kψ′ ∈ s. So we have finished the proof of the claim.
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Suppose that Kψ′ 6∈ s. By the above claim, we know that k(s) ∪ {¬ψ′} is consistent. So

there is an atom s′ such that k(s)∪{¬ψ′} ⊆ s′. This implies that sRs′ and ψ′ 6∈ s′ and hence

by induction hypothesis M, s′ 6|= ψ′. So there is an atom s′ such that sRs′ and M, s′ 6|= ψ′.

Therefore, M, s 6|= Kψ′, which contradicts our assumption that M, s |= Kψ′. We conclude

that Kψ′ ∈ s.

The other direction is much easier to show. Assume that Kψ′ ∈ s. We want to show that

M, s |= Kψ′. For any atom s′ such that sRs′, i.e.k(s) = k(s′) and ψ′ ∈ s′. Indeed, Kψ′ ∈ s′

and ψ′ ∈ s′ because of the truth axiom Kψ′ → ψ′. That is to say, M, s |= Kψ′. We have

finished the proof of the other direction of the truth lemma and hence of the whole theorem.

¤

Recall that ΣH is the probability logic for Harsanyi type spaces. After we have shown the

above theorem, it follows immediately that Σkb is conservative over ΣH .

Corollary 5.2.6. Let LH and Lkb be the languages for the logics ΣH and ΣkB, respec-

tively. For any formula φ in the smaller language LH , `Σkb
φ if and only if `ΣH

φ.

Just like in our logic for Harsanyi type spaces, we show that each maximal consistent set

Γ of formulas has one and only one maximal consistent extension in the language that is

expanded only by increasing the depth by 1.

Lemma 5.2.7. If φ is a Boolean combination of formulas of the forms Lrψ or Kψ′, then

φ → Kψ (and hence φ → L1ψ) is provable in Σkb.

Proof. In order to show this lemma, we need the following reasoning:

Kψ → KKψ

→ L1Kψ

¤
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Recall that Ω(q, d, w) is the set of all maximal consistent sets of formulas in the language

L(q, d, w). By using propositional reasoning, we can easily show that, for each atom Γ ∈
Ω(q, d, w), the conjunction of formulas in it has the following normal form γ0∧γk∧γp where

γ0 is a conjunction of propositional letters or their negations, γk the conjunction of formulas

of the forms Kψ′ or their negations, and γp the conjunction of formulas of the forms Lrψ
′

or their negations.

Theorem 5.2.8. Let Γ1, Γ2 and Γ3 be three atoms in Ω(q, d, w) and γ1, γ2 and γ3 be

the conjunctions of formulas in these three atoms, respectively. Their normal forms are

φ1
0 ∧ φ1

k ∧ φ1
p, φ2

0 ∧ φ2
k ∧ φ2

b and φ3
0 ∧ φ3

k ∧ φ3
p. Then the following three propositions hold:

(1) if both φ2
k ∧ φ2

b and φ3
k ∧ φ3

p are different from φ1
k ∧ φ1

p, then γ1 → M0(γ2 ∨ γ3) is

provable in Σkb;

(2) if only one of them, say, φ2
k ∧ φ2

p, is different from φ1
k ∧ φ1

p, then

(a) γ1 → L
α

Γ1
φ3
0

(γ2 ∨ γ3) ∧M
β

Γ1
φ3
0

(γ2 ∨ γ3) is provable in Σkb whenever αΓ1

φ3
0

= βΓ1

φ3
0
;

(b) γ1 → L
α

Γ1
φ3
0

(γ2 ∨ γ3) ∧ ¬M
α

Γ1
φ3
0

(γ2 ∨ γ3) ∧ M
β

Γ1
φ3
0

(γ2 ∨ γ3) ∧ ¬L
β

Γ1
φ3
0

(γ2 ∨ γ3) is

provable in Σkb whenever αΓ1

φ3
0

< βΓ1

φ3
0
;

(3) if none of these two is different from φ1
k ∧ φ1

p, then

(a) γ1 → L
α

Γ1
φ2
0∨φ3

0

(γ2∨γ3)∧M
β

Γ1
φ2
0∨φ3

0

(γ2∨γ3) is a theorem of Σkb whenever αΓ1

φ2
0∨φ3

0
=

βΓ1

φ2
0∨φ3

0
;

(b) γ1 → L
α

Γ1
φ2
=0∨φ3

0

(γ2∨γ3)∧¬M
α

Γ1
φ2
0∨φ3

0

(γ2∨γ3)∧M
β

Γ1
φ2
0∨φ3

0

(γ2∨γ3)∧¬L
β

Γ1
φ2
0∨φ3

0

(γ2∨γ3)

is a theorem of Σkb whenever αΓ1

φ2
0∨φ3

0
< βΓ1

φ2
0∨φ3

0
;

Proof. The proof here is similar to that in probability logic for Harsanyi type spaces.

We exploit the theorem that Kψ → L1Kψ is provable in Σkb. ¤

The following lemmas is a generalization of Aumann’s results to include probability formu-

las.

Lemma 5.2.9. K(φ1∨Kφ2∨¬Kφ3∨Lrφ4∨¬Lsφ5) ↔ (Kφ1∨Kφ2∨¬Kφ3∨Lrφ4∨¬Lsφ5)

is provable in Σkb.
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Proof. For the direction from left to right, we need the axioms: Kφ2 → KKφ2,¬Kφ3

→ K¬Kφ3, Lrφ4 → KLrφ4 and ¬Lsφ5 → K¬Lsφ5.

For the other direction, we use metareasoning. Assume that K(φ1 ∨Kφ2 ∨¬Kφ3 ∨Lrφ4 ∨
¬Lsφ5). Of course, φ1 ∨Kφ2 ∨ ¬Kφ3 ∨Lrφ4 ∨ ¬Lsφ5. If Kφ2,¬Kφ3, Lrφ4 or ¬Lsφ5, then

we are done. Otherwise, ¬Kφ2,Kφ3,¬Lrφ4 and Lsφ5. This implies that K(¬Kφ2 ∧Kφ3 ∧
¬Lrφ4∧Lsφ5). Since K(φ1∨Kφ2∨¬Kφ3∨Lrφ4∨¬Lsφ5), K(φ1∧ (¬Kφ2∧Kφ3∧¬Lrφ4∧
Lsφ5)). Immediately, we have K(φ1) and hence Kφ1 ∨Kφ2 ∨ ¬Kφ3 ∨ Lrφ4 ∨ ¬Lsφ5.

¤

Corollary 5.2.10. Let φ be a conjunction of formulas of the forms Kψ, Lrψ
′ or their

negations. Then, for any formula φ′, K(φ′ ∨ φ) ↔ (Kφ′ ∨ φ) is provable in Σkb.

Theorem 5.2.11. (Normal Form Theorem) Any formula in the language Lkb is equiv-

alent to a conjunction of formulas of the following form

γ0 ∧
∧m

i=1 Lriφi ∧
∧n

j=1 ¬Lsjψj ∧Kγ1 ∧ ¬Kγ2

where γ0, γ1 and γ2 are Boolean combinations of propositional letters.

Proof. Given a formula φ in the language Lkb, we know by using propositional rea-

soning that it has a disjunctive normal form. Here we concentrate only on one of its

conjunctions

γ0 ∧
∧m

i=1 Lriφi ∧
∧n

j=1 ¬Lsjψj ∧Kφ1 ∧ ¬Kφ2

Note that φ1 and φ2 are not necessarily Boolean combinations of propositional letters. It

suffices to show that Kφ1 is equivalent to Kγ1 and ¬Kφ2 is equivalent to ¬Kγ2 for some

formulas γ1 and γ2 which are of depth 2. According to propositional reasoning, φ1 is

equivalent to a conjunction of disjunctions:

γ ∨∨m
i=1 Lriφi ∨

∨n
j=1 ¬Lsjψj ∨

∨m′
k=1 Kδtk ∨

∨n′
l=1 ¬Kτul

where γ is of depth 0. From the above lemmas, it follows that Kφ1 is equivalent to the

corresponding conjunction of the following disjunctions:
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Kγ ∨∨m
i=1 Lriφi ∨

∨n
j=1 ¬Lsjψj ∨

∨m′
k=1 Kδtk ∨

∨n′
l=1 ¬Kτul

Next we reduce Kδtk and ¬Kτul
. Note that the lengths of δtk and τul

are both smaller than

that of φ1. So we can repeat the above procedure. Finally, we can reduce to formulas all

of whose K formulas of depth 1. Similarly, we can reduce Kφ2 to formulas all of whose

K-formulas are of depth 1. After we finish all these reductions to get a formula whose K

formulas are of depth 1, its disjunction normal form satisfies the requirement.

¤

Corollary 5.2.12. Each atom Γ(q, d, w) ∈ Ω(q, d, w)(d ≥ 1) has one and only one

maximal consistent extension in Ω(q, d + k, w)(k ≥ o).

Proof. Suppose that Γ(q, d, w) has two maximal consistent extensions Γ1(q, d + k, w)

and Γ2(q, d + k, w) in Ω(q, d + k, w). According to the above normal form theorem, the

conjunctions of formulas in Γ1(q, d + k, w) and Γ2(q, d + k,w) are equivalent to

• γ1
0 ∧

∧
i Lriφ

1
i ∧

∧
j ¬Lsjψ

1
j ∧Kγ1

1 ∧ ¬Kγ1
2 , and

• γ2
0 ∧

∧
i Lriφ

2
i ∧

∧
j ¬Lsjψ

2
j ∧Kγ2

1 ∧ ¬Kγ2
2 , respectively.

Since both are maximal consistent extensions of Γ(q, d, w), Kγ1
1 ∧¬Kγ1

2 ↔ Kγ2
1 ∧¬Kγ2

2 is

provable in Σkb. Moreover, their probability parts are determined by the probability part

of Γ(q, d, w). Therefore the conjunction of formulas in Γ1(q, d + k, w) is equivalent to the

conjunction of formulas in Γ2(q, d + k,w). So Γ(q, d, w) ∈ Ω(q, d, w)(d ≥ 1) has one and

only one maximal consistent extension in Ω(q, d + k,w)(k ≥ o).

¤

This corollary shows the simplicity of one-agent epistemology.

5.3. Adding Common Knowledge

Now we discuss the epistemology among several agents. Let I be the population, which

is finite. Correspondingly, we associate i with knowledge and belief operators. Ki and
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Li
r
2 are intended to mean “the agent i knows” and “i assigns probability at least r”, re-

spectively. The indexes i’s in knowledge frames and probability frames also indicate the

agents. Note that, in the knowledge-probability frame 〈Ω, (Πi)i∈I , (ci)i∈I ,A, (Ti)i∈I〉, dif-

ferent agents share the same σ-algebra. Since we deal with a group of agents, we can

define an additional operator E : Eφ :=
∧

i∈I Kiφ. It means that “everyone in the group

knows”. Further we add to our language an “infinitary” operator C. Cφ is intended to be
∧∞

n=1 E(n)φ, where E(n)φ := E(E(n−1)φ).

Lemma 5.3.1. If A ∈ A, then E−1(A) := {w : Πi(w) ⊆ A for all i ∈ I} ∈ A and

hence C−1(A) :=
⋂∞

i=1 E−n(A) ∈ A where E−n(A) is defined inductively as E−n(A) :=

E−1(E−(n−1)(A)).

Proof. This follows directly from the facts that ci are all measurable and A is closed

under countable intersection.

¤

A state t is reachable from s in k steps if there exist states s0, s1, · · · , sk such that s0 =

s, sk = t and for all j with 0 ≤ j ≤ j − 1, there exists an agent ij ∈ I such that (sj , sj+1) ∈
Rij . We say that t is reachable from s if t is reachable from s in k steps for some k ≥ 1.

Lemma 5.3.2. (1) If (M, s) |= Eφ iff (M, t) |= φ for all t such that sRit for all

i ∈ I;

(2) if (M, s) |= Cφ iff (M, t) |= φ for all t that is reachable from s.

Another important thing that we need to note is that, if [[φ]] is measurable, i.e. in A, then

[[Eφ]] ∈ A and [[Cφ]] ∈ A. This follows directly from the above two lemmas. There is

another more natural interpretation of common knowledge. Let Ki be the set of unions

of atoms of the partition Πi, which are called unfields of agents i. Define Kc to be the

intersection of Ki(i ∈ I). Πc denotes the partition associated with this ufield.

2This is the price that we have to pay for the notation from Heifetz and Mongin [17]. Other logicians

use Lr
i .
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Lemma 5.3.3. Let {An}n is a decreasing sequence of events in A. For all i ∈ I,

K−1
i (

⋂
n An) =

⋂
n K−1

i (An).

Theorem 5.3.4. If A ∈ A, then C−1(A) is the largest event in Kc that is included in

A. That is, C−1(A) = {w ∈ Ω : Πc(w) ⊆ A}.

Proof. Assume that Πc(w) ⊆ A. It follows that Πc(w) = E−1(Πc(w)) ⊆ E−1(A). By

iterating this argument, we will get:

Πc(w) = E−n(Πc(w)) ⊆ E−n(A) for all n ≥ 1.

This implies that w ∈ Πc(w) ⊆ ⋂
n E−n(A) = C−1(A). We have shown that C−1(A) ⊇

{w ∈ Ω : Πc(w) ⊆ A}.

Now we show the other direction. But first we prove a claim:

Claim 5.3.5. C−1(A) ∈ Ki for all i ∈ I.

Note that

C−1(A) ⊆ ⋂
n≥2 E−1(E−(n−1)(A)) ⊆ ⋂

n≥2 K−1
i (E−(n−1)(A)) ⊆

K−1
i (

⋂
n≥2(E

−(n−1)(A))) ⊆ K−1
i (

⋂
n≥1(E

−n)(A))) ⊆ K−1
i (C−1(A)) ⊆ C−1(A).

This implies that C−1(A) = K−1
i (C−1(A)) ∈ Ki for all i ∈ I and hence C−1(A) ∈ Kc.

Moreover, C−1(A) ⊆ A. Indeed, C−1(A) ⊆ K−1
i (A) ⊆ A. Therefore, C−1(A) ⊆ {w ∈ Ω :

Πc(w) ⊆ A}. We have finished the proof of the theorem.

¤

Corollary 5.3.6. C−1 is a knowledge operator with the associated knowledge ufield

Kc: for any A ∈ A,

(1) C−1(A) ⊆ A;

(2) C−2(A) = C−1(A);

(3) C−1(Ω− C−1(A)) = Ω− C−1(A).

Corollary 5.3.7. s ∈ Πc(t) if and only if t is reachable from s.
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A c-knowledge-belief frame Fc is a tuple 〈Ω, (Π)i∈I , Πc, (ci)i∈I ,A, (Ti)i∈I〉 where

• 〈Ω, Πi, ci,A, Ti〉 is a knowledge-belief frame for each agent i;

• Πc is the partition associate with the common knowledge operator.

Now we want to devise a formal system for the above semantics. Although C has an

infinitary flavor, we can use a finite machinery to axiomatize it. The deductive system Σckb

is the system Σkb plus the following two axioms for common knowledge3:

(1) Cφ → E(φ ∧ Cφ);

(2) From φ → E(ψ ∧ φ) infer φ → Cψ.

The rest of this section is devoted to show the following theorem:

Theorem 5.3.8. For any formula φ, φ is valid in the class of c-knowledge-belief frames

iff `Σckb
φ.

Proof. The proof of the soundness is straightforward. Now we only show the com-

pleteness. Assume that φ is consistent. We want to prove that it is satisfiable in a c-

knowledge-belief frame. Since we have to deal with the common knowledge operator C,

our filtration will be a combination of the usual filtration method for knowledge and our

filtration method for probabilities. Define Sub(φ) to the set of all subformulas of φ that

is closed under simple negation and that contains E(ψ ∧ Cψ), ψ ∧ Cψ, Ki(ψ ∧ Cψ)(i ∈ I)

for each subformula Cψ of φ. Let q be the smallest common denominator of the indexes

appearing in φ and Qq is the set of multiples of 1
q between 0 and 1. Φ(φ) denote the smallest

superset of Sub(φ) that satisfies the following condition:

• if Li
rψ ∈ Φ(φ), then Li

tψ ∈ Φ(φ) for all t ∈ Qq.

First note that Φ(φ) is finite. Ω denotes the set of all maximal consistent subsets of Φ(φ).

For an atom w, define ki(w) consisting of all formulas in w of the form Kiψ or ¬Kiψ and

li(w) consisting of all formulas in w of the form Li
rψ or ¬Li

rψ. Moreover, we define

• s ∈ Πi(t) iff ki(s) = ki(t) and li(s) = li(t);

• Ti as in the section for Σ+;

3These axioms are due to Segerberg for PDL.
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• A := 2Ω;

• arbitrary choice function will work for the following completeness proof because

the space is finite;

• Πc is the finest common coarsening of Πi for i ∈ I;

• v(p) = {s ∈ Ω : p ∈ s}.

It is easy to check that such a defined frame Fc := 〈Ω, (Πi)i∈I ,Πc, (ci)i∈I ,A, (Ti)i∈I〉 is a

c-knowledge-belief frame especially,

• Ti(w)(Πi(w)) = 1;

• if s ∈ Πi(t), then Ti(s) = Ti(t).

It remains to show the truth lemma:

(Truth Lemma) for all ψ ∈ Φ(φ), (Fc, v), s |= ψ if and only if ψ ∈ s.

It is trivial for the base case and the boolean cases. For the probability case, the proof is

similar to that in the truth lemma for Σ+. For the knowledge case, the proof is the same as

that in the proof for Σkb. We only need to show the case for common knowledge: ψ := Cψ′.

The following proof is a generalization of the proof in [14] for common knowledge to our case

including probability. If S is a set of formulas, φS denotes the conjunction of the formulas

in S.

Assume that Cψ′ ∈ s. We want to show that (Fc, v), s |= Cψ′. It suffices to show that for any

t reachable from s, (Fc, v), Cψ′, ψ′ ∈ t. Indeed, since the atoms in Πc(s) are exactly those

reachable from s, it follows directly from the induction hypothesis that (Fc, v), s |= Cψ′.

We prove that by induction on the number n of steps of t from s. When n = 1, for any t

such that t ∈ Πi(s), Cψ′ ∈ t and hence ψ′ ∈ t. Indeed, Cψ′ ∈ s and hence Ki(ψ′∧Cψ′) ∈ s.

Since t ∈ Πi(s), Ki(ψ′ ∧ Cψ′) ∈ t and hence Cψ′, ψ′ ∈ t. Note that all these formulas are

in Φ(φ). Now we assume that it is true for the case n = n′. Let t be reachable in n′ + 1

steps from s. Then there is an atom s′ that can be reached n′ steps from s. By induction

hypothesis, Cψ′, ψ′ ∈ s′. The proof for the base case also shows that Cψ′, ψ′ ∈ t. We have
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finished the induction proof and hence that (Fc, v), s |= Cψ′.

Next we show the more difficult direction. Assume that (Fc, s) |= Cψ′. We want to show

that Cψ ∈ s. Define C := {s ∈ Ω : (Fc, s) |= Cψ′}. φC :=
∨

s∈C φs.

Claim 5.3.9. If s ∈ C, s′ 6∈ C and φs ∧ ¬Ki¬φs′ is consistent, then ki(s) ∪ li(s) ⊆ s′.

Assume that s ∈ C, s′ 6∈ C and φs ∧ ¬Ki¬φs′ is consistent. Suppose that ki(s) ∪ li(s) 6⊆ s′.

There are two cases that we need to consider. The first case is for the knowledge operators,

say, Kiψ
′ ∈ s but Kiψ

′ 6∈ s′. It follows that ` Kiψ
′ → ¬φs′ and ` φs → Kiψ

′. Reason

inside Σkb:

φs → Kiψ
′

Kiψ
′ → KiKiψ

′

KiKiψ
′ → Ki¬φs′

φs → Ki¬φs′

But this contradicts the assumption that φs∧¬Ki¬φs′ is consistent. So we have finished the

proof for the first case. For the second case, assume that there is formula , say, ¬Li
rψ ∈ s but

¬Li
r 6∈ s′. Then it follows that φs → ¬Li

rψ and ¬Li
rψ → ¬φs′ are propositional tautologies.

Reason inside Σckb:

φs → ¬Li
rψ

¬Li
rψ → Ki¬Li

rψ

Ki¬Li
rψ → Ki¬φs′

φs → Ki¬φs′

But this contradicts our assumption that φs ∧ ¬Ki¬φs′ is consistent. We have finished the

proof for the second case and hence the proof of the claim.

Claim 5.3.10. if s ∈ C and s′ 6∈ C, then φs → Ki(¬φs′) is provable in Σckb.
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Suppose that φs → Ki(¬φs′) is not provable in Σckb. It follows that φs ∧ ¬Ki(¬φs′) is

consistent. By the above claim, we know that ki(s)∪ li(s) ⊆ s′. According to our definition,

s ∈ Πi(s′). By our assumption that (Fc, s) |= Cψ′ and soundness, (Fc, s) |= Ki(ψ′ ∧ Cψ′)

and hence (Fc, s), s′ |= Cψ′. But this contradicts our assumption that s′ 6∈ C. So we have

finished the proof of the above claim.

Claim 5.3.11. If s ∈ C and φs ∧ ¬Kiψ
′ is consistent, then ki(s) ∪ li(s) ∪ {¬ψ′} is

consistent.

Assume that s ∈ C. Suppose that ki(s)∪ li(s)∪{¬ψ′} is not consistent. Then, reason inside

Σckb:

∧
ki(s) ∧

∧
li(s) → ψ′

Ki(
∧

ki(s) ∧
∧

li(s)) → Kiψ
′

∧
ki(s) ∧

∧
li(s) → Ki(

∧
ki(s) ∧

∧
li(s))

∧
ki(s) ∧

∧
li(s) → Kiψ

′

So φs ∧ ¬Kiψ
′ is not consistent. Hence we showed the claim.

Claim 5.3.12. If s ∈ C, then φs → Kiψ
′ is provable in Σckb for all i ∈ I.

Suppose that φs → Kiψ
′ is not provable in Σckb. It means that s ∈ C and φs ∧ ¬Kiψ

′ is

consistent. By the preceding lemma, ki(s)∪ li(s)∪{¬ψ′} is consistent. So there is an atom

s′ which is a superset of ki(s) ∪ li(s) ∪ {¬ψ′}. And s′ ∈ Πi(s). By induction hypothesis,

(Fc, v), s′ |= ¬ψ′. But this contradicts the assumption that (Fc, v), s |= Cψ′.

Claim 5.3.13. φC → E(ψ′ ∧ φC) is provable in Σckb.

Reason inside Σckb:
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φs → Ki(¬φs′),∀s ∈ C, s′ 6∈ C

φs →
∧

s′ 6∈C
Ki(¬φs′)

φs → Ki(
∧

s′ 6∈C
(¬φs′))

φs → Kiψ
′

φs → Ki(ψ′ ∧
∧

s′ 6∈C
(¬φs′))

φC ↔
∧

s′ 6∈C
(¬φs′)

φs → Ki(ψ′ ∧ φC), ∀s ∈ C

φC → E(ψ′ ∧ φC)

By applying the rule, we know that `ckb φC → Cψ′. Since s ∈ C, we have `Σckb
φs → Cψ′.

So Cψ′ ∈ s. Now we have finished the other direction of the truth lemma and hence the

whole theorem.

¤

5.4. Agreeing to Disagree

In Aumann’s famous paper [2], he talked about the relationship between knowledge and

posteriors on probability spaces under the common-prior assumption. In this section, we

show that they can also be translated into the framework of Aumann’s knowledge-belief

systems. For simplicity, here we assume that the the group consists of two players: player 1

and player 2. FP = 〈Ω, (Πi)i=1,2, Π, (ci)i=1,2,A, P1, P2〉 is a probability space satisfying the

the following conditions:

• P1 and P2 are the priors for player 1 and 2, respectively;

• Π1 and Π2 are the partitions for players 1 and 2 such that the join Π1∨Π2 consists

of nonnull events, which also implies that both partitions are countable;

• Π is the partition associated with the common knowledge between 1 and 2.

We shall show that FP is a Aumann’s knowledge-belief system. Define
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Ti(w, A) := Pi(A∩Πi(w))
Pi(Πi(w)) .

It is easy to check the following properties:

(1) for any A ∈ A, Ti(·, A) is an A-measurable function;

(2) for any w ∈ Ω, Ti(w, ·) is a probability measure;

(3) for any w ∈ Ω, Ti(w)(Πi(w)) = 1;

(4) for any s ∈ Πi(t), Ti(s) = Ti(t).

Indeed Fp is an Aumann’s knowledge-belief system with common knowledge.



CHAPTER 6

Probabilistic Bisimulation and Finite Approximation

In modal logic, there are two methods to achieve the finite model property: selection and

filtration. The first method is based on one of the three slogans from [6]: modal languages

provide an internal, local perspective on relational structure. Filtration is used by taking

quotient of Kripke structures over a finite language. In contrast, in our modal logic of

probability, the first method cannot go through because our language is not local any

longer. But the second method is still available. Actually, we have used this method in our

proof of the the weak completeness of our system Σ+. In this section, we will study this

method systematically and use this method to approximate probability models from the

perspective of probabilistic bisimilarity.

6.1. Bisimulation

Definition 6.1.1. Let 〈Ω1,A1, T1, v1〉 and 〈Ω2,A2, T2, v2〉 be two probability models.

f : Ω1 → Ω2 is a type morphism1 if it satisfies the following two conditions:

(1) f is surjective;

(2) for any propositional letter p and any state s1 ∈ Ω1, s1 ∈ v1(p) if and only if

f(s1) ∈ v2(p);

(3) for any A2 ∈ A2 and s1 ∈ Ω1, T (f(s1))(A2) = T (s1)(f−1(A2))

The counterpart of type morphism in modal logic is called the back-and-forth condition in

bisimulation.

Definition 6.1.2. Two probability models M1 = 〈Ω1,A1, T1, v1〉 and M2 = 〈Ω2,A2, T2,

v2〉 are probabilistically bisimular (or, simply, bisimular) to each other if there is a third

1It is also a coalgebra morphism.

126



6. PROBABILISTIC BISIMULATION AND FINITE APPROXIMATION 127

probability model M3 = 〈Ω3,A3, T3, v3〉 with two type morphisms f1 : M3 → M1 and

f2 : M3 → M2:

M3

¡
¡

¡
¡

¡
¡

¡
¡¡ª

@
@

@
@

@
@

@
@@R

f1 f2

M1 M2¿

For two states s1 ∈ Ω1 and s2 ∈ Ω2, s1 is probabilistically bisimular (or, simply, bisimular)

to s2(denoted as s1 ¿ s2) if there is s3 ∈ Ω3 such that f1(s3) = s1 and f2(s3) = s2.

The following proposition can be regarded as the Henneessy-Milner theorem for probabilistic

logic.

Theorem 6.1.3. Let M1 = 〈Ω1,A1, T1, v1〉 and M2 = 〈Ω2,A2, T2, v2〉 be two countable

probability models. For any two states s1 ∈ Ω1 and s2 ∈ Ω2, s1 ¿ s2 if they satisfy the

same formulas.

Proof. For the direction from left to right, we leave the proof to the reader. Here we

only show the other direction. Assume that s1 ∈ Ω1 and s2 ∈ Ω2 satisfy the same formulas.

For s ∈ Ω1, [s]1 denotes the set {w ∈ Ω1 : w and s satisfy the same set of formulas }.
Similarly, for any s′ ∈ Ω2, [s′]2 denotes the set {w′ ∈ Ω2 : w′ and s′ satisfy the same set of

formulas }. If s ∈ Ω1 and s′ ∈ Ω2, s ≈ s′ denotes the relationship that they satisfy the same

set of formulas. First we show that Larsen-Skou’s theorem about probabilistic bisimulation

also works here.

Claim 6.1.4. Let s1, t1 ∈ Ω1 and s2, t2 ∈ Ω2. If s1 ≈ s2 and t1 ≈ t2, then T1(s1)([t1]1) =

T2(s2)([t2]2).
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Let Σ1 be the sigma-algebra generated by the collection of sets of the form [[φ]]1(= {w ∈ Ω1 :

M1, s |= φ}. And Σ2 is defined similarly. Note that [t1]1 ∈ Σ1 because [t1]1 =
⋂

t1∈[[φ]]1
[[φ]]1.

Similarly, [t2]2 ∈ Σ2. Since s1 ≈ s2, T (s1)([[φ]]1) = T (s2)([[φ]]2) for all formulas. Moreover,

according to Dynkin’s π-λ theorem, we know that

• T1(s1)([t1]1) = inf{∑i T1(s1)([[φi]]1) : [t1]1 ⊆
⋃

i[[φ
i]]1};

• T2(s2)([t2]2) = inf{∑i T2(s2)([[φi]]2) : [t2]2 ⊆
⋃

i[[φ
i]]2}.

It is easy to see that T1(s1)([t1]1) = T2(s2)([t2]2) because, for any sequence of formulas φi,

[t1]1 ⊆
⋃

i[[φ
i]]1} iff [t2]2 ⊆

⋃
i[[φ

i]]2}. So we finished the proof of the claim and hence s1

and s2 are bisimular in the sense of Larsen-Skou [25].

Define Ω3 := {(w1, w2) ∈ Ω1 × Ω2 : w1 ≈ w2}. For any (s1, s2), (t1, t2) ∈ Ω3, define

T3((s1, s2))((t1, t2)) = T1(s1)(t1)T2(s2)(t2)
T2(s2,[t2]2)

Note that, for any (t1, t2) ∈ Ω3,

∑

(t1,t2)∈Ω3

T3((s1, s2))((t1, t2)) =
∑

t1∈Ω1

∑
t2≈t1

T3((s1, s2))((t1, t2))

=
∑

t1∈Ω1

∑
t2≈t1

T1(s1)(t1)T2(s2)(t2)
T2(s2, [t2]2)

=
∑

t1∈Ω1

T1(s1)(t1)

= 1

Now define v3(p) = {(w1, w2) ∈ Ω3 : w1 ∈ v1(p)} for any propositional letter p. It is easy

to see that v3 is well-defined. A3 denotes the sigma-algebra generated by the sets of [[φ]]3

for all formulas φ. So M3 := 〈Ω3,A3, T3, v3〉 is a probability model. π1 and π2 are the two

projections from Ω3 to Ω1 and Ω2, respectively. In order to show that s1 ¿ s2, it suffices

to show that both π1 and π2 are type morphisms. We have assumed that s1 ≈ s2. We have
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T3((w1, w2), π−1
2 (s2)) = T3((w1, w2), {s1 ∈ Ω1 : s2 ≈ s1} × s2)

=
∑

s1∈Ω2:s1≈s2

T1(w1, s1)T2(w2, s2)
T2(w2, [s2]2)

=
∑

s1∈Ω2:s1≈s2

T1(w1, s1)T2(w2, s2)
T1(w1, [s1]1)

= T2(w2, s2)
∑

s1∈Ω2:s1≈s2

T1(w1, s1)
T1(w1, [s1]1)

= T2(w2, s2)

It is easier to show that π2 is a type morphism from Ω3 to Ω2. So s1 ¿ s2.

¤

It is well-known in modal logic that the class of m-saturated Krike models has the above so-

called Hennesy-Milner property. In probabilistic logic, there is also an analogous theorem.

A Polish space is the topological space underlying a complete, separable metric space. An

analytic space is the image of a Polish space under a continuous function.

Theorem 6.1.5. Let M1 = 〈Ω1,A1, T1, v1〉 and M2 = 〈Ω2,A2, T2, v2〉 both be probability

models under analytic spaces. For s1 ∈ Ω1 and s2 ∈ Ω2, s1 is bisimular to s2 if and only if

s1 and s2 satisfy the same set of formulas.

Proof. For the detailed proof, the reader is referred to [8].

¤

Here we owe the reader a counterexample that s1 and s2 satisfy the same formulas but

they are not bisimular. Let R be a binary relation on the set S. A set X ⊆ S is R-closed

if R(X) := {t : ∃s ∈ X(sRt)} ⊆ X. Now we define a functional F on the set of binary

relations on (S × S,⊆):

sF (R)t iff for all R-closed C ∈ A, T (s)(C) = T (t)(C), and sRt.

Note that F is monotonic.

Theorem 6.1.6. Let M = 〈Ω,A, T, v〉 be a probability model under an analytic space.

Define a family of relations Ri ⊆ S × S on Ω as follows:
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• sR0t if s and t satisfy the same propositional letters i,e, for any propositional letter

p, s |= p ⇔ t |= p;

• Ri+1 = F (Ri);

• R =
⋂

Ri.

Then sRt if and only if s is bisimular to t.

This theorem can be used to guide our following finite approximation.

6.2. Filtration

Alternatively, we can view bisimulation as the maximum fixed point of the functional F .

Also the above theorem tells us that, sRit iff s and t satisfy the same formulas of depth

up to i. So we call the relation Ri i-bisimulation. Assume that we can enumerate all the

propositional letters in the language: p1, p2, · · · , pn, · · · . For any natural numbers q, d and

n, we define the set Φ(q, d, w) of formula to be the smallest set of formulas (by taking the

quotient of propositional reasoning) satisfying the following conditions:

• it contains propositional letters from p1 to pw;

• the indexes should be multiples of the unit 1/q;

• depthes of formulas should be less than or equal to d;

• closed under propositional tautologies.

The above defined set Φ(q, d, w) gives rise to a set Ω(q, d, w) of maximal consistent sets

of formulas in Φ(q, d, w). Given a probability model M = 〈S,A, T, v〉, we define a filtered

probability model through Φ(q, d, w). Define

(1) S(q, d, w) := {[∧Γ]M 6= ∅ : Γ ∈ Ω(q, d, n)};
(2) A(q, d, w) be the power set of S(q, d, w).

(3) v(p) := {[∧Γ] ∈ S(q, d, w) : p ∈ Γ};

Equivalently, we can get the above structure through an equivalence relation. Define

for any points s, s′ ∈ S, s ∼ s′ if, for all formulas φ in Φ(q, d, w), M, s |= φ ⇔ M, s′ |= φ.

It is easy to see that the above defined ∼ is an equivalent relation. So the equivalence class

|s| is actually [∧Γ]M for some atom Γ ∈ Ω(q, d, w). For any s ∈ S, define Γs := {ψ ∈
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Φ(q, d, w) : M, s |= ψ}. Note that Γs is an atom in Ω(q, d, w) and |s| = [Γs]M . Moreover,

for any atom Γ ∈ Ω(q, d, w) such that [∧Γ]M 6= ∅, there is a s ∈ [∧Γ]m such that Γs = Γ.

In other words, there is a one-to-one correspondence between the set of equivalence classes

and the set of atoms Γ such that [∧Γ]M 6= ∅. In order to define a probability structure

on S(q, d, w), it remains to define the transition probability function T (q, d, w) (or Markov

kernel). Our definition is based on T . For any [∧Γ] ∈ S(q, d, n), since [∧Γ] 6= ∅, choose a

point sΓ ∈ S such that M, sΓ |= ∧Γ. We define

for any |s| ∈ S(q, d, w), T (q, d, w)(|s|)(|s′|) := T (sΓs)([∧Γs′ ]M )

T (q, d, w)(|s|) is additive on S(q, d, w). It is easy to see that T (q, d, w)(S(q, d, w)) = 1.

So T (q, d, n) is a probability measure on S(q, d, n). Note that this definition depends on

the choice function from the nonempty [∧Γ]M to sΓ. But, the following filtration theorem

does not depend on the choice of the function. Let M(q, d, w) := 〈S(q, d, w),A(q, d, w),

T (q, d, w), v〉 be the filtered probability model.

Lemma 6.2.1. For any s ∈ S and φ ∈ Φ(q, d, w),

M(q, d, w), |s| |= φ iff φ ∈ Γs.

Proof. We prove this by induction on the formula φ.

(1) Base case: φ is a propositional letter. This follows directly from the definition of

v(p) on the filtered model.

(2) Boolean case. This is straightforward from the fact that |s| is a maximal and

consistent set of formulas in the above local language.

(3) Crucial case: φ = Lrφ
′ where r is a multiple of the unit 1/q.
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M(q, d, w), |s| |= Lrφ
′ ⇔ T (q, d, w)(|s|)([φ′]M(q,d,w)) ≥ r

⇔ T (q, d, w)(|s|)({|s′| : M(q, d, w), |s′| |= φ′}) ≥ r

⇔ T (q, d, w)(|s|)({|s′| : φ′ ∈ |s′|}) ≥ r(I.H.)

⇔ T (sΓs)(
⋃
{|s′| : φ′ ∈ |s′|}) ≥ r

⇔ T (sΓs)([φ
′]M ) ≥ r

⇔ Lrφ
′ ∈ ΓsΓs

⇔ Lrφ
′ ∈ Γs

¤

Corollary 6.2.2. For any formula φ and s ∈ S, T (q, d, w)(|s|)([φ]M(q,d,w)) = T (sΓs)

([φ]M ).

Theorem 6.2.3. (Filtration Theorem) Let M := 〈S,A, T, v〉 be a probability model and

M(q, d, w) := 〈S(q, d, w),A(q, d, w), T (q, d, w), v〉 be its filtered probability model through

Φ(q, d, w). Then, for all formulas φ ∈ Φ(q, d, w) and all points s ∈ S,

M, s |= φ iff M(q, d, w), |s| |= φ.

Proof. The proof follows immediately from the above lemma.

M(q, d, w), |s| |= φ ⇔ φ ∈ Γs

⇔ M, s |= φ

.

¤
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Corollary 6.2.4. Assume that s ∼(n,n,n) s′ and φ is a formula in the language of

M(n− 1, n− 1, n− 1). Then |T (s)([φ]M )− T (s′)([φ]M )| ≤ 1/n.

6.2.1. Finite Approximation. This part is motivated by [9]. Their approximation

is similar to the approximation that is used in measure theory to show that the set of

simple functions is dense in that of measurable functions. But we use the above filtration

method to approximate any labeled Markov process. Now we are going to give a sequence

of finite approximation of the probability model M . As above, our local languages consists

of the following three aspects: depth of formulas, the number of propositional letters and

the accuracy of the indexes. First we set some conventions that we will use later:

(1) probability models are invariant under permutation of propositional letters, i.e.

for two probability models M1 = 〈S1,A1, T1, v1〉 and M2 = 〈S2,A2, T2, v2〉, if

S1 = S2,A1 = A2, T1 = T2 and, moreover, v1(p) = v(τ(p)) for some permutation

of propositional letters p, then M1 and M2 are regarded as the same. In other

words, probability models are a kind of equivalence class.

(2) if the number of propositional letters in the language of M is n (finite or count-

ably infinite), we always choose p1, p2, · · · , pn as a representative for the above

corresponding equivalence class.

In order to define probability measures at all points in the filtered models, we need to define

a choice function mapping an atom Γ in a local language to an element of [∧Γ]M . For any Γ

in some Ω(q, d, w) such that [∧Γ]M 6= ∅, s− : Γ 7→ sΓ ∈ [∧Γ]. The following theorem follows

immediately from the above theorems:

Theorem 6.2.5. For any formula φ, if φ is a formula in the language of M(q, d, w),

then M(q, d, w), |s|(q,d,w) |= φ iff M, s |= φ (where |s|(q,d,w) is the equivalence class of s by

taking the quotient of the equivalence relation ∼(q,d,w)). Moreover,
⋃

[φ]M(q,p,w) = [φ]M .

Now we show that one can reconstruct the original process (actually a bisimulation equiv-

alent of the original process) from the approximants M(n, n, n). We don’t reconstruct the
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original state space, but we reconstruct all the transition probability information, i.e., the

dynamic aspects of the process.

Theorem 6.2.6. Assume that M = 〈S,A, T, v〉 is a minimal probability model in the

sense that M = M ′/ ≈ for some probability model M ′ where ≈ is a bisimulaion on M ′. If

we are given all finite state approximants M(n, n, n), then we can recover M .

Proof. We can recover the state space by just taking the union of states at any level

of any approximants M(n, n, n). Since M is a minimal probability model, A is generated

by AΦ := {[φ]M : φ is a formula in the language of M}. It is easy to check that AΦ is a

field. For any s ∈ S and any formula φ (in the language of M(n, n, n) for n > k for some

k), define

µ(s)([φ]M ) = lim
n→∞T (n, n, n)(|sΓn

s
|)([φ]M(n,n,n))

Note that Γn
s is the atom in Ω(n, n, n) such that s ∈ [∧Γs]M . According to the definition of

the choice function s−, we know that s ∼(n,n,n) sΓs .

Claim 6.2.7. limn→∞ T (n, n, n)(|sΓn
s
|)([φ]M(n,n,n)) exists.

In order to show the claim, it suffices to show that, for any ε, there is an N such that, if

n ≥ N , |T (n, n, n)(|sΓn
s
|)([φ]M(n,n,n))−T (n+p, n+p, n+p)(|sΓn+p

s
|)([φ]M(n+p,n+p,n+p))| ≤ ε

for any natural number p. Given any ε, there is an N such that 1/N < ε. Also for any

natural number p,

|T (n, n, n)(|sΓn
s
|)([φ]M(n,n,n))− T (n + p, n + p, n + p)(|sΓn+p

s
|)([φ]M(n+p,n+p,n+p))|

= |T (sΓn
s
)([φ]M )− T (sΓn+p

s
)([φ]M )|

≤ 1/n ( sΓn+p
s

∈ [sΓn
s
]M(n,n,n))

≤ 1/N for n ≥ N

≤ ε.

By Cauchy’s criterion for sequence convergence, we know that the above limit exists. This

is to say, µ(s)([φ]M is well-defined.

Claim 6.2.8. For any s ∈ S and for any formula φ, µ(s)([φ]M ) = T (s)([φ]M ).
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The proof of this claim is much simpler. Note that

|T (s)([φ]M )− T (n, n, n)(|sΓn
s
|)([φ]M(n,n,n))|

= |T (s)([φ]M )− T (sΓn
s
)([φ]M )|

≤ 1/n → 0.

The last inequality follows from the fact that s and sΓn
s

are in the same equivalence class of

∼(n,n,n). So we have shown that, for any s ∈ S, the above defined µ(s) and T (s) matches

on the algebra AΦ. This implies that the probability measure µ∗(s) on the σ-algebra A
generated by µ(s) is the same as T (s). So we have recovered the original probability model.

In other words, the probability model M is uniquely determined by its finite approximants

M(n, n, n).

¤

6.3. A Countable Basis for Probability Models

Just like the Dedekind’s cut for reals, we want to use finite rational probability models

(in the sense that all transition probabilities are rationals) to approximate any probability

model. In the above finite approximation, our definition of probability measures of the

filtered models at equivalence classes are based on some probability model of the original

models at some representatives. This also means that, if we want to get finite rational

approximations, we cannot get the probability measures on the filtered models from those

of the original models for free. We have to define new probability measures. Actually, this is

already achieved in our proof of Moss’ conjecture by Fourier-Motzkin’s elimination method.

Given any filtered model M(q, d, w), M r(q, d, w) is defined the same as M(q, d, r) except the

definition of transition probability function T r: T r(|s|)(|s′|) is obtained by the elimination

method. What is the difference between these two transition probability functions?

Lemma 6.3.1. Assume that φ is a formula in the language of M(n− 1, n− 1, n− 1) and

|s| is a point in the model M(n, n, n). Then,

|T (|s|)([φ]M(n,n,n))− T r(|s|)([φ]M(n,n,n))| ≤ 1/n.
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Proof. This proof is actually implicit in the proof of the completeness of Σ+. For φ,

either both Lrφ ∈ |s| and Mrφ ∈ |s| for some r or Lrφ ∧ ¬Lr+1/nφ ∈ |s|. For the first case,

T (|s|)([φ]M(n,n,n)) = T r(|s|)([φ]M(n,n,n)) = r. For the second case, r ≤ T (|s|)([φ]M(n,n,n)),

T r(|s|)([φ]M(n,n,n)) < r+1/n. This implies that |T (|s|)([φ]M(n,n,n)) −T r(|s|)([φ]M(n,n,n))| ≤
1/n.

¤

Theorem 6.3.2. M r(n, n, n) is also a filtered probability model of M through Ω(n, n, n),

i.e., for any formula φ in the language of M r(n, n, n) and s ∈ S,

M, s |= φ iff M r(n, n, n), |s| |= φ.

Moreover,
⋃

[φ]M(n,n,n) = [φ]M .

Theorem 6.3.3. Assume that M is a minimal probability model. Then M is uniquely

determined by its rational approximation.

Proof. The proof is very similar to that of the above theorem. We define

µr(s)([φ]M ) = lim
n→∞T r(n, n, n)(|s|)([φ]M(n,n,n))

The proof of the existence of the limit is similar to that of the existence above except

replacing T (|s|) by T r(n, n, n)(|s|) because of the above lemma 6.3.1. Using a similar

argument as above, we can show that

µr(s)([φ]M ) = T (s)([φ]M ).

¤

Since the collection of finite rational probability models is countable and any probability

models is an approximations of finite rational probability models in a certain metric space,

it is reasonable to expect that the collection of probability models can be endowed with a

Polish space. We can also simulate the work in [10] to define a metric on this space. But it

is an open problem whether such a defined metric space is complete or not.



CHAPTER 7

Semantics of Probabilistic and Quantum Programs

There is a concurrence between game theory and semantics for programs. In game the-

ory with incomplete information, type functions provide a satisfactory semantics for belief

grammar. In addition, they are also used to model primitive probabilistic programs. How-

ever, there are fundamental differences. In probability logics for type spaces, we focused on

formulas while in dynamic logic of probabilistic programs, the subjects are programs. Prob-

abilistic programs are constructed according to a well-known syntax. As Markovian ker-

nels(or Markov transitions), type functions can be interpreted both as measure-transformers

(in forward semantics) and as predicate transformers (backward semantics). Kozen inter-

preted while probabilistic programs as positive linear operators with norms ≤ 1 on the

space of measures of some measurable spaces. These two interpretations are dual to each

other.

Just as probabilistic programs are used to reason about uncertainty in the classical world,

quantum programs are developed to reason about uncertainty in quantum computation [30].

Quantum computation has recently become an important topic in theoretical computer sci-

ence. Traditionally it is studied at the hardware level. However, in a recent paper [4], Peter

Selinger explores quantum computing from the perspective of programming languages. He

studied the subject by dealing with both data flow and control flow but not depending on

any particular hardware model. His approach to quantum computing can be summarized in

the slogan: “quantum data and classical control”. The programs may take quantum data,

which are in the form of quantum superpositions while the controls are always classical.

137
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His quantum programming language is functional. In other words, each program trans-

forms a set of inputs to outputs. The syntax of this language is in the form of quantum

flow charts. They are constructed from a set of basic flow charts by context extension,

sequential composition, parallel composition and loops. Each edge of any flow chart can be

associated with a pair of typing context and its annotation. The typing context is actually

a formal expression of signature for some Hilbert space. And the annotation tells us the

density matrix at this state. According to this interpretation, each quantum flow chart

maps a density matrix on one Hilbert space to a density matrix on another Hilbert space,

which is a superoperator. More importantly, this semantics for quantum flow charts is full

in the sense that any superoperator can be realized by a quantum flow chart. The crucial

step to show this proposition is the normal form theorem for superoperators. It says that

each superoperator can be factored as a product of M ◦ E ◦ U where M is a measurement

operator, E an eraser operator and U a subunitary.

There is another backward semantics for quantum programs which is dual to the above

program-as-superoperator forward one. In [1], D’Hondt et.al provided a quantum weakest

precondition semantics for quantum programs. Each program takes an input predicate and

output another predicate. Actually this backward semantics is dual to the forward seman-

tics in the sense that the trace of each predicate at the transformed density matrix is equal

to the trace of the transformed predicate at that density matrix. This duality is proved

through the well-known Kraus representation theorem.

In this paper, we “streamline” the semantics for both probabilistic and quantum programs.

In the first part, we present the predecessor of Selinger’s semantics, i.e., Kozen’s semantics

for probabilistic programs. In the second part, the dual semantics for quantum programs

are organized in a similar way to Kozen’s approach to probabilistic programs. In the last

part, we are trying to answer one question raised by Professor Sabry: how to construct

unitary matrices from arbitrary matrix with complex entries.
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7.1. Semantics for Probabilistic Programs

In this section, we summarize some important results on the semantics for probabilistic

programs ([1]).

7.1.1. Background in Probability Theory. In the following, R and R+ denote the

real numbers and the nonnegative real numbers, respectively. Recall that a measurable space

is a pair (S,A) where S is a nonempty set of states and A is a σ-algebra on the power set

of S. Elements of A are called events. Given two measurable spaces (S1,A1) and (S2,A2),

a function f is measurable if f−1(A) ∈ A1 whenever A ∈ A2. A measure µ on (S,A) is a

function A → R that is countably additive and µ(∅) = 0. It is a probability measure if it is

positive and µ(S) = 1, and is a subprobability measure if it is positive and µ(S) ≤ 1. If µ

is a measure and B ∈ A, let µB denotes the measure µ(A) = µ(A ∩ B). Then µB/µ(B) is

called the conditional probability relative to B.

Every measure can be decomposed into two positive measures µ+ and µ− such that µ+ = µB

and µ− = −µ¬B for some B ∈ A. This is the so-called Jordan decomposition of µ. µ+ and

µ− are called the positive and negative parts of µ. Define |µ| = µ++µ−. And it is called the

total variation or absolute value of µ. LetM denote the set of measures on (S,A). Then the

above defined total variation introduces a norm on M as follows: for each µ, ||µ|| = |µ|(S).

A random measure X : (S1,A1, µ) → (S2,A2) induces a subprobability measure µ ·X−1 on

(S2,A2):

µ ·X−1(A) = µ(X−1(A)).

If X is total, then µ ·X−1 is a probability measure.

Definition 7.1.1. Let (B, ||·||) and (C, ||·||) be two normed vector spaces and T : B → C
be a linear transformation. T is || · ||-bounded if sup||T (x)|| < ∞ for all x ∈ S = {x : ||x|| ≤
1}. And the space of all || · ||-bounded linear transformations from B to C is a normed

vector space under pointwise addition and scalar multiplication with the uniform norm
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||T || = sups||T (x)||. A positive cone P of B is a subset of B satisfying the following two

conditions:

(1) ax + by ∈ P whenever x, y ∈ P and a, b ≥ 0;

(2) only one of x,¬x is in P.

It is easy to see that the positive cone P induces a partial order on B: x ≤ y if x− y ∈ P.

(B,P) is a vector lattice if each pair x, y ∈ B has a ≤ least upper bound. (B,P, || · ||) is a

Banach lattice if it is a Banach space and a vector lattice such that

(1) ‖|x|‖ = ‖x‖;
(2) if 0 ≤ x ≤ y, then ‖x‖ ≤ ‖y‖.

7.1.2. Probabilistic while Programs. The syntax of probabilistic programs is sim-

ilar to that of classical programs.

7.1.2.1. Syntax. We consider the while programs over the variables x1, · · · , xn. Basic

programs are:

• simple assignment, xi := fi(x1, · · · , xn);

• random assignment. xi := random.

As usual, there are three types of program constructs:

• sequential composition, S; T ;

• conditional, if B then S else T ;

• loop, while B do S.

7.1.2.2. Forward Semantics. Let (Ω,A) be a measure space and B be the vector space

of the measures on (Sn,An). P denotes the set of positive measures on (Ω,A) and define

a norm ‖ · ‖ as follows: ‖µ‖ := |µ|(Sn). Then we can show that (B,P, ‖ · ‖) is a Ba-

nach lattice. B′ is the Banach space of linear operators T on B with the uniform norm

‖T‖ := supµ∈S‖T (µ‖) where S := {µ : ‖µ‖ = 1}. Let P ′ be the set of linear operators that

preserve P, S′ be the set of linear operators on B that preserve S. It is easy to see that S′

is the closed unit ball of B′. Since every program will map a probability distribution to a

subprobability distribution, the linear operators described by programs will preserve both
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S and P, and then are in S ′ ∩ P ′.

In the following, we will use p, q, · · · for programs and T, U, V, · · · for their interpretations

as linear operators. The following are the semantics for basic probabilistic programs and

program constructs:

(1) simple assignment Let p be the basic program: xi := fi(x1, · · · , xn) where fi is

a measurable function from Ωn to Ω. Define F (x1, · · · , xn) = (x1, · · · , xi−1, fi(x1,

· · · , xn), xi+1, · · · , xn). Then the linear operator T for the program p is: T (µ) =

µ · F−1.

(2) random assignment Let p be the random assignment program xi := random

and ρ is the distribution of a random generator. Then the linear operator T for

p is uniquely determined by the following definition: for any Bi ∈ Ai, T (µ)(B1 ×
· · · ×Bn) = µ(B1 ×Bi−1 × S ×Bi+1 × · · · ×Bn) · ρ(Bi).

(3) sequential composition Let p1, p2 be two programs and T1, T2 be their se-

mantics as linear operators, respectively. Then the linear operator for p1; p2 is

T1; T2.

(4) conditional Let p be the program B; p1+¬B; p2 and T1, T2 be the interpretations

of p1, p2 as linear operators. Then the linear operator T for p is T1 · eB + T2 · e¬B

where eB(µ) = µB and e¬B(µ) = µ¬B. This interpretation is justified by the

following equality:

(T1 · eB + T2 · e¬B)(A) = µ(B)T1(µB/µ(B))(A) + µ(¬B)T1(µ¬B/µ(¬B))(A)

(5) loops Let p be the program while B do p′ and T ′ be its interpretation as linear

operator. Then the linear operator T for p is the unique solution to the following

affine equation scheme of T :

T = e¬B + T ◦ T ′ ◦ eB.

This is justified by the equivalence between the programs p and if B then p′

else; p.

By summarizing the above results, we can show the following main theorem:
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Theorem 7.1.2. Let p be any while program over the program variables x1, · · · , xn and

let B be the Banach lattice of measures on (Ωn,An). Then p can be interpreted as a linear

operator in S ′ ∩ P ′.

7.1.2.3. Backward Semantics. In this section, we provide another semantics for proba-

bilistic programs, which is most analogous to the binary relations in PDL. Each program is

interpreted as a Markov transition on a measurable space (S,A). A Markov transition p is

a function from Ω×A to [0, 1] such that

• for each s ∈ S, p(s, ·) is a probability measure on A;

• for each A ∈ A, p(·, A) is a measurable function.

Now we provide a semantics for all probabilistic programs:

(1) basic programs are interpreted as Markov transitions;

(2) sequential composition (p; q)(s,A) =
∫
t∈S q(t, A)p(s, dt);

(3) conditional (if B then p else q)(s, A) = (B?; p+¬B?; q)(s, A) where (B?)(s,A) =

χA∩B(s);

(4) loops (while B do p)(s,A) = (¬B? + (B?; p)∗)(s, A) where p∗ =
∑∞

i=0 pi.

Each Markov transition can be extended to a unique predicate transformer which is a linear

transformation on the set of bounded measurable functions on (Ω,A). For any bounded

measurable function f , (〈p〉f)(s) =
∫

f(t)p(s, dt).

7.1.2.4. Duality. Actually the above two semantics for probabilistic programs are equiv-

alent in the following sense. Each point s can be regarded as a point mass. And since discrete

measures are dense in the set of probability measures, each Markov transition can be ex-

tended to a unique measure-transformer which maps M, the set of probability measures on

(Ω,A), to M. In other words, (µ〈p〉)(A) =
∫

p(s,A)µ(ds).

Theorem 7.1.3. (µ〈p〉, A) = (µ, 〈p〉A); hence (µ〈p〉, f) = (µ, 〈p〉f).

Proof. The proof is actually an application of the Fubili’s theorem.
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(µ〈p〉, A) =
∫

p(s,A)µ(ds)

=
∫ ∫

A
p(s, t)dtµ(ds)

=
∫

A

∫
p(s, t)µ(ds)dt

= (µ, 〈p〉A)

Since simple functions are dense in the set of bounded measurable functions, the second

part follows immediately.

¤

7.2. Quantum Flow Charts

In this section, we present Peter Selinger’s quantum programming languages. The

slogan for this language is “quantum data and classical control”. Its syntax is in the form

of quantum flow charts. We attach a pair to each edge in the following charts. The first

coordinate is its label, which is a typing context, and the second is its annotation, which is

a density matrix. The following are 6 basic flow charts.

?

?

new qbit q:=0

q : qbit,Γ =


 A B

C D




Γ = A

Allocate qbit

?

?

q∗ = S

q : qbit,Γ = (S ⊗ I)A(S ⊗ I)∗

q : qbit,Γ = A

Unitary Transformation
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?

?

discard q

q : qbit,Γ =


 A B

C D




Γ = A + D

Discard qbit

?

¡
¡

¡
¡¡ª

@
@

@
@@R

measure q

q : qbit,Γ =


 0 0

0 D




q : qbit,Γ =


 A B

C D




q : qbit,Γ =


 A B

C D




Measurement

A
A
A
AAU

¢
¢

¢
¢¢®

?

Γ = A Γ = B

Γ = A + B

Merge

?

?

permute φ

qφ(1), · · · , qφ(n) : qbit = (a2φ(i), 2φ(j))ij

q : qbit,Γ = A

Permutation

There are four program constructs.

⊗ =X Γ Y

Context Extension
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? ?

? ?

? ?

X

Y

Vertical Composition

? ? ? ?

? ? ? ?

X Y

Horizontal Composition

? ?

? ?

?
X

Loops

7.3. Semantics for Quantum Programs

7.3.1. Forward Semantics. In this section, we present a systematic and formal treat-

ment of the semantics of quantum flow charts.

Definition 7.3.1. A signature σ is a list of non-zero natural numbers (n1, · · · , ns). The

vector space Vσ with the signature σ is Vσ = Cn1×n1 × · · · × Cns×ns . So every element of

Vσ is a list of matrixes (A1, · · · , As) where Ai is an ni×ni matrix. And tr(A) =
∑

i tr(Ai).

Define Dσ = {A ∈ Vσ|A is positve and tr(A) ≤ 1}.

Definition 7.3.2. Let F be a linear operator from Vσ to Vσ′ . F is positive if F maps

positive matrixes to positive ones. F is completely positive if idτ ⊗ F : Vτ⊗σ → Vτ⊗σ′ is

positive for any signature τ . F is a superoperator if it is completely positive and satisfies

the following condition: for any A ∈ Vσ, tr(F (A)) ≤ tr(A).

Theorem 7.3.3. (Kraus representation theorem) Assume that F is a completely positive

linear operator from Cn×n to Cm×m. The following two statements are equivalent:

• F is a superoperator;

• F (A) =
∑

i UiAU∗
i for some matrices U ′

is such that
∑

i UiU
∗
i v Id.

Note that we can interpret any typing context Γ as a vector space V 2n1×2n1×· · ·V 2ns×2ns for

some n1, · · · , ns where s depends on the classical control and n1, · · · , ns depend on quantum

data. And we denote this meaning as [[Γ]]. So any quantum program S is interpreted as a

linear operator, which is denoted as [[S]].
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Theorem 7.3.4. Under this semantics, for any quantum program S, [[S]] is a superop-

erator.

Proof. According to the definition of quantum programs, any quantum program is

constructed from basic quantum flow charts by context extension, sequential composition,

horizontal composition and loops. Here we just take the basic quantum flow chart: unitary

transformation and the context extension as an illustration of the proof.

We know that the unitary transformation S maps density matrix A to (U ⊗ I)A(U ⊗ I)∗

where U is a unitary matrix. Since U ⊗ I is still a unitary, S is completely positive. More-

over, by Kraus representation theorem, we know that it is also a superoperator because

(U ⊗ I)(U ⊗ I)∗ = I.

It is easy to see that context extension means a linear mapping I ⊗ Z where Z is a zero

mapping. I ⊗ Z is a completely positive operator and also a superoperator.

¤

More importantly, the converse to this proposition also holds. Here we give a proof sketch.

Definition 7.3.5. A matrix U is subunitary if it is a submatrix of some unitary matrix

in the following sense that there are U1, U2, U3 such that
 U U1

U2 U3




is a unitary. Let σ = (N1, · · · , ns) and σ′ = n1 + · · ·+ ns. S is a measurement operator if

S




A11 · · · A1s

...
. . .

...

As1 · · · Ass


 = (A11, A22, · · · , Ass)

S is an eraser operator or a partial trace operator if S = trσ ⊗ idτ : Vσ⊗τ → Vτ .

Theorem 7.3.6. (Normal form theorem) Every superoperator F can be factored as F =

M ◦E ◦S where M is a measurement operator, E is an eraser operator and S is subunitary.
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Theorem 7.3.7. (Fullness of interpretation) Given typing contexts Γ, Γ′, if F : [[Γ]] →
[[Γ′]] is a superoperator, then there is a quantum program T such that [[T ]] = F .

Proof. Here we give a proof sketch through the above normal form theorem. Assume

that F = M ◦ E ◦ S. First note that any subunitary S can be realized by allocating new

qbits, measuring it and then discarding qbits (intuitively this is clear). Moreover, E is

definable by discarding and merging, and M can be realized by several measurements. So,

indeed any superoperator can be realized by quantum flow charts. ¤

7.3.2. Backward Semantics. We can also give a backward semantics for quantum

programs as predicate transformers. Its connection with forward semantics is provided

through quantum weakest preconditions.

Definition 7.3.8. A quantum predicate is a positive operator with eigenvalues bounded

by 1. A healthy predicate transformer α is a linear mapping from P(H) to P(H′) that is

linear and completely positive. We denote the set of healthy predicate transformers by

PT (H,H′).

The reason is that the expectation tr(Mρ) of one predicate M at one state ρ should be less

than 1. Let P(H) denote the set of all predicates on the Hilbert spaceH, andDM(H) the set

of density matrices on H. From the last subsection, we already know that the interpretation

of quantum programs as superoperators is full. So, in this subsection, we don’t distinguish

quantum programs and superoperators. Define a partial order on predicates M v N iff

N −M is positive.

Definition 7.3.9. The predicate M is called a precondition for the predicate N with

respect to the quantum program T if

for any ρ ∈ DM(H), (tr(M))(ρ) ≤ tr(N(T (ρ))).

It is denoted by M{T}N . M is a weakest precondition for N with respect to T if, for any

M ′ such that M ′{T}N , M ′ v M . This weakest precondition is denoted by wp(T )(N).

From the following proposition, we can see that wp(T ) induces a predicate transformer.
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Theorem 7.3.10. For any quantum program T and any predicate M ∈ P(H), wp(T )(M)

∈ P(H) and is unique. Moreover,

for any ρ ∈ DM(H), tr(M(T (ρ))) = tr(wp(T )(M)).

Hence wp(T ) is a healthy predicate transformer.

Proof. Since T is a superoperator, T (A) =
∑

i UiAU∗
i for some Ui such that

∑
i UiU

∗
i v

Id. Define:

N :=
∑

i UiMU∗
i .

It is easy to check that N ∈ P(H) and such defined N is a weakest precondition for M with

respect to T .

¤

We give meaning to measurements only as an illustration of the backward semantics for

quantum programs. Consider the following measurement:

[[measure q]]: qbit → qbit⊕ qbit : ρ → P0ρP0 + P1ρP1.

where P0 and P1 are the corresponding projections to the measurement with results 0 and

1, respectively. Dually, the backward semantics for the quantum program measure q should

be:

for any predicate M , wp(measure q)(M) = P0MP0 + P1MP1.

Actually the backward semantics for quantum programs is dual to its forward semantics

in the following sense. Like Kozen’s notation for probabilistic semantics, (ρ, 〈T 〉M) denote

tr((wp(T )(M))(ρ)) and (M, ρ〈T 〉) denote tr(M(T (ρ))). By the above theorem, we know

that:

(ρ, 〈T 〉M) = (M,ρ〈T 〉)

This is to say, these two semantics for quantum programs are equivalent to each other.

7.4. Constructing Unitary Matrix

In this section, we want to explore the possibility of constructing unitary matrices from ar-

bitrary matrices with complex entries. Before that, we review the construction of reversible
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matrices from arbitrary matrices with entries from Z2, where (Z2, ·,⊕) is the finite field

with only two elements. Given any function f : Zn
2 → Zm

2 , can we find a function fR that

is a bijection from Zn+m
2 → Zn+m

2 and subsumes f as a subfunction in the following sense:

fR(x,
−→
0 ) = (x, f(x)) for all x ∈ Zn

2 ?

Define fR(x, z) = (x, f(x)⊕ z) for x ∈ Zn
2 and z ∈ Zm

2 where ⊕ is the addition defined on

Zm
2 .

Claim 7.4.1. f is a subfunction of fR.

Note that fR(x,
−→
0 ) = (x, f(x)⊕−→0 ) = (x, f(x)). So, indeed fR subsumes f as its subfunc-

tion.

Claim 7.4.2. fR is a bijection from Zn+m
2 → Zn+m

2 .

It suffices to show that fR is one-to-one. Assume that (x1, z1) 6= (x2, z2). If x1 6= x2, then

fR(x1, z1) = (x1, f(x1) ⊕ z1) 6= (x2, f(x2) ⊕ z2) = f(x2, z2). If x1 = x2 and z1 6= z2, then

fR(x1, z1) 6= fR(x2, z2) because z1 ⊕ f(x1) 6= z2 ⊕ f(x2).

Next we want to explore the extent to which the above result can be generalized to the

quantum case. Here we consider a simple case. Let f be a linear function from C2 to C22
.

We can also use a matrix to represent this transformation:

f(|0〉, |1〉) = (|00〉, |01〉, |10〉, |11〉)




x1 y1

x2 y2

x3 y3

x4 y4




Define

B =




x1 y1

x2 y2

x3 y3

x4 y4



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By abuse of notation, we define ⊕ : |ij〉 ⊕ ı′j′〉 = |i ⊕2 i′, j ⊕2 j′〉 where ⊕2 is the addition

in Z2 and then extend it linearly to the vector space C22
. Define:

fR(x, z) = (x, z ⊕ f(x)) for x ∈ C2, z ∈ C22
.

If we use the matrix representation, the function fR can be written as:

f(|000〉, |001〉, |010〉, |011〉, |100〉, |101〉, |110〉, |111〉) = (|000〉, |001〉, |010〉, |011〉, |100〉, |101〉, |110〉, |111〉)A

where

A =




x1 x2 x3 x4 0 0 0 0

x2 x1 x4 x3 0 0 0 0

x3 x4 x1 x2 0 0 0 0

x4 x3 x2 x1 0 0 0 0

0 0 0 0 y1 y2 y3 y4

0 0 0 0 y2 y1 y4 y3

0 0 0 0 y3 y4 y1 y2

0 0 0 0 y4 y3 y2 y1




Denote

A1 =




x1 x2 x3 x4

x2 x1 x4 x3

x3 x4 x1 x2

x4 x3 x2 x1




, A2 =




y1 y2 y3 y4

y2 y1 y4 y3

y3 y4 y1 y2

y4 y3 y2 y1




Note that A is unitary iff both A1 and A2 are unitary.

Theorem 7.4.3. Assume that all entries in A1 are real. A1 is unitary iff (x1, x2, x3, x4)

is

• either a permutation of 0, 0, 0 and 1;
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• or a permutation of 0, 0, 0 and -1;

• or a permutation of 1/2, 1/2, 1/2 and -1/2;

• or a permutation of -1/2, -1/2, -1/2 and 1/2.

Proof. Assume that all entries in A1 are real and A1 is unitary. Then we can get the

following group of equations:





x2
1 + x2

2 + x2
3 + x2

4 = 1 (1)

x1x2 + x3x4 = 0 (2)

x1x3 + x2x4 = 0 (3)

x1x4 + x2x3 = 0 (4)

It follows immediately that





(x1 + x2)(x3 + x4) = 0 (5)

(x1 + x3)(x2 + x4) = 0 (6)

(x1 + x4)(x2 + x3) = 0 (7)

First we assume that at least one of xi’s is zero. Since x1, x2, x3 and x4 are symmetric, we

assume that x1 = 0 without loss of generality. From (2), we know that at least one of x3

and x4 is zero. Without loss of generality, assume that x3 = 0. From (3), we conclude that

at least one of x2 and x4 is zero. But since x2
1 + x2

2 + x2
3 + x2

4 = 1, at least one of x2 and x4

is ±1. In other words, if at least one of xi’s is zero, then (x1, x2, x3, x4) is a permutation of

either (1, 0, 0, 0) or of (−1, 0, 0, 0).

Next assume that none of them is zero. From (5), we know that x1 = −x2 or x3 = −x4.

Without loss of generality, we assume that x1 = −x2. From (6), we know that x1 = −x3

or x2 = −x4. Since x1 is symmetric to x2, without loss of generality, x1 = −x3. It follows

that x2 = x3. Since we assume that none of them is zero, x2 + x3 6= 0. This implies that

x1 = −x4 or x4 = x2 = x3. Since x2
1+x2

2+x2
3+x2

4 = 1, x1 = ±1/2. In other words, if none of

x1, x2, x3 and x4 is zero, then (x1, x2, x3, x4) is a permutation of either (1/2, 1/2, 1/2,−1/2)

or of (−1/2,−1/2,−1/2, 1/2). This also finishes the proof of the left-to-right direction of
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the theorem.

The proof of the other direction is straightforward.

¤

Theorem 7.4.4. Assume that all entries in A1 are complex. If A1 is unitary, then

• |x1|2 + |x2|2 + |x3|2 + |x4|2 = 1;

• |x1 + x2 + x3 + x4| = 1

Proof. Assume that A1 is unitary. In other words,





|x1|2 + |x2|2 + |x3|2 + |x4|2 = 1

(x1x
∗
2 + x∗1x2) + (x3x

∗
4 + x∗3x4) = 0

(x1x
∗
3 + x∗1x3) + (x2x

∗
4 + x∗2x4) = 0

(x1x
∗
4 + x∗1x4) + (x3x

∗
2 + x∗2x4) = 0

If we add all these equalities, we have:

(x1 + x2 + x3 + x4)(x1 + x2 + x3 + x4)∗ = 1.

That is to say, |x1 + x2 + x3 + x4| = 1.

¤

But, if we don’t require that the extended function has the form of fR, then almost all f ’s

have a unitary extension.

Theorem 7.4.5. For the above f : C2 → C22
, if both x1x2x3x4 6= 0 and y1y2y3y4 6= 0,

then there is a linear function fR such that

• fR(x⊗ |00〉) = (x⊗ f(x)) for all x ∈ C2;

• the matrix associated with fR is unitary.

Proof. Consider the column vector (x1, x2, x3, x4)t. Since the vector space V4 :=

{(a1, a2, a3, a4)t|ai ∈ C(1 ≤ i ≤ 4)} is of dimension 4 and v0 := (x1, x2, x3, x4) 6= 0, there

are three vectors:
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v1 =




a11

a12

a13

a14




, v2 =




a21

a22

a23

a24




, v3 =




a31

a32

a33

a34




such that v0, v1, v2 and v3 are linearly independent. By using Gram-Schmit normalization

method, we construct from v1, v2 and v3 the following three unit vectors

v′1 =




a′11

a′12

a′13

a′14




, v′2 =




a′21

a′22

a′23

a′24




, v′3 =




a′31

a′32

a′33

a′34




such that

A′1 =




x1 a′11 a′21 a′31

x2 a′12 a′22 a′32

x3 a′13 a′23 a′33

x4 a′14 a′24 a′34




is unitary. Similarly we can find three unit vectors

w′1 =




b′11

b′12

b′13

b′14




, w′2 =




b′21

b′22

b′23

b′24




, w′3 =




b′31

b′32

b′33

b′34




such that

B′
1 =




y1 b′11 b′21 b′31

y2 b′12 b′22 b′32

y3 b′13 b′23 b′33

y4 b′14 b′24 b′34



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is unitary. Denote

B′ =




x1 a′11 a′21 a′31 0 0 0 0

x2 a′12 a′22 a′32 0 0 0 0

x3 a′13 a′23 a′33 0 0 0 0

x4 a′14 a′24 a′34 0 0 0 0

0 0 0 0 y1 b′11 b′21 b′31

0 0 0 0 y2 b′12 b′22 b′32

0 0 0 0 y3 b′13 b′23 b′33

0 0 0 0 y4 b′14 b′24 b′34




It is easy to see that B′ is unitary. Define fR to be the linear mapping: C23 → C23
whose

associated matrix is B′.

Claim 7.4.6. fR(x⊗ |00〉) = (x⊗ f(x)) for all x ∈ C2.

Note that f(|000〉) = x1|000〉 + x2|001〉 + x3|010〉 + x4|011〉 = |0〉 ⊗ f(|0〉) and f(|100〉) =

y1|100〉+ y2|101〉+ y3|110〉+ y4|111〉 = |1〉 ⊗ f(|1〉).
¤



APPENDIX A

Future Research

The perspective of my dissertation is mainly logical ; that is, I focused on such important

issues in traditional modal logic as (weak and strong) completeness, finite model property

and decidability. In contrast, the perspective on probability logic of theoretical computer

scientists is mainly coalgebraic. After finishing the above foundational work, my future

research will combine these two perspectives and further develop the model theory of prob-

ability logics with the approach of algebras and co-algebras [36].

A measurable function from the measurable space (M, Σ) to the measurable space (M ′, Σ′)

is a morphism of these spaces. This gives rise a category which is often called Meas. Meas

has products, coproducts and the following important endofunctor ∆ : Meas → Meas.

It is a morphism of measurable spaces ∆ : (M, Σ) → (∆(M), ΣM ) where ∆(M) is the set of

probability measures on (M, Σ) and ΣM is a σ-algebra generated by the sets {µ ∈ ∆(M) :

µ(E) ≥ p} for all E ∈ Σ and rational p between 0 and 1. The functors that we are interested

in are called measurable polynomial functors. They are the functions constructed from the

identity functor Id and the constant functors, and are closed under products, coproducts

and ∆. Given measurable spaces M1 and M2, F : X → M1 × ∆(M2, X) is a measurable

polynomial functor. A coalgebra of a measurable polynomial function T is a pair (A, f)

consisting of a measurable space A and a measurable map f : A → T (A).

My first task is to provide a general theory of probabilistic bisimulation, the most dis-

cussed probabilistic process equivalence. Up to now, the most general characterization of

probabilistic bisimulations is [8] and [13]. The main theorem there is: given a cospan of

stochastic systems over analytic spaces with Borel measurable transition functions, there

155
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exists a span based on a stochastic system over a Polish space with a Borel measurable

transition function.

• (Project 1) I would like to investigate weak morphisms, weak logical equivalence

and bisimilarities along the paths indicated in [11]. More generally, I want to

explore the coalgebraic logical languages like L(T ) presented in [29] to characterize

bisimulations for all measure polynomial functors T .

The idea that the functor of a coalgebra determines a certain modal logic was first put

forward by Moss [28]. [21] developed a many-sorted modal logical system that captures the

natural notion of validity for the restricted, inductively defined class of (Kripke) polynomial

functors. Similarly, [29] generated a rather expressive coalgebraic language, of which syntax

and semantics are directly and uniformly derived from measurable polynomial functors.

• (Project 2) My ongoing work with Professor Moss is to use modular construc-

tion in [7] to construct complete deductive systems for the languages L(T ) [29]

based on the system Σ+ [38]. These logics thus obtained should inherit soundness,

completeness and expressiveness properties from their building blocks.

The coalgebraic investigation of probabilistic dynamic logic [23] with the above approach

would be an interesting object of study. This research is a further application of Venema’s

coalgebra automata for fixed point logic [35].

• (Project 3) I will examine simulation and safety for probabilistic bisimulation:

what operations on probability models preserve bisimulation? I am especially

interested in some operation which is the counterpart of ultrafilter extension in

modal logic [6]. Its correlation with duality for labeled Markov processes [27] is

expected. Such a question is well answered in propositional dynamic logic [34].

Just as PDL is a special instance of modal µ-calculus, probabilistic dynamic logic is included

in a much richer area of probability logic with mu-operators.

• (Project 4) My most ambitious goal is to generalize the coalgebraic perspective

of automata and fixed point logic by Venema [35] to the probabilistic setting, for



A. FUTURE RESEARCH 157

example, probability logic with common belief [14] and stochastic logic with fixed

point operator [12].

The last project is isolated from the above four. It came from the logical investigation in

my dissertation of the transition from knowledge to belief.

• (Project 5) I would like to explore the connection between ergodic theory and

higher order probabilities. This connection is needed in the study of the corre-

spondence between semantics and syntax of probabilistic logics. In [31], Samet

used the ergodic nature of type functions to show the equivalence of different ax-

ioms. I hope that the research in this area will solve the question (positively or

negatively) of completeness of higher-order probability logics.
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