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Abstract
Tarski initiated a logic-based approach to formal geometry that studies first-order structures
with a ternary betweenness relation (β) and a quaternary equidistance relation (≡). Tarski
established, inter alia, that the first-order (FO) theory of (R2, β,≡) is decidable. Aiello and van
Benthem (2002) conjectured that the FO-theory of expansions of (R2, β) with unary predicates
is decidable. We refute this conjecture by showing that for all n ≥ 2, the FO-theory of monadic
expansions of (Rn, β) is Π1

1-hard and therefore not even arithmetical. We also define a natural
and comprehensive class C of geometric structures (T, β), where T ⊆ Rn, and show that for each
structure (T, β) ∈ C, the FO-theory of the class of monadic expansions of (T, β) is undecidable.
We then consider classes of expansions of structures (T, β) with restricted unary predicates, for
example finite predicates, and establish a variety of related undecidability results. In addition
to decidability questions, we briefly study the expressivity of universal MSO and weak universal
MSO over expansions of (Rn, β). While the logics are incomparable in general, over expansions
of (Rn, β), formulae of weak universal MSO translate into equivalent formulae of universal MSO.

An extended version of this article can be found on the ArXiv (arXiv:1208.4930v1).
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1 Introduction

Decidability of theories of (classes of) structures is a central topic in various different fields
of computer science and mathematics, with different motivations and objectives depending
on the field in question. In this article we investigate formal theories of geometry in the
framework introduced by Tarski [21, 22]. The logic-based framework was originally presented
in a series of lectures given in Warsaw in the 1920’s. The system is based on first-order
structures with two predicates: a ternary betweenness relation β and a quaternary equidistance
relation ≡. Within this system, β(u, v, w) is interpreted to mean that the point v is between
the points u and w, while xy ≡ uv means that the distance from x to y is equal to the
distance from u to v. The betweenness relation β can be considered to simulate the action
of a ruler, while the equidistance relation ≡ simulates the action of a compass. See [22] for
information about the history and development of Tarski’s geometry.

Tarski established in [21] that the first-order theory of (R2, β,≡) is decidable. In [1],
Aiello and van Benthem pose the question: “What is the complete monadic Π1

1 theory of
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the affine real plane?” By affine real plane, the authors refer to the structure (R2, β). The
monadic Π1

1-theory of (R2, β) is of course essentially the same as the first-order theory of the
class of expansions (R2, β, (Pi)i∈N) of the the affine real plane (R2, β) by unary predicates
Pi ⊆ R2. Aiello and van Benthem conjecture that the theory is decidable. Expansions of
(R2, β) with unary predicates are especially relevant in investigations related to the geometric
structure (R2, β), since in this context unary predicates correspond to regions of the plane
R2.

In this article we study structures of the type of (T, β), where T ⊆ Rn and β is the canonical
Euclidean betweenness predicate restricted to T , see Section 2.3 for the formal definition. Let
E
(
(T, β)

)
denote the class of expansions (T, β, (Pi)i∈N) of (T, β) with unary predicates. We

identify a significant collection of canonical structures (T, β) with an undecidable first-order
theory of E

(
(T, β)

)
. Informally, if there exists a flat two-dimensional region R ⊆ Rn, no

matter how small, such that T ∩ R is in a certain sense sufficiently dense with respect to
R, then the first-order theory of the class E

(
(T, β)

)
is undecidable. If the related density

conditions are satisfied, we say that T extends linearly in 2D, see Section 2.3 for the formal
definition. We prove that for any T ⊆ Rn, if T extends linearly in 2D, then the FO-theory
of E

(
(T, β)

)
is Σ0

1-hard. In addition, we establish that for all n ≥ 2, the first-order theory of
E
(
(Rn, β)

)
is Π1

1-hard, and therefore not even arithmetical. We thereby refute the conjecture
of Aiello and van Benthem from [1]. The results are ultimately based on tiling arguments.
The result establishing Π1

1-hardness relies on the recurrent tiling problem of Harel [14]—once
again demonstrating the usefulness of Harel’s methods.

Our results establish undecidability for a wide range of monadic expansion classes of
natural geometric structures (T, β). In addition to (R2, β), such structures include for
example the rational plane (Q2, β), the real unit cube ([0, 1]3, β), and the plane of algebraic
reals (A2, β) — to name a few.

In addition to investigating monadic expansion classes of the type E
(
(T, β)

)
, we also

study classes of expansions with restricted unary predicates. Let n be a positive integer and
let T ⊆ Rn. Let F

(
(T, β)

)
denote the class of structures (T, β, (Pi)i∈N), where the sets Pi

are finite subsets of T . We establish that if T extends linearly in 2D, then the first-order
theory of F

(
(T, β)

)
is undecidable. An alternative reading of this result is that the weak

universal monadic second-order theory of (T, β) is undecidable. We obtain a Π0
1-hardness

result by an argument based on the periodic torus tiling problem of Gurevich and Koryakov
[12]. The torus tiling argument can easily be adapted to deal with various different kinds of
natural classes of expansions of geometric structures (T, β) with restricted unary predicates.
These include the classes with unary predicates denoting—for example—polygons, finite
unions of closed rectangles, and real algebraic sets (see [8] for the definition).

Our results could turn out useful in investigations concerning logical aspects of spatial
databases. It turns out that there is a canonical correspondence between (R2, β) and
(R, 0, 1, ·,+, <), see [13]. See the survey [17] for further details on logical aspects of spatial
databases.

The betweenness predicate is also studied in spatial logic [3]. The recent years have
witnessed a significant increase in the research on spatially motivated logics. Several interest-
ing systems with varying motivations have been investigated, see for example the articles
[1, 4, 5, 15, 16, 18, 20, 23, 24]. See also the surveys [2] and [6] in the Handbook of Spatial
Logics [3], and the Ph.D. thesis [11]. Several of the above articles investigate fragments of
first-order theories by way of modal logics for affine, projective, and metric geometries. Our
results contribute to the understanding of spatially motivated first-order languages, and
hence they can be useful in the search for decidable (modal) spatial logics.

CSL’12
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In addition to studying issues of decidability, we briefly compare the expressivities of
universal monadic second-order logic ∀MSO and weak universal monadic second-order logic
∀WMSO. It is straightforward to observe that in general, the expressivities of ∀MSO and
∀WMSO are incomparable in a rather strong sense: ∀MSO 6≤WMSO and ∀WMSO 6≤ MSO.
Here MSO and WMSO denote monadic second-order logic and weak monadic second-order
logic, respectively. The result ∀WMSO 6≤ MSO follows from already existing results (see [10]
for example), and the result ∀MSO 6≤WMSO is more or less trivial to prove. While ∀MSO
and ∀WMSO are incomparable in general, the situation changes when we consider expansions
(Rn, β, (Ri)i∈I) of the stucture (Rn, β), i.e., structures embedded in the geometric structure
(Rn, β). Here (Ri)i∈I is an arbitrary vocabulary and I an arbitrary related index set. We
show that over such structures, sentences of ∀WMSO translate into equivalent sentences of
∀MSO. The proof is based on the Heine-Borel theorem.

The structure of the current article is as follows. In Section 2 we define the central
notions needed in the later sections. In Section 3 we compare the expressivities of ∀MSO
and ∀WMSO. In Section 4 we show undecidability of the first-order theory of the class of
monadic expansions of any geometric structure (T, β) such that T exends linearly in 2D. In
addition, we show that for n ≥ 2, the first-order theory of monadic expansions of (Rn, β)
is not on any level of the arithmetical hierarchy. In Section 5 we modify the approach in
Section 4 and show undecidability of the FO-theory of the class of expansions by finite unary
predicates of any geometric structure (T, β) such that T extends linearly in 2D.

2 Preliminaries

2.1 Interpretations
Let σ and τ be relational vocabularies. Let A be a nonempty class of σ-structures and C a
nonempty class of τ -structures. Assume that there exists a surjective map F from C onto
A and a first-order τ -formula ϕDom(x) in one free variable, x, such that for each structure
B ∈ C, there is a bijection f from the domain of F (B) to the set

{ b ∈ Dom(B) | B |= ϕDom(b) }.

Assume, furthermore, that for each relation symbol R ∈ σ, there is a first-order τ -formula
ϕR(x1, ..., xAr(R)) such that we have

RF (B)(a1, ..., aAr(R)) ⇔ B |= ϕR

(
f(a1), ..., f(aAr(R))

)
for every tuple (a1, ..., aAr(R)) ∈ (Dom(F (B)))Ar(R). Here Ar(R) is the arity of R. We then
say that the class A is uniformly first-order interpretable in C. If A is a singleton class {A},
we say that A is uniformly first-order interpretable in C.

Assume that a class of σ-structures A is uniformly first-order interpretable in a class C of
τ -structures. Let P be a set of unary relation symbols such that P ∩ (σ ∪ τ) = ∅. Define a
map I from the set of first-order (σ ∪ P)-formulae to the set of first-order (τ ∪ P)-formulae
as follows.

1. If P ∈ P, then I(Px) := Px.
2. If k ∈ N≥1 and R ∈ σ is a k-ary relation symbol, then I(R(x1, ..., xk)) := ϕR(x1, ..., xk),

where ϕR(x1, ..., xk) is the first-order formula for R witnessing the fact that A is uniformly
first-order interpretable in C.

3. I(x = y) := x = y.
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4. I(¬ϕ) := ¬I(ϕ).
5. I(ϕ ∧ ψ) := I(ϕ) ∧ I(ψ).
6. I

(
∃xψ(x)

)
:= ∃x

(
ϕDom(x) ∧ I(ψ(x))

)
.

We call the map I the P-expansion of a uniform interpretation of A in C. When A and
C are known from the context, we may call I simply a P-interpretation. In the case where P
is empty, the map I is a uniform interpretation of A in C.

I Lemma 1. Let σ and τ be finite relational vocabularies. Let A be a class of σ-structures
and C a class of τ -structures. Assume that A is uniformly first-order interpretable in C.
Let P be a set of unary relation symbols such that P ∩ (σ ∪ τ) = ∅. Let I denote a related
P-interpretation. Let ϕ be a first-order (σ ∪ P)-sentence. The following conditions are
equivalent.
1. There exists an expansion A∗ of a structure A ∈ A to the vocabulary σ ∪ P such that

A∗ |= ϕ.
2. There exists an expansion B∗ of a structure B ∈ C to the vocabulary τ ∪ P such that

B∗ |= I(ϕ).

Proof. Straightforward. J

2.2 Logics and structures

Monadic second order logic, MSO, extends first-order logic with quantification of relation
symbols ranging over subsets of the domain of a model. In universal (existential) monadic
second order logic, ∀MSO (∃MSO), the quantification of monadic relations is restricted to
universal (existential) prenex quantification in the beginning of formulae. The logics ∀MSO
and ∃MSO are also known as monadic Π1

1 and monadic Σ1
1. Weak monadic second-order

logic, WMSO, is a semantic variant of monadic second-order logic in which the quantified
relation symbols range over finite subsets of the domain of a model. The weak variants
∀WMSO and ∃WMSO of ∀MSO and ∃MSO are defined in the obvious way.

Let L be any fragment of second-order logic. The L-theory of a structure M of a
vocabulary τ is the set of τ -sentences ϕ of L such that M |= ϕ.

Define two binary relations H,V ⊆ N2 × N2 as follows.
H = {

(
(i, j), (i+ 1, j)

)
| i, j ∈ N }.

V = {
(
(i, j), (i, j + 1)

)
| i, j ∈ N }.

We let G denote the structure (N2, H, V ), and call it the grid. The relations H and V are
called the horizontal and vertical successor relations of G, respectively. A supergrid is a
structure of the vobabulary {H,V } that has G as a substructure. We denote the class of
supergrids by G.

Let (G, R) be the expansion of G, where R = {
(
(0, i), (0, j)

)
∈ N2 × N2 | i < j }. We

denote the structure (G, R) by R, and call it the recurrence grid.
Let m and n be positive integers. Define two binary relations Hm,n, Vm,n ⊆ (m× n)2 as

follows. (Note that we define m = {0, ...,m− 1}, and analogously for n.)
Hm,n = H � (m× n)2 ∪ {((m− 1, i), (0, i)) | i < n}.
Vm,n = V � (m× n)2 ∪ {((i, n− 1), (i, 0)) | i < m}.

We call the structure (m× n,Hm,n, Vm,n) the m× n torus and denote it by Tm,n. A torus
is essentially a finite grid whose east border wraps back to the west border and north border
back to the south border.

CSL’12
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2.3 Geometric affine betweenness structures
Let (Rn, d) be the n-dimensional Euclidean space with the canonical metric d. We always
assume n ≥ 1. We define the ternary Euclidean betweenness relation β such that β(s, t, u) iff
d(s, u) = d(s, t) + d(t, u). By β∗ we denote the strict betweenness relation, i.e., β∗(s, t, u) iff
β(s, t, u) and s 6= t 6= u. We say that the points s, t, u ∈ Rn are collinear if the disjunction
β(s, t, u) ∨ β(s, u, t) ∨ β(t, s, u) holds in (Rn, β). We define the first-order {β}-formula
collinear(x, y, z) := β(x, y, z) ∨ β(x, z, y) ∨ β(y, x, z).

Below we study geometric betweenness structures of the type (T, βT ) where T ⊆ Rn and
βT = β � T . Here β � T is the restriction of the betweenness predicate β of Rn to the set T .
To simplify notation, we usually refer to these structures by (T, β).

Let T ⊆ Rn and let β be the corresponding betweenness relation. We say that L ⊆ T is
a line in T if the following conditions hold.
1. There exist points s, t ∈ L such that s 6= t.
2. For all s, t, u ∈ L, the points s, t, u are collinear.
3. Let s, t ∈ L be points such that s 6= t. For all u ∈ T , if β(s, u, t) or β(s, t, u), then u ∈ L.

Let T ⊆ Rn and let L1 and L2 be lines in T . We say that L1 and L2 intersect if L1 6= L2
and L1∩L2 6= ∅. We say that the lines L1 and L2 intersect in Rn if L1 6= L2 and L′1∩L′2 6= ∅,
where L′1, L′2 are the lines in Rn such that L1 ⊆ L′1 and L2 ⊆ L′2.

A subset S ⊆ Rn is an m-dimensional flat of Rn, where 0 ≤ m ≤ n, if there exists
a set of m linearly independent vectors v1, . . . , vm ∈ Rn and a vector h ∈ Rn such that
S is the h-translated span of the vectors v1, . . . , vm, in other words S = {u ∈ Rn | u =
h+r1v1 + · · ·+rmvm, r1, . . . , rm ∈ R}. None of the vectors vi is allowed to be the zero-vector.

A set U ⊆ Rn is a linearly regular m-dimensional flat, where 0 ≤ m ≤ n, if the following
conditions hold.
1. There exists an m-dimensional flat S such that U ⊆ S.
2. There does not exist any (m− 1)-dimensional flat S such that U ⊆ S.
3. U is linearly complete, i.e., if L is a line in U and L′ ⊇ L the corresponding line in Rn,

and if r ∈ L′ is a point in L′ and ε ∈ R+ a positive real number, then there exists a point
s ∈ L such that d(s, r) < ε. Here d is the canonical metric of Rn.

4. U is linearly closed, i.e., if L1 and L2 are lines in U and L1 and L2 intersect in Rn,
then the lines L1 and L2 intersect. In other words, there exists a point s ∈ U such that
s ∈ L1 ∩ L2.

A set T ⊆ Rn extends linearly in mD, where m ≤ n, if there exists a linearly regular
m-dimensional flat S, a positive real number ε ∈ R+ and a point x ∈ S ∩ T such that
{ u ∈ S | d(x, u) < ε } ⊆ T. It is easy show that for example Q2 extends linearly in 2D.

2.4 Tilings
A function t : 4 −→ N is called a tile type. Define the set TILES := { Pt | t is a tile type }
of unary relation symbols. The unary relation symbols in the set TILES are called tiles. The
numbers t(i) of a tile Pt are the colours of Pt. The number t(0) is the top colour, t(1) the
right colour, t(2) the bottom colour, and t(3) the left colour of Pt.

Let T be a finite nonempty set of tiles. We say that a structure A = (A, V,H), where
V,H ⊆ A2, is T -tilable, if there exists an expansion of A to the vocabulary {H,V }∪{ Pt | Pt ∈
T } such that the following conditions hold.
1. Each point of A belongs to the extension of exactly one symbol Pt in T .
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2. If uHv for some points u, v ∈ A, then the right colour of the tile Pt s.t. Pt(u) is the same
as the left colour of the tile Pt′ such that Pt′(v).

3. If uV v for some points u, v ∈ A, then the top colour of the tile Pt s.t. Pt(u) is the same
as the bottom colour of the tile Pt′ such that Pt′(v).

Let t ∈ T . We say that the grid G is t-recurrently T -tilable if there exists an expansion of G
to the vocabulary {H,V } ∪ { Pt | t ∈ T } such that the above conditions 1 − 3 hold, and
additionally, there exist infinitely many points (0, i) ∈ N2 such that Pt

(
(0, i)

)
. Intuitively this

means that the tile Pt occurs infinitely many times in the leftmost column of the grid G. Let
F be the set of finite, nonempty sets T ⊆ TILES, and let H := { (t, T ) | T ∈ F , t ∈ T }.
Define the following languages

T := { T ∈ F | G is T -tilable },
R := { (t, T ) ∈ H | G is t-recurrently T -tilable },
S := { T ∈ F | there is a torus D which is T -tilable }.

The tiling problem is the membership problem of the set T with the input set F . The
recurrent tiling problem is the membership problem of the set R with the input set H. The
periodic tiling problem is the membership problem of S with the input set F .

I Theorem 2. [7] The tiling problem is Π0
1-complete.

I Theorem 3. [14] The recurrent tiling problem is Σ1
1-complete.

I Theorem 4. [12] The periodic tiling problem is Σ0
1-complete.

I Lemma 5. There is a computable function associating each input T to the (periodic)
tiling problem with a first-order sentence ϕT of the vocabulary τ := {H,V } ∪ T such that
for all structures A of the vocabulary {H,V }, the structure A is T -tilable iff there exists an
expansion A∗ of A to the vocabulary τ such that A∗ |= ϕT .

Proof. Straightforward. J

I Lemma 6. There is a computable function associating each input (t, T ) of the recurrent
tiling problem with a first-order sentence ϕ(t,T ) of the vocabulary τ := {H,V,R} ∪ T such
that the grid G is t-recurrently T -tilable iff there exists an expansion R∗ of the recurrence
grid R to the vocabulary τ such that R∗ |= ϕ(t,T ).

Proof. Straightforward. J

It is easy to see that the grid G is T -tilable iff there exists a supergrid G′ that is T -tilable.

3 Expressivity of universal MSO and weak universal MSO over affine
real structures (Rn, β)

In this section we investigate the expressive powers of ∀WMSO and ∀MSO. While it is
rather easy to conclude that the two logics are incomparable in a rather strong sense (see
Proposition 7), when attention is limited to structures (Rn, β, (Ri)i∈I) that expand the affine
real structure (Rn, β), sentences of ∀WMSO translate into equivalent sentences of ∀MSO.

Let L and L′ be fragments of second-order logic. We write L ≤ L′, if for every vocabulary
σ, any class of σ-structures definable by a σ-sentence of L is also definable by a σ-sentence
of L′. Let τ be a vocabulary such that β 6∈ τ . The class of all expansions of (Rn, β) to the
vocabulary {β} ∪ τ is called the class of affine real τ -structures. Such structures can be

CSL’12
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regarded as τ -structures embedded in the geometric structure (Rn, β). We say that L ≤ L′
over (Rn, β), if for every vocabulary τ s.t. β 6∈ τ , any subclass definable w.r.t. the class C of
all affine real τ -structures by a sentence of L is also definable w.r.t. C by a sentence of L′.

I Proposition 7. ∀WMSO 6≤ MSO and ∀MSO 6≤WMSO.

Proof. Finiteness is definable in ∃WMSO, and hence infinity is expressible in ∀WMSO.
Infinity is not expressible in MSO. It is easy to show that ∀MSO can separate the structures
(R, <) and (Q, <), while WMSO cannot. J

We then show that ∀WMSO ≤ ∀MSO and WMSO ≤ MSO over (Rn, β) for any n ≥ 1.

I Theorem 8 (Heine-Borel). A set S ⊆ Rn is closed and bounded iff every open cover of S
has a finite subcover.

I Theorem 9. Let C be the class of expansions (Rn, β, P ) of (Rn, β) with a unary predicate
P , and let F ⊆ C be the subclass of C where P is finite. The class F is first-order definable
with respect to C.

Proof. We shall first establish that a set T ⊆ Rn is finite iff it is closed, bounded and consists
of isolated points of T . Recall that an isolated point u of a set U ⊆ Rn is a point such that
there exists some open ball B such that B ∩ U = {u}.

Assume T ⊆ Rn is finite. Since T is finite, we can find a minimum distance between
points in the set T . Therefore it is clear that each point t in T belongs to some open ball B
such that B ∩ T = {t}, and hence T consists of isolated points. Similarly, since T is finite,
each point b in the complement of T has some minimum distance to the points of T , and
therefore b belongs to some open ball B ⊆ Rn \ T . Hence the set T is the complement of the
union of open balls B such that B ⊆ Rn \ T , and therefore T is closed. Finally, since T is
finite, we can find a maximum distance between the points in T , and therefore T is bounded.

Assume then that T ⊆ Rn is closed, bounded and consists of isolated points of T . Since
T consists of isolated points, it has an open cover C ⊆ Pow(Rn) such that each set in C
contains exactly one point t ∈ T . The set C is an open cover of T , and by the Heine-Borel
theorem, there exists a finite subcover D ⊆ C of the set T . Since D is finite and each set in
D contains exactly one point of T , the set T must also be finite.

We then conclude the proof by establishing that there exists a first-order formula ϕ(P )
stating that the unary predicate P is closed, bounded and consists of isolated points. We
will first define a formula parallel(x, y, t, k) stating that the lines defined by x, y and t, k are
parallel in (Rn, β). We define

parallel(x, y, t, k) := x 6= y ∧ t 6= k ∧
(

(collinear(x, y, t) ∧ collinear(x, y, k))

∨
(
¬∃z(collinear(x, y, z) ∧ collinear(t, k, z))

∧ ∃z1z2(x 6= z1 ∧ collinear(x, y, z1) ∧ collinear(x, t, z2) ∧ collinear(z1, z2, k))
))
.

We will then define first-order {β}-formulae basisk(x0, . . . , xk) and flatk(x0, . . . , xk, z) using
simultaneous recursion. The first formula states that the vectors corresponding to the pairs
(x0, xi), 1 ≤ i ≤ k, form a basis of a k-dimensional flat. The second formula states the points
z are exactly the points in the span of the basis defined by the vectors (x0, xi), the origin
being x0. First define basis0(x0) := x0 = x0 and flat0(x0, z) := x0 = z. Then define flatk
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and basisk recursively in the following way.

basisk(x0, . . . , xk) := basisk−1(x0, . . . , xk−1) ∧ ¬flatk−1(x0, . . . , xk−1, xk),
flatk(x0, . . . , xk, z) := basisk(x0, . . . , xk)

∧ ∃y0, . . . , yk

(
y0 = x0 ∧ yk = z ∧

∧
i≤ k−1

(
yi = yi+1 ∨ parallel(x0, xi+1, yi, yi+1)

))
.

We then define a first-order {β, P}-formula sepr(x, P ) asserting that x belongs to an open
ball B such that each point in B \ {x} belongs to the complement of P . The idea is to
state that there exist n+ 1 points x0, . . . , xn that form an n-dimensional triangle around x,
and every point contained in the triangle (with x being a possible exception) belongs to the
complement of P . Every open ball in Rn is contained in some n-dimensional triangle in Rn

and vice versa. We will recursively define first-order formulae opentrianglek(x0, . . . , xk, z)
stating that z is properly inside a k-dimensional triangle defined by x0, . . . , xk. First define
opentriangle1(x0, x1, z) := β∗(x0, z, x1), and then define

opentrianglek(x0, . . . , xk, z) := basisk(x0, . . . , xk)
∧ ∃y

(
opentrianglek−1(x0, . . . , xk−1, y) ∧ β∗(y, z, xk)

)
.

We are now ready to define sepr(x, P ). Let

sepr(x, P ) := ∃x0, . . . , xn

(
opentrianglen(x0, . . . , xn, x)

∧ ∀y
(
(opentrianglen(x0, . . . , xn, y) ∧ y 6= x) → ¬Py

))
.

Now, the sentence ϕ1 := ∀x
(
¬Px → sepr(x, P )

)
states that each point in the complement

of P is contained in an open ball B ⊆ Rn \ P . The sentence therefore states that the
complement of P is a union of open balls. Since the set of unions of open balls is exactly the
same as the set of open sets, the sentence states that P is closed.

The sentence ϕ2 := ∀x
(
Px → sepr(x, P )

)
clearly states that P consists of isolated

points.
Finally, in order to state that P is bounded, we define a formula asserting that there

exist points x0, . . . , xn that form an n-dimensional triangle around P .

ϕ3 := ∃x0, . . . , xn

(
basisn(x0, . . . , xn) ∧ ∀y

(
Py → opentrianglen(x0, . . . , xn, y)

))
The conjunction ϕ1 ∧ ϕ2 ∧ ϕ3 states that P is finite. J

I Corollary 10. Limit attention to expansions of (Rn, β). Sentences of ∀WMSO translate
into equivalent sentences of ∀MSO, and sentences of WMSO into equivalent sentences of
MSO.

4 Undecidable theories of geometric structures with an affine
betweenness relation

In this section we prove that the universal monadic second-order theory of any geometric
structure (T, β) that extends linearly in 2D is undecidable. In addition we show that
the universal monadic second-order theories of structures (Rn, β) with n ≥ 2 are highly
undecidable. In fact, we show that the theories of structures extending linearly in 2D are
Σ0

1-hard, while the theories of structures (Rn, β) with n ≥ 2 are Π1
1-hard—and therefore
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not even arithmetical. We establish the results by a reduction from the (recurrent) tiling
problem to the problem of deciding whether a particular {β}-sentence of monadic Σ1

1 is
satisfied by (T, β) (respectively, (Rn, β)). The argument is based on interpreting supergrids
in corresponding {β}-structures.

4.1 Lines and sequences
Let T ⊆ Rn. Let L be a line in T . Any nonempty subset Q of L is called a sequence in
T . Let E ⊆ T and s, t ∈ T . If s 6= t and if u ∈ E for all points u ∈ T such that β∗(s, u, t),
we say that the points s and t are linearly E-connected (in (T, β)). If there exists a point
v ∈ T \ E such that β∗(s, v, t), we say that s and t are linearly disconnected with respect to
E (in (T, β)).

I Definition 11. Let Q be a sequence in T ⊆ Rn. Suppose that for each s, t ∈ Q such that
s 6= t, there exists a point u ∈ T \ {s} such that
1. β(s, u, t) and
2. ∀r ∈ T

(
β∗(s, r, u)→ r 6∈ Q

)
, i.e., the points s and u are linearly (T \Q)-connected.

Then we call Q a discretely spaced sequence in T.

I Definition 12. Let Q be a discretely spaced sequence in T ⊆ Rn. Assume that there exists
a point s ∈ Q such that for each point u ∈ Q, there exists a point v ∈ Q \ {u} such that
β(s, u, v). Then we call the sequence Q a discretely infinite sequence in T . The point s is
called a base point of Q.

I Definition 13. Let Q be a sequence in T ⊆ Rn. Let s ∈ Q be a point such that there do
not exist points u, v ∈ Q \ {s} such that β(u, s, v). Then we call Q a sequence in T with a
zero. The point s is a zero-point of Q. Notice that Q may have up to two zero-points.

It is easy to see that a discretely infinite sequence has at most one zero point.

I Definition 14. Let Q be a discretely infinite sequence in T ⊆ Rn with a zero. Assume
that for each r ∈ T such that there exist points s, u ∈ Q \ {r} with β(s, r, u), there also exist
points s′, u′ ∈ Q \ {r} such that
1. β(s′, r, u′) and
2. ∀v ∈ T \ {r}

(
β∗(s′, v, u′)→ v 6∈ Q

)
.

Then we call Q an ω-like sequence in T (cf. Lemma 17).

I Lemma 15. Let P be a unary relation symbol. There is a first-order sentence ϕω(P ) of
the vocabulary {β, P} such that for every T ⊆ Rn and for every expansion (T, β, P ) of (T, β),
we have (T, β, P ) |= ϕω(P ) if and only if the interpretation of P is an ω-like sequence in T .

Proof. Straightforward. J

I Definition 16. Let P be a sequence in T ⊆ Rn and s, t ∈ P . The points s, t are called
adjacent with respect to P , if the points are linearly (T \ P )-connected. Let E ⊆ P × P be
the set of pairs (u, v) such that
1. u and v are adjacent with respect to P , and
2. β(z, u, v) for some zero point z of P .
We call E the successor relation of P .

We let succ denote the successor relation of N, i.e., succ := { (i, j) ∈ N× N | i+ 1 = j }.
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I Lemma 17. Let P be an ω-like sequence in T ⊆ Rn and E the successor relation of P .
There is an embedding from (N, succ) into (P,E) such that 0 ∈ N maps to the zero point of
P . If T = Rn, then (N, succ) is isomorphic to (P,E).

Proof. We denote by i0 the unique zero point of P . Since P is a discretely infinite sequence,
it has a base point. Clearly i0 has to be the only base point of P . It is straightforward to
establish that since P is an ω-like sequence with the base point i0, there exists a sequence
(ai)i∈N of points ai ∈ P such that i0 = a0 and ai+1 is the unique E-successor of ai for all
i ∈ N. Define the function h : N→ P such that h(i) = ai for all i ∈ N. It is easy to see that
h is an embedding of (N, succ) into (P,E).

Assume then that T = Rn. We shall show that the function h : N −→ P is a surjection. Let
d denote the canonical metric of R, and let dR be the restriction of the canonical metric of Rn to
the line R in Rn such that P ⊆ R. Let g : R −→ R be the isometry from (R, d) to (R, dR) such
that g(0) = i0 = h(0) and such that for all r ∈ ran(h), we have β

(
i0, g(1), r

)
or β

(
i0, r, g(1)

)
.

Let (R,≤R) be the structure, where ≤R = { (u, v) ∈ R×R | g−1(u) ≤R g−1(v) }. If ran(h)
is not bounded from above w.r.t. ≤R, then h must be a surjection. Therefore assume that
ran(h) is bounded above. By the Dedekind completeness of the reals, there exists a least
upper bound s ∈ R of ran(h) w.r.t. ≤R. Notice that since h is an embedding of (N, succ)
into (P,E), we have s 6∈ ran(h). Due to the definition of E, it is sufficient to show that
{ t ∈ P | s ≤R t } = ∅ in order to conclude that h maps onto P .

Assume that the least upper bound s belongs to the set P . Since P is a discretely spaced
sequence, there is a point u ∈ Rn \{s} such that β(s, u, i0) and ∀r ∈ Rn

(
β∗(s, r, u)→ r 6∈ P

)
.

Now u <R s and the points u and s are linearly (Rn \ P )-connected, implying that s cannot
be the least upper bound of ran(h). This is a contradiction. Therefore s 6∈ P .

Assume, ad absurdum, that there exists a point t ∈ P such that β(i0, s, t). Now,
since P is an ω-like sequence, there exists points u′, v′ ∈ P \ {s} such that β(u′, s, v′) and
∀r ∈ Rn

(
β∗(u′, r, v′) → r 6∈ P

)
. We have β(s, u′, i0) or β(s, v′, i0). Assume, by symmetry,

that β(s, u′, i0). Now u′ <R s, and the points u′ and s are linearly (Rn \ P )-connected.
Hence, since s 6∈ ran(h), we conclude that s is not the least upper bound of ran(h). This is a
contradiction. J

4.2 Geometric structures (T, β) with an undecidable monadic Π1
1-theory

b b b

b
b
b

Figure 1 Illustration of how the
grid is interpreted in a Cartesian
frame.

Let Q be an ω-like sequence in T ⊆ Rn and let q0 be
the unique zero point of Q. Assume there exists a point
qe ∈ T \Q such that β(q0, q, qe) holds for all q ∈ Q. We
call Q ∪ {qe} an ω-like sequence with an endpoint in T .
The point qe is the endpoint of Q ∪ {qe}. Notice that the
endpoint qe is the only point x in Q ∪ {qe} such that the
following conditions hold.
1. There does not exist points s, t ∈ Q ∪ {qe} such that

β∗(s, x, t).
2. ∀yz ∈ Q ∪ {qe}

(
β∗(x, y, z) → ∃v ∈ Q ∪

{qe}
(
β∗(x, v, y)

)
.

I Definition 18. Let P and Q be ω-like sequences with
an endpoint in T ⊆ Rn. Let pe and qe be the endpoints
of P and Q, respectively. Assume that the following
conditions hold.
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1. There exists a point z ∈ P ∩Q such that z is the zero-point of both P \ {pe} and Q \ {qe}.
2. There exists lines LP and LQ in T such that LP 6= LQ, P ⊆ LP and Q ⊆ LQ.
3. For each point p ∈ P \ {pe} and q ∈ Q \ {qe}, the unique lines Lp and Lq in T such that

p, qe ∈ Lp and q, pe ∈ Lq intersect.
We call the structure (T, β, P,Q) a Cartesian frame.

I Lemma 19. Let T ⊆ Rn, n ≥ 2, and let C be the class of all expansions (T, β, P,Q) of
(T, β) by unary relations P and Q. The class of Cartesian frames with the domain T is
definable with respect to C by a first-order sentence.

Proof. Straightforward by virtue of Lemma 15. J

I Lemma 20. Let T ⊆ Rn, n ≥ 2. Let C be the class of Cartesian frames with the domain
T , and assume that C is nonempty. Let G be the class of supergrids and G the grid. There
is a class A ⊆ G that is uniformly first-order interpretable in the class C, and furthermore,
G ∈ A.

Proof. Let C = (T, β, P,Q) be a Cartesian frame. Let pe ∈ P and qe ∈ Q be the endpoints
of P an Q, respectively. We shall interpret a supergrid GC in the Cartesian frame C. The
domain of the interpretation of GC in C will be the set of points where the lines that connect
the points of P \ {pe} to qe and the lines that connect the points of Q \ {qe} to pe intersect.

First let us define the following formula which states in C that x is the endpoint of P .

endP (P,Q, x) := Px ∧ ¬Qx ∧ ¬∃y∃z
(
Py ∧ Pz ∧ β∗(y, x, z)

)
In the following, we let atomic expressions of the type x 6= pe and β∗(x, y, qe) abbreviate cor-
responding first-order formulae ∃z

(
endP (P,Q, z)∧x 6= z

)
and ∃z

(
endQ(Q,P, z)∧β∗(x, y, z)

)
of the vocabulary {β, P,Q} of C. We define

ϕDom(u) := u 6= pe ∧ u 6= qe

∧
(
Pu ∨Qu ∨ ∃xy

(
Px ∧ x 6= pe ∧Qy ∧ y 6= qe ∧ β(x, u, qe) ∧ β(y, u, pe)

))
,

ϕH(u, v) := ∃x
(
Qx ∧ β(x, u, v) ∧ β∗(u, v, pe)

)
∧ ∀r

(
β∗(u, r, v) → ¬ϕDom(r)

)
,

ϕV (u, v) := ∃x
(
Px ∧ β(x, u, v) ∧ β∗(u, v, qe)

)
∧ ∀r

(
β∗(u, r, v) → ¬ϕDom(r)

)
.

Call DC := { r ∈ T | C |= ϕDom(r) } and define the structure DC = (DC, H
DC , V DC), where

HDC := { (s, t) ∈ DC ×DC | C |= ϕH(s, t) },

and analogously for V DC . By Lemma 17, it is easy to see that there exists an injection f
from the domain of the grid G = (G,H, V ) to DC such that the following three conditions
hold for all u, v ∈ G.
1. (u, v) ∈ H ⇔ ϕH

(
f(u), f(v)

)
,

2. (u, v) ∈ V ⇔ ϕV

(
f(u), f(v)

)
.

Hence there is a supergrid GC = (GC, H, V ) such that there exists an isomorphism f from
GC to DG such that the above two conditions hold.

Let A := { GC ∈ G | C is a Cartesian frame with the domain T }. Clearly G ∈ A, and
furthermore, A is uniformly first-order interpretable in the class of Cartesian frames with
the domain T . J

I Lemma 21. Let n ≥ 2 be an integer. The recurrence grid R is uniformly first-order
interpretable in the class of Cartesian frames with the domain Rn.
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Proof. Straightforward by Lemma 17 and the proof of Lemma 20. J

I Theorem 22. Let T ⊆ Rn be a set and let β be the corresponding betweenness relation.
Assume that T extends linearly in 2D. The monadic Π1

1-theory of (T, β) is Σ0
1-hard.

Proof. Since T extends linearly in 2D, we have n ≥ 2. Let σ = {H,V } be the vocabulary
of supergrids, and let τ = {β,X, Y } be the vocabulary of Cartesian frames. By Lemma
19, there exists a first-order τ -sentence that defines the class of Cartesian frames with the
domain T with respect to the class of all expansions of (T, β) to the vocabulary τ . Let ϕCf
denote such a sentence.

By Lemma 5, there is a computable function that associates each input S to the tiling
problem with a first-order σ ∪ S-sentence ϕS such that a structure A of the vocabulary σ is
S-tilable if and only if there is an expansion A∗ of the structure A to the vocabulary σ ∪ S
such that A∗ |= ϕS .

Since T extends linearly in 2D, the class of Cartesian frames with the domain T is
nonempty. By Lemma 20 there is a class of supergrids A such that G ∈ A and A is uniformly
first-order interpretable in the class of Cartesian frames with the domain T . Therefore there
exists a uniform interpretation I ′ of A in the class of Cartesian frames with the domain T .
Let S be a finite nonempty set of tiles. Note that S is by definition a set of proposition
symbols Pt, where t is a tile type. Let I be the S-expansion of the uniform interpretation I ′
of A in the class of Cartesian frames with the domain T .

Define ψS := ∃X ∃Y (∃Pt)Pt ∈S

(
ϕCf ∧ I(ϕS )

)
. We will prove that for each input S to

the tiling problem, we have (T, β) |= ψS if and only if the grid G is S-tilable. Thereby we
establish that there exists a computable reduction from the complement problem of the tiling
problem to the membership problem of the monadic Π1

1-theory of (T, β). Since the tiling
problem is Π0

1-complete, its complement problem is Σ0
1-complete.1

Let S be an input to the tiling problem. Assume first that there exists an S-tiling of the
grid G. Therefore there exists an expansion G∗ of the grid G to the vocabulary {H,V } ∪ S
such that G∗ |= ϕS . Hence, by Lemma 1 and since G ∈ A, there exists a Cartesian frame C

with the domain T such that for some expansion C∗ of C to the vocabulary {β,X, Y } ∪ S,
we have C∗ |= I(ϕS). On the other hand, since C is a Cartesian frame, we have C∗ |= ϕCf .
Therefore C∗ |= ϕCf ∧ I(ϕS), and hence (T, β) |= ψS .

For the converse, assume that (T, β) |= ψS . Therefore there exists an expansion B∗

of (T, β) to the vocabulary {β,X, Y } ∪ S such that we have B∗ |= ϕCf ∧ I(ϕS). Since
B∗ |= ϕCf , the {β,X, Y }-reduct of B∗ is a Cartesian frame with the domain T . Therefore,
we conclude by Lemma 1 that A∗ |= ϕS for some expansion A∗ of some supergrid A ∈ A to
the vocabulary {H,V } ∪ S. Thus there exists a supergrid that S-tilable. Hence the grid G

is S-tilable. J

I Corollary 23. Let T ⊆ Rn be such that T extends linearly in 2D. Let C be the class of
expansions (T, β, (Pi)i∈N) of (T, β) with arbitrary unary predicates. The first-order theory of
C is undecidable.

We note that T extending linearly in 1D is not a sufficient condition for undecidability of
the monadic Π1

1-theory of (T, β). The monadic Π1
1-theory of (R, β) is decidable; this follows

trivially from the known result that the monadic Π1
1-theory (R,≤) is decidable, see [9]. Also

1 It is of course a well-known triviality that the complement A of a problem A is Σ0
1-hard if A is Π0

1-hard.
Choose an arbitrary problem B ∈ Σ0

1. By definition B ∈ Π0
1. By the hardness of A, there is a computable

reduction f such that x ∈ B ⇔ f(x) ∈ A, whence x ∈ B ⇔ f(x) ∈ A.
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the monadic Π1
1-theory of (Q, β) is decidable since the MSO theory of (Q,≤) is decidable

[19].

I Theorem 24. Let n ≥ 2 be an integer. The monadic Π1
1-theory of the structure (Rn, β) is

Π1
1-hard.

Proof. The proof is essentially the same as the proof of Theorem 22. The main difference is
that we use Lemma 21 and interpret the recurrence grid R instead of a class of supergrids
and hence obtain a reduction from the recurring tiling problem instead of the ordinary tiling
problem. Thereby we establish Π1

1-hardness instead of Σ0
1-hardness. Due to the recurrence

condition of the recurrent tiling problem, the result of Lemma 17 that there is an isomorphism
from (N, succ) to (P,E)—rather than an embedding—is essential. J

I Corollary 25. Let n ≥ 2 be an integer. Let C be the class of expansions (Rn, β, (Pi)i∈N) of
(Rn, β) with arbitrary unary predicates. The first-order theory of C is not on any level of the
arithmetical hierarchy.

5 Geometric structures (T, β) with an undecidable weak monadic
Π1

1-theory

In this section we prove that the weak universal monadic second-order theory of any structure
(T, β) such that T extends linearly in 2D is undecidable. In fact, we show that any such
theory is Π0

1-hard. We establish this by a reduction from the periodic tiling problem to the
problem of deciding truth of {β}-sentences of weak monadic Σ1

1 in (T, β). The argument is
based on interpreting tori in (T, β). Most notions used in this section are inherited either
directly or with minor modification from Section 4.

Let Q be a subset of T ⊆ Rn. We say that Q is a finite sequence in T if Q is a finite
nonempty set and the points in Q are all collinear.

I Definition 26. Let T ⊆ Rn and let β be the corresponding betweenness relation. Let P
and Q be finite sequences in T such that the following conditions hold.
1. P ∩Q = {a0}, where a0 is a zero point of both P and Q.
2. P and Q are non-singleton sequences.
3. There exists lines LP , LQ in T such that LP 6= LQ, P ⊆ LP and Q ⊆ LQ.
We call the structure (T, β, P,Q) a finite Cartesian frame with the domain T .

I Lemma 27. Let T ⊆ Rn, n ≥ 2. Let C be the class of all expansions (T, β, P,Q) of (T, β)
by finite unary relations P and Q. The class of finite Cartesian frames with the domain T is
definable with respect to C by a first-order sentence.

Proof. Straightforward. J

I Lemma 28. Let T ⊆ Rn, n ≥ 2. Assume that T extends linearly in 2D. The class of tori
is uniformly first-order interpretable in the class of finite Cartesian frames with the domain
T .

Proof. The proof is similar to that of Lemma 20. J

I Theorem 29. Let T ⊆ Rn and let β be the corresponding betweenness relation. Assume
that T extends linearly in 2D. The weak monadic Π1

1-theory of (T, β) is Π0
1-hard.

Proof. The proof is based on the above two lemmas and is analogous to the proof of Theorem
22. J



A. Kuusisto, J. Meyers, and J. Virtema 483

I Corollary 30. Let T ⊆ Rn be a set such that T extends linearly in 2D. Let C be the class
of expansions (T, β, (Pi)i∈N) of (T, β) with finite unary predicates. The first-order theory of
C is undecidable.

6 Conclusions

We have studied first-order theories of geometric structures (T, β), T ⊆ Rn, expanded with
(finite) unary predicates. We have established that for n ≥ 2, the first-order theory of
the class of all expansions of (Rn, β) with arbitrary unary predicates is highly undecidable
(Π1

1-hard). This refutes a conjecture from the article [1] of Aiello and van Benthem. In
addition, we have established the following for any geometric structure (T, β) that extends
linearly in 2D.
1. The first-order theory of the class of expansions of (T, β) with arbitary unary predicates

is Σ0
1-hard.

2. The first-order theory of the class of expansions of (T, β) with finite unary predicates is
Π0

1-hard.
Geometric structures that extend linearly in 2D include, for example, the rational plane
(Q2, β) and the real unit rectangle ([0, 1]2, β), to name a few.

The techniques used in the proofs can be easily modified to yield undecidability of
first-order theories of a significant variety of natural restricted expansion classes of the affine
real plane (R2, β), such as those with unary predicates denoting polygons, finite unions of
closed rectangles, and real algebraic sets, for example. Such classes could be interesting from
the point of view of applications.

In addition to studying issues of decidability, we briefly compared the expressivities of
universal monadic second-order logic and weak universal monadic second-order logic. While
the two are incomparable in general, we established that over any class of expansions of
(Rn, β), it is no longer the case. We showed that finiteness of a unary predicate is definable
by a first-order sentence, and hence obtained translations from ∀WMSO into ∀MSO and
from WMSO into MSO.

Our original objective to study weak monadic second order logic over (Rn, β) was to identify
decidable logics of space with distinguished regions. Due to the ubiquitous applicability of the
tiling methods, this pursuit gave way to identifying several undecidable theories of geometry.
Hence we shall look elsewhere in order to identify well behaved natural decidable logics of
space. Possible interesting directions include considering natural fragments of first-order
logic over expansions of (Rn, β), and also other geometries. Related results could provide
insight, for example, in the background theory of modal spatial logics.
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