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Abstract
We consider first-order logics of sequences ordered by the subsequence ordering, aka sequence
embedding. We show that the Σ2 theory is undecidable, answering a question left open by
Kuske. Regarding fragments with a bounded number of variables, we show that the FO2 theory
is decidable while the FO3 theory is undecidable.
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1 Introduction

A subsequence of a (finite) sequence u “ px1, . . . , x`q is a sequence obtained from u by
removing any number of elements. For example, if u “ pa, b, a, b, aq then u1 “ pb, b, aq is a
subsequence of u, a fact we denote with u1 Ď u. Other examples that work for any u are
u Ď u (remove nothing) and pq Ď u.

In this paper we consider decidability and complexity questions for the first-order logic
of finite sequences with the subsequence ordering as the only predicate. The notion of
subsequence is certainly a fundamental one in logic, and it occurs prominently in several
areas of computer science: in pattern matching (of texts, of DNA strings, etc.), in coding
theory, in algorithmics, and in many other areas. We also note that sequences and their
subsequences are a special case of a more general notion where a family of finite labelled
structures (e.g., trees, or graphs, or ..) are compared via a notion of embedding. Closer to our
own motivations, the automatic verification of unreliable channel systems and related problems
generate many formulae where the subsequence ordering appears prominently [2, 4, 8, 11].

While decision methods for logics of sequences have been considered in several contexts,
the corresponding logics usually do not include the subsequence predicate: they rather
consider the prefix ordering, and/or membership in a regular language, and/or functions for
taking contiguous subsequences or computing the length of sequences, see, e.g., [10, 7, 1].

As far as we know, Kuske’s article [12] is the only one that specifically considers the
decidability of the first-order logic of the subsequence ordering per se. The article also
considers more complex orderings since these decidability questions first occurred in automated
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deduction under the name of ordered constraints solving and they involve rather specific
orderings on terms and strings [5].

Kuske considers the first-order logic of subsequences over a set of atoms A, denoted
FOpA˚,Ďq, and notes that the undecidability of its Σ4 theory can be seen by reinterpreting
an earlier undecidability result from [6] for the first-order logic of the lexicographic path
ordering. He then shows that already the Σ3 theory is undecidable even when A contains
only two elements, and also shows that the Σ1 theory is decidable so that the status of the
Σ2 theory remains open.

Our contribution. In this paper we show that the Σ2 theory of the subsequence ordering
is undecidable. On the positive side, we show that the FO2 theory is decidable (but FO3 is
not). We also prove some complexity bounds for the decidable fragments: the Σ1 theory is
NP-complete and the FO2 theory is PSPACE-hard.

Outline of the paper. The relevant definitions and basic results are given in section 2.
Section 3 develops the reduction that proves undecidability for the Σ2 and FO3 theories.
Section 4 presents a further reduction that proves undecidability for the Σ2 theory even
when constants are not allowed in the formulae. Then section 5 shows decidability for the
two-variable fragment FO2.

Since our constructions heavily rely on concepts and results from formal language theory,
we shall from now on speak of “words”, and “letters” (from an “alphabet”) rather than
sequences and atoms. Note however that the logic FOpA˚,Ďq is defined for any kind of set A.

2 Basic notions

Let A “ ta1, a2, . . .u be a set called alphabet, whose elements are called letters. In this paper
we only consider finite alphabets for ease of exposition but without any real loss of generality.
A word is a finite sequence of letters like aac and we use u, v, . . . , to denote words, and A˚
to denote the set of all words over A. Concatenation of word is written multiplicatively, and
ε denotes the empty word. We also use regular expressions like pab` cq˚ to denote regular
languages (i.e., subsets of A˚). The length of a word u is denoted |u| and, for a P A, we let
|u|a denote the number of occurrences of a in u.

We say that a word u is a subword (i.e., a subsequence) of v, written u Ď v, when u is some
a1 ¨ ¨ ¨ an and v can be written under the form v0a1v1 ¨ ¨ ¨ anvn for some v0, v1, . . . , vn P A

˚.
We say a word u is a factor of a word v if there exist words v1 and v2 such that v “ v1uv2. For
B Ď A, and w P A˚, we define the projection of w onto B, denoted as πBpwq, as the subword
of w obtained by removing all letters in AzB. For example, πta,bupabcaccbbcq “ ababb.

We assume familiarity with basic notions of first-order logic as exposed in, e.g., [9]: bound
and free occurrences of variables, etc.

In particular, for n P N, the fragment FOn consists of all formulae that only use at most
n distinct variables (these can have multiple occurrences inside the formula).

The fragments Σn and Πn of FOpA˚,Ďq are defined inductively as follows:
an atomic formula is in Σn and Πn for all n P N;
a negated formula  φ is in Σn iff φ is in Πn, it is in Πn iff φ is in Σn;
a conjunction φ^ φ1 is in Σn (resp., in Πn) iff both φ and φ1 are;
For n ą 0, an existentially quantified Dxφ is in Σn iff φ is, it is in Πn iff φ is in Σn´1;
For n ą 0, a universally quantified @xφ is in Πn iff φ is, it is in Σn iff φ is in Πn´1.
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86 Decidability in the Logic of Subsequences and Supersequences

Note that we do not require formulae to be in prenex normal form when defining the Σn and
Πn fragments: for example the formula @x Dypx Ď y ^ Dx px Ď yqq is simultaneously in Π2
and FO2.

In this article we consider three versions of FOpA˚,Ďq, the first-order logic of subsequences
over A:
The pure logic: the signature consists of only one predicate symbol, “Ď”, denoting the

subword relation. One also uses a countable set X “ tx, x1, y, z, . . .u of variables ranging
over words in A˚ and the usual logical symbols.
Note that there is no way in the pure logic to refer to specific elements of A in the logic.
However, whether a formula φ is true, denoted |ùA˚ φ, may depend on A (in fact, its
cardinality). For example, the closed formula

@x, ypx Ď y _ y Ď xq ,

stating that Ď is a total ordering, is true if, and only if, A contains at most one letter.
The basic logic: extends the pure logic by adding all words u P A˚ as constant symbols

(denoting themselves). For example, assuming A contains a, b and c, one can write the
following sentence:

Dxpab Ď x^ bc Ď x^ abc Ď xq

which is true, as witnessed by the valuation x ÞÑ bcab.
The extended logic: further allows all regular expressions as unary predicates (with the

expected semantics). For these predicates we adopt a more natural notation, writing e.g.
x P expr rather than Pexprpxq. For example, the extended logic allows writing

@x
`“

Dypy P pabq˚ ^ x Ď yq
‰

ô x P pa` bq˚
˘

which states that the regular language pa` bq˚ is the downward closure of pabq˚, i.e., the
set of all subwords of its words.

When writing formulae we freely use abbreviations like x Ă y for x Ď y ^  py Ď xq and
x Ě y for y Ď x. Note that equality can be defined as an abbreviation since x Ď y ^ y Ď x is
equivalent to x “ y. Finally, we use negated symbols as in x Ď y or x R pabq˚ with obvious
meaning.

When we write FOpA˚,Ďq without any qualification we refer by default to the basic logic.
The pure logic is apparently a very restricted logic, where one may hardly express more than
generic properties of the subword ordering like saying that pA˚,Ďq is a total ordering, or is a
lattice. However, Theorem 3.1 below shows that the pure logic is quite expressive.

We conclude this expository section with

I Theorem 2.1. The truth problem for the Σ1 fragment of FOpA˚,Ďq is NP-complete even
when restricting to a fixed alphabet.

Proof sketch. The upper bound follows from the decidability proof in [12] since it is proved
there that a satisfiable quantifier-free formula φpx1, . . . , xnq can be satisfied with words of
size in Opnq assigned to the xi’s. Guessing linear-sized witnesses u1, . . . , un and checking
that |ùA˚ φpu1, . . . , unq can be done in NP.

For the lower bound, we reduce from boolean satisfiability. Consider a boolean formula
φpx1, . . . , xnq over n boolean variables. We reduce it to an FOpA˚,Ďq formula in the Σ1
fragment

ψ ” Dz, x1, . . . , xnpφ
1q
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where φ1 is obtained from φ by replacing each occurrence of xi with xi Ď z (hence replacing
 xi with xi Ď z). Then, for any alphabet A with at least one letter, φ is satisfiable if and
only if |ùA˚ ψ. J

3 Undecidability for Σ2

We are interested in solving the truth problem. This asks, given an alphabet A and a sentence
φ P FOpA˚,Ďq, whether φ is true in the structure pA˚,Ďq, written |ùA˚ φ. Restricted
versions of the truth problems are obtained for example by fixing A (we then speak of the
truth problem over A) and/or by restricting to a fragment of the logic.

This section is devoted to proving the following main result.

I Theorem 3.1 (Undecidability). The truth problem for FOpA˚,Ďq is undecidable even when
restricted to formulae in the Σ2 X FO3 fragment of the basic logic.

This is done by encoding Post’s Correspondence Problem in FOpA˚,Ďq. The reduction is
described in several stages.

3.1 Expressing simple properties
We start with a list of increasingly complex properties and show how to express them in the
basic FOpA˚,Ďq logic. We keep track of what fragment is used, with regards to both the
number of distinct variables, and the quantifier alternation depth.

Note that when we claim that a property with m free variables can be expressed in FOn

(necessarily n ě m), we mean that the formula only uses at most n variables including the m
free variables.

We let A “ ta1, ..., a`u denote an arbitrary alphabet, use B to denote subsets of A, and
a, b, ... to denote arbitrary letters from A.

P1. “ x P B˚ ” can be expressed in Σ0 X FO1: using
ľ

aPAzB

a Ď x .

P2. “ πBpyq Ď x ” can be expressed in Π1 X FO3: building on P1, we use

@z
`

pz Ď y ^ z P B˚q ùñ z Ď x
˘

,

noting that πBpyq Ď x is equivalent to πBpyq Ď πBpxq.
P3. “ x “ πBpyq ” can be expressed in Π1 X FO3: building on P1, P2, and using

πBpyq Ď x^ x Ď y ^ x P B˚ .

P4. “ πBpxq “ πBpyq ” can be expressed in Π1 X FO3: building on P2, and using

πBpyq Ď x^ πBpxq Ď y .

P5. “ x P aA˚ ”, i.e., “ x starts with a ”, can be expressed in Σ2 X FO3: building
on P1, and using

Dz
´

a Ď z ^
“

ľ

bPAztau

ba Ď z
‰

^ z Ď x^ πAztaupxq Ď z
¯

.
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88 Decidability in the Logic of Subsequences and Supersequences

Here the first two conjuncts require that z contains an occurrence of a and cannot start
with another letter. The last two conjuncts require that z is a subword of x which has at
least all the occurrences in x of all letters other than a.
Clearly, the mirror property “x P A˚a” can be expressed in Σ2 X FO3 too.

P6. “ x R A˚aaA˚ ” can be expressed in Σ2 X FO3: building on P3, and using

Dy
´

y “ πAztaupxq ^ @z
“

paa Ď z ^ y Ď z ^ z Ď xq ùñ
ł

bPAztau

aba Ď z
‰

¯

.

Note that this is equivalent to “ x does not have aa as a factor”. Here z Ď x implies that
any two occurrences of a in z must come from x. Furthermore, if these are not contiguous
in x they cannot be contiguous in z in view of y “ πAztaupxq Ď z.

I Remark 3.2. Note that the “y “ πAztaupxq” subformula in P6 uses one variable apart
from y and x. We use the same variable name z that is used later in the formula, so that the
formula is in FO3. We similarly reuse variable names whenever possible in later formulae.

P7. “ x R A˚BBA˚ ” can be expressed in Σ2 X FO3: as in P6 with

Dy
´

y “ πAzBpxq ^ @z
ľ

a,a1PB

“

paa1 Ď z ^ y Ď z ^ z Ď xq ùñ
ł

bPAzB

aba1 Ď z
‰

¯

.

Note that this is equivalent to “ x has no factor in BB ”.
P8. “ |πBpxq| “ 2 ” can be expressed in Σ0 X FO1: using

´

ł

a,a1PB

aa1 Ď x
¯

^
ľ

a,a1,a2PB

aa1a2 Ď x .

3.2 Expressing regular properties
Building on the previous formulae, our next step is to show how any regular property can be
expressed in the basic logic by using an enlarged alphabet.

I Lemma 3.3. For any regular L Ď A˚ there is an extended alphabet A1 Ě A and a formula
φLpxq in Σ2 X FO3 over A1 such that for all u P A1˚, u P L if and only if |ùA1˚ φLpuq.

Proof. Let A “ pQ,A, δ, I, F q be a NFA recognising L so that u P L iff A has an accepting
run on input u. We define φLpxq so that it states the existence of such a run, i.e., we put
φLpxq ” Dy ψApx, yq where ψApx, yq expresses that “y is an accepting run of A over x.”

Let A1 def
“ A Y Q, assuming w.l.o.g. that A and Q are disjoint. A run q0

a1
ÝÑ q1

a2
ÝÑ

. . .
an
ÝÝÑ qn of A can be seen as a word q0a1q1a2 . . . anqn in A1˚. We now define ψApx, yq as

the conjunction ψ1px, yq ^ ψ2px, yq, with

ψ1 ”

py has no factor from AAq ^ py has no factor from QQq

^
`

ł

qPI

y begins with q
˘

^
`

ł

qPF

y ends with q
˘

^ pπApyq “ xq ,

ψ2 ” @z

˜ px Ď z ^ z Ď y ^ z has exactly two occurrences of letters from Qq

ùñ

´

ł

q,q1PQ

ł

a,a1PA

qaa1q1 Ď z _
ł

pq,a,q1qPδ

qaq1 Ď z
¯

¸

.

Here ψ1 reuses simple properties from the previous subsection and states that y is a word
alternating between Q (states of A) and A (proper letters), starting with an initial state of A
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and ending with an accepting state, hence has the required form q0a1 . . . anqn. Furthermore,
πApyq “ x ensures that y has the form of an accepting run over x. Note that it also ensures
x P A˚.

With ψ2, one further ensures that the above y respects the transition table of A, i.e.,
that pqi´1, ai, qiq P δ for i “ 1, . . . , n. Indeed, assume z P A1˚ satisfies x Ď z Ď y and
contains two occurrences from Q. Thus z is a1 . . . aiqiai`1ai`2 . . . ajqjaj`1aj`2 . . . an for
some 1 ď i ă j ď n. If now j ą i ` 1 then z contains qiai`1ai`2qj as a subword and the
disjunction after the implication is fulfilled. However, if j “ i` 1, the only way to fulfil the
disjunction is to have pqj´1, aj , qjq P δ.

Finally, ψApx, yq exactly states that y is an accepting run for x and |ùA1˚ φLpuq holds iff
u P L. One easily checks that ψ1 is in Σ2 X FO3, ψ2 is in Π1 X FO3, so that ψA and φL are
in Σ2 X FO3. We reuse variables wherever possible to ensure that only three variables are
used (see remark 3.2). For example, the implementation of “y has no factor from QQ” from
P7 needs two other variables, and here we use x and z for it. J

3.3 Encoding Post’s Correspondence Problem
It is now easy to reduce Post’s Correspondence Problem to the truth problem for the basic
FOpA˚,Ďq logic.

Suppose we have a PCP instance P consisting of pairs pu1, v1q, . . . pun, vnq over the
alphabet Γ. We let N “ t1, . . . , nu, consider the alphabet A def

“ ΓYN , and define

φP ” Dx, x
1

ˆ

x P p1u1 ` ¨ ¨ ¨ ` nunq
` ^ x1 P p1v1 ` ¨ ¨ ¨ ` nvnq

`

^ πN pxq “ πN px
1q ^ πΓpxq “ πΓpx

1q

˙

. (1)

Clearly, φP is true iff the PCP instance has a solution.
It remains to check that φP is indeed a formula in the Σ2 fragment: this relies on

Lemma 3.3 for expressing membership in two regular languages, and the P4 properties for
ensuring that x and x1 contain the same indexes from N and the same letters from Γ. Finally,
we note that φP is also a FO3 formula.

4 Undecidability for the pure logic

In this section we give a stronger version of the undecidability for the Σ2 fragment.

I Theorem 4.1 (Undecidability for the pure logic). The truth problem for FOpA˚,Ďq is
undecidable even when restricted to formulae in the Σ2 fragment of the pure logic.

The proof is by constructing a Σ2 formula ψpx1, . . .q in the pure logic that defines all the
letters and constant words we need to reuse the reduction from the previous section.

Kuske solves the problem in the special case of a formula using only tε, a, b, ab, ba, aa, bb,
aba, babu as constants [12]. We provide a more generic construction whereby all words (up
to a fixed length) can be defined in a single Σ2 formula. One inherent difficulty is that it
is impossible to properly define constant words in the pure logic. Of course, with the pure
logic one can only define properties up to a bijective renaming of the letters, so ψpx1, . . .q

will only define letters and words up to renaming. But a more serious problem is that we
can only define properties invariant by mirroring as we now explain.

For a word u “ a1a2 . . . a`, we let ru denote its mirror image a` . . . a2a1.

I Lemma 4.2 (Invariance by mirrorring). If ψpx1, . . . , xnq is a formula in the pure logic and
u1, . . . , un are words in A˚, then |ùA˚ φpu1, . . . , unq if, and only if, |ùA˚ φpĂu1, . . . ,Ăunq.
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90 Decidability in the Logic of Subsequences and Supersequences

Proof Sketch. By structural induction on φ, noting that the only atomic formulae in the
pure logic have the form x Ď y, and that u Ď v iff ru Ď rv for any u, v P A˚. J

4.1 Defining letters and short constant words
We now define ψpx1, . . .q. In our construction ψ has the form ψ1^ψ2^¨ ¨ ¨^ψ13 and features
a large number of free variables. We describe the construction in several stages, explaining
what valuation of its free variables can make ψ true. We start with

@ypz Ď yq (ψ1)
^
Ź

1ďi“jďn xi Ď xj (ψ2)

^
Źn
i“1 @yry Ď xi ùñ pxi Ď y _ y Ď zqs (ψ3)

Here ψ1 implies z “ ε, then ψ2 implies xi ‰ ε so that ψ3 requires that each xi is a single
letter and furthermore x1, . . . , xn must be different letters as required by ψ2.

We continue with:

^
Źn
i“1

`

xi Ď x2
i ^ x

2
i Ď xi ^ @yry Ď x2

i ùñ py Ď xi _ x
2
i Ď yqs

˘

(ψ4)

Note that n new free variables, x2
1, . . . , x

2
n are involved. First ψ4 requires that any x2

i has at
least two letters (it must contain xi strictly). But it also requires that any subword of x2

i is ε
or xi or x2

i , thus x2
i has length 2 and can only be xixi.

In the same style we introduce new free variables x3
1, . . . , x

3
n and x4

1, . . . , x
4
n and require

that x3
i equals xixixi, and that x4

i equals xixixixi with:

^
Źn
i“1

`

x2
i Ď x3

i ^ x
3
i Ď x2

i ^ @yry Ď x3
i ùñ py Ď x2

i _ x
3
i Ď yqs

˘

(ψ5)
^
Źn
i“1

`

x3
i Ď x4

i ^ x
4
i Ď x3

i ^ @yry Ď x4
i ùñ py Ď x3

i _ x
4
i Ď yqs

˘

(ψ6)

We introduce new free variables tyi,ju1ďi‰jďn and conjuncts:

^
Ź

1ďi‰jďn @y py Ď yi,j ùñ y Ď z _ xi Ď y _ xj Ď yq (ψ8)

^
Ź

1ďi‰jďn
`

xi Ď yi,j ^ xj Ď yi,j ^ x
2
i Ď yi,j ^ x

2
j Ď yi,jq (ψ9)

^
Ź

1ďi‰jďn
`

yi,j Ď yj,i
˘

(ψ10)

Here ψ8 requires that any yi,j only contains letters among xi and xj , and ψ9 requires that it
contains exactly one occurrence of xi and one of xj . So that yi,j is either xixj or xjxi. With
ψ10 we require that yj,i is, among xixj and xjxi, the word not assigned to yi,j .

Now, in view of Lemma 4.2, it is impossible to fix e.g. yi,j “ xixj . However we can force
all yi,j to have “the same orientation”. Let i, j, k be three different indexes in t1, . . . , nu and
consider the following formula

ξi,j,k ” Dt

»

–

@ypy Ď t ùñ y Ď z _ xi Ď y _ xj Ď y _ xk Ď yq pξ1q

^ x2
i Ď t^ x3

i Ď t^ xj Ď t^ x2
j Ď t^ xk Ď t^ x2

k Ď t pξ2q

^ yi,j Ď t^ yj,i Ď t^ yi,k Ď t^ yk,i Ď t^ yj,k Ď t^ yk,j Ď t pξ3q

fi

fl

We claim that, in conjunction with the earlier ψ-conjuncts, ξ1^ ξ2^ ξ3 requires t “ xixjxixk
or t “ xkxixjxi: indeed by ξ1, t only contains letters among txi, xj , xku, then by ξ2, t
contains exactly 2 occurrences of xi and exactly one occurrence each of xj and xk, then
by ξ3, t has xixj and xjxi as subwords, so the single occurrence of xj is between the two
occurrences of xi and, by ξ3 again, the occurrence of xk is outside the two xi occurrences.
Finally, satisfying ξi,j,k requires yi,k and yj,k to have the same orientation.
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We continue the construction of ψ with:

^
Ź

1ďi‰jďn
Ź

kRti,ju ξi,j,k (ψ11)

As just explained, this will force all yi,j ’s to have the same orientation, i.e., any satisfying
assignment will have yi,j “ xixj for all i, j, or yi,j “ xjxi for all i, j.

4.2 Defining long constant words
Once we have defined all words of length 2 (up to mirroring) over the alphabet tx1, . . . , xnu

(up to renaming), it is easier to systematically define all words of length 3, 4, etc. Actually,
we only use constant words of length at most 4 for the formula φP from section 3.

The general strategy relies on a technical lemma we now explain. For n P N we say that
two words u and v are n-equivalent, written u „n v, if u and v have the same set of subwords
of length up to n. Thus „n is the piecewise-testability congruence introduced by Simon,
see [16, 15].

I Lemma 4.3. Let n ě 2, and let u and v be words of length n` 1 with u ‰ v. Then u n v.

Proof. See appendix. J

We can thus introduce new variables yi,j,k and yi,j,k,m for all i, j, k,m P t1, . . . , nu
(allowing repetitions of indexes) and require yi,j,k “ xixjxk and yi,j,k,m “ xixjxkxm, up
to mirroring but with the same orientation for all the yi1,...,i` ’s. Then we complete the
construction of ψ with the following conjuncts:

^
Ź

1ďi,j,kďn “formula defining yi,j,k” (ψ12)

^
Ź

1ďi,j,k,mďn “formula defining yi,j,k,m” . (ψ13)

In order to require that, for example, y1,5,2 “ x1x5x2, it is enough to:
enumerate all words of length upto 2, and for each say whether it is or is not a subword
of y1,5,2 (y1,5 Ď y1,5,2 ^ x

2
1 Ď y1,5,2 ^ . . .),

and require that y1,5,2 has length 3, by saying that every subword of y1,5,2 is itself or is
one of the words of length upto 2, and that y1,5,2 is distinct from all these words.

The correctness of the construction is guaranteed by Lemma 4.3.
Once all 3-letter words have been defined, we can use them to define 4-letter words (and

if needed, 5-letter words, and so on) simlarly, with correctness following from Lemma 4.3.
Finally, we let φ1P be obtained from the formula φP —see Eq. (1) page 89— by replacing

every constant letter ai P A by the variable xi, and every constant word ai1 . . . ai` P A˚ by
the variable yi1,...,i` (we use z for the constant word ε, and x2

i for the constant word xixi).
Now we define ψP with

ψP ” DZ pψ1 ^ ¨ ¨ ¨ ^ ψ13 ^ φ
1
Pq

where Z “ tz, x1, . . . , xn, x
1
1, . . . , x

1
n, x

2
1, x

3
1, x

4
1, . . . , y1,1, . . . , yi1,...,i` , . . .u collects all the free

variables we used in ψ1 ^ ¨ ¨ ¨ ^ ψ13.
Noting that each ψi as well as φ1P is a Σ2 formula, we get that the resulting ψP is a Σ2

formula in the pure logic that is true in pA˚,Ďq iff the PCP instance P is positive. This
concludes the proof of Theorem 4.1.
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4.3 Undecidability for a fixed alphabet

The above Theorem 4.1 applies to the truth problem for unbounded alphabet, i.e., where we
ask whether |ùA˚ φ for given A and φ. In this proof, the alphabet A depends on the PCP
instance P since it includes symbols for the states of the regular automata that define the
languages p1u1`¨ ¨ ¨`nunq

` and p1v1`¨ ¨ ¨`nvnq
` in Eq. (1), and further includes symbols

in N “ t1, . . . , nu.
It is possible to further show undecidability of the Σ2 fragment even for a fixed alphabet

A as we now explain. For this we consider a variant of Post’s Correspondence Problem:

I Definition 4.4. The variant PCP problem asks, given an alphabet Γ, pairs pu1, v1q, . . . ,

pun, vnq over Γ, and an extra word w P Γ˚, whether there exists a sequence i1, . . . , i` over
t1, . . . , nu such that w ui1 . . . ui` “ vi1 . . . vi` .

I Lemma 4.5. There is a fixed Γ and a fixed sequence of pairs over Γ for which the variant
PCP problem (with only w as input) is undecidable.

Proof Sketch. One adapts the standard undecidability proof for PCP. Instead of reducing
from the question whether a given TM halts, one reduces from the question whether a
fixed TM accepts a given input. Note that in the case of a universal TM, the problem is
undecidable. Fixing the TM will lead to a fixed sequence of pairs pu1, v1q, . . . , pun, vnq, and
the input of the TM will provide the w parameter of the problem. J

I Theorem 4.6 (Undecidability for fixed alphabet). There exists a fixed alphabet A such that
the truth problem for the pure logic FOpA˚,Ďq is undecidable even when restricted to formulae
in Σ2.

Proof Sketch. We adapt the proof of Theorems 3.1 and 4.1 by reducing from the variant
PCP problem with fixed Γ and sequence of pairs. The encoding formula can be

” Dx, x1
ˆ

x P Γ1˚ ¨ p1u1 ` ¨ ¨ ¨ ` nunq
` ^ x1 P ρp1v1 ` ¨ ¨ ¨ ` nvnq

`

^ πΓ1pxq “ ŵ ^ πN pxq “ πN px
1q ^ πΓYΓ1pxq “ πΓYΓ1px

1q

˙

(2)

to be compared with Eq. (1). Here we use Γ1 “ tâ, b̂, ..u, a renamed copy of Γ “ ta, b, ..u,
to be able to extract the w prefix in x. The word ŵ is simply w from the variant PCP
instance with all letters from Γ replaced by corresponding letters from Γ1. We then need
to extend the language p1v1 ` ¨ ¨ ¨ ` nvnq for x1 so that letters from Γ1 can be used in
place of the corresponding letters from Γ. This is done by applying a simple transduction
ρ
def
“

´

Ť

aPΓ
“

a
a

‰

Y
“

â
a

‰

¯˚

.
In the end, we only use two fixed regular languages, and thus a fixed alphabet A. Note

however that encoding the input w will require using constant words of unbounded lengths.
Here we rely on the fact that our reduction from basic to pure logic can define constant
words of arbitrary length in the Σ2 fragment. J

5 Decidability for the FO2 fragment

In this section we show that for finite alphabets, the truth problem for the 2-variable fragment
FO2

pA˚,Ďq is decidable. The proof was first sketched by Kuske [13].
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5.1 Rational relations
We recall the basics of rational relations. See [3, Chap. 3] or [14, Chap. 4] for more details.

For finite alphabets A and B, the rational relations between A˚ and B˚ are defined as
the subsets of A˚ˆB˚ recognised by asynchronous transducers. The set of rational relations
between A˚ and B˚ is exactly the closure of the finite subsets of A˚ ˆ B˚ under union,
concatenation, and Kleene star.

For example, it is easy to see that the subword relation, seen as a subset of A˚ ˆA˚ is a
rational relation [3, Example III.5.9], and that the strict subword relation is rational too:1

Ď “

˜

ď

aPA

„

a

ε



Y

„

a

a



¸˚

, Ă “ Ď ¨

˜

ď

aPA

„

a

ε



¸

¨ Ď .

Define now the incomparability relation over A˚, denoted K, by u K v iff u Ď v ^ v Ď u.

I Lemma 5.1. The incomparability relation over A˚ is a rational relation.

Proof. We cannot simply use the fact that Ď and Ě are rational relations since rational
relations are not closed under intersection. The way out is to express incomparability as a
union K “ T1 Y T2 of rational relations, using the following equivalence

u K v iff

pu,vqPT1
hkkkkkkkkkkikkkkkkkkkkj

pu Ď v ^ |u| ď |v|q _

pu,vqPT2
hkkkkkkkkkkikkkkkkkkkkj

pv Ď u^ |v| ď |u|q . (3)

The equivalence holds since |u| ą |v| implies u Ď v.
We show (see Coro. 5.3) that T1 is rational. A symmetric reasoning shows that T2 is

rational. This concludes since the union of two rational relations is rational. J

In the following proof, we write wp0 : ´is to denote the prefix of length |w|´ i of an arbitrary
word w (assuming 0 ď i ď |w|q.

I Lemma 5.2. pu, vq P T1 iff there exists an integer `, a factorisation u “ a1a2 . . . a`au
1 of

u, and a factorisation v “ v1a1v2a2 . . . v`a`bv
1 of v such that

a1, . . . , a` P A and v1, . . . , v` P A
˚ are such that ai does not occur in vi for all i “ 1, . . . , `,

a, b P A are two letters with a ‰ b, and
u1, v1 P A˚ are two suffixes with |u1| “ |v1|.

Proof. The pðùq direction is clear: the listed conditions guarantee |u| ď |v| and u Ď v.
To see the p ùñ q direction, we assume pu, vq P T1 and write u “ a1 . . . an, with n “ |u|,

knowing that n ą 0 since u Ď v. We say that i P t0, . . . , nu is good if up0 : ´is Ď vp0 : ´is,
and bad otherwise. Clearly, n is good and 0 is bad. Let m ą 0 be the smallest good index: it
is easy to check that taking ` “ n´m, a “ a``1 and u1 “ a``2 . . . an proves the claim. J

I Corollary 5.3. T1 is a rational relation.

Proof. Lemma 5.2 directly translates as

T1 “

˜

ď

aPA

«

ď

b‰a

„

b

ε



ff˚

¨

„

a

a



¸˚

¨

˜

ď

a

ď

b‰a

„

b

a



¸

¨

˜

ď

a,a1

„

a1

a



¸˚

.

J

1 When writing such regular expressions we use the vector notation
“ y

x

‰

to denote px, yq. Note that the
domain and the range of the relation correspond to the bottom and, resp., the top, lines of the vectors.
We use ¨ to mean concatenation.
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5.2 Decidability for FO2

Let R def
“ t“,Ă,Ą,Ku consists of the following four relations on A˚: equality, strict subword

relation, its inverse, and incomparability. These four relations form a partition of A˚ ˆA˚,
i.e., for all u, v P A˚, exactly one of u “ v, u Ă v, u Ą v, and u K v holds.

For any R P R and language L Ď A˚, we define the preimage of L by R, denoted R´1pLq,
as being the language tx P A˚ : Dy P L : px, yq P Ru. We saw in section 5.1 that each
relation R P R is rational: we deduce that R´1pLq is regular whenever L is. Furthermore,
using standard automata-theoretic techniques, a description of the preimage R´1pLq can be
computed effectively from a description of L.

In the following we consider FO2 formulae using only x and y as variables. We allow
formulae to have regular predicates of the form x P L for fixed regular languages L (i.e., we
consider the extended logic). Furthermore, we consider a variant of the logic where we use
the binary relations Ă, “ and K instead of Ď. This will be convenient later. The two variants
are equivalent, even when restricting to FOm or Σm fragments: in one direction we observe
that x Ď y can be defined with x Ă y _ x “ y, in the other direction one defines x Ă y with
x Ď y ^ y Ď x and x K y with x Ď y ^ y Ď x. We also use x Ą y as shorthand for y Ă x.

I Lemma 5.4. Let φpxq be an FO2 formula with at most one free variable. Then there
exists a regular language Lφ Ď A˚ such that φpxq is equivalent to x P Lφ. Furthermore, a
description for Lφ can be computed effectively from φ.

Proof. By structural induction on φpxq. If φpxq is an atomic formula of the form x P L, the
result is immediate. If φpxq is an atomic formula that uses a binary predicate R from R, the
fact that it has only one free variable means that φpxq is a trivial x “ x, or x Ă x, or . . . , so
that Lφ is A˚ or H.

For compound formulae of the form  φ1pxq or φ1pxq _ φ2pxq, we use the induction
hypothesis and the fact that regular languages are closed under boolean operations.

There remains the case where φpxq has the form Dy φ1px, yq. We first replace any
subformulae of φ1 having the form Dx ψpx, yq or Dy ψpx, yq with equivalent formulae of the
form y P Lψ or x P Lψ respectively, for appropriate languages Lψ, using the induction
hypothesis. Thus we may assume that φ1 is quantifier-free. We now rewrite φ1 by pushing all
negations inside with the following meaning-preserving transformations:

  ψ Ñ ψ  pψ1 _ ψ2q Ñ  ψ1 ^ ψ2  pψ1 ^ ψ2q Ñ  ψ1 _ ψ2

and then eliminating negations completely with:

 pz P Lq Ñ z P pA˚zLq  pz1 R1 z2q Ñ z1 R2 z2 _ z1 R3 z2 _ z1 R4 z2

where R1, R2, R3, R4 are relations such that R “ tR1, R2, R3, R4u. Thus, we may now assume
that φ1 is a positive boolean combination of atomic formulae. We write φ1 in disjunctive
normal form, that is, as a disjunction of conjunctions of atomic formulae. Observing that
Dypφ1 _ φ2q is equivalent to Dy φ1 _ Dy φ2, we assume w.l.o.g. that φ1 is just a conjunction of
atomic formulae. Any atomic formula of the form x P L, for some L, can be moved outside
the existential quantification, since Dypx P L^ ψq is equivalent to x P L^ Dy ψ. All atomic
formulae of the form y P L can be combined into a single one, since regular languages are
closed under intersection.

Finally we may assume that φ1px, yq is a conjunction of a single atomic formula of the
form y P L (if no such formula appears, we can write y P A˚), and some combination of
atomic formulae among x Ă y, x Ą y, x “ y, and x K y. If at least two of these appear, then
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their conjunction is unsatisfiable, and so φpxq is equivalent to x P H. If none of them appear,
Dypy P Lq is equivalent to x P A˚ (or to x P H if L is empty). If exactly one of them appears,
say x R y, then Dy py P L^ xRyqq is equivalent to x P Lφ for Lφ “ R´1pLq, which is regular
as observed earlier. J

I Theorem 5.5. The truth problem for FO2
pA˚,Ďq is decidable.

Proof. Lemma 5.4 provides a recursive procedure for computing the set of words that make
φpxq true. When φ is a closed formula, this set is A˚ or H depending on whether φ is true
or not. J

5.3 Hardness for FO2

The main question left open in this paper is the complexity of the decidable FO2 theory.
The recursive procedure described in Lemma 5.4 is potentially non-elementary since nested
negations lead to nested complementations of regular languages.

Our preliminary attempts suggest that the question is difficult. At the moment we can
only demonstrate the following lower bound.

I Theorem 5.6. Truth checking for the basic logic, restricting to FO2 sentences which only
use letters (that is, words of length 1) as constants, is PSPACE-hard.

Proof. We reduce from TQBF, the truth problem for quantified boolean formulae. W.l.o.g.
a given instance of TQBF has the form φ1 “ Dp1@p2 . . . Dp2n´1@p2nφ.

Consider the alphabet A with 4n letters, Ti and Fi for each 1 ď i ď 2n. A word w P A˚
is intended to encode a (partial) boolean valuation Vw of the variables p1, . . . , p2n: if Ti
appears in w, Vwppiq “ true, and if Fi appears in w, Vwppiq “ false. We do not consider
“inconsistent” words, in which both Ti and Fi appear. Observe that if x and y represent
partial valuations and x Ď y, then Vy extends Vx. Conversely, any valuation extending Vx
can be represented by a suitable y1 with x Ď y1.

For each i, let ϕipwq be a formula that says “the domain of Vw is tx1, . . . , xiu”:
ľ

1ďjďi
ppTj Ď w _ Fj Ď wq ^  pTj Ď w ^ Fj Ď wqq ^

ľ

iăjď2n
pTj Ď w ^ Fj Ď wq

We now translate the given TQBF instance φ1 into an FO2 sentence ψ1 in our logic:

ψ1 “ Dxpϕ1pxq ^ @yppϕ2pyq ^ x Ď yq ùñ Dxpϕ3pxq ^ y Ď x^ . . .

^Dxpϕ2n´1pxq ^ y Ď x^ @yppϕ2npxq ^ x Ď yq ùñ ψqq . . .qqq

where ψ is obtained from φ by replacing each pi with Ti Ď y.
The formula ψ1 uses the two variables x and y alternately, to build up suitable valuations

with the appropriate alternation of D and @. It is easy to see that φ1 is true if and only if ψ1
is true.

Finally, it was not necessary to assume that φ1 had a strict alternation of D and @, but it
makes the presentation of the proof simpler. J

6 Concluding remarks

We considered the first-order logic of the subsequence ordering and investigated decidability
and complexity questions. It was known that the Σ3 theory is undecidable and that the Σ1
theory is decidable. We settled the status of the Σ2 fragment by showing that it has an
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undecidable theory, even when restricting to formulae using no constants. To remain in the
Σ2 fragment, our reduction encoded language-theoretic problems rather than undecidable
number-theoretic logical fragments as is more usual.

We also showed that the FO2 theory of the subsequence ordering is decidable using
automata-theoretic techniques. The FO2 fragment is quite interesting. We note that it
encompasses modal logics where the subsequence ordering correspond to one step (or its
reverse) as used in the verification of unreliable channel systems.

Finally, we provided some new complexity results like Theorems 2.1 and 5.6.

We can list a few interesting directions suggested by this work. First, on the fundamental
side, the main question left open is the precise complexity of the FO2 theory.

Regarding applications, it would be interesting to see how the decidability results can be
extended to slightly richer logics (perhaps with some extra functions or predicates, or some
additional logical constructs) motivated by specific applications in automated reasoning or
program verification.

Acknowledgements. We thank Dietrich Kuske who outlined the proof of Theorem 5.5.
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A Proof of Lemma 4.3

Assume |u| “ |v| “ n` 1 and u ‰ v as in the statement of the Lemma.
We say that a word w distinguishes u and v if w is a subword of exactly one of u and v.

We have to prove that there exists such a distinguisher w with |w| ď n.

Writing a word w P A˚ under the form w “ an1
1 . . . ank

k where each ai is a letter so that
ai ‰ ai`1 for all i “ 1, . . . , k ´ 1 and ni ě 1 for all i “ 1, .., k is called the block factorisation
of w. Here k is the number of blocks in w. We now consider several cases:

Assume that u has only one block. Then u “ an`1 for some a P A, and some one-letter
word distinguishes u and v. The same reasoning applies if v has only one block.
Assume that u and v have at least two blocks each, and there is some letter a P A such
that |u|a ‰ |v|a. Then ak distinguishes u and v for some k ď n.
We are left to deal with cases where u and v have have at least two blocks, and have the
same Parikh image, that is, |u|a “ |v|a for every a P A.
Assume now that u has exactly two blocks. Then u P a`b` for some a, b P A with a ‰ b.
Since v has the same number of a’s and b’s but differs from u, we must have ba Ď v. But
ba Ď u, so ba is a distinguisher (here we use the assumption that n ě 2).
Finally assume that u has at least three blocks. Pick a block B of u which is neither the
first nor the last, and let a be the unique letter belonging to B. Let ` “ |u|a and write u
as u “ s0as1a . . . as`. Then

|s0| ` . . .` |s`| “ pn` 1q ´ ` .

At least two of the numbers |s0|, . . . , |s`| are strictly positive, since the two blocks
immediately to the left and right of B both exist, and both do not have a. Thus for all i,
|si| ă pn` 1q ´ `.
Since |v|a “ `, we can write v “ t0at1a . . . at`. We assume u „n v and obtain a
contradiction. For each i such that 0 ď i ď `, consider the word zi “ aisia

`´i. We have
|zi| ď n, and zi Ď u. Since u „n v, we have zi Ď v. Since both zi and v have exactly `
occurrences of a, we have si Ď ti. This holds for all i, so u Ď v. But |u| “ |v|, so u “ v,
which is a contradiction.
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