2,708 research outputs found

    Quality-Driven Disorder Handling for M-way Sliding Window Stream Joins

    Full text link
    Sliding window join is one of the most important operators for stream applications. To produce high quality join results, a stream processing system must deal with the ubiquitous disorder within input streams which is caused by network delay, asynchronous source clocks, etc. Disorder handling involves an inevitable tradeoff between the latency and the quality of produced join results. To meet different requirements of stream applications, it is desirable to provide a user-configurable result-latency vs. result-quality tradeoff. Existing disorder handling approaches either do not provide such configurability, or support only user-specified latency constraints. In this work, we advocate the idea of quality-driven disorder handling, and propose a buffer-based disorder handling approach for sliding window joins, which minimizes sizes of input-sorting buffers, thus the result latency, while respecting user-specified result-quality requirements. The core of our approach is an analytical model which directly captures the relationship between sizes of input buffers and the produced result quality. Our approach is generic. It supports m-way sliding window joins with arbitrary join conditions. Experiments on real-world and synthetic datasets show that, compared to the state of the art, our approach can reduce the result latency incurred by disorder handling by up to 95% while providing the same level of result quality.Comment: 12 pages, 11 figures, IEEE ICDE 201

    Handling Tradeoffs between Performance and Query-Result Quality in Data Stream Processing

    Get PDF
    Data streams in the form of potentially unbounded sequences of tuples arise naturally in a large variety of domains including finance markets, sensor networks, social media, and network traffic management. The increasing number of applications that require processing data streams with high throughput and low latency have promoted the development of data stream processing systems (DSPS). A DSPS processes data streams with continuous queries, which are issued once and return query results to users continuously as new tuples arrive. For stream-based applications, both the query-execution performance (in terms of, e.g., throughput and end-to-end latency) and the quality of produced query results (in terms of, e.g., accuracy and completeness) are important. However, a DSPS often needs to make tradeoffs between these two requirements, either because of the data imperfection within the streams, or because of the limited computation capacity of the DSPS itself. Performance versus result-quality tradeoffs caused by data imperfection are inevitable, because the quality of the incoming data is beyond the control of a DSPS, whereas tradeoffs caused by system limitations can be alleviated—even erased—by enhancing the DSPS itself. This dissertation seeks to advance the state of the art on handling the performance versus result-quality tradeoffs in data stream processing caused by the above two aspects of reasons. For tradeoffs caused by data imperfection, this dissertation focuses on the typical data-imperfection problem of stream disorder and proposes the concept of quality-driven disorder handling (QDDH). QDDH enables a DSPS to make flexible and user-configurable tradeoffs between the end-to-end latency and the query-result quality when dealing with stream disorder. Moreover, compared to existing disorder handling approaches, QDDH can significantly reduce the end-to-end latency, and at the same time provide users with desired query-result quality. In this dissertation, a generic buffer-based QDDH framework and three instantiations of the generic framework for distinct query types are presented. For tradeoffs caused by system limitations, this dissertation proposes a system-enhancement approach that combines the row-oriented and the column-oriented data layout and processing techniques in data stream processing to improve the throughput. To fully exploit the potential of such hybrid execution of continuous queries, a static, cost-based query optimizer is introduced. The optimizer works at the operator level and takes the unique property of execution plans of continuous queries—feasibility—into account

    Effective Use Methods for Continuous Sensor Data Streams in Manufacturing Quality Control

    Get PDF
    This work outlines an approach for managing sensor data streams of continuous numerical data in product manufacturing settings, emphasizing statistical process control, low computational and memory overhead, and saving information necessary to reduce the impact of nonconformance to quality specifications. While there is extensive literature, knowledge, and documentation about standard data sources and databases, the high volume and velocity of sensor data streams often makes traditional analysis unfeasible. To that end, an overview of data stream fundamentals is essential. An analysis of commonly used stream preprocessing and load shedding methods follows, succeeded by a discussion of aggregation procedures. Stream storage and querying systems are the next topics. Further, existing machine learning techniques for data streams are presented, with a focus on regression. Finally, the work describes a novel methodology for managing sensor data streams in which data stream management systems save and record aggregate data from small time intervals, and individual measurements from the stream that are nonconforming. The aggregates shall be continually entered into control charts and regressed on. To conserve memory, old data shall be periodically reaggregated at higher levels to reduce memory consumption

    Parallel Continuous Preference Queries over Out-of-Order and Bursty Data Streams

    Get PDF
    Techniques to handle traffic bursts and out-of-order arrivals are of paramount importance to provide real-time sensor data analytics in domains like traffic surveillance, transportation management, healthcare and security applications. In these systems the amount of raw data coming from sensors must be analyzed by continuous queries that extract value-added information used to make informed decisions in real-time. To perform this task with timing constraints, parallelism must be exploited in the query execution in order to enable the real-time processing on parallel architectures. In this paper we focus on continuous preference queries, a representative class of continuous queries for decision making, and we propose a parallel query model targeting the efficient processing over out-of-order and bursty data streams. We study how to integrate punctuation mechanisms in order to enable out-of-order processing. Then, we present advanced scheduling strategies targeting scenarios with different burstiness levels, parameterized using the index of dispersion quantity. Extensive experiments have been performed using synthetic datasets and real-world data streams obtained from an existing real-time locating system. The experimental evaluation demonstrates the efficiency of our parallel solution and its effectiveness in handling the out-of-orderness degrees and burstiness levels of real-world applications

    Exploring sensor data management

    Get PDF
    The increasing availability of cheap, small, low-power sensor hardware and the ubiquity of wired and wireless networks has led to the prediction that `smart evironments' will emerge in the near future. The sensors in these environments collect detailed information about the situation people are in, which is used to enhance information-processing applications that are present on their mobile and `ambient' devices.\ud \ud Bridging the gap between sensor data and application information poses new requirements to data management. This report discusses what these requirements are and documents ongoing research that explores ways of thinking about data management suited to these new requirements: a more sophisticated control flow model, data models that incorporate time, and ways to deal with the uncertainty in sensor data

    High Performance Analytics in Complex Event Processing

    Get PDF
    Complex Event Processing (CEP) is the technical choice for high performance analytics in time-critical decision-making applications. Although current CEP systems support sequence pattern detection on continuous event streams, they do not support the computation of aggregated values over the matched sequences of a query pattern. Instead, aggregation is typically applied as a post processing step after CEP pattern detection, leading to an extremely inefficient solution for sequence aggregation. Meanwhile, the state-of-art aggregation techniques over traditional stream data are not directly applicable in the context of the sequence-semantics of CEP. In this paper, we propose an approach, called A-Seq, that successfully pushes the aggregation computation into the sequence pattern detection process. A-Seq succeeds to compute aggregation online by dynamically recording compact partial sequence aggregation without ever constructing the to-be-aggregated matched sequences. Techniques are devised to tackle all the key CEP- specific challenges for aggregation, including sliding window semantics, event purging, as well as sequence negation. For scalability, we further introduce the Chop-Connect methodology, that enables sequence aggregation sharing among queries with arbitrary substring relationships. Lastly, our cost-driven optimizer selects a shared execution plan for effectively processing a workload of CEP aggregation queries. Our experimental study using real data sets demonstrates over four orders of magnitude efficiency improvement for a wide range of tested scenarios of our proposed A-Seq approach compared to the state-of-art solutions, thus achieving high-performance CEP aggregation analytics

    Scalability Benchmarking of Cloud-Native Applications Applied to Event-Driven Microservices

    Get PDF
    Cloud-native applications constitute a recent trend for designing large-scale software systems. This thesis introduces the Theodolite benchmarking method, allowing researchers and practitioners to conduct empirical scalability evaluations of cloud-native applications, their frameworks, configurations, and deployments. The benchmarking method is applied to event-driven microservices, a specific type of cloud-native applications that employ distributed stream processing frameworks to scale with massive data volumes. Extensive experimental evaluations benchmark and compare the scalability of various stream processing frameworks under different configurations and deployments, including different public and private cloud environments. These experiments show that the presented benchmarking method provides statistically sound results in an adequate amount of time. In addition, three case studies demonstrate that the Theodolite benchmarking method can be applied to a wide range of applications beyond stream processing
    • …
    corecore