5,429 research outputs found

    Pigment Melanin: Pattern for Iris Recognition

    Full text link
    Recognition of iris based on Visible Light (VL) imaging is a difficult problem because of the light reflection from the cornea. Nonetheless, pigment melanin provides a rich feature source in VL, unavailable in Near-Infrared (NIR) imaging. This is due to biological spectroscopy of eumelanin, a chemical not stimulated in NIR. In this case, a plausible solution to observe such patterns may be provided by an adaptive procedure using a variational technique on the image histogram. To describe the patterns, a shape analysis method is used to derive feature-code for each subject. An important question is how much the melanin patterns, extracted from VL, are independent of iris texture in NIR. With this question in mind, the present investigation proposes fusion of features extracted from NIR and VL to boost the recognition performance. We have collected our own database (UTIRIS) consisting of both NIR and VL images of 158 eyes of 79 individuals. This investigation demonstrates that the proposed algorithm is highly sensitive to the patterns of cromophores and improves the iris recognition rate.Comment: To be Published on Special Issue on Biometrics, IEEE Transaction on Instruments and Measurements, Volume 59, Issue number 4, April 201

    Iris Recognition: The Consequences of Image Compression

    Get PDF
    Iris recognition for human identification is one of the most accurate biometrics, and its employment is expanding globally. The use of portable iris systems, particularly in law enforcement applications, is growing. In many of these applications, the portable device may be required to transmit an iris image or template over a narrow-bandwidth communication channel. Typically, a full resolution image (e.g., VGA) is desired to ensure sufficient pixels across the iris to be confident of accurate recognition results. To minimize the time to transmit a large amount of data over a narrow-bandwidth communication channel, image compression can be used to reduce the file size of the iris image. In other applications, such as the Registered Traveler program, an entire iris image is stored on a smart card, but only 4 kB is allowed for the iris image. For this type of application, image compression is also the solution. This paper investigates the effects of image compression on recognition system performance using a commercial version of the Daugman iris2pi algorithm along with JPEG-2000 compression, and links these to image quality. Using the ICE 2005 iris database, we find that even in the face of significant compression, recognition performance is minimally affected

    Design and implementation of a multi-modal biometric system for company access control

    Get PDF
    This paper is about the design, implementation, and deployment of a multi-modal biometric system to grant access to a company structure and to internal zones in the company itself. Face and iris have been chosen as biometric traits. Face is feasible for non-intrusive checking with a minimum cooperation from the subject, while iris supports very accurate recognition procedure at a higher grade of invasivity. The recognition of the face trait is based on the Local Binary Patterns histograms, and the Daughman\u2019s method is implemented for the analysis of the iris data. The recognition process may require either the acquisition of the user\u2019s face only or the serial acquisition of both the user\u2019s face and iris, depending on the confidence level of the decision with respect to the set of security levels and requirements, stated in a formal way in the Service Level Agreement at a negotiation phase. The quality of the decision depends on the setting of proper different thresholds in the decision modules for the two biometric traits. Any time the quality of the decision is not good enough, the system activates proper rules, which ask for new acquisitions (and decisions), possibly with different threshold values, resulting in a system not with a fixed and predefined behaviour, but one which complies with the actual acquisition context. Rules are formalized as deduction rules and grouped together to represent \u201cresponse behaviors\u201d according to the previous analysis. Therefore, there are different possible working flows, since the actual response of the recognition process depends on the output of the decision making modules that compose the system. Finally, the deployment phase is described, together with the results from the testing, based on the AT&T Face Database and the UBIRIS database
    • …
    corecore