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Abstract

Iris localisation and segmentation are challenging and critical tasks in iris biometric recognition. Especially in
non-cooperative and less ideal environments, their impact on overall system performance has been identified as a
major issue. In order to avoid a propagation of system errors along the processing chain, this paper investigates iris
fusion at segmentation-level prior to feature extraction and presents a framework for this task. A novel intelligent
reference method for iris segmentation-level fusion is presented, which uses a learning-based approach predicting
ground truth segmentation performance from quality indicators and model-based fusion to create combined
boundaries. The new technique is analysed with regard to its capability to combine segmentation results (pupillary
and limbic boundaries) of multiple segmentation algorithms. Results are validated on pairwise combinations of four
open source iris segmentation algorithms with regard to the public CASIA and IITD iris databases illustrating the high
versatility of the proposed method.

Keywords: Iris biometrics, Segmentation, Fusion, Quality

1 Introduction
Personal recognition from human iris (eye) images
comprises several steps: image capture, eye detection,
iris localisation, boundary detection, eyelid and noise
masking, normalisation, feature extraction, and feature
comparison [1]. Among these tasks, it is especially
iris localisation and pupillary/limbic boundary detection
which challenge existing implementations [2], at least for
images captured under less ideal conditions. Examples of
undesirable conditions are visible light imaging with weak
pupillary boundaries, on-the-move near infrared acqui-
sition with typical motion blur, out-of-focus images, or
images with weak limbic contrast.
As an alternative to the development of better individ-

ual segmentation algorithms, iris segmentation fusion as a
novel fusion scenario [3] was proposed in [4]. For vendor-
neutral comparison, this form of fusion has certain advan-
tages over more common multi-algorithm fusion, where
each algorithm uses its own segmentation routine: it facil-
itates data exchange offering access to the normalised tex-
ture, increases usability of existing segmentation routines,
and allows faster execution requiring only a single module
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rather than entire processing chains. In [5], which is
extended by this work, a fusion framework for the auto-
mated combination of segmentation algorithms is pre-
sented, but without taking segmentation quality into
account. The reference method in [5] was shown to
improve results inmany cases, but no systematic improve-
ment could be achieved. A more efficient combination
technique can be obtained when inaccurate informa-
tion can be discarded from the fusion stage, which is
the scope of work in this paper. The proposed fusion
algorithm assesses the usefulness of individual segmen-
tation input to avoid a deterioration of results even
if one of two segmentation results to be combined is
inaccurate.
The contributions of this paper are as follows: (1) a

generalised fusion framework for combining iris segmen-
tation results extending [5] towards including quality-
based predictors of segmentation performance guiding
the selection of contributing information (see Fig. 1); (2)
a reference implementation based on neural networks
and augmented model-based combination of segmenta-
tion evidence using iris mask post-processing (such that
the only input needed is a segmentation mask file by
each algorithm to be considered); and (3) an evaluation
of proposed methods analysing pairwise combinations of
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Fig. 1 Proposed framework for fusion of iris segmentation results

algorithms with regard to two aspects: first, conformity
with ground truth is inspected focusing on the question
whether segmentation fusion concepts indeed improve
ground truth accuracy in terms of E1 and E2 segmenta-
tion errors. Second, the impact on recognition accuracy
in terms of receiver operating characteristics (ROCs) and
equal error rate (EER) is validated, assuring that seg-
mentation improvement indeed induces less distortions,
which in the past has shown to be not necessarily indi-
cated by better ground truth performance [6].
The remainder of the paper is organised as fol-

lows. Section 2 presents the methodology and gives an
overview of related work in iris fusion, focusing on
multi-segmentation, data interoperability, and segmen-
tation quality in iris recognition. The suggested frame-
work and reference method for iris segmentation fusion
is presented in detail in Section 3. Section 4 intro-
duces the databases and algorithms under test and
gives a detailed presentation and analysis of experi-
ments. Finally, a conclusion of this work and outlook on
future topics in segmentation-level iris fusion is given in
Section 5.

2 Methodology and related work
The aim of iris segmentation is to retrieve the iris region
from an eye image, classifying each pixel location (x, y)
into being either out-of-iris or in-iris: N(x, y) ∈ {0, 1}.
However, given the circular (elliptic, respectively, for
out-of-axis acquisitions) shape of the iris, the ultimate
outcome needed for iris normalisation is a parameterisa-
tion of inner and outer iris boundaries P, L :[ 0, 2π) →
[ 0,m]×[ 0, n] enclosing non-zero values (iris pixels) in N
(ignoring noise and occlusions to avoid non-linear dis-
tortions [7]). Using these boundaries, the iris texture is
mapped into a coordinate system spanning angle θ and
pupil-to-limbic radial distance r [8]. A rubbersheet map
R(θ , r) := (1 − r) · P(θ) + r · L(θ) is used to unroll an
iris image into a rectangular normalised texture image
T = I ◦ R (I is the original n × m image) and nor-
malised noise masksM = N ◦R, independent of pupillary

dilation. Often, iris segmentation and normalisation are
unified in a single module, however, for fusion purposes it
is desirable to separate these two tasks.
Traditional iris segmentation assumes circular bound-

aries (e.g. [8, 9]). Strong input assumptions often help
in case of contradictory information [1] (e.g. very low
pupillary contrast, visible light images) and provide espe-
cially good performance for cooperative environments
[10]. More advanced and relaxed elliptical models (active
shape [11], clustering-based [12] Viterbi algorithm [13],
weighted adaptive Hough, and ellipsopolar transforms [7])
for P, L provide more accurate segmentation results espe-
cially for off-axis images; however, by allowing higher
degrees of freedom, they are also prone to errors if
preconditions are not met and easily misled. Ideally,
advantages of algorithms are combined effectively; how-
ever, in this case, some segmentation results have to be
rejected, based on the accuracy of the segmentation.

2.1 Segmentation accuracy
Segmentation accuracy is usually computed by analysing
noise mask output N with regard to ground truth (mask
G) segmentation classification errors, i.e. it is neces-
sary to have manual segmentation ground truth available.
Hofbauer et al. [10] collected and released ground truth
datasets (IRISSEG-EP) as part of their study. Error rates
E1,E2 based on classification error are well-employed [14]
error measures, differing by whether a priori probabilities
are considered (E2) or not (E1):

E1 := 1
k

k∑

i=1

fpi + fni
mn

; E2 := 1
2

⎛

⎝1
k

k∑

i=1

fpi
fpi + tni

⎞

⎠

+ 1
2

⎛

⎝1
k

k∑

i=1

fni
fni + tpi

⎞

⎠ ,

(1)

with tpi, fpi denoting the pixel based true and
false positive classifications and tni, fni true and
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false negatives for image index i (with dimension
m × n).
A problem identified in [6] is that segmentation errors

due to low image quality are not necessarily revealed
by comparison-based assessment. As cross-comparisons
employ the same tool for segmenting the original image
and reference template, systematic errors might have a
positive overall effect introducing system bias. In order
to avoid this bias for the final assessment, we employed
ground truth-based segmentation for the reference tem-
plate to judge for segmentation accuracy testing the
sample.

2.2 Iris segmentation quality
As an important aspect of this paper, segmentation per-
formance is evaluated using both segmentation accuracy
and impact on recognition performance (evaluating the
entire iris processing chain). Alonso-Fernandez et al. [6]
have shown how quality indicators and segmentation per-
formance relate to each other; however, they also found
that segmentation and recognition performance might be
affected by different factors. In this context, it is impor-
tant to note that systematic segmentation errors can have
positive effects, while some segmentation errors might
be corrected during pooling stages in feature extraction
or rotational alignment at comparison stages. Wei et al.
[15] uses defocus, motion blur, and occlusion as iris image
quality measures for image selection. ISO/IEC 29794-6
establishes a standard on iris quality. Investigated qual-
ity components comprise scalar quality, grey level spread,
iris size, pupil-iris ratio, usable iris, iris-sclera contrast,
iris-pupil contrast, iris shape, pupil shape, margin, sharp-
ness, motion blur, signal-to-noise ratio, and gaze angle
[16]. Wild et al. [17] showed that quality-based filtering
can have a pronounced impact on accuracy (up to factor
three observed), possibly shadowing potential temporal
effects. They also raised the need for transparent record-
ing conditions and pre-evaluation of quality in underly-
ing databases for accurate assessments. In this paper, we
use ideas in [17] to develop a ground truth performance
predictor as quality indicator for each algorithm to be
combined.

2.3 Iris segmentation fusion
Segmentation fusion can be grouped into approaches
combining detected boundaries prior to any rubbersheet
transformation [4, 5] and after normalisation, where nor-
malised texture is combined [18, 19]. The latter requires
multiple execution of the iris unwrapping and normali-
sation (slower), hiding potential segmentation errors and
therefore making their elimination more complex (com-
bination of texture). Most of them implement data-level
fusion for superresolution from multiple video frames,
such as [20, 21]. State-of-the-art in this context are

principal components transform [2, 18] combining mul-
tiple normalised iris textures at image-level obtained by
different segmentation algorithms. As representative of
the first group, Uhl et al. [4] suggested different strate-
gies to combine direct segmentation boundaries rather
than texture feeding the combinedmodel into the normal-
isation routine. Experiments for human (manual) ground
truth segmentation showed improved recognition accu-
racy independent of the employed feature extraction
algorithm. The type of fusion method (combination of
boundary points for fitting routine vs. interpolating fit-
ted boundaries) did not have a pronounced impact on
accuracy. While in [4], for the employed data outliers
were not an issue; they were rather critical in [5], where
combinations of automated segmentation algorithms did
not improve in all cases. Therefore, this work focuses on
integrating quality prediction for more efficient fusion at
segmentation-level.
The presented work follows the first group. More

specifically, in contrast to [18], a single image only is
required and unlike [19] normalisation is executed only
once. According to our knowledge, this paper is the
first to present a quality-driven fusion at segmentation-
level in iris recognition. Apart from ISO/IEC TR
24722:2015 (standard on multibiometric fusion, but no
support for multinormalisation) and ISO/IEC 19794-
6:2011 (segmentation-only cropped and masked exchange
format), there is no standardisation in segmentation-level
fusion.

3 Proposedmulti-segmentation fusionmethod
The proposed multi-segmentation fusion method imple-
menting the framework in Fig. 1 uses noise masks as
results of individual segmentation results to generate a
best-fitted inner P and outer L boundary curve mark-
ing the true possibly occluded iris within the eye image
(of course also a corresponding resulting noise mask can
easily be generated). It consists of the following four
steps, realised as sub-modules, which are explained in
detail: (1) Tracing derives traced boundaries Pi, Li for each
(ith) candidate through scanning masks and pruning out-
liers; (2) Model fusion combines candidate boundaries
(all possible combinations for multiple algorithms); (3)
Prediction calculates an estimate of the ground truth seg-
mentation error for a particular (combined or individual)
segmentation trace Pi, Li based on a multi layer percep-
tron assessing quality parameters; and (4) Fusion selection
acts as a multiplexer returning the (combined or indi-
vidual) segmentation candidate with the lowest predicted
segmentation error. Figure 2 illustrates the process.

3.1 Step 1: tracing
While some iris software offers direct access to iris bound-
aries P, L after segmentation (e.g. OSIRIS v4.1), other
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Fig. 2 Proposed quality-based iris segmentation fusion method

toolkits lack this feature. In addition, there is no unified,
but different (e.g. elliptical vs. circular or spline-based)
boundary models. Most available models allow for an out-
put of binary noisemaskN indicating iris pixels; therefore,
we extract P and L from N via the following scanning and
pruning process (see Fig. 3).

1. Mesh grid phase: A total of n equidistant scan lines
(n = 100 yields reasonable results for the employed
datasets) are intersected with binary noise mask N
locating 0-1 and 1-0 crossings. Based on count and
first occurrence, an estimate of limbic or pupillary
boundary membership is conducted. Topological
inconsistencies (holes) in N should be closed
morphologically prior to scanning.

2. Pruning phase: Outlier candidate points with high
deviation (radius with z-score ≥ 2.5) from the centre
of gravity Cr are removed to avoid inconsistencies in
case the outer mask of an iris is not convex, to
tolerate noise masks where eyelids are considered
and to suppress classification errors.

There are some caveats: first, it is not necessarily pos-
sible to differentiate between iris and eyelid purely based
on the mask—pruning and succeeding model-fitting helps

to reduce such effects. Second, some algorithms employ
different boundary models for rubbersheet mapping and
noise masks (see [22]). Even in the recent 4.1 version of
OSIRIS, noise masks extend over actual boundaries used
for unrolling the iris image [5], which has been corrected
in experiments by limiting the mask to the employed
rubbersheet limbic boundary. Ideally, the employed noise
mask for scanning ignores eyelids or other occlusions
and a separate noise mask for occlusions is considered
at a later stage (e.g. via majority voting after normalisa-
tion). While masks may not necessarily be convex and
may contain holes, such inconsistencies are repaired by
a heuristical algorithm employing simple morphological
closing and simplifying local inconsistencies where neces-
sary. Further discussion about this problem and about the
method employed can be found in [5].
After scanning and pruning, a set of limbic Li and

pupillary Pi boundary points is available for each (ith)
segmentation candidate.

3.2 Step 2: model fusion
Having obtained pupillary and limbic boundary points
for each segmentation algorithm, the scope of the model
fusion step is to combine a set of segmentation boundaries

Fig. 3 Iris tracing method scanning and pruning iris
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into a new candidate boundary. This is useful to average
individual algorithms’s segmentation errors (and consid-
ered as “the” fusion method in [5]).
A sequence of k sets of (limbic or pupillary) boundary

points B1,B2, . . .Bk can be combined into a single contin-
uous parameterised boundary B :[ 0, 2π) →[ 0,m]×[ 0, n]
using different strategies, some of which are outlined in
Uhl and Wild [4]. The employed fusion technique uses
augmented model interpolation [4].

Aug rule: B(θ) := ModelFit
( k⋃

i=1
Bi

)
(θ) (2)

This fusion strategy combines candidate sets B1, . . . ,Bk
into a joint set applying a single parameterisation model
ModelFit (e.g. least-squares circular fitting) minimising
themodel-error. This is in contrast to traditional sum rule,
where continuous parameterisations are built for each
curve to be combined separately. The method is employed
separately for inner and outer iris boundaries, and the
implementation uses Fitzgibbon’s ellipse-fitting [23] for
the combination. In this paper, we employ pairwise com-
binations (k = 2); however, the method can easily be
extended to test all possible combinations.
It would be a valid choice to use a weighted combi-

nation, but we decided against this option, because set-
ting weights requires further tuning with regards to the
employed dataset, which we tried to avoid at this stage.
The final approach including the following stages uses
neural networks which are much more flexible in using
features of the image to try and, on a per image basis,
weight the fusion.

3.3 Step 3: prediction
With several available (individual and combined) bound-
ary candidates, the critical task of prediction is to obtain
estimates on the accuracy of each candidate. There-
fore, we employ the set of quality estimators listed in
Table 1 to predict segmentation performance, inspired
by ISO/IEC 29794-6 the iris quality standard consider-
ing device, subject, and environmental impact factors for
iris quality estimation. The employed list in this work
considers all quality components most recommended
by NIST’s IREX II iris quality calibration and evalua-
tion [24] (IQCE, a study to examine the effectiveness
of ISO/IEC 29794-6 quality components in prediction
of performance) that were considered by more than 10
submissions to the evaluation [25]: iris radius (14 submis-
sions), pupil iris ratio (14), iris-sclera contrast (13), iris
pupil contrast (13), usable iris area (12), and grey scale
utilisation (10). Pupil boundary circularity, and margin
adequacy were employed by fewer submissions than the
previous metrics and are not included. Ratios were mod-
elled via direct access to radii. Iris pupil concentricity was

Table 1 Quality parameters used for predicting segmentation
accuracy

No Par. Description Indicative property

1 px Pupil centre x-coordinate Close to image centre

2 py Pupil centre y-coordinate Close to centre

3 pr Pupil radius Sensor-specific distribution
(illumination)

4 lx Iris centre x-coordinate Close to centre

5 ly Iris centre y-coordinate Close to centre

6 lr Iris radius System-specific distribution
(focus-distance)

7 aI Iris area System/sensor-specific
distribution

8 cP Pupillary contrast Usually higher for accurate
segmentation

9 cL Limbic contrast Usually higher for accurate
segmentation

10 μ Mean iris intensity Difficulty of segmentation
(eye colour)

11 σ Iris intensity standard deviation In-focus assessment
(texture)

modelled via direct access to pupil and iris centre posi-
tions and included as a recommended measure in [25].
Grey scale utilisation was modelled via mean iris intensity
and standard deviation on the iris area only.
Location parameters of circular-fitted pupil and lim-

bic boundary centres (px, py and lx, ly) provide a useful
check, whether an iris is found close to image centres
(assumed to be more likely for eye patches extracted by
preceding eye detectors). Also the distance between cen-
tres can potentially reveal segmentation errors. Pupillary
and limbic radius values pr , lr are included for database-
specific predictions. Some segmentation algorithms allow
explicit fine-tuning of these segmentation parameters
specifying a range of tested values. Successful segmenta-
tions are assumed to exhibit sensor (illumination intensity
impacting on pupil dilation) or database-specific (focus-
distance and average size of human iris) distributions of
these parameters. The total available iris texture area with
regard to a noise mask (aI ) is an important indicator for
noise and challenge of the underlying image. Pupillary
and limbic contrast (cP, cL) were introduced to judge for
the accuracy of fitted boundaries, especially over- and
undersegmentation. Boundary contrast is calculated as
the absolute difference in average intensity of the circular
window (5 pixels height) outside and inside the boundary.
Mean iris intensity and standard deviation are included
as indicators for potential iris-sclera contrast and focus.
All parameters refer to a particular segmentation result
(characterised via its noise mask N), more precisely we
use the trace (P, L fitted with an elliptical model) after the
scanning and pruning stage to compute parameter values.
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Table 2 Iris datasets used in experiments

Database Set/ Total Total Training Training Testing Testing Band Resolution
version images classes images classes images classes

CASIA [27] v4-Interval 2639 249 (×2) 1320 1-116L 1319 116R-249 NIR 320 × 280

IITD [28, 29] v1.0 2240 224 (×2) 1120 1-112 1120 113 -224 NIR 320 × 240

When closely looking at characteristics, it is evident to
see that multiple effects (overall challenge, accuracy of
the segmentation) are present. Therefore, we train a multi
layer perceptron to predict E2 segmentation errors for a
segmentation result (P, L) using the n = 11 described
quality parameters obtained for this result:

• Input of the network are the quality parameter values
x0, . . . , xn ∈[ 0, 1] obtained from a segmentation
result after (min-max) normalisation.

• Output of the network is a hypothesis value
hW (x) = f (WT

1 f (WT
2 x)) estimating the

segmentation error. It is calculated using (trained)
matricesW1,W2, i.e. a simple neural network with
one hidden fully-connected n × n layer and a
logistic-regression output layer. We use
f (z) = 1

1+exp(−z) ∈[ 0, 1] (sigmoid) as the activation
function.

Matrices W1,W2 are trained using m pairs (x(i), y(i))
of correspondences between quality parameters and seg-
mentation ground truth error with regard to a manual
human segmentation. The cost function J (using λ =
10−6) is computed via the limited memory Broyden-
Fletcher-Goldfarb-Shanno algorithm [26]:

J(W ) = 1
m

m∑

i=0

(
1
2
‖hW (x(i)) − y(i)‖2

)

+ λ

2

nl−1∑

l=1

sl−1∑

i=1

sl+1−1∑

j=1

(
Wl[ j, i]

)2 .
(3)

We used 50 % of each iris database for training and the
remaining 50 % for testing. The computed hypothesis
value is the returned quality score q(P, L) := hW (x(P, L))

of a segmentation result.

3.4 Step 4: selection
Note, that the simple combination of boundary curves as
suggested and tested in [5] does not always lead to over-
all improvements. A substantially inaccurate algorithm
can create outliers impacting on overall recognition accu-
racy. Instead, the proposed method uses predicted quality
scores q(Pi, Li) for each of m candidate segmentations
Pi, Li (individual and combined boundaries using subsets
of algorithms) to select the final segmentation index s (and
corresponding overall boundary result Ps and Ls) among
candidates as follows:

s := arg min
1≤i≤m

(
q(Pi, Li)

)
. (4)

Outliers are implicitly removed by considering the com-
bination maximising quality (minimum predicted seg-
mentation error q). Finally, the selected boundary Ps, Ls
is used for the rubbersheet transform. Further local noise
masks can be combined using e.g., majority voting (not
executed). The segmentation tool from [10] is used for
unrolling the iris image. It should also be noted that the
mask-level fusion generates a mask which is used for
unrolling the iris only. No noise or occlusion mask is gen-
erated and consequently all tests performed on the fusion
are performed purely on the unrolled iris image without
masking.

4 Experimental study
We employ the public CASIA [27] and IITD [28, 29]
iris databases (see Table 2 for detailed information) in
experimental tests. For verification of the positive effect
of multi-segmentation fusion, each set is divided into
equally-sized disjoint training and test subsets. Training
images are needed for learning segmentation accuracy
(step 3: prediction) based on the quality indicators intro-
duced in Section 3. All ground truth and recognition
accuracy assessments refer to test set images only.
In order to minimise the risk of algorithm-specific

impact, we test the proposed framework on four different

Table 3 Segmentation algorithms used in experiments

Algorithm Implementation Model Methods

CAHT [1] USIT v1.0 [1] Circular Circular Hough transform, contrast-enhancement

IFPP [22] USIT v1.0 [1] Elliptic Iterative Fourier approximation; pulling and pushing

OSIRIS [30] Iris-Osiris v4.1 [30] Free Circular HT; active contours

WAHET [7] USIT v1.0 [1] Elliptic Adaptive multi-scale HT; ellipsopolar transform
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Table 4 Feature extraction algorithms used in experiments

Algorithm Implementation Length Comparison Methods

QSW [32] USIT 1.0 [1] 10240 bit Hamming distance Min-max dyadic wavelet

LG [33] USIT 1.0 [1] 10240 bit Hamming distance 1-D Gabor phase quantisation

segmentation algorithms: contrast-adjusted Hough trans-
form (CAHT), weighted adaptive Hough and ellipsopo-
lar transforms (WAHET), iterative Fourier-based pulling
and pushing (IFPP), and the open source iris recognition
toolkit (OSIRIS) as representatives for elliptic, circular,
and free-form iris segmentation models (see Table 3 for
an overview listing major methods employed by each
technique).
The source code of all segmentation tools is available

[1, 30] . Since also the feature extraction technique exhibit-
ing more or less tolerance for segmentation inaccuracies
can have an impact on (recognition-based) evaluation
results, we test all combinations with two different clas-
sical wavelet-based feature extraction techniques: qual-
ity assessment and selection of spatial wavelets (QSW)
and 1-D Log-Gabor (LG) (see Table 4 for more infor-
mation). For ground truth segmentation accuracy assess-
ment, we employ the manual segmentations available
with [10, 31].
To facilitate reproducible research, the trained neural

networks will be made available at http://www.wavelab.at/
sources/Wild16a.

4.1 Predictability of segmentation accuracy
We train iris segmentation accuracy prediction separately
for each training database, but jointly for all available seg-
mentation algorithms and combinations thereof. Using
the true E1 ground truth segmentation error, we find the
minimum (0.189 for CASIA, 0.222 for IITD) of cost func-
tion J(W ) introduced in Section 3 stopping after 1000
iterations yielding an average delta between prediction
and true E2 error, �E2 = 0.017 for CASIA and �E2 =
0.015 for IITD test sets. This corresponds to 94.03 % accu-
racy for CASIA and 96.77 % for IITD, respectively, in
predicting segmentation errors (considering images with
E2 error > 0.1, i.e. 10 %, as failed segmentations).

From the correlation plots in Figs. 4 and 5, plotting pre-
dicted segmentation accuracy q(P, L) versus true E2(P, L)

for each individual algorithm in CASIA and IITD (test
sets only), we can see that predictions are quite accurate
(note the dual log-scale explaining the wider spread for
lower scales) confirming the effectiveness of the proposed
simple neural network-based technique.

4.2 Ground truth segmentation accuracy
From previous observations in [5], we learned that the
combination of segmentation boundaries has the poten-
tial to improve “good” segmentation results but may fail
producing only averaged results for “bad” segmentation
results. Therefore, it is not trivial that with the new
quality-based fusion and potential rejection of inaccu-
rate segmentations suggested in this paper indeed bet-
ter accuracy can be achieved. It has been shown in [5]
that there are examples, where simple sum rule fusion
degrades overall results compared to the better of the
two combined algorithms. However, for some samples
and especially when algorithms with tendency for over-
and undersegmentation are combined, the combination
can be expected to reduce segmentation errors. Figure 6
illustrates a positive example for CASIA (top row, file
S1137L06) and IITD (bottom row, file 205-07), where
augmented model combination using two segmentation
algorithm’s outputs (CAHT and WAHET) improves total
E1 (and E2) segmentation errors. Green areas in the figure
indicate false negative iris pixels, while red pixels indicate
false positive classifications.
In a second experiment, we evaluated the entire quality-

based multi-segmentation fusion method with regard to
ground truth segmentation accuracy. Table 5 lists all
obtained average E1 and average E2 segmentation errors
of the test sets for CASIA and IITD iris databases. Indi-
vidual algorithms are scored at 2.47 % (CAHT), 5.75 %

Fig. 4 Predicted versus true segmentation error on CASIA dataset

http://www.wavelab.at/sources/Wild16a
http://www.wavelab.at/sources/Wild16a
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Fig. 5 Predicted versus true segmentation error on IITD dataset

(IFPP), 5.27 % (OSIRIS), and 3.45 % (WAHET) E1 accu-
racy for CASIA and 2.95 % (CAHT), 4.98 % (IFPP), 5.69 %
(OSIRIS), and 5.95 % (WAHET) for IITD. E2 errors were
higher but retained the order of their E1 counterparts. Of
the tested six pairwise combinations using quality-based
fusion on two databases, all but a single case returned
a better E1 and E2 error. In extreme cases, E1 (and E2)
errors were almost halved (OSIRIS+WAHET 3.10 % vs.
OSIRIS 5.69 % and WAHET 5.95 % for IITD). On aver-
age, E1 and E2 errors were reduced by approx. one tenth
(CASIA) to approx. one fifth (IITD) of their original value.
However, the amount of reduction varies greatly and cer-
tainly depends on whether the two combined algorithms
fail for similar images or provide complementary infor-
mation. Even the case that did not improve results only
slightly degraded performance (CAHT+IFPP with 2.56 %
E1 vs. 2.47 % for CAHT on CASIA). This is interestingly
the combination with the largest discrepancy in segmen-
tation accuracy for CASIA. A closer look at outlier counts
confirmed that the proposed fusion approach could signif-
icantly reduce the number of images with a ground truth

segmentation error exceeding 10 % E1 in all but the men-
tioned CAHT+IFPP case, where the value stayed the same
(tem outliers).

4.3 Impact on recognition accuracy
Note that small segmentation errors are likely to be
tolerated by the feature extraction algorithm; therefore,
we additionally consider a recognition-based assessment.
Since the impact on different feature extractors designed
to tolerate slight transformations of the underlying image
texture (e.g. varying illumination, head rotation, defo-
cus/blur) is imminent, it is especially interesting to see
if there are differences between algorithms. ROCs of all
tested scenarios for pairwise combinations plotting indi-
vidual segmentation algorithm’s performance with the
combined fusion result are given in Fig. 7 for the IITD
database and LG feature extractor, Fig. 8 for IITD and
QSW, Fig. 9 for CASIA and LG, and Fig. 10 for CASIA
and QSW. Reference ground truth performance rates of
these databases and algorithms were (in a given order)
0.09, 0.04, 0.77, and 0.34 % EER.

Fig. 6 Sample fusion benefit (red: false positives; green: false negatives)
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Table 5 Test set segmentation errors (comparison with ground truth) for individual algorithms (diagonal) versus pairwise
quality-based segmentation fusion

(a) CASIA v4 interval database (b) IIT Delhi database

Average E1 [%] CAHT IFPP OSIRIS WAHET CAHT IFPP OSIRIS WAHET

CAHT 2.47 2.56 2.46 2.33 2.95 2.88 2.73 2.80

IFPP 5.75 3.67 3.08 4.98 3.62 3.41

OSIRIS 5.27 3.01 5.69 3.10

WAHET 3.45 5.95

Average E2 [%]

CAHT 3.75 3.87 3.75 3.55 4.28 3.82 3.61 3.74

IFPP 10.09 5.58 4.65 6.37 4.77 4.49

OSIRIS 8.20 4.59 7.48 4.11

WAHET 5.20 7.85

Outlier count (E1 > 10%)

CAHT 10 10 9 6 10 6 4 9

IFPP 131 30 11 57 21 24

OSIRIS 78 19 108 19

WAHET 38 105

Results where the fused result improves over both individual methods are given in bold, fused results improving over one of the individual methods are given in italics

From Table 6, listing all obtained EERs (rate, where
false accepts equals false rejects) for a compact represen-
tation of results, it can be clearly seen that now, after
feature extraction, quality-based segmentation fusion can
improve accuracy in all tested variants, across databases
and algorithms. Even in the cases where ground truth
segmentation errors were not improved, now recognition
rates are slightly better. Single algorithms scored in the
range of 1.1–5.97 % EER for CASIA and LG, 0.81–6.48 %
for CASIA and QSW, 0.94–6.21 % for IITD and LG, and
0.94–5.86 % for IITD and QSW. Fused algorithms were on
average reduced by approx. one fourth (CASIA) to approx.

half (IITD), again depending greatly on algorithms. In
some cases, very pronounced improvement was obtained
(e.g. OSIRIS+CAHTwith 0.25 % EER vs. 0.95 % for CAHT
and 3.74 % for OSIRIS in IITD for LG). Especially for
algorithms with very weak segmentation accuracies (e.g.
OSIRIS 3.74 % and WAHET 6.21 % EER on IITD for
LG), remarkable improvements could be achieved when
combining the segmentations (OSIRIS+WAHET 0.7 %
EER), and improvements were even more pronounced
than for the ground truth segmentations. It can there-
fore be argued that there is additionally a positive effect
of the fusion approach to induce less distortions in the

Fig. 7 Quality-based segmentation fusion ROCs on IITD with LG



Wild et al. EURASIP Journal on Information Security  (2016) 2016:25 Page 10 of 12

Fig. 8 Quality-based segmentation fusion ROCs on IITD with QSW

Fig. 9 Quality-based segmentation fusion ROCs on CASIA with LG

Fig. 10 Quality-based segmentation fusion ROCs on CASIA with QSW
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Table 6 Test set EER performance for individual algorithms (diagonal) versus pairwise quality-based segmentation fusion

(a) CASIA v4 interval database (b) IIT Delhi database

Equal-error rate [%] for LG CAHT IFPP OSIRIS WAHET CAHT IFPP OSIRIS WAHET

CAHT 1.10 1.04 1.03 0.90 0.94 0.45 0.25 0.76

IFPP 5.97 1.24 1.06 2.51 0.58 1.17

OSIRIS 2.10 0.96 3.74 0.70

WAHET 1.71 6.21

Equal-error rate [%] for QSW

CAHT 0.81 0.74 0.79 0.43 0.94 0.57 0.71 0.89

IFPP 6.48 1.38 0.82 2.66 0.96 1.74

OSIRIS 2.94 0.95 5.41 1.47

WAHET 1.38 5.86

Results where the fused result improves over both individual methods are given in bold

mapping phase supporting the overall processing chain.
From the ROC figures, it can be seen that improvement is
not only pertinent to a specific operating point but largely
present across the entire range of operating points. Note,
that error rates for the reference technique are different
from the rates reported in [5]. In order to use neural net-
works we had to split the database into a test and trainings
set. In order to compare the single with the fused segmen-
tation we had to use the same dataset, the test subset of
the database. In [5] the entire database was used for the
experiments since the was no training stage.

5 Conclusions
In this paper, we presented a novel quality-based fusion
method for the combination of segmentation algorithms.
With the positive result for the quality prediction sub-
module certifying its ability to obtain meaningful esti-
mates of segmentation errors of individual algorithms
in as much as 94.03 % (CASIA) to 96.77 % (IITD) of
segmentation failures also tests on ground truth segmen-
tation conformity and recognition accuracy confirmed the
high versatility of the suggested technique. Analysing pair-
wise combinations of CAHT, WAHET, IFPP, and OSIRIS
iris segmentation algorithms, in all tested cases recogni-
tion performance could be improved. The best obtained
result for IITD was 0.25 % EER for CAHT+OSIRIS ver-
sus 0.94 % EER for CAHT only (using LG) and for CASIA
we obtained 0.43 % EER combining CAHT+WAHET ver-
sus 0.81 % for CAHT only (using QSW) as best single
algorithms. Multi-segmentation fusion has been shown to
be a very successful technique to obtain higher accuracy
at little additional cost proving to be particularly use-
ful, where better normalised source images are needed.
In the future, we will look at even further improved
quality prediction and fusion techniques combining mul-
tiple segmentation algorithms at once and new sequen-
tial approaches saving computational effort. Further, an

investigation of extending suggested methods to NIR and
VIS images is ongoing work and has shown first promis-
ing results. As regards the training of weights, it is clear
that also VIS images might be sensitive to different quality
metrics and thus should be carefully retrained.

Acknowledgements
This project has received funding from the European Union’s Seventh
Framework Programme for research, technological development and
demonstration under grant agreement no 312583 and from the Austrian
Science Fund, project no P26630.

Authors’ contributions
PW developed the concept, carried out the quality prediction and ground
truth/recognition-based evaluation, and drafted the manuscript. HH provided
the mask data, developed the scanning and pruning method, and participated
in drafting the manuscript. JF supported in the experimental analysis and
revising the manuscript. AU supported in the development of the concept,
organised the data, and participated in revising the manuscript. All authors
read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Author details
1AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria.
2Department of Computer Sciences, University of Salzburg, 5020 Salzburg,
Austria. 3School of Systems Engineering, University of Reading, RG6 6AY
Reading, UK.

Received: 14 April 2016 Accepted: 12 October 2016

References
1. C Rathgeb, A Uhl, P Wild, Iris Recognition: From Segmentation to Template

Security.Advances in Information Security, vol. 59 (Springer, New York, 2012)
2. R Jillela, A Ross, PJ Flynn, in Proc. Winter Conf. on Appl. Computer Vision,

(WACV). Information fusion in low-resolution iris videos using
principal components transform, (2011), pp. 262–269. doi:10.1109/WACV.
2011.5711512

3. K Ross, AA Nandakumar, AK Jain, Handbook of Multibiometrics. (Springer,
New York, 2006)

4. A Uhl, P Wild, in Proc. 18th Ib. Congr. on Pattern Recog, (CIARP). Fusion of
iris segmentation results, (2013), pp. 310–317. doi:10.1007/978-3-642-
41827-3_39

http://dx.doi.org/10.1109/WACV.2011.5711512
http://dx.doi.org/10.1109/WACV.2011.5711512
http://dx.doi.org/10.1007/978-3-642-41827-3_39
http://dx.doi.org/10.1007/978-3-642-41827-3_39


Wild et al. EURASIP Journal on Information Security  (2016) 2016:25 Page 12 of 12

5. P Wild, H Hofbauer, J Ferryman, A Uhl, in Proc. 14th International
Conference of the Biometrics Special Interest Group (BIOSIG’15).
Segmentation-level fusion for iris recognition, (2015), pp. 61–72.
doi:10.1109/BIOSIG.2015.7314620

6. F Alonso-Fernandez, J Bigun, in Proc. Int’l Conf. on Biometrics (ICB). Quality
factors affecting iris segmentation and matching, (2013).
doi:10.1109/ICB.2013.6613016

7. A Uhl, P Wild, in Proc. Int’l Conf. on Biometrics (ICB). Weighted adaptive
hough and ellipsopolar transforms for real-time iris segmentation, (2012).
doi:10.1109/ICB.2012.6199821

8. J Daugman, How iris recognition works. IEEE Trans. Circuits Syst. Video
Technol. 14(1), 21–30 (2004). doi:10.1109/TCSVT.2003.818350

9. RP Wildes, in Proc. of the IEEE, vol. 85. Iris recognition: an emerging
biometric technology, (1997)

10. H Hofbauer, F Alonso-Fernandez, P Wild, J Bigun, A Uhl, in Proc. 22nd Int’l
Conf. Pattern Rec. (ICPR). A ground truth for iris segmentation, (2014).
doi:10.1109/ICPR.2014.101

11. A Abhyankar, S Schuckers, in Proc. of SPIE. Active shape models for
effective iris segmentation, (2006). doi:10.1117/12.666435

12. T Tan, Z He, Z Sun, Efficient and robust segmentation of noisy iris images
for non-cooperative iris recognition. Image Vis. Comput. 28(2), 223–230
(2010)

13. G Sutra, S Garcia-Salicetti, B Dorizzi, in Proc. Int’l Conf. Biom. (ICB). The
Viterbi algorithm at different resolutions for enhanced iris segmentation,
(2012). doi:10.1109/ICB.2012.6199825

14. H Proença, L Alexandre, Toward covert iris biometric recognition:
experimental results from the NICE contests. IEEE Trans. Inf. For. Sec. 7(2),
798–808 (2012). doi:10.1109/TIFS.2011.2177659

15. Z Wei, T Tan, Z Sun, J Cui, in Proc. int’l conf. on biometrics (icb), ed. by D
Zhang, AK Jain. Robust and Fast Assessment of Iris Image Quality, (2005),
pp. 464–471. doi:10.1007/11608288_62

16. E Tabassi, in Proc. Int’l Conf. Biom. Special Int. Group (BIOSIG). Large scale iris
image quality evaluation, (2011), pp. 173–184

17. P Wild, J Ferryman, A Uhl, Impact of (segmentation) quality on long vs.
short-timespan assessments in iris recognition performance. IET
Biometrics. 4(4), 227–235 (2015). doi:10.1049/iet-bmt.2014.0073

18. E Llano, J Vargas, M García-Vázquez, L Fuentes, A Ramí-rez-Acosta, in Proc.
Int’l Conf. on Biometrics (ICB). Cross-sensor iris verification applying robust
fused segmentation algorithms, (2015), pp. 17–22.
doi:10.1109/ICB.2015.7139042

19. Y Sanchez-Gonzalez, Y Cabrera, E Llano, in Proc. Ib. Congr. Patt. Rec. (CIARP).
A comparison of fused segmentation algorithms for iris verification,
(2014), pp. 112–119. doi:10.1007/978-3-319-12568-8_14

20. J Huang, L Ma, T Tan, Y Wang, in Proc. BMVC. Learning based resolution
enhancement of iris images, (2003), pp. 153–162. doi:10.5244/C.17.16

21. K Hollingsworth, T Peters, KW Bowyer, PJ Flynn, Iris recognition using
signal-level fusion of frames from video. IEEE Trans. Inf. For. Sec. 4(4),
837–848 (2009). doi:10.1109/TIFS.2009.2033759

22. A Uhl, P Wild, in Proc. Int’l Conf. Image An. Rec. (ICIAR), ed. by A Campilho, M
Kamel. Multi-stage visible wavelength and near infrared iris segmentation
framework (2012), pp. 1–10. doi:10.1007/978-3-642-31298-4_1

23. A Fitzgibbon, M Pilu, RB Fisher, Direct least square fitting of ellipses. IEEE
Trans. Pat. An. Ma. Int. 21(5), 476–480 (1999). doi:10.1109/34.765658

24. E Tabassi, PJ Grother, WJ Salamon, Iris quality calibration and evaluation
(IQCE): evaluation report, NIST Interagency/Internal Report (NISTIR), 7820,
(2011), pp. 1–227

25. E Tabassi, in Proc. of the Int’l Biometrics Performance Conference, IBPC’14.
Iso/iec 29794-6 quantitative standardization of iris image quality, (2014)

26. C Zhu, P Byrd, RH Lu, J Nocedal, Algorithm 778: L-bfgs-b: Fortran
subroutines for large-scale bound-constrained optimization. ACM Trans.
Math. Softw. 23(4), 550–560 (1997). doi:10.1145/279232.279236

27. CASIA-IrisV4 Interval database. http://biometrics.idealtest.org/
dbDetailForUser.do?id=4

28. IIT Delhi iris database. http://www4.comp.polyu.edu.hk/~csajaykr/IITD/
Database_Iris.htm

29. A Kumar, A Passi, Pattern Recognition. 43(3), 1016–1026 (2010).
doi:10.1016/j.patcog.2009.08.016

30. D Petrovska, A Mayoue, Description and documentation of the biosecure
software library. Technical report, Project No IST-2002-507634 - BioSecure
(2007) Available online: http://biosecure.it-sudparis.eu/AB/media/files/
BioSecure_Deliverable_D02-2-2_b4.pdf.pdf

31. Iris segmentation ground truth database—elliptical/polynomial
boundaries (IRISSEG-EP). http://www.wavelab.at/sources/Hofbauer14b

32. L Ma, T Tan, Y Wang, D Zhang, Efficient iris recognition by characterizing
key local variations. IEEE Trans. Image Proc. 13(6), 739–750 (2004).
doi:10.1109/TIP.2004.827237

33. L Masek, Recognition of human iris patterns for biometric identification,
MSc thesis, Univ. Western Australia, 2003. Available online: http://www.
peterkovesi.com/studentprojects/libor/LiborMasekThesis.pdf

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

http://dx.doi.org/10.1109/BIOSIG.2015.7314620
http://dx.doi.org/10.1109/ICB.2013.6613016
http://dx.doi.org/10.1109/ICB.2012.6199821
http://dx.doi.org/10.1109/TCSVT.2003.818350
http://dx.doi.org/10.1109/ICPR.2014.101
http://dx.doi.org/10.1117/12.666435
http://dx.doi.org/10.1109/ICB.2012.6199825
http://dx.doi.org/10.1109/TIFS.2011.2177659
http://dx.doi.org/10.1007/11608288_62
http://dx.doi.org/10.1049/iet-bmt.2014.0073
http://dx.doi.org/10.1109/ICB.2015.7139042
http://dx.doi.org/10.1007/978-3-319-12568-8_14
http://dx.doi.org/10.5244/C.17.16
http://dx.doi.org/10.1109/TIFS.2009.2033759
http://dx.doi.org/10.1007/978-3-642-31298-4_1
http://dx.doi.org/10.1109/34.765658
http://dx.doi.org/10.1145/279232.279236
http://biometrics.idealtest.org/dbDetailForUser.do?id=4
http://biometrics.idealtest.org/dbDetailForUser.do?id=4
http://www4.comp.polyu.edu.hk/~csajaykr/IITD/Database_Iris.htm
http://www4.comp.polyu.edu.hk/~csajaykr/IITD/Database_Iris.htm
http://dx.doi.org/10.1016/j.patcog.2009.08.016
http://biosecure.it-sudparis.eu/AB/media/files/BioSecure_Deliverable_D02-2-2_b4.pdf.pdf
http://biosecure.it-sudparis.eu/AB/media/files/BioSecure_Deliverable_D02-2-2_b4.pdf.pdf
http://www.wavelab.at/sources/Hofbauer14b
http://dx.doi.org/10.1109/TIP.2004.827237
http://www.peterkovesi.com/studentprojects/libor/LiborMasekThesis.pdf
http://www.peterkovesi.com/studentprojects/libor/LiborMasekThesis.pdf

	Abstract
	Keywords

	Introduction
	Methodology and related work
	Segmentation accuracy
	Iris segmentation quality
	Iris segmentation fusion

	Proposed multi-segmentation fusion method
	Step 1: tracing
	Step 2: model fusion
	Step 3: prediction
	Step 4: selection

	Experimental study
	Predictability of segmentation accuracy
	Ground truth segmentation accuracy
	Impact on recognition accuracy

	Conclusions
	Acknowledgements
	Authors' contributions
	Competing interests
	Author details
	References

