129,753 research outputs found

    Analyzing library collections with starfield visualizations

    Get PDF
    This paper presents a qualitative and formative study of the uses of a starfield-based visualization interface for analysis of library collections. The evaluation process has produced feedback that suggests ways to significantly improve starfield interfaces and the interaction process to improve their learnability and usability. The study also gave us clear indication of additional potential uses of starfield visualizations that can be exploited by further functionality and interface development. We report on resulting implications for the design and use of starfield visualizations that will impact their graphical interface features, their use for managing data quality and their potential for various forms of visual data mining. Although the current implementation and analysis focuses on the collection of a physical library, the most important contributions of our work will be in digital libraries, in which volume, complexity and dynamism of collections are increasing dramatically and tools are needed for visualization and analysis

    Experiences with starfield visualizations for analysis of library collections

    Get PDF
    This paper presents a qualitative and formative study of the uses of a starfield-based visualization interface for analysis of library collections. The evaluation process has produced feedback that suggests ways to significantly improve starfield interfaces and the interaction process to improve their learnability and usability. The study also gave us clear indication of additional potential uses of starfield visualizations that can be exploited by further functionality and interface development. We report on resulting implications for the design and use of starfield visualizations that will impact their graphical interface features, their use for managing data quality and their potential for various forms of visual data mining. Although the current implementation and analysis focuses on the collection of a physical library, the most important contributions of our work will be in digital libraries, in which volume, complexity and dynamism of collections are increasing dramatically and tools are needed for visualization and analysis

    HydroQual: Visual analysis of river water quality

    Get PDF
    International audienceEconomic development based on industrialization, intensive agriculture expansion and population growth places greater pressure on water resources through increased water abstraction and water quality degradation [40]. River pollution is now a visible issue, with emblematic ecological disasters following industrial accidents such as the pollution of the Rhine river in 1986 [31]. River water quality is a pivotal public health and environmental issue that has prompted governments to plan initiatives for preserving or restoring aquatic ecosystems and water resources [56]. Water managers require operational tools to help interpret the complex range of information available on river water quality functioning. Tools based on statistical approaches often fail to resolve some tasks due to the sparse nature of the data. Here we describe HydroQual, a tool to facilitate visual analysis of river water quality. This tool combines spatiotem-poral data mining and visualization techniques to perform tasks defined by water experts. We illustrate the approach with a case study that illustrates how the tool helps experts analyze water quality. We also perform a qualitative evaluation with these experts

    A visual analytics approach for visualisation and knowledge discovery from time-varying personal life data

    Get PDF
    A thesis submitted to the University of Bedfordshire, in ful filment of the requirements for the degree of Doctor of PhilosophyToday, the importance of big data from lifestyles and work activities has been the focus of much research. At the same time, advances in modern sensor technologies have enabled self-logging of a signi cant number of daily activities and movements. Lifestyle logging produces a wide variety of personal data along the lifespan of individuals, including locations, movements, travel distance, step counts and the like, and can be useful in many areas such as healthcare, personal life management, memory recall, and socialisation. However, the amount of obtainable personal life logging data has enormously increased and stands in need of effective processing, analysis, and visualisation to provide hidden insights owing to the lack of semantic information (particularly in spatiotemporal data), complexity, large volume of trivial records, and absence of effective information visualisation on a large scale. Meanwhile, new technologies such as visual analytics have emerged with great potential in data mining and visualisation to overcome the challenges in handling such data and to support individuals in many aspects of their life. Thus, this thesis contemplates the importance of scalability and conducts a comprehensive investigation into visual analytics and its impact on the process of knowledge discovery from the European Commission project MyHealthAvatar at the Centre for Visualisation and Data Analytics by actively involving individuals in order to establish a credible reasoning and effectual interactive visualisation of such multivariate data with particular focus on lifestyle and personal events. To this end, this work widely reviews the foremost existing work on data mining (with the particular focus on semantic enrichment and ranking), data visualisation (of time-oriented, personal, and spatiotemporal data), and methodical evaluations of such approaches. Subsequently, a novel automated place annotation is introduced with multilevel probabilistic latent semantic analysis to automatically attach relevant information to the collected personal spatiotemporal data with low or no semantic information in order to address the inadequate information, which is essential for the process of knowledge discovery. Correspondingly, a multi-signi ficance event ranking model is introduced by involving a number of factors as well as individuals' preferences, which can influence the result within the process of analysis towards credible and high-quality knowledge discovery. The data mining models are assessed in terms of accurateness and performance. The results showed that both models are highly capable of enriching the raw data and providing significant events based on user preferences. An interactive visualisation is also designed and implemented including a set of novel visual components signifi cantly based upon human perception and attentiveness to visualise the extracted knowledge. Each visual component is evaluated iteratively based on usability and perceptibility in order to enhance the visualisation towards reaching the goal of this thesis. Lastly, three integrated visual analytics tools (platforms) are designed and implemented in order to demonstrate how the data mining models and interactive visualisation can be exploited to support different aspects of personal life, such as lifestyle, life pattern, and memory recall (reminiscence). The result of the evaluation for the three integrated visual analytics tools showed that this visual analytics approach can deliver a remarkable experience in gaining knowledge and supporting the users' life in certain aspects

    On the Optimization of Visualizations of Complex Phenomena

    Get PDF
    The problem of perceptually optimizing complex visualizations is a difficult one, involving perceptual as well as aesthetic issues. In our experience, controlled experiments are quite limited in their ability to uncover interrelationships among visualization parameters, and thus may not be the most useful way to develop rules-of-thumb or theory to guide the production of high-quality visualizations. In this paper, we propose a new experimental approach to optimizing visualization quality that integrates some of the strong points of controlled experiments with methods more suited to investigating complex highly-coupled phenomena. We use human-in-the-loop experiments to search through visualization parameter space, generating large databases of rated visualization solutions. This is followed by data mining to extract results such as exemplar visualizations, guidelines for producing visualizations, and hypotheses about strategies leading to strong visualizations. The approach can easily address both perceptual and aesthetic concerns, and can handle complex parameter interactions. We suggest a genetic algorithm as a valuable way of guiding the human-in-the-loop search through visualization parameter space. We describe our methods for using clustering, histogramming, principal component analysis, and neural networks for data mining. The experimental approach is illustrated with a study of the problem of optimal texturing for viewing layered surfaces so that both surfaces are maximally observable

    A framework for automatic semantic video annotation

    Get PDF
    The rapidly increasing quantity of publicly available videos has driven research into developing automatic tools for indexing, rating, searching and retrieval. Textual semantic representations, such as tagging, labelling and annotation, are often important factors in the process of indexing any video, because of their user-friendly way of representing the semantics appropriate for search and retrieval. Ideally, this annotation should be inspired by the human cognitive way of perceiving and of describing videos. The difference between the low-level visual contents and the corresponding human perception is referred to as the ‘semantic gap’. Tackling this gap is even harder in the case of unconstrained videos, mainly due to the lack of any previous information about the analyzed video on the one hand, and the huge amount of generic knowledge required on the other. This paper introduces a framework for the Automatic Semantic Annotation of unconstrained videos. The proposed framework utilizes two non-domain-specific layers: low-level visual similarity matching, and an annotation analysis that employs commonsense knowledgebases. Commonsense ontology is created by incorporating multiple-structured semantic relationships. Experiments and black-box tests are carried out on standard video databases for action recognition and video information retrieval. White-box tests examine the performance of the individual intermediate layers of the framework, and the evaluation of the results and the statistical analysis show that integrating visual similarity matching with commonsense semantic relationships provides an effective approach to automated video annotation
    • 

    corecore