332 research outputs found

    Can we do that simpler? Simple, Efficient, High-Quality Evaluation Metrics for NLG

    Full text link
    We explore efficient evaluation metrics for Natural Language Generation (NLG). To implement efficient metrics, we replace (i) computation-heavy transformers in metrics such as BERTScore, MoverScore, BARTScore, XMoverScore, etc. with lighter versions (such as distilled ones) and (ii) cubic inference time alignment algorithms such as Word Mover Distance with linear and quadratic approximations. We consider six evaluation metrics (both monolingual and multilingual), assessed on three different machine translation datasets, and 16 light-weight transformers as replacement. We find, among others, that (a) TinyBERT shows best quality-efficiency tradeoff for semantic similarity metrics of the BERTScore family, retaining 97\% quality and being 5x faster at inference time on average, (b) there is a large difference in speed-ups on CPU vs. GPU (much higher speed-ups on CPU), and (c) WMD approximations yield no efficiency gains but lead to a substantial drop in quality on 2 out of 3 datasets we examine.Comment: Work in progres

    E-commerce quality evaluation metrics: a sharia compliance approach

    Get PDF
    There is a growing concern and need for Sharia compliance e-commerce quality metrics to evaluate policies and practice that will ensure that Sharia principles are adhered and user’s desirable characteristics are provided. Therefore, extant conventional e-commerce quality metrics from the literature are critically reviewed. Furthermore, an exploratory study involving Sharia compliance experts was conducted, revealing adherence to the maqasid Sharia and the principles of Islamic law of contract as the fundamental Sharia compliance requirements for e-commerce systems. Hence, we integrated the relevant conventional e-commerce quality metrics and the Sharia compliance requirements deduced to propose a set of Sharia compliance e-commerce quality metrics based Information, systems and service quality dimensions. The Sharia compliance e-commerce information quality metrics proffered are accuracy, relevance, timeliness, understandability, completeness, and currency. System quality metrics involves being devoid of riba, devoid of gharar, devoid of haram objects, ethical advertisements, usability, reliability, functionality, customization, security, and privacy. While Service quality metrics are Sharia compliance assurance, khiyar policy, responsiveness, empathy, follow-up services, and the effectiveness of online support capabilities. Developing and evaluating Sharia compliance e-commerce quality based on the proposed metrics is envisaged to foster Muslim consumer trust, use and user satisfaction with e-commerce systems

    A Non-Reference Evaluation of Underwater Image Enhancement Methods Using a New Underwater Image Dataset

    Get PDF
    The rise of vision-based environmental, marine, and oceanic exploration research highlights the need for supporting underwater image enhancement techniques to help mitigate water effects on images such as blurriness, low color contrast, and poor quality. This paper presents an evaluation of common underwater image enhancement techniques using a new underwater image dataset. The collected dataset is comprised of 100 images of aquatic plants taken at a shallow depth of up to three meters from three different locations in the Great Lake Superior, USA, via a Remotely Operated Vehicle (ROV) equipped with a high-definition RGB camera. In particular, we use our dataset to benchmark nine state-of-the-art image enhancement models at three different depths using a set of common non-reference image quality evaluation metrics. Then we provide a comparative analysis of the performance of the selected models at different depths and highlight the most prevalent ones. The obtained results show that the selected image enhancement models are capable of producing considerably better-quality images with some models performing better than others at certain depths

    Load-independent characterization of trade-off fronts for operational amplifiers

    Get PDF
    Abstract—In emerging design methodologies for analog integrated circuits, the use of performance trade-off fronts, also known as Pareto fronts, is a keystone to overcome the limitations of the traditional top-down methodologies. However, most techniques reported so far to generate the front neglect the effect of the surrounding circuitry (such as the output load impedance) on the Pareto-front, thereby making it only valid for the context where the front was generated. This strongly limits its use in hierarchical analog synthesis because of the heavy dependence of key performances on the surrounding circuitry, but, more importantly, because this circuitry remains unknown until the synthesis process. We will address this problem by proposing a new technique to generate the trade-off fronts that is independent of the load that the circuit has to drive. This idea is exploited for a commonly used circuit, the operational amplifier, and experimental results show that this is a promising approach to solve the issue

    Multi-modal Image Processing based on Coupled Dictionary Learning

    Get PDF
    In real-world scenarios, many data processing problems often involve heterogeneous images associated with different imaging modalities. Since these multimodal images originate from the same phenomenon, it is realistic to assume that they share common attributes or characteristics. In this paper, we propose a multi-modal image processing framework based on coupled dictionary learning to capture similarities and disparities between different image modalities. In particular, our framework can capture favorable structure similarities across different image modalities such as edges, corners, and other elementary primitives in a learned sparse transform domain, instead of the original pixel domain, that can be used to improve a number of image processing tasks such as denoising, inpainting, or super-resolution. Practical experiments demonstrate that incorporating multimodal information using our framework brings notable benefits.Comment: SPAWC 2018, 19th IEEE International Workshop On Signal Processing Advances In Wireless Communication

    Multi-Modal Medical Image Fusion using Multi-Resolution Discrete Sine Transform

    Get PDF
    Quick advancement in high innovation and current medical instrumentations, medical imaging has turned into a fundamental part in many applications such as in diagnosis, research and treatment. Images from multimodal imaging devices usually provide complementary and sometime conflicting information. Information from one image may not be adequate to give exact clinical prerequisites to the specialist or doctor. Of-late, Multi-Model medical image fusion playing a challenging role in current research areas. There are many theories and techniques developed to fuse the multimodal images by researchers. In this paper, introducing a new algorithm called as Multi Resolution Discrete Sine Transform which is used for Multi-Model image fusion in medical applications. Performance and evaluation of this algorithm is presented. The main intention of this paper is to apply DST which is easy to understand and demonstrated method to process image fusion techniques. The proposed MDST based image fusion algorithm performance is compared with that of the well-known wavelet based image fusion algorithm. From the results it is observed that the performance of image fusion using MDST is almost similar to that of wavelet based image fusion algorithm. The proposed MDST based image fusion techniques are computationally very simple and it is suitable. The proposed MDST based image fusion algorithms are computationally, exceptionally basic and it is appropriate for real time medical diagnosis applications
    corecore