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Abstract: Quick advancement in high innovation and current medical instrumentations, medical imaging has turned into a 

fundamental part in many applications such as in diagnosis, research and treatment. Images from multimodal imaging devices 

usually provide complementary and sometime conflicting information. Information from one image may not be adequate to 

give exact clinical prerequisites to the specialist or doctor. Of-late, Multi-Model medical image fusion playing a challenging 

role in current research areas. There are many theories and techniques developed to fuse the multimodal images by 

researchers. In this paper, introducing a new algorithm called as Multi Resolution Discrete Sine Transform which is used for 

Multi-Model image fusion in medical applications.  Performance and evaluation of this algorithm is presented. The main 

intention of this paper is to apply DST which is easy to understand and demonstrated method to process image fusion 

techniques. The proposed MDST based image fusion algorithm performance is compared with that of the well-known 

wavelet based image fusion algorithm. From the results it is observed that the performance of image fusion using MDST is 

almost similar to that of wavelet based image fusion algorithm. The proposed MDST based image fusion techniques are 

computationally very simple and it is suitable. The proposed MDST based image fusion algorithms are computationally, 

exceptionally basic and it is appropriate for real time medical diagnosis applications. 
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1. Introduction  

 

The objective of Computer Aided Diagnostic (CAD) 

system is to facilitate the early diagnosis, disease 

monitoring and better treatment [1]. Medical images 

provide essential information for CAD system. Image 

fusion could be a sub module in CAD system. 

Generally, image fusion can be classified into [2,3] I-

Pixel level image fusion, inferring methods that go for 

the blend of the crude images from all the imaging 

sensors thought about 2). Highlight level image 

combination, inferring systems for extraction, mix of 

highlight vector from all considered imaging sensors 

and 3). Choice level image fusion, suggesting 

methods that go for the blend of the outputs of the 

groupings got on each imaging sensor. Of late, with 

rapid development of instrumentation technology, 

medical imaging has become an essential component 

in diagnosis, medical research and treatment. To get 

the accurate clinical information about the pathology 

“Multimodality medical images” are required. So that 

physicians can deal efficiently with diagnosis and 

evaluation. For the study of a given pathology 

Accumulation of numerous imaging data from 

imagery (MRI, SPECT, PET, X-ray, CT-scan) is 

required, the analysis of this data can be performed by 

clinician and provides appropriate medical decision or 

assist the physicians during a complicated surgical 

procedure based on his knowledge. Multimodality 

medical images generally provide complementary or 

conflicting information about the pathology. For 

instance, computed tomography scan (CT-Scan) 

report can provide bones and implants information 

with less distortion but it can’t provide 

physical/biological changes, the magnetic resonance 

scan (MR-Scan) provide pathological soft tissue 

information but it can’t provide bones and implants 

content. In this case physician can’t get complete 

information about diseased parts only in one image; 

to avoid this multimodal medical image fusion is 

necessary. Hence, multimodal medical image fusion 

plays major role in challenging research areas [4, 5].  

 

Multi Imaging sensor data fusion can be characterized 

as the way toward joining various images into a 

solitary image without loss of images information or 
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introduction of distortion [6].Fused image ought to 

contain all significant data than any individual source 

images. The combined image ought to be more 

appropriate for human visual and machine 

observation [7]. Some nonexclusive necessities forced 

on fusion scheme: 1) The fusion process ought to 

save all important data contained in the source images 

and 2) The fusion process not present any ancient 

rarities or irregularities which would interest the 

human onlooker or taking after handling stages and 3) 

superfluous components and noise ought to be stifled. 

The fusion of multimodal medical images frequently 

prompts extra clinical data not clear in individual 

source images. Another use of restorative image 

combination is that it can decrease the storage room 

by putting away the fused image as opposed to 

putting away different source images.  

 

In this paper Pixel level image fusion is considering 

for intertwining the multimodal medical images, since 

the pixel level image fusion has the focal points that 

the images utilized contain the first measured 

amounts and the calculations utilized for combination 

are computationally straightforward and effective. 

The most straightforward image fusion is to take the 

normal of the grey level source images pixel by pixel. 

This method can create a few undesired impacts and 

reduced feature contrast. To overcome these type of 

problems, multi-scale changes can be done, for 

example, wavelets [8, 10-18], image pyramids [9, 19-

22], spatial frequency [23], statistical signal 

processing [24,25] and fuzzy set theory [26] have 

been proposed. Real-world objects more often not 

contain structures at various scales or resolutions. 

Multi-determination or multi-scale methodologies can 

give a way to endeavour this reality and consequently 

multi-resolution image processing systems are widely 

utilized as a part of the advancement of image fusion 

strategies. Multi-resolution wavelet transform could 

give great restriction in both spatial and recurrence 

areas. Discrete wavelet transforms give directional 

data in disintegration levels and contain one of a kind 

data at various resolutions [5, 6]. In this paper, multi-

resolution image analysis utilizing discrete sine 

transform (MDST) is introduced and assessed. MDST 

based multimodal restorative image combination 

calculation has been exhibited and contrasted its 

execution and surely understood wavelet based image 

combination method [16]. The thought is to apply 

basic and demonstrated procedure of DST for multi-

resolution image fusion. 

 

Image registration is one of the requirements to have 

the capacity to apply fusion techniques. The data in 

the images to be fused ought to be satisfactorily 

adjusted and enlisted prior to fusion. Here, it is 

expected that image registration is done for source 

images. 

 

2. Discrete Sine Transform (DST) 

 

Discrete Sine Transform is similar to Discrete Fourier 

Transform using real matrix. It is equivalent to 

imaginary parts of DFT of roughly twice the length. 

DST is operating on real data with odd symmetry, 

since the DFT of a real function is imaginary and odd 

function is odd.  DST expresses of finitely discrete 

sequence in terms of sine functions oscillating at 

different frequencies. There are eight standard DST 

variants of which four are common and widely used 

for signal processing. Type-II DST is the most 

common variant of the discrete sine transform and it 

is simply called as DST.  DST is a linear and 

invertible function.  

 

The 1D (one dimensional) discrete sine transform 
)(kX  of signal )(nx  of length N  is defined as [27-34]. 

 

2. 1 DST-I 
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The DST-I is orthogonal and it is exactly equivalent 

to a DFT of real sequence that is odd around the 0th 

and middle points, scaled by 0.5. The DST-I is its 

own inverse.  
 

2.2 DST-II 
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The inverse of DST-II is DST-III.  

 

2.3 DST-III 
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Where,
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The inverse of DST-III is DST-II.  

 

2.4 DST-IV 
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The DST-IV is its own inverse.

 

 

These DST types (DST-I to DST-IV) are related to 

real odd DFT’s of even order. In fact, there are four 

additional DSTs (DST-V to DST-VIII) corresponding 

to real odd DFTs for odd order. However, these DSTs 

seem to be rarely used in signal analysis.  

 

The 2D (two dimensional) discrete sine transform 

),( 21 kkX  of an image ),( 21 nnx  of size 
21xNN  is 

defined as [27-34]: 
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where 1,1,0 2121  NNkk

   

Similarly, the 2D inverse discrete sine trasnform is defined as: 
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where 1,1,0 2121  NNnn  

   

 

One can see that there is no DC component in this 

transform unlike FFT and DCT. Both DST and IDST 

are separable transformations and the upside of this 

property is that 2D DST or 2D IDST can be obtained 

in two stages by progressive 1D DST or 1D IDST 

operations on columns followed by the resulting rows  

(or vice versa) of an image ),( 21 nnx as shown in eq.7 

and this scheme is illustrated in Figure 1 [35-37].  
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3. Multi-Resolution Analysis 

 

Multi-resolution image analysis utilizing discrete sine 

transform (MDST) is particularly like wavelet 

transform, where signal is filtered independently by 

low pass and high pass finite impulse response (FIR) 

channels and the output of each channel is decimated 

by a component of two to accomplish first level of 

disintegration. The decimated low pass filtered output 

is separated again independently by low pass and high 

pass FIR channels took after decimation by a factor of 

two provides second level of decomposition [36, 37]. 

The progressive levels of image disintegration can be 

accomplished by repeating the above said technique. 

FIR channels are supplanted with DST in the 

improvement of MDST. 

 

3.1  Multi-resolution Image Decomposition: 

The data stream chart of MDST (Single level 

deterioration) is appeared in Figure 2. The image 

which is to disintegrate is changed into frequency 

domain by applying DST in column wise. Low 

passed image ‘L’ can get by taking IDST on first 50% 

of focuses (1to N5.0 ). So also, high passed image ‘H’ 

can get by taking IDST on second 50% of focuses (
N5.0 to N ) points. By applying the DST in row wise 

the low passed image ‘L’ is transformed into 

frequency domain. Take IDST on first 50% of focuses 

(in line shrewd) to get low passed image ‘LL’ and 

comparably take IDST on the remaining half to get 

the low-high passed image ‘LH’. The high passed 

image ‘H’ is changed into frequency domain by 

applying DST row wise. Take IDST on initial half of 

focuses (in row wise) to get high-low passed image 

‘HL’ and likewise take IDST on the staying half to 

get the high passed image ‘HH’. The low passed 

image ‘LL’ contains the normal image data relating to 

low frequency band of multi scale decomposition. 

The low passed image ‘LL’ can be considered as 

smoothed and sub tested form of the source image. It 

represents the approximation of source image, ‘ LH ’, 

‘ HL ’and ‘ HH ’ and are definite sub images which 
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contain directional (horizontal, vertical and diagonal) 

data of the source image because of spatial 

introduction. Multi determination can be 

accomplished by recursively applying the above 

method to low pass coefficients (LL) from the past 

decay level. Image can be reproduced by turning 

around this strategy. 

 

3.2 Performance Evaluation Metrics: 

Since the reference (ground truth) image is available, 

the following reconstructed image quality evaluation 

metrics can be used to evaluate MDST performance.  

 

3.2.1 Root Mean Square Error (RMSE)  

This metric is computed as the root mean square 

error of the corresponding pixels in the reference 

image rI and the reconstructed image cI . This metric 

will be zero when the reference and reconstructed 

images are similar. This will increase when the 

dissimilarity increases.    
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Where,
rI is the reference image, cI is the 

reconstructed image, ),( yx is a pixel index and M &

N is the size of the image [38]. 

 

3.2.2   Percentage Fit Error (PFE)  

PFE is computed as the norm of the difference 

between the corresponding pixels of reference and 

reconstructed/fusion image to the norm of the 

reference image. PFE will be zero when both 

reference and reconstructed images are exactly alike.  

PFE will increase when the reconstructed image is 

deviated from the reference image.   
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Where, norm is the operator that is used to compute 

the largest singular value [38]. 

 

3.2.3 Mean Absolute Error (MAE)  
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Computed as the mean absolute error of the 

corresponding pixels in reference and reconstructed 

images [38].  

 

3.2.4 Cross Correlation (CORR)  
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CORR shows the correlation between the reference 

and reconstructed image. The ideal value of CORR is 

one when the reference and reconstructed are exactly 

alike and it will be less than one when the 

dissimilarity increases [38]. 

3.2.5 Signal noise Ratio (SNR)  
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SNR will be high when the reference and 

reconstructed images are alike. Higher SNR value 

gives better results [39]. 

 

3.2.6 Peak signal to noise ratio (PSNR)  

Its value will be high when the reconstructed and 

reference images are similar. Higher PSNR value 

implies better reconstruction. The peak signal to noise 

ratio is computed as: 
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Where, L in the number of gray levels in the image 

[39]. 

 

Note: These evaluation metrics can be used for image 

fusion quality evaluation when reference image is 

available. Fused image will be used in place of 

reconstructed image. 

 

3.3 MDST Results  

The execution of MDST calculation is assessed and 

exhibited in this segment. Figure 3 demonstrates the 

ground truth image utilized as a part of multi-

resolution analysis. In the first and second levels of 

disintegration of Figure 3 are appeared in Figure 4 

utilizing DST-I. The recreated image from second 

level of deterioration utilizing DST-I is appeared in 

Figure 5a (left side) and the error image (distinction 

between the true image and the reconstructed image) 

is additionally appeared in Figure 5b (right side). One 

can assume that this reconstructed image is precisely 

coordinated with the ground truth image. It implies 

that there is no information loss for utilizing MDST 

for multi-resolution image analysis. Comparable 



 

17 

 

perception is produced using DST-II, DST-III and 

DST-IV comes about. The performance assessment 

measurements are appeared in Table1. It demonstrates 

that all DST calculations are performed practically 

comparable.  

 

It is known that wavelet method trades spatial 

resolution at different scales. There is no trade-off, if 

DST is considered one can be obtained using the 

MDST at different scales of decomposition instead of 

applying DST on whole image. 

4.Image Fusion  

 

MDST based pixel level image fusion architecture is 

shown in Figure 6. One can observe that the 

modification of the present scheme is the use of 

MDST instead of wavelets or pyramids. The source 

images
1I and 

2I  which are to be fused are decomposed 

into D levels using MDST. The resultened 

decomposed images from 
1I and  

2I  are 
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At every disintegration level d ),...,2,1( Dd  , the 

combination manage will choose the bigger total 

estimation of the two detailed MDST coeficients, 

since the detailed coefficients compares more sharper 

brightness changes in the images, for example, edges 

and object boundaries and so on. These coefficients 

fluctuate around zero. At the coarsest level )( Dd  , the 

combination govern take normal of the MDST 

estimate coefficients since the approximation 

coefficients at coarsest level are  smoothed and sub-

sampled version of the original image. The fused 

image fI can be computed using equation (15): 
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4.1 Fusion Evaluation Metrics 

In practice, both subjective and objective image 

fusion quality evaluation metrics can be used.  In this 

paper, only objective evaluation metrics without 

reference image are used since reference image will 

not be available in real world applications. The 

following fusion quality metrics can be used to 

evaluate the performance of the fused algorithms 

when there are no reference images are available. 

 

4.1.1 Standard Deviation (SD)  
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Where, ),( yxI f
is the pixel value of the fused image 

at the position ),( yx  and  is the mean value of the 

fused image. 

 

SD is composed of the signal and noise parts of the 

image. SD is more efficient in the absence of noise in 

the image. SD measures the contrast in the fused 

image. An image with high contrast will have a high 

standard deviation [40].    

 

4.1.2 Spatial Frequency (SF)  

Spatial frequency criterion is: 22 CFRFSF  (17) 

Where, row frequency of the image: 
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SF indicates the overall activity level in the fused 

image. The fused image with high SF will be 

considered [38, 41, 42]. 

 

4.1.3 Information Entropy (He)  

Entropy is used to measure the information content of 

an image.  Using the entropy, the information content 

of a fused image is: 
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Where, )(ih
fI

is the normalized histogram of the 

fused image ),( yxI f
and L number of frequency bins 

in the histogram. Entropy is sensitive to noise and 

other unwanted rapid fluctuations. The information 

entropy measures the richness of information in an 

image. Hence, entropy is higher, performance is 

better [38].  

 

4.1.4 Cross Entropy(Hc)  

Cross-entropy is used to evaluate the similarities 

between input images and fused image. If there is a 

same content between fused image and reference 

image, then there will be low cross entropy. Hence, 

small cross entropy value corresponds to good fusion 

result.  The overall cross entropy of the source images 

( 1I , 2I
) 

and the fused image 
fI is computed as:
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Where, );( 1 fIICE  is the cross entropy of the image 

1I  and the fused image
fI , and is computed as: 
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Similarly );( 1 fIICE  is the cross entropy of the 

image 2I  and the fused image 
fI  and is computed 

as: 
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Where, )(
1

ihI
is the normalized histogram of image 1I  

and )(
2

ihI
is the normalized histogram of image 2I

[38]. 

 

4.1.5 Fusion quality index (FQI)  

This metric would express the quality of the fused 

image given the source images as: 
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 )(wc is a normalized version of )(wC  

)|,( 1 wIIQI f  
is the quality index over a window for a 

given source image and fused image. 

The range of this metric is 0 to 1. One indicates that 

the fused image contains all the information from the 

source images [38].  

 

5. Results and Discussion 

 

The objective of this paper is to fuse multimodal 

medical images using MDST. One can see that there 

is no ground truth (reference) image available. The 

multi-modal medical images used in this paper are 

taken from open literature [43-45].  

 

5.1  Fusion of CT and MR images 

Figure 7(i) and Figure 7(ii) demonstrate the CT and 

MR images separately. CT image gives clear bones 

data however it doesn't give delicate tissues data (see 

Figure 7(i)). The MR image gives delicate tissue data 

however it doesn't give bones data (see Figure 7(ii)). 

It demonstrates that both CT and MR give reciprocal 

data. The combination of these two images, the 

resultant fused image now contains both the bones 

data and tissues data as appeared in Figure 8, which 

can't be found in the individual CT or MR image. 

Figure 8a demonstrates the fused images utilizing 

MDST-I with various levels of disintegrations. Figure 

8b demonstrates the fused images with wavelets 

based image fusion technique. Fusion quality 

evaluation is appeared in Table 2. The qualities with 

intense shows better outcomes and the relating 

combination calculation is the best among other. 

From the figures and table, it is observed that the 

fused image contains all the important data. It is 

likewise watched that combination comes about by 

MDST are practically like that of wavelet based 

fusion results. 

 

5.2  Fusion of T1-weighted MR and MRA Images 

T1_weighted MR-image and MRA image with some 

illness are shown in Figure 9(i) and Figure 9(ii) 

respectively. In the Figure 9(i) it is clear that the soft 

tissue can recognize clearly and easily but the illness 

medical information has been lost from T1-weighted 

image. Whereas in MRA image the illness medical 

information (marked area) can recognize but the soft 

tissues are very difficult to discriminate because of its 

lower spatial resolution (see Figure 9(ii)).  It shows 

the necessity of fusion of two images in order to 

provide complete medical information for the 

physician’s analysis and diagnosis accurately. The 

fused image using DST-II and wavelets are shown in 

Figure 10a and Figure 10b respectively. The fusion 

quality evaluation metrics are shown in Table3. 

 

5.3  Fusion of PET and CT images 

The PET image and corresponding CT image are 

shown Figure 11(i) and (ii) respectively. PET can 

map biological function of an organ, detect subtle 

metabolic changes etc. CT provides the bone structure 

and soft tissues information. Fused image with 

MDST-I is shown in Figure 12a and with wavelet is 

shown in Figure 12b. Fusion quality evaluation 

metrics are shown in Table4. The fused image 

contained the information about biological function, 

metabolic changes, bone and soft tissue information.  

 

5.4  Fusion of AF and IR images 

In industrially developed countries, glaucoma is the 

most frequent cause of permanent blindness [45].   It 

is caused by an irreversible damage of the optical 

nerve and if it is not diagnosed in early stage, the 

damage to optical nerve may become permanent and 
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it may lead to blindness.  Fusion of retinal auto 

fluorescence (AF) and infrared (IR) images may 

become promising loom for early diagnosis of the 

glaucoma. AF provides the information about hyper 

fluorescent zones (symptom of glaucoma in early 

stage and more visible periphery blood vessels. IR 

provides the information about the optical nerve head 

position, disc border, disc structure and blood vessels 

inside the optical disc [45]. Figure 13(i) shows the 

Auto fluorescence image and (ii) shows the IR image. 

The fusion of these two image using MDST-IV and 

wavelets are shown in Figure 14a &Figure 14b 

respectively. Without this fusion, the physician has to 

move his eye between AF and IR images to diagnose 

the glaucoma and it may be difficult to recognize the 

relationship among the patterns and objects. Fusion 

quality evaluation metrics are shown in Table5.  

 

5.5  Fusion of MRI transverse and SPECT slices 

The MRI transverse slice and corresponding SPECT 

image are shown in Figure 15(i) and (ii) respectively. 

SPECTS becomes an important clinical modality in 

oncology management. SPECT detects tumour with 

high sensitivity and high specificity but it does not 

offer anatomic details (see Figure 15(ii)). MRI is the 

most accurate imaging tool to evaluate the tumour 

size, location and shape. The fused images by MDST-

II and wavelet are shown in Figure 16a &Figure 16b 

respectively. Fusion quality evaluation metrics are 

shown in Table 6. The fused images show the 

location of the tumour along with anatomical and 

biological information.   

 

5.6  Fusion of CT Transverse and SPECT Slices 

The CT transverse and SPECT slices are shown in 

Figure 17(i) and (ii) respectively. CT provides 

information regarding soft tissue and bony structure. 

Bone structure cannot be imaged by SPECT but is 

provides physiological or functional information. 

Combining these images can provide both bony 

structure and physiological or functional information 

in a single image instead of looking into two images 

as shown in Figure 18. The quality evaluation metrics 

are shown in Table7. It is observed that fusion 

algorithms with MDST (DST-I, DST-II, DST-III and 

DST-IV) and wavelet are performing almost similar.  

 

Conclusion  

An algorithm for multi-resolution image fusion using 

discrete Sine transform (MDST) has been presented 

and evaluated. The efficiency of MDST and IMDST 

for multi-resolution image processing has been tested. 

From the error image and the performance evaluation 

metrics, it is observed that there is no information loss 

by applying MDST on images. Different multimodal 

medical images from the literature have been used in 

this study. The performance of the proposed fusion 

algorithm has been compared with well-known 

wavelets based image fusion technique. Fusion 

algorithm with MDST is computationally very simple 

and it can be easily adoptable to medical image based 

diagnosis. It is observed that image fusion using 

MDST perform almost similar to that of wavelet 

based image fusion algorithm. 

 

The MDST algorithm can be utilized to combine 

multi-aspects images too. Different orientation 

images ought to be registered before fusing them. In 

the event that the source images are in distinctive 

sizes, to fuse them the images should breakdown into 

various levels and wherever the sizes coordinate, then 

fusion process can perform. On the off chance that 

one of the source images is gray and other is colour 

image, then the coloured image must be converted 

into grey image and after that combination should be 

possible. 
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Table 1 Performance evaluation results 

 

 

 

 

 

 

Table 2 Fusion quality evaluation metrics – fusion of CT and MR images 

 Levels H SD CE SF FQI 

DST-I  

 

L1 

2.0205    34.9334     1.4816    10.8784     0.6273     

DST-II 2.0304    34.9177     1.4062    10.8800     0.6215     

DST-III 2.0217    34.9341     1.3607    10.8786     0.6273     

DST-IV 2.0263    34.9278     1.3077    10.8767     0.6243     

DTWT 2.0128    35.0047     1.4143    11.0919     0.6460     

DST-I  

 

L2 

2.0508    35.8253     0.8049    13.7920     0.5655     

DST-II 2.0488    35.8011     0.8377    13.7801     0.5660     

DST-III 2.0498    35.8498     0.7833    13.8248     0.5671     

DST-IV 2.0527    35.8363     0.7975    13.7961     0.5609     

DTWT 2.0108    36.0762     1.0203    13.9351     0.6724     

Table 3 Fusion quality evaluation metrics – Fusion of T1-weighted MR and MRA images 

 levels H SD CE SF FQI 

DST-I  

 

L1 

2.0668     0.1792     0.2449     0.0840     0.6003     

DST-II 2.1006     0.1816     0.2636     0.0834     0.5968     

DST-III 2.0496     0.1794     0.2445     0.0839     0.6075     

DST-IV 2.0139     0.1816     0.2372     0.0907     0.6324     

DTWT 2.0053     0.1827     0.2419     0.0862     0.6552     

DST-I  

 

L2 

2.0973     0.1941     0.2576     0.1059     0.5887     

DST-II 2.0944     0.1988     0.2574     0.1116     0.5872     

DST-III 2.0820     0.1875     0.2579     0.0992     0.5871     

DST-IV 2.0861     0.1853     0.2552     0.1000     0.5846     

DTWT 2.0213     0.1926     0.2396     0.1036     0.6475     

Table 4 Fusion quality evaluation metrics – Fusion of PET and CT images 

 levels H SD CE SF FQI 

DST-I  

 

1.6198     0.1295     0.2724     0.0726     0.5962     

DST-II 1.6375     0.1294     0.2505     0.0724     0.5948     

 RMSE PFE  MAE CORR SNR PSNR 

DST-I 0 0 0 1 298.5752 176.0583 

DST-II 0 0 0 1 296.5855 175.0635 

DST-III 0 0 0 1 296.3264 174.9339 

DST-IV 0 0 0 1 289.2224 171.3819 
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DST-III L1 1.6194     0.1294     0.2745     0.0725     0.5942     

DST-IV 1.6380     0.1294     0.2525     0.0723     0.5942     

DTWT 1.6675     0.1300     0.2388     0.0718     0.6314     

DST-I  

 

L2 

1.6472     0.1321     0.2528     0.0808     0.5995     

DST-II 1.6677     0.1320     0.2352     0.0807     0.5992     

DST-III 1.6430     0.1321     0.2590     0.0810     0.5969     

DST-IV 1.6686     0.1321     0.2377     0.0807     0.5972     

DTWT 1.6635     0.1331     0.2312     0.0807     0.6417     

 

Table 5 Fusion quality evaluation metrics – Fusion of AF and IR images 

 Levels H SD CE SF FQI 

DST-I  

 

L1 

7.1951     0.1746     2.0868     0.0839     0.6601     

DST-II 7.2309     0.1746     1.9633     0.0840     0.6587     

DST-III 7.2834     0.1747     1.8350     0.0847     0.6609     

DST-IV 7.2138     0.1747     2.1412     0.0851     0.6607     

DTWT 7.2115     0.1752     2.1255     0.0833     0.6750     

DST-I  

 

L2 

7.2031     0.1789     1.9709     0.0968     0.6654     

DST-II 7.2375     0.1785     1.8831     0.0956     0.6631     

DST-III 7.2743     0.1790     1.9290     0.0976     0.6682     

DST-IV 7.2088     0.1788     2.0612     0.0979     0.6682     

DTWT 7.2365     0.1799     2.0377     0.0964     0.6867     

 

Table 6 Fusion quality evaluation metrics – Fusion of MRI transverse and SPECT slices 

 levels H SD CE SF FQI 

DST-I  

 

L1 

1.5684     0.1558     0.5987     0.0575     0.4687     

DST-II 1.5808     0.1557     0.5720     0.0574     0.4639     

DST-III 1.5660     0.1558     0.5978     0.0575     0.4660     

DST-IV 1.5759     0.1558     0.5985     0.0575     0.4655     

DTWT 1.5165     0.1561     0.7082     0.0578     0.5664     

DST-I  

 

L2 

1.6130     0.1610     0.4490     0.0732     0.4475     

DST-II 1.6156     0.1608     0.4293     0.0731     0.4478     

DST-III 1.6073     0.1609     0.4523     0.0731     0.4497     

DST-IV 1.6111     0.1609     0.4454     0.0731     0.4501     

DTWT 1.5257     0.1615     0.5899     0.0730     0.5656     

 

Table 7 Fusion quality evaluation metrics – CT transverse and SPECT slices 

 levels H SD CE SF FQI 

DST-I  

 

L1 

1.5864 0.2553 0.5435 0.0598 0.4381 

DST-II 1.5989 0.2552 0.5393 0.0599 0.4358 

DST-III 1.5844 0.2553 0.5497 0.0598 0.4377 

DST-IV 1.5935 0.2552 0.5338 0.0598 0.4357 

DTWT 1.5090     0.2556     0.5888     0.0612     0.5825     

DST-I  

 

L2 

1.6519 0.2578 0.4096 0.0774 0.4314 

DST-II 1.6561 0.2578 0.4078 0.0774 0.4334 

DST-III 1.6529 0.2579 0.4077 0.0777 0.4314 

DST-IV 1.6558 0.2579 0.4075 0.0779 0.4332 

DTWT 1.5455     0.2583     0.5327     0.0774     0.4992  
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Figure 1: 2D DST implementation using separability property 

Figure 2:Multi-resolution decomposition structures 

 

 
Figure 3:  Ground truth image 

 

a) b)  

Figure 4a: First level of decomposition and b) Second 

level of decomposition using DST-I 

 

a) b)  

Figure 5: a) Reconstructed image from 2nd level of 

decomposition and b) the error image DST-I 
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                  Figure 6: Schematic diagram for MDST based pixel level image fusion scheme 

 

  (ii)  

Figure 7: (i) CT image and (ii) MR image 

 

(i) (ii)  

Figure 8a: Fused image by DST-I with (i) one level 

and (ii) two levels of decompositions 

 

(i)   (ii)  

Figure 8b: Fused image by DTWT with (i) one level 

and (ii) two levels of decompositions 

 

(i)   (ii)  

Figure 9: (i) T1-weighted MR image and (ii) MRA 

image 

 

(i) (ii)  

Figure 10a: Fused image using DST-II with (i) one 

level and (ii) two levels of decompositions 

 

(i)  (ii)  

Figure 10b:  Fused image using DTWT with (i) one 

level and (ii) two levels of decompositions 

 

(i)  

(ii)  

Figure 11: (i) PET image and (ii) CT image 
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(i)  

(ii)  

Figure 12a:  Fused image using DST-I with (i) one 

level and (ii) two levels of decompositions 

 

(i)  

(ii)  

Figure 12b:  Fused image using DST-III with (i) one 

level and (ii) two levels of decompositions 

 

 

(i) (ii)  

Figure 13 (i) Auto fluorescence and (ii) IR images 

 

(i) (ii)  

Figure 14a: Fused image using DST-IV with (i) one 

level and (ii) two levels of decompositions 

 

(i)      (ii)  

Figure 14b: Fused image using DTWT with (i) one 

level and (ii) two levels of decompositions 

 

(i)      (ii)  

Figure 15 (i) MRI transverse and (ii) SPECT slices 

 

(i)        (ii)  

Figure 16a:  Fused image using DST-II with (i) one 

level and (ii) two levels of decompositions 

 

(i)       (ii)  

Figure 16b: Fused image using DTWT with (i) one 

level and (ii) two levels of decompositions 
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(i)       (ii)  

Figure 17 (i) CT transverse and (ii) SPECT slices 

 

(i)      (ii)  

Figure 18a:  Fused image using DST-II with (i) one 

level and (ii) two levels of decompositions 

 

(i)      (ii)  

Figure 18b:  Fused image using DTWT with (i) one 

level and (ii) two levels of decompositions 


