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ABSTRACT The rise of vision-based environmental, marine, and oceanic exploration research highlights
the need for supporting underwater image enhancement techniques to help mitigate water effects on images
such as blurriness, low color contrast, and poor quality. This paper presents an evaluation of common
underwater image enhancement techniques using a new underwater image dataset. The collected dataset
is comprised of 100 images of aquatic plants taken at a shallow depth of up to three meters from three
different locations in the Great Lake Superior, USA, via a Remotely Operated Vehicle (ROV) equipped with
a high-definition RGB camera. In particular, we use our dataset to benchmark nine state-of-the-art image
enhancement models at three different depths using a set of common non-reference image quality evaluation
metrics. Then we provide a comparative analysis of the performance of the selected models at different
depths and highlight the most prevalent ones. The obtained results show that the selected image enhancement
models are capable of producing considerably better-quality images with some models performing better
than others at certain depths.

INDEX TERMS image dataset, deep learning, non-reference image quality metrics, ROV, underwater
image enhancement.

I. INTRODUCTION

UNDERWATER image enhancement can be useful for
researchers in several fields such as geology, ecology,

and oceanography with many promising applications such
as underwater classification of species, fish counting, coral
reefs health monitoring, and infrastructure inspection. Im-
ages captured underwater suffer from haze, blurriness, and
non-uniform lighting artifacts. This severe degradation of
underwater images is due to selective attenuation and scat-
tering effects caused by the travel of light through water
[1], [2]. In addition, underwater scenes tend to be bluish
or greenish since different light waves are distinctively ab-
sorbed by water [3], which in turn, affects the performance
of image enhancement methods. The recent popularity of
Remotely Operated Vehicles (ROVs) facilitated underwater
data collection from various types of waterbodies at differ-

ent depths [4], [5]. Although most ROVs can be equipped
with a high-definition RGB camera, the captured frames are
typically characterized by low contrast, blurry details, and
distorted colors. This presses the need for automatic and
robust image quality enhancement in underwater scenarios.
While underwater image restoration focuses on reversing
the physical transformations that cause the degradation in
images, underwater image enhancement focuses only on
the degraded images. Underwater image enhancement tech-
niques are categorized into five categories [6] based on the
frequency domain, spatial domain, color constancy, fusion,
and deep learning, while underwater image restoration tech-
niques are categorized into three categories [6] based on
optics, polarization, and prior-knowledge. Peng et al. [7] used
a technique called General Common Channel Prior (GCCP)
to determine ambient light to get the scene transmission. In
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other techniques [8], [9], a fusion strategy was introduced
to enhance images based on spatial domain methods such
as image inverse, histogram equalization, white balance, and
luminance enhancement. In recent years, data-driven deep-
learning models have shown promising results in improving
underwater image quality. However, these models struggle
with the deficit of real underwater data since they require
large datasets to generate quality results [8], [10]. A group
of researchers [11], [12] incorporated synthetic data in which
noise, water, and haze effects are added to casual outdoor
images to train and test underwater image enhancement
models. Despite the promising results shown by image en-
hancement techniques that are based on synthetic data, such
scenarios do not reflect the natural underwater environment
due to the discrepancies between the synthetic data and real
data. Hence, such image enhancement models become less
effective when encountered by real underwater images. On
the other hand, real underwater data can be acquired from
publicly available content online to train image enhancement
models. For example, Li et al. [10] generated underwater data
using publicly available videos online. However, public un-
derwater data are not always available, especially in remote
areas that are difficult to reach. To this end, we collected
our own real-world underwater image dataset from three
different locations in the Great Lake Superior, Michigan’s
Upper Peninsula, USA. Unlike clear ocean water data, our
collected lake-water data have reduced visibility and are sig-
nificantly more challenging to enhance. One of the problems
facing ecologists in those areas is widespread invasive plants
that affect native species, reduce light and oxygen levels in
the water, and passively harm other organisms [13]–[15].
Therefore, the collected data mainly focuses on plants to
advocate ecology-related underwater research in the areas at
which the data are collected. Then, we conduct a comparative
study of the existing analytical and pre-trained deep learning-
based image enhancement models by using our dataset as
a benchmark. The quantitative evaluation is an integral part
of the underwater image enhancement model development
process. Therefore, we assess the enhanced images of the
selected models using five different types of non-reference
evaluation metrics, including 1) Blind/ Referenceless Image
Spatial Quality Evaluator (BRISQUE) [16] which calculates
the possible loss of naturalness in the image caused by
distortion; 2) Naturalness Image Quality Evaluator (NIQE)
[17] which assesses the quality of the image by quantify-
ing deviations from statistical regularities in the image; 3)
Perception-based Image Quality Evaluator (PIQE) [18]; 4)
Entropy-based method [19], [20] which assesses the noise
and blurring effects in the images concerning transmitted
information on distorted images; 5) a specialized metric for
underwater conditions called the CCF [21] which considers
the colorfulness, contrast, and fog density indices to assess
an underwater image. The primary contributions of this paper
are as follows:

• Collect real-world underwater images from multiple

areas suffering from ecological problems using an ROV
equipped with a high-definition RGB camera. The col-
lected images contain mainly plants and were taken at
different water depths.

• Comparatively evaluate the selected state-of-the-art un-
derwater image enhancement models on our real-world
dataset using several non-references image quality eval-
uation metrics and provide insights on their perfor-
mance.

The rest of the paper is organized as follows: Section II
summarizes state-of-the-art image enhancement techniques.
The data collection procedure is explained in Section III.
Section IV details the utilized enhancement models and met-
rics while Section V discusses the obtained results. Finally,
Section VI concludes the paper.

II. RELATED WORK
Various image enhancement methods are developed and pub-
lished by researchers to improve the quality of underwater
images. Traditional image enhancement methods are catego-
rized into physical and non-physical models, also known as
restoration and enhancement models, respectively. In addi-
tion, newer deep learning-based methods can be categorized
into convolutional neural networks (CNN)-based and Gener-
ative Adversarial Network (GAN)-based models [22]. On the
other hand, various underwater datasets are also developed
and published online to support the further development of
image enhancement models.

A. TRADITIONAL METHODS
Researchers developed numerous methodologies to enhance
underwater images with a focus on either the cause of degra-
dation (physical models) or the result of degradation (non-
physical models). For instance, Hou et al. [23] proposed an
underwater image synthesis algorithm (UISA) that utilizes
hierarchical search and red channel prior algorithm to get
underwater background light and transmission map from
real-world underwater images. Then, a synthetic underwa-
ter image dataset (SUID) is generated using the proposed
algorithm. However, the synthesized output images of the
UISA don’t reflect real-world underwater images that have
a motion-blurring effect due to scattering. In [1], a natural-
based underwater image enhancement (NUCE) model is pro-
posed based on: 1) neutralizing underwater color cast where
the gain factor is used to enhance the inferior color channels;
2) the dual-intensity image fusion to produce lower and upper
stretched histograms; 3) a mean equalization technique to
give a natural alike quality to output images based on a
swarm intelligence algorithm; 4) a masking technique that
sharpens the images. The approach presented in [1] is able to
significantly reduce the underwater cast on the color based on
its four components. Nonetheless, the effectiveness of each of
its comprising components should be further evaluated by an
ablation study.

Herng-Hua Chang [24] developed two distinct transmis-
sion coefficient estimation approaches, namely 1) optical
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characteristics; 2) the essence of image processing knowl-
edge. Weighted by saliency maps, the two transmission maps
fused into one transmission map to get the outcome. Al-
though the proposed model in [24] is capable of applying
distinct enhancements to the background and foreground of
an image, its performance compared to other baseline image
restoration models is yet to be determined. Song et al. [25]
developed a conventional model-based method using a man-
ually annotated background lights database. The statistical
models of background light estimation are provided using the
relationship between the images in the dataset with histogram
distribution. Then, the transmission map of the red channel
is generated by the underwater dark channel prior (UDCP),
and compensated by the adjusted reversed saturation map
(ARSM) and underwater light attenuation prior (ULAP).
Subsequently, the transmission maps of the green and blue
channels are estimated depending on the attenuation ratio
difference with the red channel. Finally, the output is post-
processed by a white-balancing technique. While the method
presented in [25] is novel, computationally inexpensive, and
achieves superior performance, further optimization to the
model is needed to incorporate the green and blue channels
in the estimation process of the transmission map.

Paheding et al. [8] proposed a novel method for color
image enhancement by designing an adaptive trigonometric
transformation function that can help to improve visual qual-
ity. The utilized transformation function is based on a tangent
with characteristics that vary depending on the luminance of
the images. A Laplacian operator with a process for color
restoration is also combined with the transformation function
to obtain Images with well-balanced colors. Despite the fact
that the novel model developed in [8] can adaptively adjust
the intensity value of images, its performance in various
noisy image conditions is yet to be evaluated. Manigandan
and Vaithiyanathan [4] combined a color constancy frame-
work with a dehazing technique. Gamma correction, white
patch retinex (WPR), and chromatic adaptation technique
(CAT) are used for color constancy in the first step. Then,
dehazing is performed using the estimation of artificial back-
ground light and transmission map depth, while the depth
estimation is calculated using the difference of channel inten-
sity prior (DCIP). Finally, the gamma-corrected HIS images
are transformed into RGB images. The study presented in [4]
is comprehensive in terms of providing an evaluation using
reference and non-reference metrics, comparing the perfor-
mance with non-traditional approaches, and conducting an
ablation study on the model’s components.

Bai et al. [26] introduced a novel underwater image en-
hancement method based on four stages of pixel intensity: 1)
center regionalization; 2) global equalization of histograms;
3) local equalization of the histogram; 4) multi-scale fusion.
Unlike [4], this method also utilized the gamma corrector
to correct the problem of over-enhancement. Although the
methodology presented in [26] performs well on severely de-
graded images by noise, sand, fog, and low light, it is unable
to produce consistent background colors when provided with

images from different imaging sensors. Another group of
researchers developed variational image enhancement mod-
els. For example, Xie et al. [27] proposed a variational
framework that generates the transmission map depending on
the hierarchical search and the red channel prior. Moreover,
the sparse prior knowledge and the total variation item are
incorporated, then blur kernel estimation is done by changing
the resolution. Subsequently, the resultant optimization prob-
lem is solved depending on the alternating direction method
of multipliers (ADMM). While the proposed model in [27]
takes the forward scattering component into consideration
because it represents a complete underwater image formation
model (UIFM), it ignores texture details and focuses on
other attributes. Li et al. [28] developed a novel framework
based on pyramids technology and variational methods. Fur-
thermore, the contrast is enhanced without impacting the
textures by properly designing the total Laplacian model
and the adaptive variational contrast enhancement (AVCE)
model. The developed variation models are solved using the
alternating direction method of multipliers (ADMM) and the
gradient descent method (GDM). Even though the proposed
method in [28] achieves good performance in naturally illu-
minated water, it poorly handles non-uniformly illuminated
images using artificial lights. The authors in [29] presented
a framework based on adaptive color and contrast enhance-
ment (ACCE) and denoising. First, the low-frequency and
high-frequency components are separated using two filters,
then the low-frequency component is enhanced based on
the ACCE while the high-frequency component is denoised.
Afterward, the ACCE is solved with an accelerated pyramid-
based method. Although the proposed method in [29] adds
a considerable 5% improvement compared to other baseline
methods, it doesn’t yet handle all aspects of image degrada-
tion. Hou et al. [30] integrated the UIFM with the variational
framework depending on a non-local differential operators
approach. The UDCP and quad-tree subdivision are used
to build the UIFM and estimate the background light and
transmission map. Then, the formed optimization problem is
solved based on the ADDM and the output is treated with a
gamma correction procedure to improve the saturation. While
the work done in [30] is effective in removing haze from
real and synthetic underwater images, it cannot process all
kinds of haze such as the haze resulting from fog. Zhuang et
al. [31] designed a retinex-based variational model inspired
by the priors of the hyper-Laplacian reflectance. Particularly,
statistical methods are employed for color correction, then a
conversion to the HSV color space is conducted to ensure less
variant illumination and fewer artifacts. Subsequently, the
V channel is decomposed into illumination and reflectance
layers each of which is applied to the designed retinex-based
variational model. The enhanced V channel is generated
as the product of the resultant enhanced illumination and
reflectance layers. Finally, the images are converted from
HSV color space back to RGB color space. Even though
the quantitative and qualitative evaluation of the technique
presented in [31] demonstrates its superiority compared to
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other methods, the runtime performance is still considerably
higher than the runtime of state-of-the-art data-driven meth-
ods. Zhang et al. [32] introduced an underwater color and
contrast image enhancement model named JOE-ACDC. In
particular, the authors designed a special attenuation matrix
to correct the color of underwater images based on the
discrepancies between different color channels, then, both
global and local contrasts in the resultant images were im-
proved using histogram-based methods and fused using a
multiscale fusion technique. The fused images are treated
with an unsharp mask as a final stage of refinement. Although
the method proposed in [32] can be extended to handle low-
light and blurred images, it is computationally expensive and
may degrade the color of low-quality images. The same re-
searchers later developed a robust and efficient model dubbed
the MMLE [33] to enhance underwater images. Specifically,
the color of the images is corrected while considering two
principles, namely map-guided maximum attenuation fusion
and minimum color loss. Subsequently, the contrast is adap-
tively adjusted depending on the local statistical metrics of
image blocks. Finally, the color of the ’a’ and ’b’ channels in
the color space of CIELAB is balanced. Despite the fact that
the method proposed in [33] is capable of enhancing the color
of fogy and dusty images, it is still incapable of enhancing
low-light underwater images.

B. DEEP LEARNING-BASED METHODS
Some researchers developed underwater image enhancement
methods based on CNNs while others based their work
on GANs. For example, The CNN-based WaterNet model
[10] adopted the fusion strategy based on image degradation
characteristics to apply White Balance (WB), Histogram
Equalization (HE), and Gamma Correction (GC) algorithms
for an underwater image. Although the work proposed by
[10] introduced and evaluated a relatively large underwater,
the utilized strategy for the generation of reference images
is hugely affected by backscatter. Li et al. [34] used an
underwater scene prior and a synthesis algorithm to construct
a UWCNN model based on a lightweight CNN model. The
model took into consideration various types and degradations
of underwater images to train the network. However, it poorly
performs in handling low-contrast in-door synthetic training
data.

Another group of researchers focused their work on GAN-
based models. For instance, the model proposed in [35] is
based on a fusion generative adversarial network, called the
DewaterNet. The DewaterNet model eliminates the element-
wise matrix product by adding the output of the simple
network to the output of the network that is supplied with
raw underwater images. The model was tested on the Un-
derwater Image Enhancement Benchmark Dataset (UIEBD)
[10]. Although the authors in [35] claim to implement the first
attempt of blending two inputs in underwater GANs, no abla-
tion studies were conducted to verify the effectiveness of the
proposed architecture. Liu et al. [36] proposed a new model
called UResnet based on a very-deep super-resolution recon-

struction model (VDSR). The study used cycle-consistent
adversarial networks (CycleGAN) to generate the synthetic
image data. UResnet is made up of ResBlocks and these
ResBlocks learn to differentiate between label image and
input image through the skip connection between the head
and body section of the model. Two types of testing data were
used: the first was 221 underwater images and the second
was a synthetic dataset generated by CycleGAN using in-
air images. Despite the fact that the model proposed in [36]
achieves the best results compared to other baseline models,
it is yet to be generalized to provide other image enhance-
ment features such as dehazing. Chen et al. [37] developed a
deep enhancement model using detection preceptors, named
HybridDetectionGAN. The preceptors work as gradients to
guide the model to generate good output images. Due to the
lack of underwater data, a synthesis model is proposed based
on fusing the data-driven cues and physical priors. While
the developed data synthesis model can learn the translation
between underwater and in-air images robustly, the proposed
enhancement model can be improved by incorporating a
GAN with Bayesian estimation allowing it to be generalized
to handle diverse underwater datasets. In [38], a conditional
generative adversarial network-based model, called FunIE-
GAN, is presented. An objective function is constructed to
evaluate the perceptual quality of an image using information
such as color, style, and texture. The model presented in [38]
offers good performance and considerably faster inference
time compared to other baseline approaches. However, it
poorly performs when trained with unpaired datasets. Ham-
barde et al. [39] developed UW-GAN to estimate the depth
from a single underwater image and performed enhancement
tasks. Various UW networks were used to estimate the depth
such as UWC-Net for coarse-level depth and UWF-Net for
fine-level depth. The proposed UWF-Net uses spatial and
channel-wise squeeze in addition to excitation blocks to
estimate the fine-level depth. The model uses real-world
images from the internet combined with synthetic datasets.
Although the model proposed in [39] achieved relatively
good performance by virtue of its coarse and fine-level depth
estimation, further optimization of the model is still needed
to be able to run on embedded computing platforms. Han et
al. [40] proposed a spiral generative adversarial framework,
named Spiral-GAN using several deconv-conv blocks. The
study presents a spiral learning strategy while considering
the pixel-wise loss and angle error of the objective function.
Despite the fact that the proposed model in [40] generates
richer details and colors, it can be further developed to
manage lower-level image enhancement tasks such as de-
hazing and de-noising. The study in [41] proposed a new so-
lution to enhance underwater images using a multiscale dense
GAN. The model used multiscale, dense concatenation, and
residual learning to achieve good performance. While the
proposed model in [41] performs well on real underwater
images, its performance on synthetic underwater images still
needs to be improved.

Li et al. [42] presented Ucolor, a robust model that uses
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medium transmission-guided multicolor space embedding
with attention mechanisms to focus on discriminative fea-
tures. Ucolor is inspired by underwater physical models and
is comprised of a multi-color space encoder network with a
medium transmission-guided decoder network. The Ucolor
model achieves high performance across multiple benchmark
datasets. However, it struggles, as well as state-of-the-art
methods, when applied to low-light images. Fu and Cao
[43] combined deep learning with a physical-based model.
In particular, a two-network-based deep learning model was
introduced to improve the distorted color and low contrast,
as well as to deal with over-enhancement and compressed
histogram equalization. The hybrid architecture in [43] is
lightweight and fast since it efficiently utilizes the advan-
tages of both traditional and non-traditional methods. How-
ever, other configurations of combined traditional and non-
traditional methods may achieve even faster performance.

C. UNDERWATER IMAGE DATASETS
Even though underwater data are relatively limited compared
to in-air data, there is a growing number of publicly avail-
able underwater datasets that are used to benchmark image
enhancement models [44] thanks to the recent contributions
made by many researchers. Following is a brief description
of common public underwater datasets. Named after the
original SUIM dataset [45], the SUIM-E dataset [46] is a
modified version in which the enhancement references are
manually supplied to 1635 selected images which are divided
into 1525 training samples and 110 testing samples. Further-
more, that dataset contains a plethora of underwater scenes
such as fish, wrecks, and aquatic plants. The references are
manually selected based on human judgment since using
image enhancement metrics can result in biases towards over-
enhanced images [47]. Researchers in [44] constructed the
UID2021 underwater dataset by selecting 60 images from
other publicly available datasets and some online websites.
The selected images are cropped to a unified resolution of
512×384 and are categorized into six groups depending on
the type of scene in each image such as bluish and greenish
scenes. Then, 900 enhanced images are generated by 15 state-
of-the-art image enhancement models using the selected
images. Specialized software and a group of 52 volunteers
were tasked with selecting the reference-enhanced images,
then the mean of opinion score (MOS) method is used to
generate the set of ground-truth images for the dataset. Li
et al. [10] introduced the Underwater Image Enhancement
Benchmark (UIEB) which is comprised of 950 images with
800 images used for training, 90 images used for testing, and
the rest are considered challenging images. The dataset is
created from publicly-available videos online and privately
collected videos containing a wide variety of underwater
scenes. Researchers in [48] collected the Enhancement of
Underwater Visual Perception (EUVP) dataset that contains
a gigantic number of paired and unpaired underwater images.
The images were collected using seven different cameras in
variable visibility conditions and locations. Song et al. [49]

composed the first underwater dataset of 500 images with
manually annotated background lighting (MABLs). Various
scenes, plants, animals, and organisms are contained within
the dataset with multiple sources of distortions such as scatter
and low visibility. Lui et al. [50] proposed the real-world
underwater image enhancement (RUIE) dataset containing
more than 4,000 images divided into three groups to ac-
commodate different image enhancement aspects, namely
quality (UIQs), color deviation (UCSS), and advanced mis-
sion drivers (UHTS) group. Berman et al. [51] proposed
the SQUID, a comprehensive dataset collected under natural
light at various depths, seasons, and water bodies. Images in
the squid are associated with color charts and depth maps
to assist in the evaluation of color correction techniques and
other image enhancement tasks. Researchers in [52] selected
images from the massive ImageNet dataset [53] and gener-
ated synthetic underwater images based on CycleGAN [36].
Hou et al. [54] established a benchmark for full-reference
image enhancement evaluation called the synthetic underwa-
ter image dataset (SUID). The SUID is comprised of 900
synthesized underwater images and 30 ground-truth outdoor
images.

III. REAL-WORLD UNDERWATER DATASET
A common challenge in the research of image enhancement
is the availability of real-world data. Many studies in the past
either used synthetic underwater datasets generated by GAN
models or underwater data collected from existing online
streaming platforms. Such datasets do not necessarily and ac-
curately reflect real-world data variations and artifacts. In ad-
dition, data generated from online video streaming platforms
do not necessarily conform to a data collection standard,
(e.g., collecting images of the same scene or object from
various depths, angles, and at different times and conditions).
In recent underwater datasets, Autonomous Underwater Ve-
hicles (AUV) and Remotely Operated Vehicles (ROV) are
usually used for data collection and image acquisition. In this
work, real-world underwater RGB images are collected using
Geneinno T1 Pro ROV [55] which is shown in Figure 1. The
collected video data are taken from three different geographi-
cal locations, namely Lake Linden, Chassell Bay, and Portage
Lake in Michigan, USA. The specifications of the CMOS
camera that is equipped on the ROV are shown in Table
1. To construct our dataset, we manually extract convenient
frames from the collected videos at the original 3840×2160
pixel resolution without any change or modification. The
collected dataset contains 85 underwater plant images that
are separated based on depth into three groups; 1) images
taken at a depth of less than one meter; 2) images taken at a
depth of one-two meters; 3) images taken at a depth of two-
three meters. Sample images from the three proposed depths
are shown in Figure 2 where the effect of even such a minor
depth difference can be clearly and easily noticed on the
three groups of images. Moreover, the collected images are
very challenging compared to underwater images collected
in other datasets due to the severe degradation added by the
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extremely turbid lake environment and low-light conditions.
This causes some images to be blurry, poorly contrastive, and
sometimes noisy due to the dust that is pulled by the ROV.

FIGURE 1. Geneinno T1 Pro ROV used for data collection.

TABLE 1. Camera hardware specifications

Unit Specification
CMOS 1/2.3” SONY CMOS
IRIS F2.5
FOV 160°
Shutter Speed 1/30s
Still Image Size 4000 x 3000 - 12MP

Video Resolution
4K: 4000 x 3000 - 30 fps

FHD: 1920 x 1080 - 60 fps
Live Streaming Resolution 480 / 720 / 1080p
Max. Video Bitrate 2 Mbps (Live) / 12 Mbps (Video)
Video Format MP4 (MPEG-4 H264/H265)
Lens anti-shake EIS Anti Shake
Depth Sensor Precision +/- 0.05m

IV. IMAGE ENHANCEMENT
A detailed description of the nine employed state-of-the-art
image enhancement models is provided in this section. In
addition, the five utilized non-reference image enhancement
metrics are to be described in detail later in this section.

A. METHODS UNDER STUDY
In this study, the following image enhancement methods
are selected for a comparative evaluation: WaterNet [10],
Ucolor [42], Global-Local Network and Compressed His-
togram Equalization (GLN-HE) [43], UW-CNN [34], Sta-
tistical Model of Background Light and Optimization of
Transmission Map (SMBLOT) [25], Image Inverse [56],
Adaptive Trigonometric Transformation Function (ATTF)
[8], JOE-ACDC [32], and MMLE [33]. Our proposed dataset
is used as a benchmark to evaluate the aforementioned image
enhancement methods. In the performed experiments, we re-
implemented the selected models with the default parameters
using their publicly-available codes to generate the enhanced

images. following is a detailed description of the enhance-
ment models under study.

1) WaterNet
WaterNet [10] is a gated fusion model. It first generates three
inputs: White balance (WB), Histogram Equalization (HE),
and Gamma Correction (GC), then the Feature Transforma-
tion Units (FTU) are added to the generated three inputs. This
helps in reducing the color cast and artifacts in the input
images. These generated inputs are then sent to the gated
Network. The enhanced image can be expressed as:

Ien = RWB ⊙ CWB + RHE ⊙ CHE

+ RGC ⊙ CGC ,
(1)

where ⊙ is the element-wise product of the refined input
RWB, RHE, and RGC resulting from the WB, HE, and
GC inputs, respectively. The CWB, CHE, and CGC are the
learned confidence maps that are calculated to generate the
output. The authors assume that the L1 and L2 pixel-wise
loss functions can add artifacts, therefore, the perceptual
loss function shown in Eq. (2) was minimized to learn the
mapping function of underwater images to generate realistic
results.

Lφ
j =

1

CjHjWj

∑N

i=1

∣∣∣∣φj

(
Iien

)
− φj

(
Iigt

)∣∣∣∣ , (2)

where C, H, and W are the feature map’s number, height,
and width, respectively, j is the index of the VGG19 network
convolutional layer, and N is the batch number. The model
uses standard Gaussian distribution to initialize the filter
weights. The initial learning rate is set to 1e-3, then decreased
to 0.1 at the 10,000th iteration until the model converged.

2) UColor
UColor model [42] uses medium transmission-guided multi-
color space embedding in the underwater image enhance-
ment network. The underwater images first go through color
space transformation. The inputs are forwarded through three
encoder paths, namely HSV, RGB, and Lab paths. Then
the selected encoder features along with a reverse medium
transmission (RMT) map of the same size are sent to the
medium transmission guidance module. Different sizes of
reverse medium transmission are achieved by a max pooling
operation. Then, the output is forwarded into three residual-
enhancement modules with a 2x up-sampling operation.
The model considers image degradation components using
a multicolor space to facilitate the measurements of color
deviation. The objective of the residual-enhancement module
is to preserve the data accuracy and solve the problem of the
gradient vanishing. In the encoder, the filters are increased
from 128 to 512, while in the decoder network the filters are
decreased from 512 to 128 by a factor of 2, respectively. The
kernel size is 3 × 3 and the stride is one in the convolutional
layers. The model extracts the channel features from differ-
ent color spaces and exploits the Channel attention module
to utilize the interconnection between them. The medium
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(a) (b) (c)
FIGURE 2. Samples of the proposed underwater image dataset. (a) depth < 1 meter, (b) depth 1-2 meters, (c) depth 2-3 meters.

transmission guidance module implemented in the decoder
network uses the reverse medium transmission (RMT) map
as the pixel-wise attention map. In addition, the model uses
the GDCP (general dark channel prior) to obtain the medium
transmission due to the unavailability of the ground truth
data. RMT weights serve to avoid gradient vanishing and
tolerate errors caused by inaccurate medium transmission
estimation.

3) Global-Local Network and Compressed Histogram
Equalization (GLN-HE)
GLN-HE [43] is a two-branch network; Network-G (global
network) and Network-L (local network). The Network-G
takes the average of the mean µI and standard deviation
σI to provide first-order color measurement and second-
order dispersion information. In this model, hidden layers
are concatenated to anticipate the residual ∆µ̂ which helps
to generate the compensated average µ̂j as shown in Eq. (3-
7).

h1 = ReLU (W1. concat (µ1, σ1) + b1) , (3)

h2 = ReLU (w2.h1 + b2) , (4)

h3 = ReLU (w3.h2 + b3) , (5)

∆µ̂ = w4. concat (h1, h2, h3) + b4, (6)

µ̂j = Sigmoid (µ1 + ∆µ̂) , (7)

where h indicates hidden features, w is the learnable weights,
b is the bias, ReLU(.) is the rectified linear units, sigmoid(.) is
a sigmoid activation function, and concat(.) is concatenation.
The architecture of Network-L is similar with the exception
of conducting convolutional operations to process the input
matrix that contains color distortions. The model establishes
global residual-guide bias for accurate local contrast com-
pensation. Moreover, Compressed-histogram equalization is
implemented to obtain a uniform distribution by matching
the cumulative input histogram. The compression of peaks
in the input histogram aid to evade the over-enhancement
problem. A logarithmic operation is used to alter the input
histogram which can effectively compress large peak values
while maintaining the order of the input histogram.

4) UWCNN
UWCNN model [34] uses a lightweight densely connected
FCNN network and takes an RGB image U as an input.
This model handles the vanishing/exploding gradients at the
training stage by enforcing the learning of the residual and
adding the input to the output of the network before the loss
function as shown in Eq. (8), where + is the element-wise
addition operation.

I = U + ∆(U, θ) , (8)
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The network also includes a chain of enhancement units con-
nected to a final convolution layer. The layers in the network
are categorized into three types: 1) Layer One which is made
up of 16 convolutional layers of the size of 3x3x3 to generate
16 output feature maps. 2) Layer Two which consists of the
ReLU activation function to establish the non-linearity. 3)
Layer Three which is implemented to concatenate all other
layers after each block. The input is fed to each block so
that it can be applied to the chain of enhancement units.
Each enhancement unit comprises three convolutional layers
and a single output layer at the end. To avoid boundary
artifacts and generate artifacts-free output, the pooling layers
are not deployed and a value of zero is added before each
convolutional layer.

5) Statistical Model of Background Light and Optimization of
Transmission Map (SMBLOT)
In SMBLOT [25], two approaches are used; the first is to
estimate the overall background light of RGB channels and
the other is to estimate the transmission map of RGB chan-
nels. This can be achieved based on the new UDCP integrated
with the TM optimizer and an exponential decay function of
the mean of the RGB channels. Afterward, these estimates
are applied to dehaze the input images. Furthermore, a white
balance color correction mechanism is used to restore the
colors. To achieve this, a manually annotated Background
Light (MABL) dataset is created, then a tight correlation
between the MABL and its distribution on the histogram is
discovered. Based on the correlation results of channels, the
linear model of the average (Avg) and the standard deviation
(Std) for the BL estimation of the G-B channel is defined as:

Bc′ = α ×Avgc
′
+ β × Stdc

′
+ γ, (9)

where Avgc
′

is the average and Stdc
′

is the standard devi-
ation of the input image; α and β are coefficients and γ is
a constant. Finally, a non-linear model for the R channel is
defined as follows where a, b, and c are coefficients.

Br =
a

1 + b × Exp (c × Medr)
, (10)

6) ATTF with Contrast improvement and Color Restoration
(ATTF-CCR)
ATTF-CCR model [8] consists of three major stages, namely,
adaptive luminance enhancement by ATTF, contrast im-
provement through high-frequency (HF) boosting, and color
restoration. To improve the colors, it first calculates the
luminance of the input image using the NTSC formula:

I (x, y) = 0.299 × Ir (x, y) + 0.587 × Ig (x, y)

+ 0.114 × Ib (x, y) ,
(11)

where (x, y) is the pixel location and I(x, y) indicates the
intensity at a pixel location. Ir(x, y), Ig(x, y), and Ib (x, y)
represent R, G, and B values. Furthermore, to capture the
minor details in the input images, high-frequency (HF) boost-
ing for contrast improvement is used. The HF component is

extracted after combining the original grayscale image with
a high-pass filter, then both are added to the enhanced image
as follows:

Sh (x, y) = 255 . S (x, y) + I (x, y) ∗ h, (12)

where h is a smoothed Laplacian operator. The color con-
tent restoration is done using the linear color restoration
approach, which results in the final enhanced image using
the following equation:

Ej (x, y) = Ij (x, y) .
Sh (x, y)

I (x, y)
, (13)

where j represents the color channels and E is the enhanced
image of the corresponding color channel.

7) Image Inverse
Image Inverse [56] is widely used to convert dark or bright
intensities in the input image to bright or dark intensities
in the output image. Given that the intensity of a grayscale
pixel falls in the range [0, 255], the inverse is acquired
by calculating the complementary value. Since a colored
pixel has three values (red, green and blue) that fall in the
range [0, 255], the inverse is acquired by calculating the
complementary of each of the three values as shown in Eq.
(14).

P (i, j, k) = 255 − P (i, j, k) , (14)

where P is the colored image matrix, i and j represent pixel
indices and k represents the color channel with 1 ≤ k ≤ 3

8) JOE-ACCC
The JOE-ACDC model [32] corrects the color of attenuated
channels and enhances the contrast without demolishing the
details in the input images depending on four stages. First, the
attenuation matrices of the most prevalent RGB channel are
used to correct the color of other channels depending on the
water type (e.g., the green channel is used for turbid water
and the blue channel is used for deep water). The channel
selection is done by calculating the total pixel intensity mean
given by the following equation:

Meanc =
1

MN

M∑
i=1

N∑
j=1

Ic(i, j), c ∈ {R,G,B} (15)

where M is the height and N is the width of a given image I.
Then, the local contrast is improved using a method based
on limited histogram and Rayleigh distribution while the
global contrast is improved using a method based on dual
histograms and iterative threshold. Subsequently, the weight
maps of saliency and brightness are generated to fuse the
local and global contrast-enhanced versions. The weight map
of brightness WB,k is given by the equation below:

WB,k(i, j) = exp

(
− (Lk(i, j)− 0.5)

2× (0.25)2

)2

, (16)
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where Lk(i, j) is the value of a pixel in the input image Ik at
position (i, j). The weight map of saliency WS,k is given in
the following equation:

WS,k(i, j) = (Hk(i, j)−MHK)2

+ (Sk(i, j)−MSK)2

+ (Vk(i, j)−MVK)2,

(17)

where Hk is the hue, Sk is the saturation, Vk is the value,
MHK is the mean hue, MSk is the mean saturation, and
MVk is the mean value. Finally, the output images are un-
sharpened based on an image-dehazing framework proposed
in [57] with a reduced number of Gaussian Kernels using the
following equation:

I_Blurn(i, j) = Gn(i, j) ∗ Iinput(i, j), (18)

where n is the number of the Gaussian kernel function
filtering scales, * is the operator of the convolution, and Gn

is defined as:

Gn(x, y) =
1

2πσ2
n

exp(−(x2 + y2)/(2σ2
n)), (19)

9) MMLE
The MMLE model [33] produces color-corrected images
based on the principle of minimum color loss and a map-
guided fusion strategy that allows for an adaptive color and
details adjustment. To generate the color transfer image, the
mean of every color channel is calculated, then an iterative
process is employed based on the minimum color loss prin-
ciple defined by the equation below:

Lcolor = (Īl − Īm) + (Īl − Īs), (20)

where Īl, Īm, and Īs are the mean values of the color
channels with the largest, medium, and smallest mean values,
respectively. Subsequently, the maximum attenuation map
is selected and employed to mitigate some color distortions
produced by the previous process. Finally, a fusion strategy
that utilizes the color transfer image and modifies the colors
of the input image while considering the loss of details
is implemented. On the other hand, this model improves
the contrast by converting the color-corrected images to
CIELAB space. The contrast of the luminance channel is
locally enhanced by first calculating the variance and mean
of local image blocks using the integral map and squared
integral map, then an enhancement transformation based on
the equation defined below is applied:

LEB(i, j) = µB + α(LB(i, j)− µB), (21)

where α is the control factor of enhancement and µB is
the mean of an image block B with a greyscale matrix LB .
Simultaneously, the mean values of both the a and b channels
of the CIELAB space are computed and employed to com-
pensate for the color imbalance between the two channels
using the following equation:{

Ibc = Ib +
(Īa−Īb)
(Īa+Īb)

Ib, Īa > Īb

Iac = Ia +
(Īb−Īa)
(Īb+Īa)

Ia, Īa < Īb,
(22)

where Īa is the mean value of channel a, Īb is the mean value
of channel b, and Ibc and Iac are the color balanced channels
of a and b, respectively.

B. IMAGE QUALITY METRICS
Our quantitative comparison is done by evaluating the im-
age enhancement models under study using the five non-
reference image enhancement metrics that are described in
detail below.

1) BRISQUE
The Blind/Referenceless Image Spatial Quality Evaluator
(BRISQUE) estimates the possible loss of naturalness in
the image that can be the result of the distortion present in
the image, including compression artifacts, gaussian pixel
noise, and blurring [16]. The metric is based on human ob-
server opinion of distortions, and a smaller BRISQUE score
indicates better image quality. Using Eq. (23), the metric
utilizes a pixel-wise preprocessing model referred to as mean
subtracted contrast normalization (MSCN) to transform im-
age pixel luminances I(i,j) to reduce the dependencies of
Gaussian characteristics of neighboring pixels:

Î (i, j) =
I (i, j)− µ (i, j)

σ (i, j) + C
, (23)

where µ and σ are the mean and standard deviation of pixel
intensities in a 3x3 neighborhood of (i,j), and the constant C =
1 is used to prevent instabilities when the denominator tends
to zero, for bland image regions such as the sky in a natural
scene. The metric also relies on modeling the statistical
relationships between each pixel, i. e. locations (i,j), and its
3x3 neighbors in the horizontal (H), vertical (V), and both
diagonal directions (D1 and D2), using the pairwise products
shown in Eq. (24-27):

H (i, j) = Î (I, J) Î (i, j + 1) , (24)

V (i, j) = Î (i, j) Î (i+ 1, j) , (25)

D1 (i, j) = Î (i, j) Î (i+ 1, j + 1) , (26)

D2 (i, j) = Î (i, j) Î (i+ 1, j − 1) , (27)

2) NIQE
The Naturalness Image Quality Evaluator (NIQE) builds a
model to assess the quality of the image by quantifying
deviations from statistical regularities that are present in the
natural image [17]. A lower NIQE score indicates better
image quality. Unlike the human-based scoring in BRISQUE,
the NIQE metric is based on the space domain Natural Scene
Statistic (NSS) model. NSS features are calculated from the
image under processing and are compared to those obtained
from an image database used to train the model. The features
are expressed as a multi-variate Gaussian distribution. The
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metric’s quality score is based on the deviation of image
statistics from the Gaussian model, as shown in Eq. (28).

D (v1, v2,Σ1,Σ2) =√
(v1 − v2)

T

(
Σ1 + Σ2

2

)−1

(v1 − v2) ,
(28)

where υ1 and Σ1 are the mean vector and covariance matrix
of the natural Multivariate Gaussian model. υ2 and Σ2 are
the mean vector and covariance matrix of the distorted Mul-
tivariate Gaussian model.

3) PIQE
The Perception-based Image Quality Evaluator (PIQE) mim-
ics human behavior in judging image quality without training
data. It is based on the perceptual significance of local struc-
tural features and the generation of a block-level distortion
map [18]. The PIQE is calculated as follows:

PIQE =

(
NSA∑
k=1

Dsk

)
+ C1

NSA + C1

, (29)

where NSA is the number of Spatially Active blocks in
a given image, and C = 1 is used for numerical stability
when NSA is small. In addition, Dsk is the spatial distortion
assignment for a given block Bk. A smaller PIQE score
indicates better perceptual image quality.

4) ENTROPY
The Entropy is a statistical measure of randomness [19]
that can characterize the texture of images [20], [58]. We
calculate it as the discrete entropy (DE):

DE (X) = −
K∑

k=1

p (xk) logp (xk) , (30)

where p(xk) is the probability of the pixel intensity xk as
obtained from the optical density histogram having K lu-
minance levels. A higher ENTROPY score indicates richer
details, i. e., higher image quality.

5) CCF
The CCF metric [21] is specially designed to evaluate un-
derwater image enhancement and restoration techniques. It
is developed as a linear regression model with three input
features: 1) colorfulness index quantifying the color loss
caused by absorption, 2) contrast index quantifying the blur-
ring effect caused by forward scattering, 3) fog density index
quantifying the fog effect caused by backward scattering. The
multivariate linear regression model is trained to generate
the proper weight for each of the above features using a
special underwater image dataset with the ground truth being
supplied based on the mean opinion score (MOS) from
twenty volunteers. The proposed CCF regression model can
be expressed as follows:

CCF = ω1 × Colorfulness+ ω2 × Contrast

+ ω3 × Fogdensity,
(31)

where ω1, ω2, and ω3 are the weights of the colorfulness,
contrast, and fog density features, respectively. A higher CCF
score indicates better image quality.

V. RESULTS AND DISCUSSION
To ensure a fair evaluation of all the models, a set of images
are randomly selected from various depths which are later
used as inputs to all the methods under study. The objective
of this section is to assess the performance of the selected
seven methods on the proposed dataset. In the absence of ref-
erence images, we opt-in for the aforementioned popular no-
reference image quality assessment (IQA) metrics to evaluate
the effectiveness of the selected models.

A. IMAGE ENHANCEMENT EVALUATION AT DEPTH
LESS THAN ONE METER
Figure 3 shows samples of the image enhancement results
after applying the image enhancement models, considered
in this study, to the images captured at a depth of less
than 1 meter. Qualitative visual inspection shows that all
aforementioned image enhancement methods perform differ-
ently for a given input. From Figure 3, it can be seen that
WaterNet produces similar output as the input image, which
can be witnessed by scores from IAQ metrics presented in
Table 2. In contrast, Ucolor which utilizes an encoder and
decoder deep network framework that incorporates channel
attention mechanism and medium transmission-guiding to
extract richer features from color spaces produces a visually
pleasing output compared to WaterNet. MMLE also produces
a visually pleasing output with balanced color and contrast.
The other competing methods introduce undesirable color
artifacts where either color distortion or loss of structure
details of the underwater scene. For instance, GLN-HE pro-
duces an unbalanced color content, although the contrast is
improved to a certain degree. SMBLOT is overexposed in the
light regions. On the other hand, while it is hard to spot any
improvement in the output of UWCNN and Image Inverse,
the output images seem to have deteriorated the brightness
and contrast quality of the images. Table 2 and Figure 4 show
the mean and standard deviation of each metric after applying
each model to 37 images from the proposed BRUD dataset.
To give better insights into which metrics can be used to
separate the enhancement performance of each of the models.
It is evident from the obtained results that the GLN-HE
model stands out from the rest in terms of image distortion
which is measured by NIQUE and has improved the contrast
of the original images (as seen in Fig. 3), with the highest
entropy score of 7.76. On the other hand, the ATTF model
scores the minimum BRISQUE value, which measures the
loss of image naturalness based on local luminance changes
due to distortions. Similarly, UColor model has the best
PIQE score, which is a perceptual quality, at 54.5 with a
pleasing color balance. SMBLOT scores the highest CCF
which evaluates the colorfulness, contrast, and fog density
features in underwater images.
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FIGURE 3. Samples of original and enhanced images from the applied Methods at a depth of less than one meter.
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TABLE 2. Evaluation of original and enhanced images at a depth of less than
one meter with bold values indicating the best performance. The symbols ↑
and ↓ Indicate a higher score is better and a lower score is better, respectively.

Metrics
ENTROPY ↑ CCF↑ NIQE ↓ BRISQUE ↓ PIQE ↓

Mean STD Mean STD Mean STD Mean STD Mean STD

Original 7.34 0.37 5.87 4.42 5.17 0.46 52.08 2.14 65.81 3.87

WaterNet 7.15 0.26 4.37 0.78 5.01 0.63 51.7 1.98 70.2 3.24

UWCNN 6.34 0.36 4.08 0.39 5.64 0.6 50.49 2.27 62.91 5.28

UColor 7.24 0.24 5.11 0.98 4.44 0.3 50.74 3.24 54.55 5.22

SMBLOT 7.21 0.3 13.34 7.48 4.63 0.41 48.15 2.59 60.76 3.8

Image Inverse 7.35 0.37 8.8 7.61 5.03 0.59 51.47 2.41 67.27 3.82

GLN-HE 7.76 0.07 7.13 2 3.9 0.37 45.28 4.51 66.55 7.73

ATTF 7.32 0.21 10.21 1.66 5.7 0.57 38.1 2.55 61.31 6.53

JOE-ACDC 7.52 0.1 9.77 2.74 3.8 0.21 45.27 2.74 67.27 3.49

MMLE 7.67 0.2 10.74 2.31 4.04 0.46 44.63 3.3 59.79 3.96

FIGURE 4. Graphical representation of the evaluation at depth less than one
meter.

B. IMAGE ENHANCEMENT EVALUATION AT DEPTH
BETWEEN ONE AND TWO METERS
Going deeper into the water results in low light, more noise,
and less contrast. Therefore, image enhancement should im-
prove image quality so that information within the image
can be extracted and used. Figure 6 shows the original and
enhanced output images of depths from 1 to 2 meters from
various models. It is noticed that all enhancement algorithms
produced color artifacts to some degree. Table 3 and Figure
5 provide the mean and standard deviation of the calculated
IQA metrics for 31 images in this depth range. As shown in
Table 3, NIQE and ENTROPY scores show that GLN-HE
achieves higher image correction than the other competing
methods, confirming its good image enhancement perfor-
mance. SIMBLOT has also provided the best CCF score
at this depth. On the other hand, it can be observed that
the ATTF method has the lowest BRISQUE score which
indicates better perceptual quality, while UColor yields the
lowest mean of PIQE at 53.62.

TABLE 3. Evaluation of original and enhanced images at a depth of one-two
meters with bold values indicating the best performance. The symbols ↑ and ↓
Indicate a higher score is better and a lower score is better, respectively.

Metrics
ENTROPY ↑ CCF↑ NIQE ↓ BRISQUE ↓ PIQE ↓

Mean STD Mean STD Mean STD Mean STD Mean STD

Original 7.16 0.25 12.36 10.56 4.91 0.4 51.62 2.25 61.33 6.77

WaterNet 7.11 0.25 5.25 1.17 4.8 0.46 52.28 2.41 67.42 5.02

UWCNN 6.33 0.2 4.19 0.35 5.01 0.57 50.69 2.18 61.49 7.64

UColor 7.03 0.28 6 1.38 4.09 0.29 49.06 4.74 53.62 6.23

SMBLOT 7.32 0.43 19.23 11.96 4.36 0.36 48.28 2.43 58.2 5.45

Image Inverse 7.17 0.25 5.24 1.31 4.88 0.5 52.39 2.31 63.4 4.64

GLN-HE 7.59 0.18 9.13 1.79 3.84 0.41 35.36 7.26 58.97 8.76

ATTF 7.32 0.14 10.67 1.48 5.5 0.66 34.7 3.45 58.15 6.92

JOE-ACDC 7.56 0.12 11.47 2.75 3.91 0.22 39.12 5.94 64.36 5.64

MMLE 7.53 0.22 13.42 6.4 3.92 0.28 39.74 5.2 57.15 6.41

FIGURE 5. Graphical representation of the evaluation at depth from one to
two meters.

C. IMAGE ENHANCEMENT EVALUATION AT DEPTH
BETWEEN TWO AND THREE METERS

Figure 7 shows the input and enhanced images for a depth
of 2 to 3 meters underwater. Qualitatively, there are several
models with color distortions; however, looking only at the
structural contrast and enhancement, it is possible to compare
the models’ performance. The MMLE method outperforms
the GLN-HE method in terms on Entropy score at this depth
while the latter has better quality scores, in terms of NIQE
and BRISQUE as shown in Table (4) and Figure (8). The
results also revealed that SMBLOT outperforms all other
methods in CCF and PIQE score. These results show that at
higher depths, the original images are of poor illumination,
contrast, sharpness and color balance. This seems to have
affected the tested models, as they were not developed for
such scenarios.
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FIGURE 6. Samples of original and enhanced images from the applied Methods at a depth of one-two meters
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FIGURE 7. Samples of original and enhanced images from the applied Methods at a depth of two-three meters
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TABLE 4. Evaluation of original and enhanced images at a depth of two-three
meters with bold values indicating the best performance. The symbols ↑ and ↓
Indicate a higher score is better and a lower score is better, respectively.

Metrics
ENTROPY ↑ CCF↑ NIQE ↓ BRISQUE ↓ PIQE ↓

Mean STD Mean STD Mean STD Mean STD Mean STD

Original 7.13 0.44 10.22 5.22 5.1 0.43 52.85 2.79 63.83 6.47

WaterNet 7.32 0.23 4.97 0.73 4.84 0.48 52.23 2.63 72.57 4.34

UWCNN 6.32 0.2 3.98 0.3 5.85 0.49 50.13 1.8 69.65 4.84

UColor 7.2 0.25 5.84 1.52 4.34 0.47 48.68 4.49 58.96 4.98

SMBLOT 7.08 0.67 17.86 5.71 4.54 0.45 49.58 3.1 58.05 5.65

Image Inverse 7.15 0.41 5.35 2.26 4.91 0.43 53.24 3.21 66.24 3.57

GLN-HE 7.35 0.39 8.09 1.92 4 0.41 37.86 6.73 58.4 6.46

ATTF 7.16 0.44 9.91 2.23 5.85 0.62 38.44 3.01 61.84 6.57

JOE-ACDC 7.53 0.15 10.39 3.34 4.01 0.18 41.71 3.83 64.1 5.08

MMLE 7.72 0.16 12.27 3.36 4.03 0.42 41.38 4.62 59.14 4.64

FIGURE 8. Graphical representation of the evaluation at depth from one-two
meters.

VI. CONCLUSION
In this work, we provided a comprehensive survey and eval-
uation of the state-of-the-art image enhancement methods
using real-world underwater images. We carefully selected
data collection sites and the depth of the water to examine
the effect of various turbid lake environments and low-light
conditions on the performance of the image enhancement
methods. As expected, by visual inspection, all models suf-
fered from degraded enhancement at higher depths of the
water due to poor illumination, contrast, sharpness, and color
balance, compared to lower depths. Throughout systematic
evaluation using five popular non-reference evaluation met-
rics, it is found that: 1) None of the evaluated methods
consistently performed best when tested on our dataset; 2)
The SIMBLOT algorithm yielded the best CCF score at all
depths; 3) For water depths of less than 1 meter and 1-2
meters, the ATTF method captured better perceptual quality
according to scores from BRISQUE. In contrast, for the
same depths, the UColor approach obtained the best score

of PIQE while GLN-HE achieved the highest entropy score
indicating richer textures/details. The conclusion obtained
from this study could potentially facilitate future research on
underwater image processing. And it is also beneficial for
the other scientific community, such as biological sciences,
to select proper image enhancement methods for their own
study.

In future work, we plan to include more images in our
datasets by collecting samples from various water depths
and spatial locations. In addition, different resolutions of
the images will be also considered and evaluated. Last but
not the least, a further evaluation of image enhancement
methods will be conducted in terms of their contributions to
underwater object (e.g., different types of plants) detection
and segmentation.
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