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ABSTRACT
In real-world scenarios, many data processing problems

often involve heterogeneous images associated with different
imaging modalities. Since these multimodal images originate
from the same phenomenon, it is realistic to assume that they
share common attributes or characteristics. In this paper, we
propose a multi-modal image processing framework based on
coupled dictionary learning to capture similarities and dispar-
ities between different image modalities. In particular, our
framework can capture favorable structure similarities across
different image modalities such as edges, corners, and other
elementary primitives in a learned sparse transform domain,
instead of the original pixel domain, that can be used to im-
prove a number of image processing tasks such as denoising,
inpainting, or super-resolution. Practical experiments demon-
strate that incorporating multimodal information using our
framework brings notable benefits.

Index Terms— multimodal image processing, coupled
dictionary learning, joint sparse representation, denoising, in-
painting, super-resolution

1. INTRODUCTION

In many practical application scenarios, it is common to im-
age a certain scene using various sensors that yield different
image modalities. For example, in remote sensing domain,
it is typical to have various image modalities of earth obser-
vations, such as a panchromatic band version, a multispec-
tral bands version, and an infrared (IR) band version [1, 2].
These different bands often exhibit similar textures, edges,
corners, boundaries, or other salient features. In medical
imaging domain, multi-contrast scans for the same underly-
ing anatomy [3–5], such as simultaneous positron emission
tomography (PET) / magnetic resonance imaging (MRI)
scans, MRI T1/T2-weighted scans, also indicate strong cor-
relation. In colorization [6] tasks, the output image has both
chrominance channels and luminance channel which share
consistent edges. These scenarios call for approaches that
can capitalize on the availability of multiple image modal-
ities of the same scene, object, or phenomenon to address
interested image processing tasks.
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A number of multimodal image processing approaches
have also been proposed in the literature to capitalize on the
availability of additional guidance or side information [7, 8],
to aid the processing of target modalities, also referred as
joint/collaborative image filtering [9–22]. Generally, the ba-
sic idea behind these approaches is that the structural details
of the guidance image can be transferred to the target image.
These approaches have been applied to multi-modal image
denoising, super-resolution, classification, and more. How-
ever, these methods tend to introduce notable texture-copying
artifacts, i.e. erroneous structure details that are not originally
present in the target image because such methods typically
fail to distinguish similarities from disparities between differ-
ent image modalities.

In this paper, we propose a new multimodal image pro-
cessing framework based on coupled dictionary learning. In
particular, our model captures complex correlation between
different modalities using joint sparse representations over
a set of adaptive coupled dictionaries. This enables us to
take into account both similarities and disparities of different
modalities via considering their common and unique sparse
representations which are obtained in learned sparse domains.
This characteristic makes our approach robust to inconsisten-
cies between the guidance and target images, as proper guid-
ance information can be extracted from the guidance modality
and then be incorporated in a task-specific formulation to aid
the processing of the target modality. Moreover, due to the
sparsity prior, our model also demonstrates better robustness
than other competing methods in presence of noise.

2. MULTI-MODAL IMAGE DENOISING

We first present our coupled dictionary learning framework
for multi-modal image denoising.

2.1. Data Model for Denoising
Consider a vectorized noisy image Xns ∈ RN of one modal-
ity and a corresponding registered clean vectorized guidance
image Y ∈ RN of different modality as side information. We
first extract (overlapping) image patch pairs from this pair of
multimodal images. In particular, let xns

i = RiX
ns ∈ Rn

denote the i-th noisy image patch extracted from Xns and let
yi = RiY ∈ Rn denote the corresponding i-th clean guid-
ance image patch extracted from Y, where the matrix Ri is
an n × N binary matrix that extracts the i-th patch from the
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image. Then, we propose a data model to capture the rela-
tionship – including similarities and disparities – between the
two different modalities as follows:

xns
i = Ψc zi + Ψ ui + ε , (1)
yi = Φc zi + Φ vi , (2)

where the sparse representation zi ∈ RK is common to both
modalities, the sparse representation ui ∈ RK is specific to
modality x, while the sparse representation vi ∈ RK is spe-
cific to modality y. In turn, Ψc and Φc ∈ Rn×K are a pair
of dictionaries associated with the common sparse represen-
tation zi, whereas Ψ and Φ ∈ Rn×K are dictionaries asso-
ciated with the specific sparse representations ui and vi, re-
spectively. Note that the common sparse representation zi
connects the patches of the two different modalities. The
disparities between modalities x and y are distinguished by
the sparse representations ui and vi, respectively. Finally,
ε ∈ Rn denotes additive zero-mean and homogeneous white
Gaussian noise with the standard deviation σ.

2.2. Coupled Image Denoising

Our coupled image denoising problem is addressed in two
steps: coupled dictionary learning and reconstruction of the
denoised image.

Step 1: Coupled dictionary learning. In this stage, given
a set of training patch pairs {xns

i ,yi}, we aim to solve the
following optimization problem:

min
D,α

∑
i

∥∥∥∥∥∥
[
xns
i
yi

]
−
[

Ψc Ψ 0
Φc 0 Φ

]zi
ui

vi

∥∥∥∥∥∥
2

2

s.t.

∥∥∥∥∥∥
zi

ui

vi

∥∥∥∥∥∥
0

≤ si , ∀i, (3)

where, D and α represent all the dictionaries and sparse rep-
resentations. The `0 term serves as the sparsity-inducing op-
eration. The quadratic "data-fitting" term ensures that each
pair of multimodal image patches is well approximated by
their sparse representations with respect to the learned dic-
tionaries. The coupled dictionary learning problems in (3)
is a non-convex optimization problem. We solve it via an
alternating optimization scheme that performs 1) sparse cod-
ing and 2) dictionary update alternatively. During the sparse
coding stage, we fix all the dictionaries and obtain the sparse
representations using orthogonal matching pursuit (OMP) al-
gorithm [23], while during the dictionary updating stage, we
fix the sparse codes and update the all the dictionaries using
adapted K-SVD algorithm [24]. In our case, we stick to `0
penalty for the sparse coding as it usually leads to better de-
noising performance than `1 penalty, which is also observed
in [25, 26].

Step 2: Reconstruction. In this stage, given the sparse codes
zi,ui, the denoised image can be estimated from the noisy
version by solving

min
X

µ ‖X −Xns‖22 +
∑
i

‖RiX− (Ψczi + Ψui)‖22 (4)

where, µ trades off between the fidelity to the noisy version
and the fidelity to the sparse estimation.1 This leads immedi-
ate to a closed form solution

X =

(
µI +

∑
i

RT
i Ri

)−1(
µXns +

∑
i

RT
i (Ψczi + Ψui)

)
. (5)

3. MULTIMODAL IMAGE SUPER-RESOLUTION

We now present our coupled dictionary learning framework
for multi-modal image super-resolution.

3.1. Data Model for Super-resolution

Similar to section 2.1, we consider a pair of vectorized low-
resolution (LR) and high-resolution (HR) images Xl ∈ RM

and Xh ∈ RN of one modality and a corresponding registered
HR guidance image Y ∈ RN of different modality as side in-
formation. In particular, let xl

i ∈ Rm and xh
i ∈ Rn denote

the i-th LR/HR image patch pair extracted from Xl and Xh

and let yi ∈ Rn denote the corresponding i-th HR guidance
image patch extracted from Y. Then, based on the following
two main assumptions: (1) xl

i and xh
i of the same modal-

ity share the same sparse representations with respect to their
own dictionaries, which is also adopted by [27–29]; (2) a pair
of registered image patches from different modalities xh

i and
yi admit both identical and diverse sparse representations, we
propose the data model (6) - (8) to capture the relationship
across the LR/HR patches of a certain image modality along
with the corresponding patch of another image modality.

xh
i = Ψh

c zi + Ψh ui , (6)

xl
i = Ψl

c zi + Ψl ui , (7)
yi = Φc zi + Φ vi , (8)

where, similar to (1) and (2), zi ∈ RK is the common sparse
representation, while ui ∈ RK and vi ∈ RK are the unique
sparse representations. Ψh

c , Ψl
c and Φc ∈ Rn×K are the

dictionaries associated with zi, whereas Ψh, Ψl and Φ ∈
Rn×K are dictionaries associated with u and v, respectively.
Note that the sparse vectors zi and ui capture the relationship
between the LR and HR patches of the same modality in (6)
and (7). Moreover, the common sparse vector zi connects the
various patches of the two different modalities in (6) - (8).
The disparities between modalities are distinguished by the
sparse vectors ui and vi.

3.2. Coupled Super Resolution (CSR)

Our coupled image super-resolution problem is addressed in
3 steps: coupled dictionary learning, coupled sparse coding
and reconstruction of the HR image.

Step 1: Coupled dictionary learning. Given a set of training
patch pairs {xl

i,x
h
i ,yi}, we solve the following optimization

1For µ = 0, this expression just represents the average of the denoised
image patches on the overlapping areas, leading to a purified image.



urban_0030

urban_0050

(a) Input/Truth (b) GF [10] (c) DJF [13] (d) Proposed

0 10 20 30 40 50 60

Fig. 1. Multimodal image denoising for near-infrared images
(σ = 16). For each scene, the first row is the noisy input and
denoised results and the second row is the ground truth and
corresponding error map for each approach.

problems (9) to train a group of dictionaries.

min
D,α

∑
i

∥∥∥∥∥∥
xh

i
xl
i

yi

−
Ψh

c Ψh 0

Ψl
c Ψl 0

Φc 0 Φ

zi
ui

vi

∥∥∥∥∥∥
2

2

s.t.

∥∥∥∥∥∥
zi

ui

vi

∥∥∥∥∥∥
0

≤ si ,∀i,

(9)
where the `2 norm promotes the data fidelity; the `0 pseudo-
norm promotes sparsity for the sparse codes; D and α repre-
sent all the dictionaries and sparse representations.

Step 2: Coupled sparse coding. Given a new LR testing
image and a corresponding registered HR guidance image
as side information. We extract (overlapping) image patch
pairs from these two modalities. Then we solve a sparse cod-
ing problem, similar to (9) but with fixed dictionaries learned
from Step 1 and involving no xh

i and [Ψh
c ,Ψ

h].

Step 3: Reconstruction. Finally, we can obtain each esti-
mated HR patch xh

i of the target image from the HR dictio-
naries [Ψh

c ,Ψ
h] and sparse codes zi and ui as follows

xh
i = Ψh

c zi + Ψhui . (10)

Once all the HR patches are recovered, they are integrated
into a whole image by averaging on the overlapping areas.

4. MULTIMODAL IMAGE INPAINTING

We finally introduce our framework for the multi-modal im-
age inpainting task, a scenario where one needs to inpaint im-
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Fig. 2. Multimodal image denoising in terms of PSNR and
RMSE with respect to different noise levels. We compare
our approach with state-of-the-art joint image filtering ap-
proaches, JBF [9], GF [10], SDF [11], JFSM [12] and DJF
[13].

ages with some small holes resulting from missing pixels. To
deal with unobserved data, we introduce a binary mask Mi

for i-th patch, which is defined as a diagonal matrix whose
value on the j-th entry of the diagonal is 1 if the pixel xh

i [j]
is observed and 0 otherwise, similar to [26]. Then, we relate
each corrupted image patch xl

i with the original image patch
xh
i by a mask Mi, as xl

i = Mix
h
i . Similarly, there also exist

dictionaries Ψl
ci = MiΨ

h
c , Ψl

i = MiΨ
h
i for the i-th cor-

rupted patch. Thus, the inpainting data model is identical to
the super-resolution model in (6) - (8). We can still use (9) -
(10) to solve the multi-modal inpainting problem, except no
need to learn [Ψl

c,Ψ
l] from xl

i (since Mi is known).

5. EXPERIMENTS

We now present a series of experiments to validate the ef-
fectiveness of the proposed multimodal image processing ap-
proaches. The dataset is from the EPFL infrared/RGB im-
age database2. Each pair of near-infrared/RGB images in
the dataset has been registered with each other. The target
modality is near-infrared and the guidance modality is RGB.
The image pairs are randomly separated into two disjointed
groups: training group and testing group. The training im-
age pairs lead to a training dataset consisting of 15000 image
patch pairs of 8×8 pixels. For denoising experiments, we add
zero-mean white Gaussian noise with different standard devi-
ations σ = [4, 8, 12, 16, 20, 24] into the near-infrared images
to generate the noisy versions. For super-resolution experi-
ments, we blur and downsample each HR near-infrared image
by a factor, e.g., 4×, using the MATLAB "imresize" function
to generate corresponding LR versions, similar to [27, 28].
We compare our approach with state-of-the-art joint image
filtering approaches such as [9–12] and deep learning based
approach [13]. The same guidance images as in our approach
are leveraged by these comparison approaches as well. We
adopt the Peak Signal to Noise Ratio (PSNR), the Root Mean
square error (RMSE), and the Structure SIMilarity (SSIM)
index [30] as the image quality evaluation metrics which are
commonly used in the image processing literature.

Figure 1 demonstrates the visual quality of the purified

2http://ivrl.epfl.ch/supplementary_material/cvpr11/

http://ivrl.epfl.ch/supplementary_material/cvpr11/


Table 1. Multimodal image super-resolution for near-infrared images (4× upscaling)
Bicubic JBF [9] GF [10] SDF [11] DJF [13] JFSM [12] Proposed

SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR
urban_0004 0.9029 25.93 0.9359 28.47 0.9391 28.75 0.9066 26.82 0.9789 31.02 0.9721 30.86 0.9811 34.14
urban_0006 0.9458 30.89 0.9311 32.10 0.9400 32.66 0.8918 30.60 0.9894 36.04 0.9741 32.86 0.9868 36.79
urban_0017 0.9527 30.45 0.9172 31.11 0.9205 31.32 0.9281 30.72 0.9815 34.18 0.9500 32.85 0.9777 35.27
urban_0018 0.9298 25.19 0.9308 27.59 0.9251 27.70 0.9196 26.09 0.9888 30.72 0.9774 30.80 0.9874 33.01
urban_0020 0.9577 28.03 0.9523 30.67 0.9494 30.69 0.9505 29.09 0.9915 33.60 0.9797 32.61 0.9893 36.66
urban_0026 0.8704 26.27 0.8627 26.82 0.8571 26.89 0.8558 26.61 0.9397 29.21 0.9332 28.97 0.9482 30.35
urban_0030 0.8401 26.54 0.8476 27.58 0.8383 27.59 0.8415 27.21 0.9345 31.27 0.9064 30.56 0.9443 32.71
urban_0050 0.9434 26.65 0.9099 27.32 0.9116 27.35 0.9207 27.07 0.9616 28.58 0.9251 27.58 0.9663 29.37
average 0.9179 27.49 0.9109 28.96 0.9101 29.12 0.9018 28.03 0.9707 31.83 0.9522 30.89 0.9726 33.54
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Fig. 3. Multimodal image super-resolution for near-infrared
images (4× upscaling). For each scene, the first row is the LR
input and SR results and the second row is the ground truth
and corresponding error map for each approach.

infrared images, as well as the corresponding error maps. As
shown in the figure, our approach substantially attenuates the
noise, reliably reserves image sharp details and suppresses
artifacts. Therefore, the purified near-infrared images by
our approach are cleaner and more visually plausible than
the reconstruction by the competing approaches. The visual
quality is also demonstrated by the error maps where the
denoised near-infrared images using our approach exhibit the
least residual for different noise levels in comparison with
the competing methods. In particular, it can be observed
that our approach also outperforms deep learning based ap-
proach DJF [13]. We believe that the good robustness and
stability is due to sparsity priors exploited by our model. The
average PSNR and average RMSE results for the multimodal
image denoising task, shown in Figure 2, also confirm that
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Fig. 4. Both the LR testing and training images are noisy
for multimodal image SR (4× upscaling), using DJF [13] and
proposed approach. The standard deviation of the noise in the
testing images ranges from 12 to 15.6.

our approach exhibits notable advantages over the competing
methods.

Figure 3 compares the visual quality of the reconstructed
HR near-infrared images and the corresponding error maps. It
can be seen that our approach recovers more visually plausi-
ble images, exhibiting less error than the competing methods,
Therefore, our reconstruction is more photo-realistic and vi-
sually appealing than the counterparts. Table 1 also confirm
the significant advantage of the proposed approach over other
state-of-the-art methods. Figure 4 shows the quantitative SR
results for noisy LR input images of target modality. It is no-
ticed that our algorithm demonstrates reasonable stability and
robustness to noise, especially to strong noise. In contrast,
DJF [13] is susceptible to noise and its performance degrades
faster than ours.

6. CONCLUSION

This paper proposes a multimodal image processing frame-
work based on coupled dictionary learning. The proposed
scheme explicitly incorporates sparsity prior and cross-
similarity prior in the data model to captures the similari-
ties and disparities between different image modalities in a
learned sparse feature domain in lieu of the original image
domain. In this way, the proposed scheme can take better ad-
vantage of a guidance image modality to aid the processing of
another different image modality in various tasks such as de-
noising, super-resolution. The experiments demonstrate that
our framework achieves notable benefits with respect to the
state-of-the-art, as well as outperforms deep-learning-based
methods especially when the data is contaminated by noise.
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