310 research outputs found

    Global assessment of sand and dust storms

    Get PDF
    The specific objectives of the assessment are to: 1) Synthesise and highlight the environmental and socio-economic causes and impacts of SDS, as well as available technical measures for their mitigation, at the local, regional and global levels; 2) Show how the mitigation of SDS can yield multiple sustainable development benefits; 3) Synthesize information on current policy responses for mitigating SDS and 4) Present options for an improved strategy for mitigating SDS at the local, regional and global levels, building on existing institutions and agreements

    Climate Change and Environmental Sustainability-Volume 1

    Get PDF
    Climate change has been widely recognised as a major challenge to the world, with significant environmental, economic and social consequences. Given this, addressing climate change is an urgent and profound task of society, a complex and difficult mission of several generations. To address the challenge of climate change, there is a need to develop a holistic climate change mitigation and adaptation framework that can cover as many climate-related topics as possible and connect as many stakeholders as possible across the globe. This book is an important one, bringing together key climate-related topics, including climate-induced impact assessment, environmental vulnerability and resilience assessment, greenhouse gas emission dynamics and sequestration, climate change mitigation and adaptation strategies in addition to climate-related governance. Results reported in this book are conducive to a better understanding of the climate emergency, climate-related impacts and the solutions. We expect the book to benefit decision makers, practitioners and researchers in different fields such as climate modelling and prediction, forest ecosystems, land management, urban planning and design, urban governance in addition to institutional operation. Prof. Bao-Jie He acknowledges Project NO. 2021CDJQY-004, supported by the Fundamental Research Funds for the Central Universities. We appreciate the assistance from Mr. Lifeng Xiong, Mr. Wei Wang, Ms. Xueke Chen and Ms. Anxian Chen at the School of Architecture and Urban Planning, Chongqing University, China

    Sustainable Water Management and Wetland Restoration Strategies in Northern China

    Get PDF
    This book depicts the results of a research project in northern China, where an international and interdisciplinary team of researchers from Italy, Germany and China has applied a broad range of methodology in order to answer basic and applied research questions and derive comprehensive recommendations for sustainable water management and wetland restoration. The project primarily focused on ecosystem services, e.g. the purification of water and biomass production. In particular, the ecosystem function and use of reed (Phragmites australis) and the perception as well as the value of water as a resource for Central Asia's multicultural societies was analysed

    Sustainable Use of Soils and Water: The Role of Environmental Land Use Conflicts

    Get PDF
    This book on the sustainable use of soils and water addressed a variety of issues related to the utopian desire for environmental sustainability and the deviations from this scene observed in the real world. Competing interests for land are frequently a factor in land degradation, especially where the adopted land uses do not conform with the land capability (the natural use of soil). The concerns of researchers about these matters are presented in the articles comprising this Special Issue book. Various approaches were used to assess the (im)balance between economic profit and environmental conservation in various regions, in addition to potential routes to bring landscapes back to a sustainable status being disclosed

    Sustainable Water Management and Wetland Restoration Strategies in Northern China

    Get PDF
    This book depicts the results of a research project in northern China, where an international and interdisciplinary team of researchers from Italy, Germany and China has applied a broad range of methodology in order to answer basic and applied research questions and derive comprehensive recommendations for sustainable water management and wetland restoration. The project primarily focused on ecosystem services, e.g. the purification of water and biomass production. In particular, the ecosystem function and use of reed (Phragmites australis) and the perception as well as the value of water as a resource for Central Asia's multicultural societies was analysed

    Local and regional desertification indicators in a global perspective: Seminar proceedings

    Get PDF
    This volume contains the proceedings of the International Seminar on Local and Regional Desertification Indicators in a Global Perspective held in Beijing, China, in May 2005. Aim of the seminar was to provide a precious opportunity to exchange information and experiences about the identification and use of desertification B&I among representatives of UNCCD Annexes, while contributing to strengthen linkages among them and exploring possible synergies. The seminar was organised in the framework of the AIDCCD project (Active Exchange of Experiences on Indicators and Development of Perspective in the Context of UNCCD), aiming at developing and co-ordinating exchange of experience across the world among institutions involved in the implementation of the UNCCD regional Annexes

    Spatiotemporal features of the soil moisture across Northwest China using remote sensing data, reanalysis data, and global hydrological model

    Get PDF
    Soil moisture is an important factor affecting the change of land surface hydrological processes and the distribution of material and energy exchanges between the land and atmosphere and vegetation’s temporal and spatial distributions, especially in arid and semi-arid regions. This paper focuses on soil moisture features across Northwest China, the core region of the Silk Road Economic Belt. Six soil moisture datasets from the period 1981–2020 were employed, which included ERA5 (the European Centre for Medium-Range Weather Forecasts Atmospheric Reanalysis 5), ESA-CCI (European Space Agency Climate Change Initiative), GLDAS (Global Land Data Assimilation System), MERRA-2 (The Modern-Era Retrospective Analysis for Research and Applications, Version 2), RSSSM (A Remote Sensing-based global 10-day resolution Surface Soil Moisture dataset), and SSM-Feng (Regional multimodal fusion of surface soil moisture data in China). The temporal and spatial variation of the linear trend and abrupt change characteristics at seasonal and annual scale were explored. The results are as follows: 1) ESA-CCI, GLDAS, and MERRA-2 showed a slow increase in annual soil moisture tendency at a rate of less than 0.001 m3/m3/year, while ERA5 and SSM-Feng showed a significant decreasing linear trend at a rate of 1.31 × 10−4 m3/m3/year and 1.01 × 10−4 m3/m3/year (p < 0.05), respectively. 2) In autumn and winter, only GLDAS and MERRA-2 showed significant increasing trends. In the growing season (i.e., from April to October), the soil moisture of ESA-CCI, GLDAS, and MERRA-2 significantly increased at the rates of 3.29 × 10−4 m3/m3/year, 3.30 × 10−4 m3/m3/year, and 6.64 × 10−4 m3/m3/year (p < 0.05), respectively. 3) ERA5 and ESA-CCI have frequent abrupt changes in 1984, 1987, and 2006 for ERA5, 2010–2012 and 2019–2020 for ESA-CCI. 4) In terms of spatial variations, most datasets show that soil moisture has increased across most regions. The ERA5, ESA-CCI, GLDAS, MERRA-2, and SSM-Feng datasets show decreased soil moisture in the Tarim Basin. The conclusions of this study deepen the understanding of temporal and spatial variation in soil moisture in arid areas of Northwest China. Through these conclusions, a certain theoretical basis can be provided for the complex water cycle process in the arid region

    A spatiotemporal epidemiological investigation of the impact of environmental change on the transmission dynamics of Echinococcus spp. in Ningxia Hui Autonomous Region, China

    Get PDF
    Background: Human echinococcoses are zoonotic parasitic diseases of major public health importance globally. According to recent estimates, the geographical distribution of echinococcosis is expanding and becoming an emerging and re-emerging problem in several regions of the world. Echinococcosis endemicity is geographically heterogeneous and might be affected by global environmental change over time. The aims of my research were: 1) to assess and quantify the spatiotemporal variation in land cover and climate change in Ningxia Hui Autonomous Region (NHAR); 2) to identify highly endemic areas for human echinococcoses in NHAR, and to determine the environmental covariates that have shaped the local geographical distribution of the disease; 3) to develop spatial statistical models that explain and predict the spatiotemporal variation of human exposure to Echinococcus spp. in a highly endemic county of NHAR; and 4) to analyse associations between the environment and the spatiotemporal variation of human exposure to the parasites and dog infections with Echinococcus granulosus and Echinococcus multilocularis in four echinococcosis-endemic counties of NHAR. Methods: Data on echinococcosis infections and human exposure to E. granulosus and E. multilocularis were obtained from different sources: 1) A hospital-based retrospective survey of human echinococcosis cases in NHAR between 1992 and 2013; 2) three cross-sectional surveys of school children conducted in Xiji County in 2002–2003, 2006–2007 and 2012–2013; and 3) A cross-sectional survey of human exposure and dog infections with E. granulosus and E. multilocularis conducted in Xiji, Haiyuan, Guyuan and Tongxin Counties. Environmental data were derived from high-resolution (30 m) imagery from Landsat 4/5-TM and 8-OLI and meteorological reports provided by the Chinese Academy of Sciences. Image analysis techniques and a Bayesian statistical framework were used to conduct a land cover change detection analyses and to develop regression models that described and quantified climate trends and the environmental factors associated with echinococcosis risk at different spatial scales. Results: The land cover changes observed in NHAR from 1991 to 2015 concurred with the main goals of a national policy on payments for ecosystem services, implemented in the Autonomous Region, in increasing forest and herbaceous vegetation coverages and in regenerating bareland. Statistically significant positive trends were observed in annual, summer and winter temperatures in most of the region, and a small magnitude change was found in annual precipitation, in the same 25-year period. The south of NHAR was identified as a highly endemic area for cystic echinococcosis (CE; caused by E. granulosus) and alveolar echinococcosis (AE; caused by E. multilocularis). Selected environmental covariates explained most of the spatial variation in AE risk, while the risk of CE appeared to be less spatially variable at the township level. The risk of exposure to E. granulosus expanded across Xiji County from 2002–2013, while the risk of exposure to E. multilocularis became more confined in communities located in the south of this highly endemic area. In 2012–2013, the predicted seroprevalences of human exposure to E. granulosus and dog infection with this parasite were characterised by similar geographical patterns across Xiji, Haiyuan, Guyuan and Tongxin Counties. By contrast, the predicted high seroprevalence areas for human exposure and dog infection with E. multilocularis did not coincide spatially. Climate, land cover and landscape fragmentation played a key role in explaining some of the observed spatial variation in the risk of infection with Echinococcus spp. among schoolchildren and dogs in the south of NHAR at the village level. Conclusions: The findings of this research defined populations at a high risk of human exposure to E. granulosus and E. multilocularis in NHAR. The research provides evidence on the potential effects of landscape regeneration projects on the incidence of human echinococcoses due to the associations found between the infections and regenerated land. This information will be essential to track future requirements for scaling up and targeting the control strategies proposed by the National Action Plan for Echinococcosis Control in China and may facilitate the design of future ecosystem management and protection policies and a more effective response to emerging local environmental risks. The predictive models developed as part of this research can also be used to monitor echinococcosis infections and the emergence in Echinococcus spp. transmission in the most affected areas

    Monitoring soil moisture dynamics and energy fluxes using geostationary satellite data

    Get PDF
    • 

    corecore